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The movement patterns of deep-sea bioturbational fauna are believed to be the result of
the organism’s interactive response to the perceived spatial distribution of nutritional
resources on the seafloor. To address this hypothesis, we examined the movement paths
of Echinocrepis rostrata -a common epibenthic bioturbator echinoid in the northeast
Pacific Ocean- through fractal analysis in order to characterize how they cover the seafloor
during foraging. We used an 18-yr time series photographic record from 4100-m depth at
an abyssal site in the eastern North Pacific (Sta. M; 34°50′N, 123°00′W; 4100 m depth).
Echinocrepis rostrata paths showed low fractal values (1.09 to 1.39). No positive
correlation between particulate organic carbon (POC) flux measured from sediment
traps at 600 m and 50 m above bottom and fractal dimension (FD) values was
observed. The movement of echinoids was characterized by high-speed periods,
followed by slower speed periods and higher turning rates. These slow-speed periods
were correlated with higher sinuosity values, slightly wider turning angles, and numerous
cross-cuts. Based on visual estimation of seafloor phytodetritus coverage, we
hypothesize that its small-scale distribution may be the primary determinant of echinoid
feeding movement patterns rather than the bulk amount of nutrients. Finally, this finding
reveals new insights into the morphological studies of trace fossils, indicating that trails of
past echinoid trace makers could help to evaluate nutrient availability/distribution in the
ancient deep-sea and help to decipher past climate-induced changes.

Keywords: deep-sea, bioturbation, echinoid movement, nutrient distribution, Pacific Ocean, station M
INTRODUCTION

Climate-induced changes (e.g., ocean warming, distribution of water masses) influence nutrient
availability at the sea surface and subsequent particle export. Climate fluctuations contribute to
water stratification, leading to variations in particulate organic carbon (POC) flux, affecting the
deep-sea benthic community structure and ultimately the marine carbon cycle (Smith et al., 2013).
The organic carbon that reaches the seafloor is the main food source for benthic fauna, controlling
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the diversity, abundance, size, and ethology of trace makers (i.e.,
rates of bioturbation) and carbon sequestration dynamics (Levin
et al., 2001; Nathan et al., 2008; Vardaro et al., 2009). Epibenthic
fauna feeding and movement have also proven to be major
factors in incorporating detritus into the benthic food web and
redistributing POC (Kaufmann and Smith, 1997).

Biogenic disturbance on and into the seafloor is of interest
across many scientific disciplines within Earth and Life sciences
due to its crucial influence on geochemical cycles and marine
ecology (Smith et al., 2000). Bioturbation promotes multiple
ways of priming and total remineralization of sedimentary
organic matter (Aller and Cochran, 2019). Accordingly, if
bioturbational activities are attenuated or even ceased due to
climate-induced changes, then a significant shift in the carbon
cycle could follow; for example, greater amounts of carbon could
be released back into the water column instead of being
sequestered deeper into the sediment (Vardaro et al., 2009).
These links between POC flux and bioturbation allow the use of
mobile trace maker behaviors and associated biogenic structures
(lebensspuren–activity of benthic organisms imprinted on and
within the sediment) as a proxy to provide information about the
quality, quantity, and distribution of POC deposited on the
seafloor over time (Gage and Tyler, 1991; Bell et al., 2013;
Durden et al., 2020; Miguez-Salas et al., 2020). The movement
patterns of epibenthic megafauna may reflect a number of
structuring forces as they search for patchily-distributed food
resources (Kaufmann and Smith, 1997). Bioturbators may
exhibit variable movement patterns according to food
availability and distribution, either as a non-random pattern
that enhances their ability to localize patchy food resources or a
composite pattern that has both non-random and random
movements. Kaufmann and Smith (1997) proposed three
qualitative movement patterns: 1) Run and Mill (organism
moves relatively large distances in a short period of time,
followed by a prolonged period of slower speeds and higher
turning rates within a restricted area); 2) Loop (organism
describes large loops across the seafloor); and 3) Run
(organism runs in a predominantly unidirectional motion with
minimal changes of speed and little or no recrossing of
previously covered areas). However, the knowledge of how
organic matter distribution controls the specific foraging
motions (i.e., orientation, complexity, velocity) of mobile trace
makers, and thus trace morphology, is still scarce (Koy and
Plotnick, 2010).

Under certain environmental and taphonomical conditions,
lebensspuren can be preserved in the geological record as trace
fossils (Gage and Tyler, 1991; Smith et al., 2005). Thus,
comparative analysis between lebensspuren and trace fossils
provides a unique opportunity to evaluate deep-sea
environmental changes at different time scales through Earth’s
history (Miguez-Salas et al., 2020). The identification of
diagnostic ichnological features to compare past and present
traces and their paleoenvironmental implications are rarely
attempted (Wetzel, 2008; Koy and Plotnick, 2010). In deep-sea
environments, two major limiting conditions determine trace
maker behavior: Rate of oxygenation and nutrient availability
Frontiers in Marine Science | www.frontiersin.org 2
(Wetzel, 2008; Buatois and Mángano, 2011; Knaust and Bromley,
2012). The relationship between ichnological features and
organic carbon distribution in the deep-sea, mainly focusing
on echinoid trails, is comparatively better studied (Wetzel, 2008;
Seike et al., 2020). For example, a considerable amount of organic
matter (e.g., organic carbon content) is associated with guided
meanders of large echinoid trails (Wetzel and Uchman, 2018).
Although previous studies reveal that trails left behind by
echinoids can represent searching behaviors and nutrient
distribution (Sims et al., 2014), this research is still in its early
stages. Approaching detailed characterizations of echinoid
movement patterns to evaluate the relationship between
present nutrient availability and foraging behaviors can be
a challenge.

The bioturbation potential of Echinocrepis rostrata – a
common deep-sea epibenthic echinoid bioturbator of the
northeast Pacific Ocean – has been previously studied over 18-
yr time-series photographic record (see Vardaro et al., 2009).
This study found no increase in E. rostrata bioturbation over the
18 year study period despite an increase in population size,
although there were periodic variations that correlated
significantly with changes in POC flux. In more detail, a 1-
month lagged relationship between average speed and POC flux
(measured using sediment traps in the overlying water column)
was observed (Vardaro et al., 2009). Here, we further evaluate
that previous research, providing detailed evidence that E.
rostrata exhibits a movement pattern controlled by small-scale
phytodetritus distribution on the seafloor rather than bulk POC
flux settling from overlying waters. Prior studies from the fossil
record have revealed that systematic deposit-feeding strategy
creates a higher fractal dimension in trace fossils, suggesting the
organism feeds from as much of the sediment area as possible
(Lehane and Ekdale, 2013; Lehane and Ekdale, 2016). Thus,
fractal analysis was used here to examine the movements of E.
rostrata and determine likely foraging strategies (e.g., selective
feeding, systematic feeding, random pattern). Moreover, foraging
strategies were compared with POC fluxes and small-scale
nutrient distribution. The aim of the analyses is a precise
characterization of echinoid movement, based on fractal
analysis (Mandelbrot, 1983), to test if movement patterns can
be used as deep-sea proxy of present POC supply to the seafloor
and subsequently as a tool for paleoenvironmental applications.
MATERIAL AND METHODS

Study Data
Data were collected from the abyssal time-series site Station M
(time-lapse image data sets from 1989 to 2007; Vardaro et al., 2009)
in the north-eastern Pacific (34°50 N, 123°06 W, 4100 m water
depth; Smith and Druffel, 1998) (Figure 1). The seabed is mainly
composed of soft silty clay sediment (Kaufmann and Smith, 1997).
Food falls are particulate organic carbon and detrital aggregates
comprised primarily of phytodetritus and occasional gelatinous
zooplankton (e.g., Smith et al., 2014). POC flux to the
seafloor was measured using two Teflon©-coated McLane
May 2022 | Volume 9 | Article 903864
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PARFLUX©-style sediment traps with 0.25-m2 openings moored at
50 m above bottom (mab; 4050 m water depth) and 600 mab
(3500 m water depth). A collect time of ten days per sediment trap
cup was performed, deployed 50 and 600 meters above bottom
(mab). This measure of POC flux (i.e., through sediment traps)
provides an estimate of bulk food availability to the seafloor
community over time (Smith et al., 1994), and is known to
correlate with megafauna abundance (Ruhl and Smith, 2004;
Ruhl, 2008) and behavior (Durden et al., 2020). Details of
sediment trap data collection and analysis can be found in
Baldwin et al. (1998).

A time-lapse camera (TLC) recorded the presence and
activity of the Echinocrepis rostrata over a seafloor area of 20
m2 (Vardaro et al., 2009). The TLC consisted of a Benthos 377
camera mounted on a titanium frame at an angle of 31 degrees
from horizontal with the lens ~2 m above the seafloor (Vardaro
et al., 2009). The camera was equipped with a 28-mm Nikonos
lens, providing angular coverage of 50 degrees in the horizontal
and 35 degrees in the vertical plane, and held 400 feet of 35-mm
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color negative film (Fuji, type 8514, 500 ASA). The camera
system was set at a 1-hour time-lapse interval and captured 27
image data sets of approximately 4 months each between 1989
and 2007. The still images were analyzed using a perspective-grid
method (Wakefield and Genin, 1987). Each image was projected
onto a flat surface and instances of individual urchins were
digitized with a Science Accessories Corp.® electronic digitizer
interfaced with a computer, using each 1 h interval as a step of
the organism. Nine echinoid (E. rostrata) trails from 1993 to
2006 were selected based on: 1) variation in POC flux rates (from
0.8 to 16 mg/m2/day); 2) path morphology complexity; and 3)
residence time (from 59 to 677 hours). The movements of these
nine echinoids were digitally recreated by plotting the recorded
positions on X–Y graphs (data from Vardaro et al., 2009).

Methodology
The recreated paths were classified based on their speed; an
arbitrary threshold value of 100 mm/h was established to divide
high and slow speed periods. Velocity was calculated by the
FIGURE 1 | Detailed location of Station M in the Northeast Pacific (4000 m) with 500 m contours (slightly modified from Lampadariou et al., 2020). Image examples
(below) of the seafloor at Sta. M with E. rostrata specimens (from Jason ROV and R/V New Horizon). The trail left in the sediment by E. rostrata foraging movement
is indicated by white arrows.
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modulus of the velocity vector as a function of the modulus of the
position vector. For each individual path left by an echinoid, we
calculated the following trail features: residence time (hours),
cross-cuts (the result of the trace intersecting with itself), average
trail width (mm), average trail speed (mm/h; based on Vardaro
et al., 2009 data), total area covered (mm2) and average daily area
covered (mm2/d). Additionally, path sinuosity (total path length
divided by the minimum distance between the beginning and
end of the path) and the turning radius of the angles between
steps (degrees) were evaluated. Path tortuosity in this study was
determined by calculating the ratio of track length to the actual
linear distance traversed by the echinoid. High sinuosity is
associated with pathways that have more turns relative to step
length, indicating a more complex or twisted pattern
of movement.

Fractal analysis (Mandelbrot, 1983) is used to characterize
path complexity, quantify path morphologies and measure how
completely the E. rostrata traces fill the seafloor area it occupies.
The fractal dimensions (FD) of the studied traces were obtained
by the box-counting method (e.g., Pérez-Claros et al., 2002;
Kaurov, 2014). Although the box-counting method is in some
cases less accurate than the Richardson method for low-
complexity structures, fractal dimensions obtained by each
method are generally similar (see Lutz and Boyajian, 1995).
However, Richardson’s method is not suitable for situations
where there are double points (the result of the curve
intersecting with itself) such as Brownian motion projection on
a plane or the traces analyzed here. Thus, fractal dimension
estimation was expressly developed in Wolfram Mathematica
10.4.1.0 language, starting from an algorithm published by
Kaurov (2014) that was adapted to incorporate the
methodological improvements of Pérez-Claros et al. (2002).
Then, the possible relationship between FD values and
monthly POC flux (1-month lag intervals; up to 12 months
Frontiers in Marine Science | www.frontiersin.org 4
in advance) were tested with non-parametric Spearman rank
correlation. Trail features (residence time, cross-cuts, average
trail width, average trail speed, total area covered, and average
daily area covered), FD values, and POC flux (contemporary to
the development of the trail) were also tested using non-
parametric Spearman rank correlation.

To assess the influence of small-scale food distribution on
bioturbation patterns, a visual analysis of E. rostrata movements
and organic matter distribution was also conducted. The organic
matter distribution visual analysis was developed in still images
ranging from the time of trail formation to one month before.
This time interval was selected because of the positive correlation
between POC flux (lagged 1 month) and average trail speed
found by Vardaro et al. (2009). The organic matter distribution
analysis was conducted based on the identification of the nearby
patches (within a radius of 20 cm from E. rostrata position
during trail formation) for each echinoid specimen.
RESULTS

The observed echinoid movement patterns were composed of
straight and meandering paths. Straight echinoid movement
patterns were characterized by high-speed periods when large
distances were covered in a short time interval (green thick path
in Figure 2; >100mm/h), followed by a prolonged period of
slower movement with higher turning rates within a restricted
area (red thin paths in Figure 2; < 100 mm/h). The slow-speed
periods correlated with higher sinuosity values, slightly wider
turning angles, and numerous cross-cuts (yellow stars in
Figure 2). The FD of the nine specimens varied between 1.09
and 1.39. The fractal values were low but reflected a degree of
relative complexity for each trace, becoming higher during the
FIGURE 2 | Echinocrepis rostrata digitized trails (I-I’, II-II’, III-III’) with their fractal dimension (FD) values. Red (thin) and green (thick) lines indicate low and high-speed
periods respectively. Note that grey dots indicate the hourly position of the organism. Yellow stars indicate cross-cuts. S= tortuosity index.
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slow-speed periods when the echinoid path intersected itself
and performed meandering movements.

The Spearman rank correlation between POC flux and FD
showed no positive correlation at any time lags between 1 to 12
months (Supplementary Table 1), only a strong negative
correlation observed 10 months prior to trail creation
(Supplementary Table 1). FD is positively correlated with the
number of cross-cuts and negatively correlated with the average
width of the trail (Supplementary Table 2). Residence time,
average trail speed, total area covered, and average daily area
covered showed no correlation with the FD (Supplementary
Table 2). A strong negative correlation between residence time
and POC flux was observed (Supplementary Table 2). On the
other hand, a positive correlation between the average daily area
covered and POC flux was recorded (Supplementary Table 2).
Frontiers in Marine Science | www.frontiersin.org 5
Number of cross-cuts, average trail speed, total area covered, and
average width of the trail showed no correlation with the FD
(Supplementary Table 2).

The visual analysis of small-scale organic matter distribution
showed no consistent echinoid movement in relation to the
patches deposited 1 month in advance. Reviewing the still images
from a month prior until the moment in which the nine E.
rostrata were examined (i.e., making the trail) produced the same
result. There was no apparent relationship between previous
organic patch distribution and E. rostrata movement. However,
the deposition and distribution of organic matter available
contemporaneously with foraging E. rostrata seemed to reflect
a link with the echinoid movement pattern (Figure 3). The
simplified sequence of movements appeared to unfold as follows
(see example in Figure 3): High-speed periods (i.e., Run sensu
FIGURE 3 | A sequence of images (hourly) that record the movement pattern of E. rostrata (white arrow) and the distribution of organic matter patches consumed
by the echinoid (black circles). Note the Run (thick green line; T = 23h to T = 24h) and Mill (thin red line; T = 11h to T = 15h) behaviors of E. rostrata (sensu
Kaufmann and Smith, 1997).
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Kaufmann and Smith, 1997) of E. rostrata movement were
related to foraging behaviors (see Figure 3; T = 0h to T = 1h
or T = 23h to T = 24h). Then, E. rostrata slower speed periods
and higher turning rates were associated with the discovery of
organic matter patches (see Figure 3; from T = 3h to T = 7h or
from T = 11h to T = 15h). These slow-speed periods were
associated with higher sinuosity values, meandering patterns,
and feeding stops (i.e., Mill sensu Kaufmann and Smith, 1997).
DISCUSSION

The movement ecology paradigm of Nathan et al. (2008) and
associated trails results from the answer to three main questions:
1) “why move?” 2) “how to move?” and 3) “where to move?”, as
well as interactions with external environmental factors (Nathan
et al., 2008). In the case of deposit feeders, an optimal foraging
strategy implies that the organism ingests as much food-rich
sediment as possible with minimum energetic cost, maximizing
the coverage of the food-rich deposit (Levinton and Kelaher,
2004). In other words, maximizing the net energy intake while
minimizing the time and energy spent foraging. Non-random
movement patterns among the mobile epibenthic megafauna
have been inferred from sediment traces (Kitchell, 1979), and
were corroborated at Station M in the north-eastern Pacific
(Kaufmann and Smith, 1997). Accordingly, if we follow
Kaufmann and Smith (1997) qualitative movement patterns
(Run and Mill, Loop, and Run), selective foraging motions
(i.e., exploiting food patches) may be related to movement
patterns such as the Run and Mill or Loop vs. continuous Run
movement which is likely related to non-selective bulk ingestion
(Kaufmann and Smith, 1997; Vardaro et al., 2009). Here, the
obtained low FD values (i.e., no systematic deposit-feeding) for
E. rostrata movement patterns reveal selective foraging motions.
Thus, the studied echinoid seems to develop a Run and
Mill strategy.

In the fossil record, the systematic deposit-feeding strategy
interpreted for deep-marine trace makers generates trace fossils
with a higher fractal dimension (up to 1.85) due to the
organism feeding from as much of the sediment as possible
(complete coverage of the sediment area) (Lehane and Ekdale,
2013). Thus, tightly spaced geometric attributes of deposit-
feeding traces, which yield a high fractal dimension, are
interpreted to be the result of a feeding pattern that
maximizes the coverage of a food-rich area of the sediment
(Lehane and Ekdale, 2013). The fractal values obtained here are
considerably lower (1.39 maximum) than those obtained from
systematic deposit-feeding strategies in the fossil record,
suggesting heterogeneous distribution of benthic food and
selective foraging motions while seeking patchy food
resources. Accordingly, low fractal values of E. rostrata traces
can be attributed to Run and Mill motions (high-speed
between-patch movements and low-speed within-patch
movements). When a nutritious patch is reached, movement
behavior of the echinoid significantly shifts, exhibiting a
characteristic sequence of phases: decreased speed, increased
sinuosity, and a higher occurrence of cross-cut paths.
Frontiers in Marine Science | www.frontiersin.org 6
Our results are consistent with other experimental studies on
mobile benthic fauna in patchy resource environments, where
within-patch movements are correlated with smaller step lengths
and higher tortuosity values (Koy and Plotnick, 2010). These
authors also indicated that a major control on movement and
trace morphology is the distribution of organic matter both
within a patch and at the larger scale of the landscape.
However, the assignment of behavioral significance to the
movement patterns must be approached with caution. First,
nutritious resources are not always uniformly distributed. For
example, detrital aggregates at Sta. M are often patchy and can be
randomly distributed on some spatial scales (Smith et al., 1994;
Lauerman and Kaufmann, 1998). Also, the exact food quantity
and quality of each patch is not possible to evaluate via image
analysis; thus, the relative significance of these resources to the
nutrition and the movement behavior of E. rostrata is difficult to
ascertain. Finally, Run patterns may be segments of Run and Mill
or large Loop patterns (Kaufmann and Smith, 1997).

It is unknown whether variation of food distribution at these
spatial scales are important to E. rostrata or whether the present-
time distribution of detrital aggregates is the primary motivation
around which the movement behavior is structured. Durden
et al. (2020) found that deposit-feeding megafauna (e.g.,
echinoids, large holothurians, and asteroids) did not alter their
deposit feeding strategy in relation to the seasonality in detrital
supply (i.e., changes in the amount of nutrients that reach the
seafloor). Also, the guts of abyssal deposit feeders (e.g., E.
rostrata) have recently been established as hotspots of organic
matter that occupy one trophic level above detritus (Romero-
Romero et al., 2021). Our results showed no positive correlation
between POC fluxes and FD values. Nevertheless, the inverse
correlation between POC flux and residence time indicates that
with high POC fluxes, the echinoids spend less time in the area,
as presumably there will be more narrowly spaced patches. Also,
positive correlation between POC flux and average daily area
covered stipulates that during periods of higher POC flux the
echinoids will move faster in a straight line from patch to patch.

The visual analysis conducted here favors the interpretation
that E. rostrata movement pattern is subject to nearby patch
distribution (Figure 3). Our results seem to corroborate that
parameters other than high or low prior POC fluxes control E.
rostrata foraging movements. Thus, considering previous studies
(e.g., Kaufmann and Smith, 1997; Vardaro et al., 2009; Koy and
Plotnick, 2010; Durden et al., 2020; Romero-Romero et al., 2021),
the obtained data, and that the nutrient content is not related to
E. rostrata path complexity, phytodetritus distribution may be
the dominant cause of echinoid movement. Analysis of
environments with different levels of patch quality and variable
travel times between patches must be conducted to resolve these
uncertainties and attempt to more generally apply optimal
foraging theory to deep-sea echinoids.

Implications for Echinoid Trace Fossils
In the ancient record, burrows in deep-sea environments show
more complex patterns than in neritic ones (Seilacher, 2007; Fan
et al., 2018). Looping traces have traditionally been interpreted as
an uneconomical foraging strategy in which tracemakers
May 2022 | Volume 9 | Article 903864
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inefficiently crossed their own paths (Seilacher, 1997). Instead,
Seilacher (2007) proposed meandering traces as a reflection of
more efficient foraging behavior, in which trace makers avoided
areas they had already exploited. The presence of surfaces fully
covered with echinoid trace fossils (e.g., Scolicia) suggests that
the exploited area likely contained a considerable amount of
organic matter (Wetzel and Uchman, 2018). The occurrence of
large echinoid trails with guided meanders is best explained by
an optimized exploitation of high-nutrient value benthic food
(Kröncke, 2006; Wetzel, 2008). Studies from modern deep-sea
sediments of the South China Sea revealed that large echinoid
trails and guided meandering patterns were evocative of high-
quality benthic food, while small echinoid trails seem to indicate
a less favorable trophic situation (Wetzel, 2008). The results
obtained at Station M offer new insights into the echinoid trace
fossil analysis: 1) Straight “run” patterns likely relate to foraging
periods (in search for food patches); 2) meandering patterns may
indicate intense deposit-feeding periods; 3) path morphology
seems to be more controlled by resource distribution rather than
by nutrient abundance; and 4) larger trace width is related to
higher nutrient abundance.

Comparison of living animal behaviors to the fossil record is not
an easy matter. Any correlation of the present results with the fossil
record must consider both the taphonomic bias and the unknown
elapsed time required to produce the trace fossils. However, the
time-lapse information and fractal analysis could improve
paleoecological interpretations characterizing food availability on
the seafloor during trace maker feeding activity. The obtained
information will open new pathways as a comparison between
detailed quantitative trace fossil studies (i.e., fractal analysis), and
time-lapse information will offer stronger data on
paleoenvironmental changes. Past POC flux fluctuations could be
deciphered from changes in trace fossil morphologies through the
geological record, enabling a novel approach to studying
paleoenvironmental changes such as oxygen variations or water-
mass stratifications.
CONCLUSIONS

The research conducted on Echinocrepis rostrata specimens -a
common epibenthic bioturbator echinoid in the northeast Pacific
Ocean- reveals that factors in addition to the flux of POC control
their foraging motions. Fractal analysis showed no evidence of
systematic deposit feeding strategies. Visual analysis of organic
matter distribution revealed that E. rostrata movement patterns
are influenced by the patchy distribution of organic detritus. Thus,
the obtained results show that when E. rostrata encounter resource
patches they increase their turning rates, decrease velocity, and
produce meandering trails. Moreover, this finding reveals
differences with respect to previous morphological studies of trace
fossils, indicating that trails of past echinoid trace makers could be
used to evaluate nutrient distribution in the ancient deep-sea.
Frontiers in Marine Science | www.frontiersin.org 7
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