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Abstract
Taste is a sensory modality crucial for nutrition and survival, since it allows the discrimination between healthy foods and toxic 
substances thanks to five tastes, i.e., sweet, bitter, umami, salty, and sour, associated with distinct nutritional or physiological 
needs. Today, taste prediction plays a key role in several fields, e.g., medical, industrial, or pharmaceutical, but the complexity 
of the taste perception process, its multidisciplinary nature, and the high number of potentially relevant players and features at 
the basis of the taste sensation make taste prediction a very complex task. In this context, the emerging capabilities of machine 
learning have provided fruitful insights in this field of research, allowing to consider and integrate a very large number of vari-
ables and identifying hidden correlations underlying the perception of a particular taste. This review aims at summarizing the 
latest advances in taste prediction, analyzing available food-related databases and taste prediction tools developed in recent years.
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Abbreviations
R	� Correlation coefficient
SD	� Standard deviation
SP	� Specificity
SE	� Sensitivity
ACC​	� Accuracy
MCC	� Matthews’s coefficient correlation
PRC	� Precision
NER	� Non-error rate
CV	� Cross-validation
ROC-AUC​	� Area under a receiver-operating characteris-

tic curve
VB	� Very bitter
NVB	� Not very bitter
Init-DPS	� Initial dipeptide propensity score
Opti-DPS	� Optimal dipeptide propensity score
RF	� Random forest
SVM	� Support vector machine
SVR	� Support vector regression
KNN	� K- nearest neighbors
GBM	� Gradient boosting machine
DNN	� Deep neuron network
ANN	� Artificial neural network
GFA	� Genetic function approximation
ECFP	� Extended-connectivity fingerprint
PCA	� Principal component analysis
OECD	� Organization for economic co-operation and 

development
AD	� Applicability domain
CM	� Consensus models

Introduction

Taste is a crucial sense involved in the perception of food 
and is a sensory modality that participates in the regulation 
of the intake of substances, avoiding indigestible or harm-
ful ingredients and identifying safe and healthy nutrients. 
Taste is determined by the gustatory system and partici-
pates in the overall perception of the flavor together with 
smell (olfactory system) and touch (trigeminal system) [1]. 
Chemicals derived from food ingestion trigger the taste per-
ception process, starting in the oral cavity, where they bind 
specific proteins placed on the taste buds of the tongue [2]. 
The five principal tastes are bitter, sweet, sour, umami, and 
salty, with each one being detected by specific receptors. 
Other tastes, such as fat taste, might be considered basic 
ones, since they arise from the combination of somatosen-
sory and gustation perceptions [3, 4]. Each taste is linked 
to a vital somatic function. In general, the sweet taste is 
associated with the presence of energy-rich food; the bitter 
taste is usually linked to potentially dangerous compounds 

and unpleasant flavor; umami is connected with the protein 
content in food; sour helps in the detection of spoiled food 
and acid tastants in general; finally, salty taste monitors the 
intake of sodium and other minerals [5]. Moreover, the taste 
is also supported by the sense of smell in the evaluation of 
foods or substances, and chemosignal detection is used by 
animals and humans to identify threats [6, 7]. As an exam-
ple, repulsive odors to humans, such as the ones generated 
from cadaverine, putrescine, and other biogenic diamines, 
indicate the presence of bacterial contamination [8]. Taste 
sensation relies on the affinity of taste compounds for taste 
receptors depending on their structure. Since small varia-
tions in tastant chemistry result in drastic modifications of 
perceived taste, ligand-based methods, merging molecular 
descriptors and taste information, represent powerful data-
driven tools to effectively implement machine learning (ML) 
algorithms with the capacity to predict taste. Such methods 
can be applied, for example, to screen huge databases of 
small compounds (e.g., ZINC15, DrugBank, and ChEMBL) 
to select promising tastants or to rationally drive the design 
of novel compounds with specific functional properties and 
a desired taste.

Nutritious foods usually have an appetitive taste, e.g., 
sweet, umami, and lower concentrations of sodium and 
acids, whereas toxic substances generally present an 
unpleasant flavor, such as bitter tastants, high concentra-
tions of sodium, and sour taste stimuli. Moreover, a healthy 
diet, such as the Mediterranean one, has been associated 
with beneficial impacts on human health status [9, 10]. Taste 
prediction is therefore of paramount importance not only for 
the food industry but also for the medicine, pharmaceutical 
and biotechnology sectors. Regarding the industrial food 
sector, sensory evaluation is commonly applied to access 
the flavor of foods. Usually, it involves the measurement 
and evaluation of the sensory properties of foods and other 
materials [11, 12]. The type of analysis role is crucial to 
address specific consumers' needs or market demands, 
evaluate food products, ensure high-quality products, and 
establish the minimum shelf life of a product, food obsoles-
cence, or spoilage [13]. However, traditional methods cannot 
evaluate investigated food in a precise quantitative way, but 
only in a qualitative manner [14]. Moreover, the sensory 
evaluation typically requires many sensory professionals 
to reach a more objectiveness, with consequent problems 
generated by intra- and inter-operator variability, long lead 
times, and high costs [11, 14]. Thus, it is crucial to develop 
rational, fast, and cost-effective methods to assess the food 
quality and its related properties, including taste. Moreover, 
concerning the nutritional and health field, the sweetness 
prediction might point out novel promising sweeteners with 
low caloric value to reduce the caloric intake derived from 
the ingestion of naturally occurring or added sugars, in line 
with the recommendations of the World Health Organization 



European Food Research and Technology	

1 3

[15]. Indeed, the excessive consumption of added sugars is 
normally linked to an increase in body weight [16], obesity 
[17, 18], and severe pathologies, such as diabetes or car-
diovascular diseases [19, 20]. Other examples linked to the 
importance of taste prediction include bitter masking mol-
ecules. Indeed, the bitter taste is one of the main problems 
for pharmaceutical industries due to its unpleasant taste, 
which represents one of the main barriers to taking medica-
tions, especially for children and the elderly population [21]. 
Furthermore, a change in taste perception might be caused 
by the onset of other pathologies, such as in the case of the 
loss and/or impairment of taste function after COVID-19 
infection [22].

This work aims to summarize the main recent efforts in 
the in-silico taste prediction, starting from an overview of 
the major taste or food-related molecules databases and the 
implemented ML-based prediction tools.

Taste and food‑related databases

The first essential step for the implementation of ML-based 
tools is the definition of reliable and as comprehensible as 
possible databases (DBs) with information concerning the 
taste of each entry. In the past years, several databases of 
small compounds related to their specific taste sensations 
in foods have been developed. In this section, the authors 
pinpoint the major databases and their characteristics, which 
are summarized in Table 1.

In Table 2, other databases, which do not contain precise 
information regarding the taste associated with each element 
but are related to food ingredients and widely used in taste 
prediction, are reported.

Most used and tested databases (DBs) are described in 
detail in the following paragraphs.

Table 1   Summary of the main 
taste databases with weblinks, 
present tastes, the relative 
number of molecules, and the 
possibility to download data

Reference Link Taste No Download

SuperSweet [23] / Sweet 8000 No
SweetenersDB [24] https://​bit.​ly/​32fG9​af Sweet 316 No
BitterDB [25] https://​bit.​ly/​3Fins​B6 Bitter 1041 Yes
BTP640 [26] https://​bit.​ly/​3pogT​rj Bitter 320 Yes

Non-Bitter 320
Rodgers Database [27] / Bitter 682 /
Umami Database https://​bit.​ly/​3FheP​a1 Umami 800 No
UMP442 [28] https://​bit.​ly/​3yK6E​Ak Umami 104 Yes

Non-Umami 304
TastesDB [29] / Sweet 435 /

Bitter 81
Tasteless 133

Fenaroli’s Handbook of Fla-
vor Ingredients [30]

/ Sweet 426 /
Bitter 33
Tasteless 3

Table 2   Summary of the 
main databases related to food 
or commonly used by taste 
prediction tools, with weblinks, 
the number of compounds 
collected in each DB, and the 
possibility to download data

Reference Link No Download

FooDB https://​foodb.​ca/ 28 k Yes
Super Natural II [31] https://​bioinf-​appli​ed.​chari​te.​de/​super​natur​

al_​new/
326 k No

FlavorDB [32] https://​cosyl​ab.​iiitd.​edu.​in/​flavo​rdb/  ~ 26 k No
PhytoHub http://​phyto​hub.​eu/ 1863 Yes
Phenol-Explorer [33] http://​phenol-​explo​rer.​eu/ 501 Yes
BIOPEP-UWM [34] https://​bioch​emia.​uwm.​edu.​pl/ 4321 No
ChEMBL [35] https://​www.​ebi.​ac.​uk/​chembl/  ~ 17 M Yes
DrugBank [36] https://​go.​drugb​ank.​com/  ~ 500 k Yes
ZINC15 [37] https://​zinc.​docki​ng.​org/ 230 M Yes
PhytoLab https://​www.​phyto​lab.​com/​en/  ~ 1300 Yes
Natural product atlas [38] https://​www.​npatl​as.​org/  ~ 24 k Yes

https://bit.ly/32fG9af
https://bit.ly/3FinsB6
https://bit.ly/3pogTrj
https://bit.ly/3FhePa1
https://bit.ly/3yK6EAk
https://foodb.ca/
https://bioinf-applied.charite.de/supernatural_new/
https://bioinf-applied.charite.de/supernatural_new/
https://cosylab.iiitd.edu.in/flavordb/
http://phytohub.eu/
http://phenol-explorer.eu/
https://biochemia.uwm.edu.pl/
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://zinc.docking.org/
https://www.phytolab.com/en/
https://www.npatlas.org/
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SuperSweet

SuperSweet (https://​bioin​forma​tics.​chari​te.​de/​sweet/) con-
tains more than 8000 artificial and natural sweet compounds 
[23]. The dataset includes the number of calories, the phys-
icochemical properties, the glycemic index, the origin, the 
3D design, and other information regarding molecular recep-
tors and targets. Sweet-tasting chemicals were taken from 
the literature and freely accessible data sets. The web server 
interface offers a very user-friendly search and a sweet tree 
which groups the sweet substances into three main families, 
(carbohydrates, peptides and small molecules).

SweetenersDB

SweetenersDB (http://​sebfi​orucci.​free.​fr/​Sweet​eners​DB/) 
is a database of 316 sugars and sweeteners from 17 chemi-
cal families. Compounds were aggregated with their 2D 
structure or with a 3D structure using Marvin Sketch (Che-
mAxon) and the protonation state was defined at a pH of 6.5, 
according to the common pH value found in the saliva. Two 
natural compounds of the SweetenersDB are also present in 
Super-Natural II (entries: 105.620, 325.102) [24].

Each sweetener has also an assigned sweetness value, 
indicated as logS. This value is the logarithm of the ratio 
between the concentrations of the considered compound 
and sucrose, used as a reference. In this way, this value 
reflects the relative sweetness of a specific compound if 
compared to sucrose. From a physicochemical analysis 
of the database, an intense sweetener has low molecular 
weight and a hydrophobic core. Natural sweeteners are 
the molecules with the highest molecular weight, and they 
are capable of forming more hydrogen bonds than all the 
sweeteners in the SweetenersDB.

BitterDB

BitterDB (http://​bitte​rdb.​agri.​huji.​ac.​il/​dbbit​ter.​php) is a 
free source containing information about bitter taste mol-
ecules and their receptors [39]. In 2019, an upgrade of 
the database was made with an increase in the number 
of compounds (from the initial 550–1041) and the inser-
tion of new features, including for example data belonging 
to different species rather than humans (mouse, cat, and 
chicken).

BitterDB contains now about 1041 molecules collected 
from over 100 publications. For each compound, the DB 
provides different information, such as molecular proper-
ties, identifiers (SMILES, IUPAC name, InChIKey, CAS 
number, and the primary sequence of proteins), cross-
links, qualitative bitterness category (i.e., bittersweet, 
extremely bitter, slightly bitter, etc.), origin (from a natural 

source or synthetic), and different file formats for down-
load (SDF, image, smiles, etc.). Furthermore, toxicity 
data were added from the Acute Oral Toxicity Database 
when available, reporting experimental rat LD50 values as 
described in the previous literature [40].

Most of the SMILES were taken from PubChem and 
the remaining ones were generated through the CycloPs 
server, after drawing the molecules on ChemSketch or 
ChemAxon. Regarding the other identifiers, the ones not 
available in PubChem were processed using RDKit (http://​
www.​rdkit.​org).

BTP640

BTP640 collects 320 experimentally confirmed bitter 
peptides and 320 non-bitter peptides. Bitter peptides were 
retrieved from various literature and peptides including 
ambiguous residues (e.g., B, X, Z, and U) or duplicated 
peptide sequences were discarded. Since few experimen-
tal data concerning non-bitter peptides are available, the 
negative dataset was built starting from BIOPEP dataset, 
which contains biologically active peptide sequences 
(4304) widely used in the food and nutrition field (Mink-
iewicz et al., 2019). From this dataset, 320 peptides were 
randomly extracted to build the negative dataset.

Rodgers database

This database was collected from previous literature and 
patents, including studies in BIOSIS, Food Science and 
Technology Abstracts, databases of internal reports at Uni-
lever and Derwent World Patents Index (WPIDS) [27]. 
Structures were obtained from SciFinder, where possible, or 
constructed with ChemDraw. After the removal of synthetic 
analogs, the final database contains 649 bitter molecules. It 
is worth mentioning that additional 33 molecules were then 
considered by the authors and made public in the original 
paper, whereas the other 649 remain non-public. Unfortu-
nately, no webserver or online data repository is available 
for this database.

Umami Database

The Umami Database (https://​www.​umami​info.​com/​umami​
db/) is developed by the Umami Information Center, founded 
with the support of the Umami Manufacturers Association 
of Japan in 1982. The Umami Database was created with 
the idea of providing information about the umami taste in 
foods and, currently, about 800 items are listed in the data-
base. Amino acids in foods are mainly of two types, i.e., 
ones joined together to form proteins and free amino acids, 
that have a more pronounced flavor. In this context, free 

https://bioinformatics.charite.de/sweet/
http://sebfiorucci.free.fr/SweetenersDB/
http://bitterdb.agri.huji.ac.il/dbbitter.php
http://www.rdkit.org
http://www.rdkit.org
https://www.umamiinfo.com/umamidb/
https://www.umamiinfo.com/umamidb/
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glutamate has a remarkable umami taste. Umami Database 
reports also the score of free glutamate and other free amino 
acids which affect food taste. In addition, there are inosinate 
and guanylate scores, which synergistically increase umami 
perception. Sources for the Umami Database include public 
academic papers and scores analyzed by a research labora-
tory upon request of the Umami Information Center.

UMP442

This dataset was constructed for the development of the 
iUmami prediction tool [28]. The umami set merges several 
experimentally validated umami peptides from the litera-
ture [41–46] and the BIOPEP-UWM database [34]. On the 
other hand, the non-umami peptides dataset is made by the 

Table 3   Summary of the main recent taste prediction tools, including methods, datasets, and molecular descriptors employed (see also Table S1 
for further information)

Reference Method Taste No Descriptors

Chéron Sweet Regressor [24] Sweet Regressor (RF, SVR) Sweet 316 Dragon
Rojas Sweet Predictor [29] Sweet Classifier (QSTR) Sweet 435 ECFP, Dragon

Non-Sweet 214
Goel Sweet Regressor [48] Sweet Regressor (GFA, ANN) Sweet 487 Material Studio
e-Sweet [49] [https://​bit.​ly/​3wFy4​ER] Sweet Classifier (KNN, SVM, GBM, RF, 

DNN)
Sweet 530 ECFP

Non-Sweet 850
Predisweet [50] [https://​bit.​ly/​3reop​7a] Sweet Regressor (AB) Sweet 316 Dragon, RDKit, Mordred, ChemoPy
BitterX [51] [https://​bit.​ly/​3wJYa​9O] Bitter Classifier (SVM) Bitter 539 [52]

Non-Bitter 539
BitterPredict [53] [https://​bit.​ly/​3igrz​mQ] Bitter Classifier (AB) Bitter 691 Canvas (Schrödinger)

Non-Bitter 1952
e-Bitter [54] [https://​bit.​ly/​3epWz​Qq] Bitter Classifier (KNN, SVM, RF, GBM, 

DNN)
Bitter 707 ECFP

Non-Bitter 592
iBitter-SCM [26] [https://​bit.​ly/​2VGyX​

Ag]
Bitter Peptides Classifier (SCM) Bitter 320 Dipeptide composition (DPC)

Non-Bitter 320
BERT4Bitter [55] [https://​bit.​ly/​2WecT​

xf]
Bitter Peptides Classifier (BERT) Bitter 320 Dipeptide composition (DPC)

Non-Bitter 320
iBitter-Fuse [56] [https://​bit.​ly/​3BmC5​

47]
Bitter Peptides Classifier (SVM) Bitter 320 DPC, AAC, PAAC, APAAC, AAI

Non-Bitter 320
BitterIntense [57] Bitter Intensity Classifier (XGBoost) VB 246 Canvas (Schrödinger)

NVB 404
iUmami-SCM [28] [https://​bit.​ly/​3hJs9​uf] Umami Classifier (SCM) Umami 140 Dipeptide composition (DPC)

Non-Umami 304
BitterSweetForest [58] Bitter/Sweet Classifier (RF) Sweet 517 RDKit (Binary fingerprints)

Bitter 685
BitterSweet [59] [https://​bit.​ly/​3rd7A​tt] Bitter/Sweet Classifier (AB, RF) Bitter 918 Canvas, Dragon, ECFP, ChemoPy

Non-Bitter 1510
Sweet 1205
Non-Sweet 1171
Non-Umami 304

VirtualTaste [60] [https://​bit.​ly/​2UfVF​Pi] Multi-taste classifier (RF) Sweet 2011 Not reported
Bitter 1612
Sour 1347

https://bit.ly/3wFy4ER
https://bit.ly/3reop7a
https://bit.ly/3wJYa9O
https://bit.ly/3igrzmQ
https://bit.ly/3epWzQq
https://bit.ly/2VGyXAg
https://bit.ly/2VGyXAg
https://bit.ly/2WecTxf
https://bit.ly/2WecTxf
https://bit.ly/3BmC547
https://bit.ly/3BmC547
https://bit.ly/3hJs9uf
https://bit.ly/3rd7Att
https://bit.ly/2UfVFPi
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bitter peptides from the positive set of BTP640 [47]. After 
removing peptides with non-standard letters and redundant 
sequences, the final UMP442 database collects 140 umami 
and 304 non-umami peptides. The dataset was made pub-
licly available on GitHub (https://​github.​com/​Shoom​buato​
ng/​Datas​et-​Code/​tree/​master/​iUmami).

TastesDB

TastesDB is an experimental database comprising 727 
chemicals with their respective experimental taste class, 
retrieved from several scientific publications [29]. Since 
all incorrect molecules or those with problematic molecu-
lar structures were removed, the final TastesDB contains 
649 molecules, specifically 435 sweet, 81 bitter, and 133 
tasteless (see also Table S1 of the original paper for fur-
ther details). For each entry of the database, the DB pro-
vides the commercial name, the SMILE, the tasting class 
(sweet, tasteless, and bitter), and the literature reference.

Taste prediction with machine learning

In the past years, several studies have developed ML-based 
algorithms to predict the taste of specific molecules starting 
from their chemical structure. In this section, we will review 
in detail the main recent literature in the field of taste predic-
tion. Where no precise name has been defined for the tools 
discussed, we have decided to use the first author name of 
the reference publication for simplicity (Table 3).

In the following, each of the aforementioned tools is 
examined in detail, dividing the discussion into a brief intro-
duction, the “Data preparation and model construction” sec-
tion and the “Model performance” section.

Sweet prediction

Chéron sweet regressor

In this work, a Sweet Predictor was created using a new 
QSAR model [24]. This model, also applied to external data-
sets (SuperSweet and SuperNatural II), allowed to point out 
the main physio-chemical features of sweeteners related to 
their potency.

Data preparation and  model construction  The curated 
dataset of sweet compounds resulted in the creation of the 
SweetenersDB, which is constituted of 316 compounds with 
known sweetness values relative to sucrose (see Taste and 
Food-Related Databases chapter for further details). The 
compounds' SMILES were first collected in a 2D database, 
and subsequently, 3D representations were created using 
Marvin, ChemAxon (https://​www.​chema​xon.​com), choos-

ing the three with the lowest energy. The protonation state 
was set at the physiological salivary pH value (6.5).

Dragon descriptors (http://​www.​talete.​mi.​it/​produ​cts/​
dragon_​descr​iption.​htm) were calculated for both the 2D 
and 3D databases. All features with a correlation greater 
than 0.9 were removed, obtaining 244 descriptors for the 2D 
molecules and 265 descriptors for the 3D structures. Finally, 
all descriptors were normalized.

The dataset was randomly divided with a 70:30 ratio and 
the leave-one-out method was used for the cross-validation. 
Support Vector Regression (SVR) and Random Forest (RF) 
were optimized on the training set, and the test set was used 
for the model performance evaluation.

Model performance  Performance evaluation was obtained 
using the squared of the correlation coefficient (R2). Nota-
bly, the SVR reached a slightly better performance than RF 
on the test set. It is worth mentioning that the models on 2D 
and 3D datasets reached similar performances, suggesting 
the 2D approach as the best option for fast screening, since 
it is much less time-consuming. More in detail, the RF 2D, 
SVR 2D, RF 3D, and SVR 3D models obtained correlation 
coefficients on test sets of 0.74, 0.83, 0.76, and 0.85, respec-
tively.

To evaluate the model applicability domain, Sweeten-
ersDB was compared with SuperSweet and SuperNatural II. 
Interestingly, 99.5% of the molecules from SuperSweet are 
similar to structures in SweetenersDB, whereas only about 
34% of the SuperNatural II database belong to the chemical 
space defined by SweetenersDB. This analysis confirmed 
the importance of associating an applicability domain to a 
prediction model to measure the reliability of the prediction.

Rojas sweet predictor

The present Quantitative Structure-Taste Relationship 
(QSTR) model is a specialist framework created to fore-
see the pleasantness of synthetic compounds [29]. It can 
likewise be utilized to gain a comprehensive understand-
ing between atomic design and pleasantness and defining 
novel sugars. This sweetness prediction model is the first 
QSTR model that considers both molecular descriptors and 
extended connectivity footprints, performing a structure 
similarity analysis in combination with the model prediction.

Data preparation and  model construction  The start-
ing dataset is TastesDB (see also Taste and Food-Related 
Databases chapter for further details). The dataset includes 
649 molecules: 435 sweet, 81 bitter, and 133 tasteless; the 
latter two classes were combined into a non-sweet class. 
Extended-connectivity fingerprints (ECFPs) [61] and classi-
cal molecular descriptors, i.e., Dragon 7 (3763 total descrip-
tors) (https://​chm.​kode-​solut​ions.​net/​pf/​dragon-​7-0/), were 

https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami
https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami
https://www.chemaxon.com
http://www.talete.mi.it/products/dragon_description.htm
http://www.talete.mi.it/products/dragon_description.htm
https://chm.kode-solutions.net/pf/dragon-7-0/
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used to describe the molecules of the dataset. In all cases, 
the 2D representation was preferred to the 3D one, to get a 
conformation-independent molecular representation.

Exploration of the data and similarity analysis was per-
formed using the Multidimensional Scaling (MDS), whereas 
the Partial Least Squares Discriminant Analysis (PLSDA) 
and N-Nearest Neighbors (N3) were employed as classifiers. 
Finally, the V-WSP unsupervised variable reduction method 
and the Genetic Algorithms-Variable Subset Selection (GA-
VSS) technique were used as dimensionality reduction tech-
niques to retrieve the most informative molecular descriptors.

The dataset was divided into three parts, maintaining the 
proportion of the classes: the training set consisting of 488 
compounds (161 non-sweet and 327 sweet molecules), the 
test set consisting of 161 molecules (53 non-sweet and 108 
sweet molecules), and finally, the last part was used as an 
external dataset. Moreover, a fivefold CV was employed for 
the GA-VSS and the Monte Carlo (leave-many-out) random 
sub-sampling validation of the system. These methods iter-
atively and randomly divided the molecules into training 
(80%) and evaluation (20%) sets.

Model performance  Specificity (SP), sensitivity (SN), and 
non-error rate (NER), which is more efficient in the case 
of unbalanced datasets, were used as performance metrics. 
The two final models, made with six molecular descriptors, 
were chosen based on the NER classification parameter. 
Since PLSDA and N3 are based on distinct methods and 
descriptors, a consensus analysis was employed to improve 
prediction [62]. Therefore, a molecule was classified if both 
models showed the same result and not classified otherwise.

Pe r fo r m a n c e  i n  c a l i b r a t i o n  ( S E  =  7 9 . 2 % , 
NER = 85.2%, SP = 91.3%, not assigned = 33%), 
in cross-validation (SE = 77.2%, NER = 83.1%, 
SP = 89.0%, not assigned = 32%), in the Monte Carlo 
validation (NER = 88.7%, SE = 92.7, SP = 84.8%, 
non-assigned = 20.5%), and in the 161 test mol-
ecules (NER = 84.8%, SE = 88.0%, SP = 81.6%, non-
assigned = 19.3%) confirm the model stability. The con-
sensus analysis improved the overall performance of the 
model. Notably, the model calibration was performed only 
on a cluster of the complete dataset, that was derived from 
the MDS analysis. The remaining part of the original dataset 
was classified using similarities scores combined with the 
aforementioned models.

Goel sweet regressor

The present Sweet Regressor tool is a QSAR model able to 
estimate the relative sweetness level of a test compound with 
respect to the sweetness of sucrose [48]. This tool can act 
as a pre-processing step in the design of new sweeteners by 
pointing out their crucial structural requirements.

Data preparation and model construction  The dataset was 
collected from several publications [63–67], resulting in 
487 unique molecules with relative sweetness compared 
to sucrose (ranging from − 0.699 to 5.334) calculated as 
described for the SweetenersDB (see also the Taste and 
Food-Related Databases chapter). Compounds SMILE 
were converted to 3D structures and Material Studio v6.0 
was used to calculate 564 molecular descriptors. After per-
forming a correlation analysis, only 61 descriptors were 
maintained and, after removing outliers, the remaining 455 
molecules were randomly divided between the training and 
test sets (70:30 ratio).

Two QSAR models were developed using Artificial Neu-
ral Network (ANN) and Genetic Function Approximation 
(GFA) algorithms.

Model performance  Performance was assessed using the 
correlation coefficient for the training set, leave-one-out 
method and test set (Rtraining

2, Rcv
2 and Rtest

2), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), 
and Mean Square Error (MSE). Statistical parameters of 
ANN (Rtraining

2 = 0.889, Rtest
2 = 0.831) and GFA with linear 

spline (Rtraining
2 = 0.864, Rtest

2 = 0.832) were comparable, 
and both QSAR models demonstrated a reasonable predic-
tion accuracy. GFA allows the development of numerous 
models, autonomously selecting features and broadening 
the number of terms used in model construction and easily 
interpreting the data. On the other hand, ANN can further 
explain hidden relationships between complicated data and 
depict patterns and trends, but it lacks interpretability.

e‑Sweet

e-Sweet is a free tool to predict the sweet taste of analyzed 
chemicals and their relative pleasantness (RS) [49].

Data preparation and  model construction  The entire 
dataset includes 1380 compounds, divided into sweet and 
non-sweet. Sweet compounds are 530 sugars curated from 
SuperSweet, SweetenersDB and previous literature [29, 58], 
while 850 non-sweet comprise 718 entries from BitterDB 
and 132 recovered from the literature [29].

The 80:20 data splitting scheme was adopted, resulting 
in 883 compounds for training and internal fivefold CV 
and 221 compounds for the test. Features were built using 
Extended-Connectivity Fingerprints (ECFP) [61] and subse-
quently selected by their importance in a trained RF model. 
Implemented algorithms comprised KNN, SVM, GBM, RF, 
and DNN with different splitting procedures (19 different 
splits for the former four models and 3 different splits for 
DNN) to reduce the bias yielded by specific splits. A total 
of 1312 models were first assessed individually and subse-
quently combined to form a pool of 4 Consensus Models 
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(CM), that leverage the combination of individual models 
to improve overall classification performance.

Model performance  Model performance was assessed 
based on widely used metrics [F1-score, specificity, sensi-
tivity, accuracy, precision, Matthews Correlation coefficient 
(MCC), and Non-Error Rate (NER)]. F1-score metric was 
chosen as the final algorithm selection criterion and, subse-
quently, a Y-randomization test was performed for a direct 
assessment of model robustness.

The split-averaged performance of the best CM on the test 
set reached 91% of accuracy, 90% precision, 94% specificity, 
86% sensitivity, F1-score of 88%, MCC of 81%, and 90% 
NER, all with 95% confidence intervals of ± 1%.

Predisweet

Predisweet is a free-available web server (http://​chemo​simse​
rver.​unice.​fr/​predi​sweet/) capable of predicting sweet taste and 
the relative sweetness (in logarithmic scale) of compounds 
[50]. The applicability, reliability, and decidability domains 
have been used to estimate the quality of each prediction.

Data preparation and model construction  The tool is based 
on the SweetenersDB, collecting 316 compounds with their 
relative sweetness (see also Taste and Food-Related Data-
bases chapter) [24]. Two other databases, namely Super-Nat-
ural II database [31] and the phyproof catalog from PhytoLab 
(https://​www.​phyto​lab.​com/​en/), were considered as an exter-
nal dataset (4796 natural compounds).

Each compound was collected as SMILE and sanitized 
using RDKit (https://​www.​rdkit.​org/). The protonation state 
was predicted using ChemAxon (http://​www.​chema​xon.​com/) 
at the physiological pH of saliva (pH = 6.5). Molecules were 
standardized using the flatkinson standardiser (https://​github.​
com/​flatk​inson/​stand​ardis​er) and further processed with a 
Python package, removing salts and applying specific rules to 
normalize the structures. Molecular descriptors were calcu-
lated using Dragon v6.0.38, RDKit, Mordred [68] and Chem-
oPy [69] packages. Descriptors from the latter three methods 
(506) were defined as “open source” descriptors, as opposed 
to Dragon ones (635).

The Sphere Exclusion clustering algorithm divided the 
SweetenersDB into the training set (252 compounds) and the 
test set (64 compounds).

Several regression algorithms were tested, including Sup-
port Vector Machine (SVM), k-Nearest Neighbors (KNN), 
Random Forest (RF), and Adaptative Boosting with a Decision 
Tree base estimator (AB), and the fivefold CV was employed 
to avoid asymmetric sampling and overfitting.

Model performance  Predictive performance is assessed 
through Golbraikh and Tropsha criteria [70], and the AdaBoost 

Tree was considered the best method for both models. The 
obtained models reach R2 higher than 0.6 (0.74 for the Open-
source and 0.75 for the Dragon model) and Q2 higher than 0.5 
(0.84 for the Open-source and 0.79 for the Dragon model) for 
both models (detailed performance reported in Table  1 and 
Table S3 of the original paper). Notably, since less information 
was available regarding potent sweeteners, developed models 
perform worst for high sweetness values. The open-source and 
the Dragon models reached similar performances showing 
good prediction on the test set. Therefore, the open-source ver-
sion was used for the webserver (http://​chemo​simse​rver.​unice.​
fr/​predi​sweet/) implementation of the algorithm.

The quality of the prediction for each query is evaluated 
based on three metrics: (i) the applicability domain, which 
measures if the investigated compound is in the range of 
descriptors of the training set, (ii) the reliability domain, which 
considers the density of information around the compound, 
and (iii) the decidability domain, which is the confidence of 
the prediction. The resulting quality of the prediction is also 
reported for the user when using the webserver platform.

Bitter prediction

BitterX

BitterX is a web-based platform (http://​mdl.​shsmu.​edu.​
cn/​Bitte​rX/) available for free [51]. This tool implements 
two different models, i.e., the bitterant verification model, 
which allows the identification of a bitter compound, and 
the TAS2R recognition model, which predicts the possible 
human bitter taste receptors, among the 25 known TAS2Rs. 
Such predictions were validated experimentally.

Data preparation and model construction  The interactions 
between the TAS2Rs and bitter compounds were curated 
from PubMed and BitterDB. A total of 539 bitter compounds 
were obtained to constitute the positive set, and their molec-
ular structures were achieved from Pubchem. The negative 
set included 20 true non-bitterants (in-house experimental 
validation) and 519 molecules from the Available Chemi-
cals Directory (ACD, http://​www.​accel​rys.​com). The final 
dataset contained 1078 compounds, equally divided into 
positive and negative bitter molecules. Molecular structures 
were obtained from PubChem and processed with in-hose 
program Checker and ChemAxon’s Standardizer (http://​
www.​chema​xon.​com). On the other hand, the initial dataset 
for the TAS2R prediction model was taken from the litera-
ture and includes 2379 negative and 260 positive bitterant–
TAS2R interactions. Due to the huge difference between the 
two dataset sizes, all the 260 non-redundant experimentally 
verified bitterant–TAS2R interactions were considered, 
while just 260 bitterant–TAS2R couples were selected as 
negatives to balance the dataset.

http://chemosimserver.unice.fr/predisweet/
http://chemosimserver.unice.fr/predisweet/
https://www.phytolab.com/en/
https://www.rdkit.org/
http://www.chemaxon.com/
https://github.com/flatkinson/standardiser
https://github.com/flatkinson/standardiser
http://chemosimserver.unice.fr/predisweet/
http://chemosimserver.unice.fr/predisweet/
http://mdl.shsmu.edu.cn/BitterX/
http://mdl.shsmu.edu.cn/BitterX/
http://www.accelrys.com
http://www.chemaxon.com
http://www.chemaxon.com
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Physiochemical descriptors for compounds were cho-
sen based on the Handbook of Molecular Descriptors [52], 
resulting in 46 and 20 descriptors for the bitterant verifica-
tion and TAS2R recognition models, respectively. Moreover, 
15 descriptors were used for the TAS2R representation in 
the TAS2R recognition model. The descriptors were chosen 
using a Feature Selection (FS) method based on a Genetic 
Algorithm (GA).

BitterX employs the support vector machine (SVM) 
classifier: the training was divided into two categories (+ 1 
and − 1) that represent the classification between bitter and 
non-bitter (and the bitterant–TAS2R interaction or not). The 
SVM + sigmoid method was implemented to value the prob-
ability that a molecule is bitter in the bitterant authentication 
and the probability of a bitterant binding to TAS2Rs in the 
TAS2R recognition model.

Data for algorithm training and test were used by adopt-
ing an 80:20 splitting strategy. For the bitterant verification 
model, this results in 862 and 216 compounds for training 
and test, respectively. To avoid any error derived from a 
particular data splitting, the other two partitions were made 
randomly from the general database, always following the 
equipartition between bitter and non-bitter molecules. Simi-
larly, the TAS2R recognition dataset was also divided with 
a 4:1 ratio. Finally, a fivefold CV ensured the robustness of 
the classification algorithm.

Model performance  To evaluate and compare the model, 
four indices were calculated: precision, accuracy, sensitiv-
ity, and specificity. Furthermore, the trade-offs between SE 
and SP were assessed by performing the ROC curve and 
calculating the AUC value.

Considering both the training (5-CV) and test sets, the 
bitterant verification model reached specificity, precision, 
and sensitivity values above 90%, AUC above 94%, and 
accuracy above 87%, whereas the TAS2R recognition model 
reached above 76% for the accuracy, above 75% for preci-
sion and specificity, above 78% for sensitivity, and above 
81% for AUC.

BitterPredict

BitterPredict is a bitter prediction tool published in 2017 
[53]. This work is developed in the commercial MATLAB 
environment and the code is available on GitHub (https://​
github.​com/​Niv-​Lab/​Bitte​rPred​ict1). The users should pro-
vide an Excel or CSV file with calculated properties by the 
commercial Schrödinger software and QikProp package.

Among random molecules screened by the tool, a high 
percentage is represented by bitter compounds. These 
include many synthetic molecules (66% of drugs are bit-
ter) and natural compounds (up to 77%). It is worth men-
tioning the relatively high percentage of bitter food (38%), 

considering the natural aversion of humans towards the bitter 
taste.

Despite its great functionality, high accuracy (~ 80%), and 
the ability to screen a general chemical space, this tool pre-
sents some limitations, including (i) the prediction of only 
molecules in defined chemical space, named Bitter Domain, 
(ii) the inability to discriminate between weak and strong 
bitter compounds, and (iii) an unbalanced dataset (positive 
set three times smaller than the negative set).

Data preparation and  model construction  The data-
set was processed using Maestro, Epik, and LigPrep 
(Schrödinger), removing uninterested structures and 
assigning the correct protonation state according to pH 
7.0 ± 0.5. Then, non-neutralized molecules and molecules 
with identical descriptors were removed from the data-
set to allow the calculation of the QikProp descriptors 
and obtain a non-redundant dataset. The whole predic-
tion was made within a restricted chemical space called 
Bitter Domain to identify a region in which 97% of the 
bitter molecules is included. This domain is defined by a 
hydrophobicity (AlogP) range of − 3 ≤ AlogP ≤ 7 and a 
molecular weight MW ≤ 700. This preparation procedure 
was applied to each database considered to build the final 
dataset.

Bitter Set (positive set) includes all molecules consid-
ered as bitter (691): 632 structures from BitterDB and 59 
molecules from literature [71]. On the other hand, the Non-
Bitter Flavors set (negative set) consisting of 1917 non-bitter 
molecules: “probably not bitter” compounds gathered from 
Fenaroli’s handbook of Flavor ingredients (1451), sweet 
(336), and tasteless (130) molecules from Rojas et al. The 
validation set consisted of Bitter New, i.e., 23 molecules 
stored recently from several publications to increase Bit-
terDB, UNIMI set, i.e., 56 synthesized molecules, and the 
Phytochemical Dictionary, consisting of 26 non-bitter and 
49 bitter compounds inside the Bitter Domain. Moreover, a 
set of data was collected for the sensory evaluation. 1047 
molecules were retrieved from the Sigma-Aldrich flavors 
and fragrances catalog (https://​www.​sigma​aldri​ch.​com/​IT/​it/​
appli​catio​ns/​food-​and-​bever​age-​testi​ng-​and-​manuf​actur​ing/​
flavor-​and-​fragr​ance-​formu​lation). After data curation, 264 
entries were selected as the Bitter Domain. Finally, a data 
set for prospective prediction was collected merging Drug-
Bank approved drugs, FooDB, Natural Products Dataset 
from ZINC15 and ChEBI. Compounds in the Bitter Domain 
from these widely used DBs were 1375, 13,588, 27,474, and 
27,015, respectively.

Molecular descriptors (59) were calculated with Canvas 
(Schrödinger) and QikProp (Schrödinger).

The final input dataset was divided into 30% (test set) and 
70% (training set) randomly, following the hold-out method 
and preserving the original proportions. To avoid overfitting, 

https://github.com/Niv-Lab/BitterPredict1
https://github.com/Niv-Lab/BitterPredict1
https://www.sigmaaldrich.com/IT/it/applications/food-and-beverage-testing-and-manufacturing/flavor-and-fragrance-formulation
https://www.sigmaaldrich.com/IT/it/applications/food-and-beverage-testing-and-manufacturing/flavor-and-fragrance-formulation
https://www.sigmaaldrich.com/IT/it/applications/food-and-beverage-testing-and-manufacturing/flavor-and-fragrance-formulation
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models were optimized by evaluating their performance only 
in the hold-out test.

The algorithm implemented by BitterPredict is AdaBoost. 
The ensemble method models used are Fitensemble and 
TreeBagger, which combines the outcomes of several deci-
sion trees, decreasing the impacts of overfitting and enhanc-
ing the generalization ability of the model.

Model performance  The two parameters applied to evaluate 
the classification models were sensitivity (SE) and specific-
ity (SP). For the training set, the SE was 91% and SP 94%, 
for the test set SE was 77% and SP 86%. Furthermore, a 
model evaluation based only on the non-bitter datasets was 
made among sweet, tasteless, and non-bitter flavors. In this 
context, the dataset that shows a better specificity was the 
non-bitter flavors, with a value of 86%.

The BitterPredict study also analyzed the impact of 
diverse descriptors estimating their contribution in reduc-
ing the error. Notably, the most important descriptor was the 
total charge and most of the bitter molecules were positively 
charged presenting an ammonium ion at physiological pH. 
Moreover, QikProp descriptors linked to the compound tox-
icity seem to have a greater impact on the model if compared 
to general properties descriptors.

The validation of BitterPredict was performed in three 
phases, as follows.

	 i.	 Validation using external sets (see Data preparation 
and model construction for further details) tested the 
algorithm on datasets never seen before by the algo-
rithm to avoid overfitting. Excellent performance was 
achieved with a specificity of 69–85% and sensitivity 
of 74–98%.

	 ii.	 Validation by literature mining consisted of a selec-
tion of 60 compounds from a DrugBank set of FDA 
approved drugs, half of which with the best and half 
of which with the worst score of bitter prediction 
according to BitterPredict. The results from literature 
research indicated that almost 60% of the top 30 bitter 
molecules were declared to have a bitter taste, while 
only 20% of the 30 non-bitter molecules had a prob-
able indication of a bitter taste.

	 iii.	 For the validation by taste tests (sensory evaluation), 
12 participants were selected to evaluate the taste of 
6 compounds predicted as non-bitter by BitterPredict 
among the 264 compounds taken from fragrances cat-
alog and Sigma-Aldrich flavors (see also Data prepa-
ration and model construction section). None of the 
six compounds differed in bitterness from the control 
(water) with the Dunnett test (alpha = 0.05), whereas 
the Quinine (established bitter molecule) demonstrate 
a considerably higher bitterness compared to water.

The three validation protocols indicated that BitterPredict 
allows obtaining reliable and satisfactory performance both 
for the bitter and non-bitter prediction.

Finally, the BitterPredict classifier was applied to Drug-
Bank approved, FooDB, and Natural Products Dataset from 
ZINC15 and ChEBI datasets (see also see Data prepara-
tion and model construction). The results highlight that the 
percentages of bitter molecules are, respectively, 65.94%, 
38.36%, 77.21%, and 43.71%.

e‑Bitter

Developed by the same research group that created e-Sweet 
[49], e-Bitter is a free graphic program published in 2018 
for bitter prediction, which natively implements the ECFP 
fingerprint and the analysis of the structural features [54]. 
Differently from other works [51, 53], e-Bitter considers 
only experimentally confirmed non-bitterants, i.e., 592 com-
pounds comprising tasteless, sweet, and non-bitter chemi-
cals. e-Bitter code is publicly available (https://​www.​dropb​
ox.​com/​sh/​3sebv​za3qz​mazda/​AADgp​CRXJt​HAJzS​8DK_P-​
q0ka?​dl=0).

Data preparation and  model construction  The dataset 
contains experimentally confirmed 707 bitter compounds, 
derived mostly from BitterDB [25] and literature research 
[27, 29], and 592 non-bitter compounds (132 tasteless, 17 
non-bitter, and 443 sweet). Sweet compounds were obtained 
from SweetnersDB, SuperSweet and previous literature [71, 
72]. The same compounds but with a different taste or from 
different datasets, or compounds such as salts or ions, were 
excluded, while all structures containing common elements 
were retained. e-Bitter uses Extended-Connectivity Fin-
gerprints (ECFPs) as molecular descriptors [61]. Similarly 
to e-Sweet [49], the implemented algorithms were KNN, 
SVM, GBM, RF, and DNN. Models were tested both with 
and without feature selection [73].

The splitting of the dataset follows the same criterion as 
previously described in e-Sweet: 1030 compounds (556 bit-
ter and 474 non-bitter), i.e., 80% of the initial dataset, were 
employed as training data and for internal validation, while 
the remaining ones, consisting of 259 compounds (141 bit-
ter and 118 non-bitter) were used for performance testing.

Model performance  The metrics employed to assess the 
model performance include precision, Matthews correla-
tion coefficient (MCC), sensitivity, accuracy, specificity, 
F1-score, and ΔF1-score (difference between the F1-score 
in cross-validation and the test set). Moreover, the reliability 
of the developed models was accessed using the Y-randomi-
zation test, as for the e-Sweet model. Finally, an applica-
bility domain based on the Tanimoto similarity was imple-

https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-q0ka?dl=0
https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-q0ka?dl=0
https://www.dropbox.com/sh/3sebvza3qzmazda/AADgpCRXJtHAJzS8DK_P-q0ka?dl=0
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mented to avoid non-reliable predictions on compounds 
highly diverse from compounds in the dataset.

Starting from an initial set of 1312 models, 96 aver-
aged models (over adopted data partitioning schemes) 
and 9 consensus models were tested. Best performance 
was obtained by top average models trained with DNN3 
(ACC = 92.0%, SP = 80.8%, SE = 98%, MCC = 82.3%, and 
F1-score = 94.1%).

iBitter‑SCM

The iBitter-SCM tool is the first computational model that 
provides a prediction of the peptides’ bitter taste starting 
with their AA sequence independently from structural and 
functional information [26]. iBitter-SCM is freely available 
as a web server (http://​camt.​pytho​nanyw​here.​com/​iBitt​er-​
SCM), and all codes and datasets are also on GitHub (https://​
github.​com/​Shoom​buato​ng2527/​Bench​mark-​datas​ets).

Data preparation and  model construction  The dataset 
BTP640 (see also Taste and Food-Related Databases chap-
ter for further information) includes 640 molecules equally 
divided between bitter and non-bitter (training set 80% and 
test set 20%).

Features representation was realized using the dipeptide 
composition (DPC). iBitter-SCM is based on the scoring 
card method (SCM), which enabled robust protein and pep-
tide function prediction and analysis without any informa-
tion regarding their structure and relying instead on the so-
called propensity scores of individual peptides and amino 
acids. More in detail, after preparing a training dataset and 
an independent dataset, the workflow started by determining 
the initial propensity scores (init-DPS) of dipeptides using 
statistics and subsequently applying Genetic Algorithms 
(GAs) to refine and optimize the score to the so-called opti-
mized dipeptide propensity score (opti-DPS). Finally, the 
individual amino acid propensity score was again extracted 
by statistical methods enabling the final discrimination 
between bitter and non-bitter peptides employing a weighted 
sum with opti-DPS. In a nutshell, these scores represent the 
link between peptide composition and function, by directly 
quantifying the contribution of individual amino acids on 
the physical–chemical characteristics. Furthermore, inform-
ative physicochemical properties (PCPs) of individual amino 
acids, i.e., their direct involvement in fundamental biologi-
cal reactions and pathways, were taken from the amino acid 
index database (AAindex) [74].

Model performance  The model was assessed with several 
performance metrics: accuracy (ACC), specificity (SP), sen-
sitivity (SE), and Matthew coefficient correlation (MCC) 
and AUC.

The performances of the opti-DPS and the init-DPS 
were compared using the tenfold cross-validation and the 
independent test. The best model (opti-DPS) was chosen 
based on the best performance on the tenfold CV and inde-
pendent test sets (ACC = 84.38%, SE = 84.38, SP = 84.38, 
MCC = 68.8%, AUC = 90.4%). Notably, the best opti-DPS 
outperforms init-DPS with enhancements on ACC, SN, SP, 
and MCC, and iBitter-SCM, compared with other traditional 
ML models (KNN, NB, DT, SVM, and RF), demonstrated 
better performance and greater robustness.

BERT4Bitter

After creating iBitter-SCM, the same research group devel-
oped BERT4Bitter, a similar tool for the classification of 
bitter peptides [55]. BERT4Bitter dataset is publicly avail-
able and the developed model is freely accessible through a 
user-friendly web server interface (http://​pmlab.​pytho​nanyw​
here.​com/​BERT4​Bitter).

Data preparation and model construction  The dataset used 
to develop the BERT4Bitter model is the same used for the 
iBitter-SCM method, i.e., the BTP640 [26] (see also Taste 
and food-related databases chapter for further details). 
Using the same 80:20 splitting ratio, the BTP640 dataset 
was randomly divided for training and testing.

The peptide sequence featurization was achieved through 
the natural language processing (NLP) techniques, specifi-
cally using Pep2Vec [75] and FastText [76]. Each of the 
20 amino acids is considered as a word and each peptide 
sequence was translated into a sentence (an n-dimensional 
word vector). In the same framework, the importance of each 
amino acid in the analyzed sequences was evaluated with the 
TFIDF method [77].

Three different deep-learning-based models, i.e., convo-
lutional neural network (CNN), long short-term memory 
(LSTM) neural network, and BERT-based model, were 
implemented using different numbers of layers (6, 5, and 
12, respectively) and rationally compared.

Model performance  Model evaluation was accessed both 
in the tenfold CV and independent test set. According to 
the cross-validation performance, the BERT model outper-
formed the CNN and LSTM ones in all the evaluation met-
rics (ACC = 0.86, AUC = 0.92, SP = 0.85, SE = 0.868, and 
MCC = 0.72).

Notably, considering the independent test-set perfor-
mance, BERT4Bitter outperformed the iBitter-SCM tool 
with ACC and MCC of 0.92 and 0.84, respectively, demon-
strating a stronger predictive ability in discriminating bitter 
and non-bitter peptides.

http://camt.pythonanywhere.com/iBitter-SCM
http://camt.pythonanywhere.com/iBitter-SCM
https://github.com/Shoombuatong2527/Benchmark-datasets
https://github.com/Shoombuatong2527/Benchmark-datasets
http://pmlab.pythonanywhere.com/BERT4Bitter
http://pmlab.pythonanywhere.com/BERT4Bitter
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iBitter‑Fuse

After the development of iBitter-SCM and BERT4Bitter, 
the same research group implemented an improved bitter/
non-bitter peptides predictor, called iBitter-Fuse [56]. This 
model overcomes some of the main drawbacks of the pre-
vious ones, including the generalization capability linked 
to the feature representation, overfitting, redundancy, and 
the overall performance. Exploiting several feature encod-
ing schemes and customized algorithms to identify the most 
informative features, iBitter-Fuse outperformed both iBitter-
SCM and BERT4Bitter, establishing itself, at the moment, 
as the best tool for the prediction of bitter peptides.

Data preparation and  model construction  BTP640 was 
again used as starting dataset as done for iBitter-SCM and 
BERT4Bitter, and the same 80:20 partition scheme was 
applied to effectively compare their performance.

Five feature encoding methods, including dipeptide com-
position (DPC), pseudo amino acid composition (PAAC), 
amino acid composition (AAC), physicochemical properties 
from AAindex (AAI) and amphiphilic pseudo amino acid 
composition (APAAC), and a merged feature (DPC + PAAC 
+ AAC + AAI + APAAC), were calculated to consider both 
composition and physicochemical properties. The model is 
based on an SVM algorithm and the feature selection was 
performed using a customized GA algorithm using self-
assessment-report (GA-SAR) [78].

Model performance  The fused feature allows obtaining 
the best performance (ACC, MCC, and AUC) on the cross-
validation, outperforming the other five feature encoding 
methods. To reduce the number of fused features (994), the 
GA-SAR was applied and 36 features were consequently 
maintained.

Performance evaluation demonstrated that iBitter-Fuse 
outperformed the previous tools for predicting the bitter-
ness of peptides, i.e., iBitter-SCM and BERT4Bitter, sug-
gesting that it is a more reliable and accurate tool. More in 
detail, the present SVM-based model reached ACC, SE, SP, 
MCC, and AUC of 93.0%, 93.8%, 92.2%, 85.9%, and 93.3%, 
respectively.

BitterIntense

BitterIntense is a unique tool able to quantify the bitter 
intensity of a query molecule, discriminating between two 
classes, i.e., “not very bitter” (NVB) and “very bitter” (VB) 
[57]. This tool is paramount not only for food research but 
also for pharma and biotechnology industries: the ability 
to predict the level of bitterness during the drug discovery 
process represents a promising opportunity for reducing 
delays, animal use, and financial costs. In fact, the intensely 

bitter taste is often associated with difficulties in taking 
medication, especially for children and elderly people. Bit-
terIntense, published at the end of 2020, was also applied 
to widely known databases, such as DrugBank, and specific 
COVID-19 drug candidate datasets, highlighting interesting 
considerations regarding bitter intensity and toxicity.

Data preparation and  model construction  The screen-
ing of bitter compounds was performed employing the rat 
brief-access taste aversion (BATA) model, obtaining 34 
compounds. The dataset collects BitterDB and Analyti-
Con’s repository of natural compounds and counts about 
180 molecules with a specified bitter intensity. The bitter 
recognition threshold is 0.1 mM: below this concentration, 
the molecules were considered “very bitter” (VB), whereas 
above this value “not very bitter” (NVB). Molecules without 
quantitative information were assigned to VB/NVB classes 
according to the taste descriptions. A non-bitter database of 
152 randomly selected compounds from the negative set of 
BitterPredict was added to NVB class.

Moreover, external datasets have been screened using the 
optimized model. Toxicity data include the FocTox dataset, 
i.e., extremely hazardous compounds and FAO/WHO food 
contaminants, and the CombiTox dataset, i.e., a combination 
of DSSTox-the Distributed Structure-Searchable Toxicity 
Database and Toxin and Toxin-Target Database version 2.0 
(T3DB) [40]. Hepatotoxicity data were retrieved from FDA’s 
DILIrank dataset [79]. Finally, external datasets include Drug-
Bank [36], consisting of approved and experimental drugs, 
COVID-19 drugs, and their targets retrieved from “Corona-
virus Information. IUPHAR/BPS Guide to Pharmacology” 
and Natural products atlas (NPatlas, version 2019_08) [38].

SMILES were processed using Maestro (Schrödinger) 
(3D reconstruction, protonation at pH 7.0 ± 0.5, removal of 
additional molecules, and generation of conformers). Molec-
ular descriptors were calculated using Canvas (Schrödinger) 
and were divided into three groups, i.e., Physicochemical, 
Ligfilter, and QikProp. Compounds not having one of these 
were excluded. Feature selection was performed using the 
feature importance gain score, obtaining a total of 55 fea-
tures (from the starting 235).

The dataset was randomly divided into a training set (169 
VB and 324 NVB), a test dataset (43 VB and 80 NVB), and 
the hold-out set for an external evaluation (31 VB and 74 
NVB).

The algorithm used was the Extreme Gradient Boost-
ing (XGBoost). Logarithmic loss and binary classification 
error rate were selected to monitor step by step the algorithm 
performance and stop it when the improvement subsides. 
Parameters of the models were tuned through a tenfold CV.

Model performance  Performance evaluation was made for 
the three different datasets, i.e., training set (with tenfold 
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CV), test set, and hold-out set, and for each of them, accu-
racy (ACC), precision, sensitivity (SENS), and F1-score 
were calculated (ACC over 80% in all sets, PRC: 80%, 71%, 
63%; SE: 85%, 86%, 77%; F1-score: 82 ± 5%, 78%, and 
70%, respectively). From these results, there are more false 
positives than false negatives, indicating the maximization 
of the identification of very bitter compounds.

From the analysis of the feature importance, the algo-
rithm pointed out the role of the molecule’s size and molar 
refractivity (a measure of polarizability) in determining the 
bitterness level, suggesting also a correlation between mol-
ecule size and bitter intensity.

BitterIntense applied to toxic databases, i.e., FocTox and 
CombiTox datasets, revealed that only a small portion (about 
10%) of toxic substances are intensively bitter. The use of the 
BitterIntense model to the DILIrank dataset allows the evalu-
ation of the correlation between bitterness level and hepato-
toxicity, showing that most of the drugs (729) were classified 
as NVB. Then, approved and experimental compounds from 
Drugbank database (10,170 compounds) and natural com-
pounds from NPatlas (24,805 compounds) were screened, 
showing that almost half of microbial natural products, but 
only 23.7% of drug candidates are predicted as VB. Finally, 
34 potential drug candidates against COVID-19 retrieved from 
“Coronavirus Information–IUPHAR/BPS Guide to Pharma-
cology” were classified, showing that 41.2% of them are likely 
VB, thus significantly higher than the percentage of VB drug 
compounds from Drugbank, suggesting a possible involve-
ment of the bitter taste and bitter receptors in this disease.

Umami prediction

iUmami‑SCM

iUmami-SCM is the first umami taste predictor based on 
umami peptide primary sequence information [28]. iUm-
ami-SCM is a webserver (http://​camt.​pytho​nanyw​here.​com/​
iUmami-​SCM) and related datasets are available on GitHub 
(https://​github.​com/​Shoom​buato​ng/​Datas​et-​Code/​tree/​master/​
iUmami).

Data preparation and model construction  The dataset, known 
as UMP442, contains 140 proved umami peptides and 304 
bitter structures taken from iBitter-SCM as negative samples 
(see also Taste and food-related databases for further details). 
Interestingly, the peptide length of both positive and nega-
tive samples is less than 10 amino acid residues. UMP442 
was divided randomly into two parts keeping the unbalanc-
ing between the positive and negative data: the training set, 
made up of 80% of the dataset, was employed for the genera-
tion of an initial scoring card with a statistical approach and its 
optimization through a GA algorithm and the independent set 
(UMP-IND), composed of 20% of the dataset, was employed 

for performance evaluation. Dipeptides propensity scores and 
informative physicochemical properties were employed as 
features in this model.

Model performance  Prediction performance depends on the 
optimal dipeptide propensity score (opti-DPS), and therefore, 
10 opti-DPS were evaluated with a 10-fold CV and compared 
with the initial dipeptide propensity score (init-DPS). Notably, 
compared to other traditional ML methods (DT, KNN, MLP, 
NB, SVM, and RF), iUmami-SCM demonstrated better per-
formance.

iUmami-SCM reached on the test set accuracy of 86%, 
MCC of 68%, AUC of 89.8%, sensitivity of 71.4%, and a 
specificity of 93.4%. All these reported performances were cal-
culated on the opti-DPS. However, due to the reduced numbers 
of peptides used for the model construction, iUmami-SCM 
presents as a major shortcoming a limited ability to correctly 
generalize the prediction.

Multi‑taste prediction

BitterSweet forest

BitterSweetForest is an open-access model based on KNIME 
created in 2018. This machine learning classifier predicts the 
sweetness and the bitterness of chemical compounds using 
binary fingerprints [58].

Data preparation and model construction  The dataset con-
tains 517 artificial and natural sweet compounds, derived 
from SuperSweet, and 685 bitter molecules, taken from Bit-
terDB. Instant Jchem software was employed for molecules 
standardization. All duplicated molecules were removed. 
Four different binary fingerprints were calculated with 
RDKit node in KNIME: Morgan fingerprint, Atom pair 
fingerprints, Torsion fingerprint, and Morgan Feat finger-
prints. Training and test sets were obtained with an 80:20 
partitioning scheme, keeping the balance between the two 
classes. To avoid overfitting, a leave-one-out cross-valida-
tion (LOO) was performed. A Random Forest with Tree 
Ensemble Learner and Predictor nodes in KNIME [80] was 
implemented, and a Bayesian-based features detection was 
applied to analyze the important and frequent features.

Model performance  The model was evaluated with several 
performances: accuracy, sensitivity, specificity, precision, 
F-score, ROC-AUC, and Cohen’s kappa. The BitterSweet 
model reached accuracy of 96.7%, AUC of 98%, and sen-
sitivity of 91% and 97% for sweet and bitter prediction, 
respectively. Bayesian-based feature detection emphasized 
the independence between the top ten features of sweet and 
bitter molecules, despite the two molecule sets appearing to 
show similar characteristics.

http://camt.pythonanywhere.com/iUmami-SCM
http://camt.pythonanywhere.com/iUmami-SCM
https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami
https://github.com/Shoombuatong/Dataset-Code/tree/master/iUmami
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The performance was also calculated in an external 
validation set, which includes bitter, sweet, and tasteless 
molecules. Despite tasteless molecules are not included in 
the training dataset, the model provided good results, and 
this suggests the features employed are specific for bitter 
and sweet prediction. Interestingly, the screening of Super-
Natural II, DrugBank approved drug molecules and Pro-
Tox, including oral toxicity compounds, showed that most 
molecules exhibited bitter features and toxic substances are 
normally bitter.

BitterSweet

BitterSweet is a freely accessible tool created in 2019 to 
classify bitter-sweet molecules [59]. To boost the progress 
in the knowledge of bitter-sweet taste molecular basis, the 
creators of this tool make all datasets, models, and even end-
to-end software publicly available (https://​cosyl​ab.​iiitd.​edu.​
in/​bitte​rsweet/; https://​github.​com/​cosyl​abiiit/​bitte​rsweet).

Data preparation and model construction  The dataset was 
created avoiding two problems observed in previous stud-
ies: the use of unverified flavor molecules in the training 
dataset, as happened in BitterPredict and BitterX, and the 
use of only experimentally verified data, leading to a drastic 
reduction in the dataset size. The dataset contains around 
thousands of chemicals among bitter, non-bitter, sweet, and 
non-sweet compounds retrieved from literature [27, 29, 53], 
pre-existing databases, i.e., SuperSweet, The Good Scents 
Company Database, BitterDB and books, i.e., Fenaroli’s 
Handbook of Flavor Ingredient And Biochemical Targets of 
Plant Bioactive Compounds. Moreover, as the control for 
bitter and sweet prediction, tasteless, and contrasting taste 
compounds, derived from ToxNet, TastesDB, and Fenaroli’s 
Handbook of Flavor Ingredient, were introduced in the data-
set. The canonical SMILES were extracted through Open-
Babel [81]. Duplicate structures, peptides, molecules with 
only three atoms, and salt ions were removed, while only the 
lowest energy conformer for each molecule was retained. 
The chirality of the molecule was preserved. The 3D confor-
mation and protonation state at physiological pH (7 ± 0.5) 
were carried out using Epik [82] and LigPrep (Schrödinger).

The training dataset for bitter/non-bitter prediction 
included 813 bitter molecules as positive data and 1444 
sweet and tasteless molecules as the negative set, while 
for sweet/non-sweet prediction, it consisted of 1139 sweet 
molecules as the positive set and 1066 bitter and tasteless 
compounds as the negative set. The test dataset was formed 
by 105 bitter and 66 non-bitter structures in the bitter predic-
tion and 108 sweet and 53 bitter/tasteless molecules in sweet 
prediction. Moreover, a fivefold stratified CV was performed 
to assess the model parameters.

Five sets of molecular descriptors, both commercial and 
open-source, were employed to create an exhaustive set of 
features: Physicochemical and ADMET descriptors from 
Canvas, Extended-Connectivity Fingerprints (ECFP), 2D 
Molecular Descriptors and 2D/3D Molecular Descriptors 
from Dragon 2D and Dragon 2D/3D and 2D Topological and 
Structural Features from ChemoPy. Due to the high num-
ber of molecular descriptors, the Boruta algorithm [83] was 
employed to remove irrelevant features and principal com-
ponent analysis (PCA) to get the maximum variance. Three 
different ML-based models were employed, i.e., Random 
Forest (RF), Ridge Logistic Regression (RLR) and Adaboost 
(AB). For each algorithm and each prediction, the five set of 
molecular descriptors were evaluated separately.

Model performance  BitterSweet model performance was 
evaluated employing several metrics, including the Area 
Under the Precision-Recall Curve (PR-AUC), ROC-AUC, 
F1-score, sensitivity, and specificity. The models that best 
discriminate the sweet non-sweet dichotomy were AB and 
RF trained after the Boruta algorithm, while PCA performed 
better than the Boruta algorithm only when coupled with 
RLR. In contrast, the algorithm that best predicts bitter taste 
was RLR, while the RF performed well across all molecular 
descriptor sets. Furthermore, PCA would seem to perform 
better than the Boruta algorithm. The best descriptors for 
the sweet prediction were Dragon 2D features, whereas the 
open-source ChemoPy performed better for bitter predic-
tion.

In conclusion, the best BitterSweet model (with AB algo-
rithm after the Boruta feature selection and Dragon 2D/3D 
features) achieved these performances: ROC-AUC of 88.3%, 
PR-AUC of 95%, the sensitivity of 79%, the specificity of 
88%, and the F1-score of 86%. However, in their online tool, 
they employed ChemoPy descriptors with the RF-PCA algo-
rithm as the performance of open-source descriptors were 
comparable to those obtained through proprietary software. 
The results achieved with the BitterSweet model: ROC-AUC 
of 84% and 88%, PR-AUC of 93% and 93%, the sensitivity 
of 59% and 79%, the specificity of 94% and 85%, and the 
F1-score of 73% and 84%, and all the results were reported 
for sweet and bitter prediction, respectively.

The BitterSweet model was also applied to several spe-
cialized chemical databases, i.e., SuperSweet, FlavorDB, 
FooDB, DSSTox, SuperNatural II, and DrugBank, revealing 
that the majority of natural, toxic, and drug-like molecules 
are bitter, whereas for food molecules, there was the same 
amount of bitter and sweet molecules.

In conclusion, despite the high accuracy of the Bitter-
Sweet open-source predictors, its utility is limited to indi-
vidual compounds, and not for different compounds when 
present in a mixture.

https://cosylab.iiitd.edu.in/bittersweet/
https://cosylab.iiitd.edu.in/bittersweet/
https://github.com/cosylabiiit/bittersweet
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Virtual taste

VirtualTaste platform is the first freely available web server 
able to predict three taste qualities (sweet, bitter, and sour), 
thanks to three dedicated tools, i.e., VirtualSweet, Virtu-
alBitter, and VirtualSour, respectively (http://​virtu​altas​te.​
chari​te.​de/​Virtu​alTas​te/) [60]. The input of the web-based 
platform is the two-dimensional structure of the chemical 
compound, and the output is the prediction of the chemical’s 
taste profile and the targeted TAS2R receptors in case of a 
bitter prediction.

Data preparation and model construction  The dataset con-
tains 2011 sweet compounds, collected from the SuperSweet 
database and BitterSweetForest tool, 1612 bitter molecules 
derived from the BitterDB database and BitterSweetForest 
tool, and 1347 sour compounds obtained from ChEMBL 
[35] and manually edited from the literature sources [84]. 
Furthermore, the bitter receptor data contain 356 ligands 
that interact with TAS2Rs receptor extracted from Bit-
terDB, ChEMBL and literature. Different structures were 
removed from the database, such as ambiguous compounds, 
salt and inconclusive entries, and then standardized through 
RDkit in KNIME [80]. Each dataset was split into two parts, 
preserving the positive/negative ratio: the training set made 
up of 80% of each set of molecules, i.e., 1068 molecules 
for sweet, 1289 compounds for bitter and 1214 structures 
for sour, and the remaining chemicals were employed for 
the external validation set. The inactive dataset used in each 
model were different: bitter and tasteless compounds were 
used as inactive compounds for the sweet prediction and 
sweet and tasteless compounds were employed as inactive 

compounds for the bitter prediction, while the sour predic-
tion used a ligand-based approach due to the pH and acid 
influence present in foods. Moreover, a tenfold CV was 
applied for model optimisation, keeping the ratio of active 
and inactive structures constant.

Each VirtualTaste model was based on an RF algorithm, 
following BitterSweetForest, the previous tool devel-
oped by the same research group [58]. To deal with the 
negative effect of the unbalanced dataset, different data 
sampling methods were applied: the Synthetic Minority 
Over-Sampling Technique-using Tanimoto Coefficient 
(SMOTETC) technique for VirtualSweet, the Synthetic 
Minority Over-Sampling Technique-using Value Differ-
ence Metric (SMOTEVDM) method for VirtualBitter and 
the Augmented Random Over-Sampling (AugRandOS) 
method for VirtualSour [85]. A similarity-based method 
was employed for the prediction of bitter receptors [86]: 
the similarity between the query molecule and known bit-
ter compounds is evaluated using the Tanimoto Coefficient 
and the relative target bitter receptor is then consequently 
predicted.

VirtualSweet and VirtualBitter models were also used 
for taste prediction of approved drugs and natural com-
pounds—1969 chemical compounds from DrugBank data-
base and 326,000 from SuperNatural II.

Model performance  Five performance metrics both in the 
10-fold CV and in the external evaluation set were utilized. 
VirtualSweet reached on the external validation 95% for 
ROC-AUC, 89% for the accuracy, 92% for specificity, 86% 
for sensitivity, and 88% for F1-score; VirtualBitter 96% for 
ROC-AUC, 90% for the accuracy, 97% for specificity, 88% 

Table 4   Performance on the 
test set of the taste prediction 
classification tools

Taste Tool Performance (%)

AUC​ SE SP ACC​ PRC NER F1 MCC

Sweet Rojas Sweet Predictor / 88 82 / / 85 / /
e-Sweet / 86 94 91 90 90 88 81

Bitter BitterX 95 92 91 92 91 / / /
BitterPredict / 77 86 / / / / /
e-Bitter / 98 81 92 / / 94 82
iBitter-SCM 90 84 84 84 / / / 69
BERT4Bitter 96 94 91 92 / / / 84
iBitter-Fuse 93 94 92 93 / / / 86
BitterIntense / 86 81 83 71 / 78 /

Bitter–Sweet BitterSweet Forest 98 91 97 97 / 94 92 /
BitterSweet (Sweet) 84 59 94 / / 77 73 /
BitterSweet (Bitter) 88 79 85 / / 82 84 /

Umami iUmami-SCM 90 71 93 87 / / / 68
Sweet–Bitter–Sour VirtualSweet 95 86 92 89 / / 88 /

VirtualBitter 96 88 97 90 / / 88 /
VirtualSour 99 80 99 97 / / 84 /

http://virtualtaste.charite.de/VirtualTaste/
http://virtualtaste.charite.de/VirtualTaste/
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for sensitivity, and 88% for F1-score; VirtualSour 99% for 
ROC-AUC, 97% for the accuracy, 99% for specificity, 80% 
for sensitivity, and 84% for F1-score. In conclusion, Virtu-
alTaste is the first tool able to predict with reliable results 
three different taste qualities and achieve comparable or bet-
ter performance compared to similar tools.

Discussion

In this section, a detailed comparison between all the above-
described taste prediction tools is provided. The perfor-
mance of the classification and regressor models is sum-
marized in Tables 4 and 5, respectively. It is noteworthy that 
these comparative results were not obtained on the same 
datasets and different evaluation metrics were used in each 
analyzed work. Data in the tables refer to performance on 
the test set.

At present, it is evident that there is a net prevalence of 
tools for predicting sweet and bitter tastes. It is worth noting 
that only one example to predict the umami taste (iUmami-
SCM) and one for the sour taste (VirtualSour in Virtual-
Taste) exist, and no tools for predicting the saltiness have 
been released, as far as the authors know. Moreover, the 
definition of a regression algorithm was possible only for the 
sweet taste (Chéron Sweet Regressor, Goel Sweet Regressor, 
and PrediSweet) since, to date, no database for other taste 
sensations provides quantitative data concerning the level of 
the perceived taste. However, BitterIntense, despite being a 
classification algorithm, discriminates between “very bitter” 
and “non very bitter” compounds, thus accessing the level 
of bitterness of query molecules.

Despite all prediction tools employ a different methodol-
ogy, a common structural features can be noticed among 
all of them, which is typical of most ML workflows: (i) 
the definition of a compound database also including the 
respective taste, preferably experimentally validated; (ii) 
the compound featurization, i.e., the derivation of effective 
molecular descriptors; (iii) the dataset splitting into training 
and test sets (and in some cases also a validation set); (iv) 
the choice of the ML method for the classification/regres-
sion; (v) performance evaluation and validation. It is worth 
mentioning that most of the discussed algorithms followed 

the guidelines defined by the Organization for Economic Co-
operation and Development (OECD), which indicates the 
strategies for correct development and validation of robust 
QSAR models: (i) a defined endpoint; (ii) an unambiguous 
algorithm; (iii) a defined domain of applicability; (iv) appro-
priate measures of goodness-of-fit, robustness and predictiv-
ity; (v) a mechanistic interpretation, if possible [87].

Several tools and methods, both proprietary and open-
source, were used to derive molecular descriptors, includ-
ing Dragon, Canvas (Schrödinger), Extended-connectivity 
Fingerprint (ECFP), RDKit, Mordred, and ChemoPy. It 
is important to note that open-source descriptors (RDKit, 
Mordred, ChemoPy) have been shown not to remarkably 
affect the performance of the PrediSweet model and to reach 
similar results if compared to results obtained with Dragon 
descriptors [50]. Similarly, in BitterSweet the best descrip-
tors for the sweet prediction were Dragon 2D features, but 
the open-source ChemoPy performed better for bitter pre-
diction [59]. This represents a very important achievement 
in making these tools available to a wide audience and in 
broadening the horizons of research in this field. Further-
more, 2D molecular descriptors are less time-consuming to 
be computed and less subject to variations caused by slightly 
different molecules 3D conformations. On the other hand, 
3D descriptors can also account for specific molecule con-
formations, such as different conformers/isomers, and spatial 
properties. Therefore, the possibility to obtain very good 
results also using 2D descriptors allows designing faster 
tools suitable for screening very large databases.

Several algorithms have been applied for taste prediction, 
including RF, SVM, SVR, QSTR, GFA, ANN, KNN, GBM, 
DNN, AB, SCM, and XGBoost. Multiple Linear Regression 
(MLR) and Support Vector Machine (SVM) are among the 
first models for binary classification. These models were 
exceeded by tree-based models, i.e., Random Forest (RF) or 
AdaBoost (AB), and Neural Network (NN), which support 
multiclass classification and work very well in the non-linear 
range if they have a sufficiently large number of database 
elements. Generally, NN and SVM perform better with con-
tinuous and multidimensional features, but they need a large 
sample size to increase their prediction accuracy [88]. Even 
though NNs, and in particular ANNs and DNNs, are being 
widely employed in taste prediction, they are characterized 
by difficulties in optimizing parameters, a high computa-
tional cost, and are less explainable. Moreover, probabilis-
tic methods, i.e., Naive Bayes, are not widely used in taste 
prediction. These methods work well with less training data, 
but would be better employed when the features are mutually 
independent.

To enhance model performance and to increase the under-
standing of the model, a feature selection was normally 
applied, such as the V-WSP unsupervised variable reduc-
tion method and genetic algorithm-based technique [29, 

Table 5   Performance on the test sets of the sweet prediction regres-
sion tools

Tool Performance

R2 MAE MSE

Chéron Sweet Regressor 0.85 / /
Goel Sweet Regressor 0.83 0.39 0.23
Predisweet 0.74 0.50 0.44
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51, 56], feature importance obtained from the RF [49, 54], 
the Boruta algorithm, and the PCA [59]. However, none of 
these approaches consider the multi-objective nature of the 
dimensionality reduction techniques and thus fail to balance 
between the objectives of optimizing prediction performance 
measured in multiple classifications and regression metrics, 
minimizing the number of selected features and maximiz-
ing the overall interpretability/explainability of the derived 
prediction models. Moreover, not only feature selection 
but also normalization/standardization can further improve 
model performance, such as in the case of the flatkinson 
standardization method [50], as well as modern techniques 
to handle the class imbalances in the data such as SMOTE 
[89]. Finally, all existing methods lacked a strict defini-
tion of negative datasets with most of them using random 
compounds as negative datasets and thus jeopardizing the 
prediction performance and generalization properties of the 
models.

As also defined by the OECD guidelines, another relevant 
aspect in the development of the prediction tool is the defini-
tion of the applicability domain (AD), which indicates the 
reliability of the prediction evaluating if investigated com-
pounds are within the chemical space of the training data. In 
this context, PrediSweet, along with an applicability domain, 
developed a reliability domain, which considers the density 
of information around the compound, and a decidability 
domain, which evaluates the confidence of the prediction. 
The PrediSweet chemical space of the dataset used (Sweet-
enersDB) was compared with the most comprehensive sweet 
database (SuperSweet): more than 99.5% of the compounds 
in SuperSweet are structurally similar to a representative 
structure in the SweetenersDB, suggesting the large sweet-
eners spectrum covered by the SweetenersDB. e-Bitter and 
e-Sweet used the ECFP-based Tanimoto similarity between 
the query and the five closest neighboring molecules in the 
training set. Similarly, the Rojas Sweet Predictor developed 
an AD using a threshold on the Jaccard–Tanimoto average 
distance between the query molecule and the compounds 
in the dataset. BitterPredict AD, known as Bitter Domain, 
includes molecules with molecular weight MW ≤ 700 and 
hydrophobicity − 3 ≤ AlogP ≤ 7: all used datasets were pre-
viously filtered using this domain to ensure the reliability of 
the prediction. In BitterSweet, a query molecule is consid-
ered inside the applicability domain, if its median Euclidean 
distance from similar compounds in the training set is below 
a selected threshold. Interestingly, BitterSweet covered a 
remarkably wider applicability domain than the Rojas Sweet 
Predictor while achieving similar performance.

One of the main advantages of the reported prediction 
tools is their ability to fast screening huge databases of com-
pounds and to estimate the number of compounds associated 
with a specific taste. A granular and detailed screening was 
performed by BitterPredict on DrugBank approved (1375 

compounds), FooDB (13,588 compounds), Natural Prod-
ucts Dataset from ZINC15 (27,474 compounds), and ChEBI 
(27,015 compounds) datasets, showing that the percentages 
of bitter molecules within the Bitter Domain found in these 
databases are 65.94%, 38.36%, 77.21%, and 43.71%, respec-
tively. Moreover, since bitter taste is associated with toxic 
compounds or compliance problems, the same authors used 
their subsequent tool, namely BitterIntense, to screen toxic 
databases, i.e., FocTox, CombiTox datasets, and DILIrank, 
experimental compounds from DrugBank database (10,170 
compounds), natural compounds from NPatlas (24,805 com-
pounds) and 34 potential drug candidates against COVID-
19 retrieved from “Coronavirus Information–IUPHAR/BPS 
Guide to Pharmacology”. Interestingly, only a small por-
tion of toxic compounds are intensively bitter, but 41.2% 
of COVID-19 candidate drugs were predicted as very bitter 
(VB). Moreover, BitterSweet was applied to several special-
ized chemical databases (SuperSweet, FlavorDB, FooDB, 
DSSTox, SuperNatural II, and DrugBank), revealing that 
most natural, toxic, and drug-like chemicals are bitter, 
whereas the same amount of bitter and sweet molecules are 
present in foods. BitterSweet Forest was applied on Super-
Natural II, DrugBank approved drug molecules and ProTox, 
and showed that toxic substances are typically bitter. In line 
with the previous results, VirtualSweet and VirtualBitter 
models were applied on approved drugs from DrugBank 
and natural compounds from SuperNatural II: notably, most 
of the approved drugs and most of the natural compounds 
were predicted as bitter, and only a small portion of these 
databases was classified as sweet.

Conclusions

The present review aims at summarizing the main scientific 
advances in the field of taste prediction supported by ML-
based algorithms. We discussed the main available database 
containing food-related compounds and molecules with 
known taste, the main tools employed to predict the taste.

From the analysis of the databases, we pointed out two 
specific databases for the sweet taste, i.e., SuperSweet, 
which is the most comprehensive DB for sweeteners, and 
SweetenersDB, which collects 316 sweeteners with a rela-
tive value of sweetness. For the bitter taste, BitterDB repre-
sents the most granular and complete database, with a very 
intuitive and user-friendly web server that allows the down-
load of more than a thousand bitter compounds. BitterDB, 
as well as BitterPredict and BitterIntense, was developed by 
the Niv Lab (https://​bioch​em-​food-​nutri​tion.​agri.​huji.​ac.​il/​
masha​niv), which has provided incredible advances in the 
comprehension of the bitter taste in recent years. A lot of 
effort has been made to develop methods specifically for the 
prediction of bitter peptides and another research group has 

https://biochem-food-nutrition.agri.huji.ac.il/mashaniv
https://biochem-food-nutrition.agri.huji.ac.il/mashaniv
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continuously improved its tools publishing three consecu-
tive works, namely iBitter-SCM, BERT4Bitter, and iBitter-
Fuse, in the last few years. These tools are paramount for 
the fast and reliable classification of huge databases of bitter 
peptides and for their rational de novo design, especially 
considering the emerging role of this class of compounds 
in the drug and nutritional research field. Furthermore, the 
UMP442 database developed during the implementation of 
iUmami-SCM is probably the most complete and ready-to-
use database of umami and non-umami molecules, since it 
is available from GitHub. In this context, the Umami Data-
base seems a very promising source of information, but the 
availability of data is limited, it is impossible to obtain data 
from the webserver and no umami prediction tool which 
uses this source has been found in the previous literature. It 
would be incredibly valuable to have access to the resources 
of such a database in the future. Finally, as far as the authors 
know, no publicly available databases for sour and salty 
tastes are available and the only attempt to generate a sour 
dataset was made in the development of VirtualTaste. How-
ever, the used sour dataset has not been made public. To 
date, the multiplicity and diversity of sources make it very 
complex to obtain a unified DB collecting a huge amount of 
compounds for each taste sensation. The authors insist also 
on the need for developing complete databases that include 
all the relevant information for each entry (SMILES, InChI, 
IUPAC nomenclature, etc.) to avoid any possible error in 
compound processing. Moreover, the definition of exhaus-
tive databases would be essential for a correct definition of 
the molecular descriptors to be employed, due to the great 
number and variety of both open-source and proprietary 
descriptors.

Similarly to the taste databases, prediction tools for sweet 
and bitter have been more developed during the last years. 
Among several examples of sweet and bitter classification 
tools, some proposed methods can even predict the level of 
sweetness (Chéron Sweet Regressor, Goel Sweet Regressor, 
and PrediSweet) and BitterIntense can discriminate between 
“very bitter” and “non very bitter compounds”. Only a few 
reported tools were able to discriminate more than one taste 
sensation. BitterSweet and BitterSweet Forest are interesting 
examples of tools able to consider the dichotomy of sweet 
and bitter tastes [59]. These tools can be pivotal for the 
detection of natural and synthetic compounds with a pleasant 
taste and without adverse effects. Furthermore, VirtualTaste 
is the only available tool able to predict three taste sensations 
(sweet, bitter, and sour) and the only one able to predict the 
sour taste (VirtualSour).

Among the 16 reported taste prediction tools, BitterX, 
BitterSweet, PrediSweet, iBitter-SCM, BERT4Bitter, iBitter-
Fuse, iUmami-SCM, and VirtualTaste provide web server 
applications, which allow the taste prediction using the 
SMILE/Fasta format, directly drawing the molecule or by 

uploading a file. On the other hand, e-Sweet, e-Bitter, and 
BitterPredict only provide freely accessible code available 
from Dropbox or GitHub. From the authors’ point of view, 
the development of a web interface represents a considerable 
strength, since it allows the tool to be used even by people 
who are not experts in the use of these applications. Finally, 
BitterSweetForest, Rojas Sweet Predictor, Goel Sweet 
Regressor, Chéron Sweet Regressor, and BitterIntense do 
not have any web server or code publicly available.

It is worth mentioning that in addition to the five basic 
tastes, other taste qualities may be important and related 
to specific food ingredients. In this context, some recent 
publications suggested the fat taste as another basic taste 
quality [3, 4, 90]. Interestingly, fatty acid detection seems to 
decrease as a consequence of a fat-rich diet and with a great 
impact on obesity disease [91]. Therefore, the prediction 
of fat taste would represent a groundbreaking objective for 
future tools, considering the impact of fat intake on human 
health status.

Furthermore, the use of methods capable of predicting the 
molecular interactions of tastants and relative taste recep-
tors could lead to significant improvements in the predictive 
capabilities of these tools and to great strides in understand-
ing the physicochemical characteristics and mechanisms 
underlying taste perception.
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