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Resumen

Esta tesis se centra en la resolución de problemas de localización de instalaciones en espacios
continuos. Un problema de localización surge cuando queremos responder la pregunta de
dónde ubicar alguna instalación que provee un servicio a un conjunto de usuarios. Este tipo
de problemas pertenecen a la Teoría de la Localización, que ha tenido un gran desarrollo
desde la década de los 60. Está definida principalmente por los problemas de localización
de instalaciones que consisten en la búsqueda de las posiciones óptimas, según algún o
algunos criterios dados, para un conjunto de instalaciones con respecto a un conjunto de
usuarios.

Existen distintas clasificaciones de los problemas de localización, una de ellas es basada
en la naturaleza del conjunto potencial donde ubicar los servicios. En Localización Discreta,
la localización de las instalaciones se escoge en un conjunto finito de lugares potenciales;
el espacio continuo considera el espacio donde esta definido el problema y hay infinitas
posiciones para localizar; y el cuando consideramos una red como espacio de localización,
las instalaciones pueden ser localizadas en los nodos o en los arcos de la misma. El uso
de cada espacio vendrá dado por la aplicación real del problema. El caso discreto solemos
utilizarlo cuando localizamos servicios físicos como colegios, hospitales, supermercados o
ATM; el continuo cuando la localización puede ser más flexible, como en ruters, cámaras de
vigilancias o sensores; y la red cuando los elementos a localizar son usados en aplicaciones
con redes como paradas de autobús o gasolineras.

El Capítulo 1 se trata de un capítulo introductorio en el que se desarrollan los con-
tenidos básicos que contiene los problemas estudiados en esta tesis. Su estructura está
organizda en base a los cuatro conceptos principales que motivan esta tesis. Comenzare-
mos explicando la Teoría de la Localización, donde nos centraremos en sus orígenes y en
los problemas que consideran espacios continuos como el espacio de localización para las
instalaciones. Introduciremos el Problema de Weber y su extensión a más de una insta-
lación. El segundo concepto que desarrollaremos son los problemas de cubrimiento, que
se trata de un tipo de problema de localización muy estudiado en esta disciplina. Los
problemas de cubrimiento surgen cuando decidimos localizar instalaciones que proveen un
servicio y el cliente solo puede recibirlo si está a una cierta distancia de su instalación más
cercana. Después mostraremos los operadores que son usados para tratar con problemas
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multicriterio y aquellos que son usados en el contexto de la localización. Terminaremos el
capítulo introduciendo el concepto de justicia y cómo la literatura ha trabajado con él.

En el Capítulo 2 presentamos un nuevo procedimiento para resolver un problema es-
tudiado en la literatura, el problema de localización continua usando mediana ordenada
monótona. El objetivo es localizar un conjunto de servicios en el espacio considerado que
minimice una función de mediana ordenada monótona de las distancias entre los puntos
de demanda y su instalación más cercana. Este problema fue estudiando en la literatura
y se propuso una reformulación entera mixta usando el cono de segundo orden que fue
capaz de resolver instancias de tamaño mediano (hasta 50 puntos) usando los solvers com-
erciales. En este capítulo introducimos un procedimiento de branch-&-price y tres familias
de matheuristicas. Mostramos la superioridad de este enfoque con respecto a la formulación
presente en la literatura y reportamos unas extensas baterías de pruebas computacionales.

En los siguientes capítulos nos centramos en extensiones del problema de máximo
cubrimiento, uno de los paradigmas considerados cuando se clasifican los problemas de
cubrimiento. En este tipo de problemas, tenemos instalaciones que proveen su servicio
en un área restringida y queremos maximizar la demanda cubierta por las instalaciones a
localizar. Este área suele ser definida como la distancia máxima a la que las instalaciones
dan el servicio, como por ejemplo en la localización de antenas y señales, o el tiempo máx-
imo que un usuario esta dispuesto a emplear para ir a esa instalación, como en las paradas
de autobús y metro.

En particular, el problema que abordamos en el Capítulo 3 trata de localizar instala-
ciones con servicio restringido en un espacio continuo y que las instalaciones estén conec-
tadas mediante una estructura de grafo dadas. Entendemos que dos instalaciones pueden
estar conectadas siempre que no se supere una distancia máxima dada. Este tipo de
situación aparece cuando localizamos estaciones de bomberos forestales que deben estar
comunicadas con un servidor central a una distancia máxima dada o en la localización de
sensores que deben estar conectados unos con otros. Se propone un formulación entera
mixta no lineal que resuelve el problema y se deriva una reformulación entera pura basada
en la geometría del problema. Además proponemos dos enfoques de branch-&-cut rela-
jando algunas restricciones de la reformulación entera y desarrollamos un matheuristico
capaz de resolver instancias más grandes.

La mayoría de la literatura en la Teoría de la Localización considera un mismo tipo
de instalación. Sin embargo, en algunas situaciones, este no puede ser el caso, como por
ejemplo cuando tenemos que localizar equipos antiguos y modernos con características
diferentes, pero que proveen el mismo servicio. En el Capítulo 4 consideramos este tipo
de situaciones aplicado a los problemas de máximo cubrimiento. El objetivo es localizar
distintos tipos de instalaciones que proveen el mismo servicio pero con diferentes áreas de
cobertura y en diferentes espacios métricos. El uso de distintos espacios métricos repre-
senta la posibilidad de localizar en espacios discretos y continuos. Presentamos un modelo
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general no lineal para cualquier tipo de espacio de localización, discretos y continuos, y lo
reformulamos como un problema entero lineal. En particular, centramos nuestro estudios
en la localización de instalaciones en conjunto discretos y en el plano Euclídeo. En este
caso derivamos otra reformulación entera no lineal basada en la geometría del espacio.
Por último, estudiamos las tres formulaciones en una extensa batería computacional donde
consideramos conjunto de datos reales de hasta 920 puntos de demanda.

En el Capítulo 5 introducimos el concepto de justicia en los problemas de máximo
cubrimiento y cómo afecta a la localización de las instalaciones con servicio restringido.
Con este propósito, introducimos una función nueva en la literatura que generaliza dos
operadores que han sido usados en la literatura. Esta nueva función depende de dos
parámetros y modela un reparto justo de las demandas a las instalaciones para que según
el decisor pueda reducir la diferencia entre la que más cubre y la que menos. Esta función
influye en la decisión final de dónde localizar las instalaciones para un reparto más justo de
la demanda cubierta. Proponemos una formulación general para los espacios de localización
discretos y continuos, y particularizamos para cada uno de ellos. Proponemos un modelo no
lineal y derivamos reformulaciones enteras mixtas de cono de segundo orden. Finalmente,
probamos la eficiencia de los modelos en un conjunto de datos real y mostramos que la
inclusión de ambos operadores usados en la literatura proporciona distintas soluciones que
si se tienen en cuenta por separado.

Esta tesis doctoral finaliza en el Capítulo 6 con las conclusiones de la investigación
realizada y se presentan futuras líneas de trabajo abiertas.
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Los problemas estudiados en los distintos capítulos de esta tesis doctoral están basado
en los siguientes trabajos donde alguno ha sido publicado y otros han sido envíados para
su publicación en revistas científicas de impacto internacional en el área de Investigación
Operativa:
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en arXiv:2108.00407.

Capítulo 3
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Abstract

This thesis focuses on the family of the continuous location problems. A location problem
arises whenever a question of where to locate something is raised. This kind of problems
belongs to one of the research areas of Operations Research which has had a greatest
development since the 1960s, the Location Science. This discipline is mainly defined by
the facility location problems which consist of finding the optimal locations for a set of
facilities with respect a set of demand nodes and a given objective function.

There are many classifications of location problems, one of them is the one that con-
siders the location space as a classifier. In a discrete location problem, facilities can be
located in a finite set of potential locations; the continuous space consider the space where
the problem is defined and there are infinite positions to locate; and when we consider a
network as a location space, facilities can be located at the nodes or at the arcs of the
network. The use of each space will be given by the real application of the problem. We
usually use the discrete case when we locate physical services such as schools or ATMs;
the continuous one when the location can be more flexible, as in routers or sensors; and
the network when the elements to be located are used in applications with networks such
as bus stops or gas stations.

Chapter 1 is devoted to provide a background of the theoretical contents that are used
in the problems studied in this thesis. It is organized based on the main pillars of this thesis.
We start by providing a general framework for Location problems, fixing the notation, but
mainly focused on continuous location problems. We introduce the Weber Problem and its
extension to several facilities. The second main ingredient are covering location problems.
These problems arise when deciding where to locate facilities that provide a service, the
client can only receive the service if he/she is at a certain distance from his closest facility.
After, we show the operators used in the literature to deal with multicriteria problems and
those used in the context of location. Finally, we finish the chapter by giving some insights
of the notion of fairness and how it has been treated in the literature.

In Chapter 2 we propose a new procedure to solve the Continuous Multifacility Mono-
tone Ordered Median Problem whose goal is to locate a given number of facilities in a
continuous space minimizing a monotone ordered weighted median function of the dis-
tances between given demand points and its closest facility. This problem was studied in
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the literature where it was provided a mixed integer second order cone optimization refor-
mulation for the problem and it was able to solve problems of small to medium size (up
to 50 demand points) using commercial solvers. In this chapter we propose a branch-and-
price procedure and three families of matheuristics to solve it. We report the superiority
of this new approach over the existing in the literature solving an extensive battery of
computational experiments.

In the following chapters we focus on different extensions of continuous maximal cov-
ering location problems whose goal is to locate a given number of services to maximize the
amount of demand covered within a maximal service distance or time standard by locating
a fixed number of facilities. This maximal distance is used when the facilities to locate are
antennas and sensors, or in case the maximal time is when a user goes to its closest bus
stop.

In particular, in Chapter 3 we analyze a continuous version of the maximal covering
location problem, in which the facilities are required to be linked by means of a given
graph structure (provided that two facilities are allowed to be linked if a given distance is
not exceed). This type of situation arises when in the design of forest fire-fighters centers
that must be communicated to a central server at a give radius or in the location of
sensors that have to be connected to each others. We provide a Mixed Integer Non Linear
Programming formulation for the problem and derive some geometrical properties that
allow us to reformulate it as an equivalent pure integer linear programming problem. We
propose two branch-and-cut approaches by relaxing some sets of constraints of the former
formulation, and we develop a matheuristic algorithm for the problem capable to solve
instances of larger sizes.

On the other hand, one may note that most of the existing literature on maximal
covering location problems consider a single type of facility to locate. However in some
situations, this may not be the case, for example when one has old equipment and one
desires to locate new ones with other characteristics but providing the same service. In
Chapter 4 we consider this type of situations applied to maximal covering location prob-
lems. The goal is to locate different types of facilities that provide the same service but
with different coverage areas and in different metric spaces. The use of different metric
spaces allows one to connect the location of facilities in discrete and continuous spaces. We
present a general modeling framework for a multitype maximal covering location problem
and we provide a non-linear model for which an integer linear programming reformulation
is derived. In particular, we strengthen the general methodology by assuming that the con-
tinuous facilities are to be located in the Euclidean plane. In this case, taking advantage
of some geometrical properties of the problem, an alternative integer linear programming
model is proposed. Finally, we report the results of an extensive battery of computational
experiments with data up to 920 demand nodes.

In Chapter 5 we introduce the concept of fairness in maximal covering problems and
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how it affects on the location of facilities. For this purpose, we introduce a novel function
generalizing two operators that have been used in the literature with the same purpose.
This new function depends on two parameters and incorporate fairness measures from the
facilities’ perspective so that, according to the decision-maker, they can reduce the differ-
ence between the one that covers the most and the one that covers the least. This function
determines the final decision of where to locate the facilities for a fairer distribution of the
covered demand. We provides a general mathematical programming based framework to
incorporate fairness measures from the facilities’ perspective to discrete and continuous lo-
cation spaces. The models are firstly formulated as Mixed Integer Non-Linear programming
problems for both the discrete and the continuous frameworks. Suitable Mixed Integer Sec-
ond Order Cone programming reformulations are derived using geometric properties of the
problem. Finally, we test the efficiency of the models on a real data set and the obtained
results support that the inclusion of both operators used in the literature provides different
solutions than if they are considered separately.

This PhD dissertation ends in Chapter 6 with the conclusions of the research carried
out and future open lines of work are presented.
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Chapter 2

Blanco, V., Gázquez, R., Ponce, D., & Puerto, J. (2021). A Branch-and-Price approach
for the Continuous Multifacility Monotone Ordered Median Problem. Preprint available
in arXiv:2108.00407.

Chapter 3

Blanco, V. & Gázquez, R. (2021). Continuous maximal covering location problems with in-
terconnected facilities. Computers & Operations Research, 132, 105310, https://doi.org/hqwx

Chapter 4

Blanco, V., Gázquez, R., & Saldanha-da-Gama, F. (2021). Multitype Maximal Covering
Location Problems: Hybridizing discrete and continuous problems. Preprint available in
arXiv:2111.14494.



XVII

Chapter 5

Blanco, V. & Gázquez, R. (2022). Fairness in Maximal Covering Location Problems.
Preprint available in arXiv:2204.06446.

Other contributions

Outside the contents of this doctoral thesis but during the course of it, another contribution
has been sent for publication:

Blanco, V., Gázquez, R., & Leal, M. (2020). Reallocating and sharing health equipments
in sanitary emergency situations: The COVID-19 case in Spain. Preprint available in
arXiv:2012.02062.



Contents

1 Background 2
1.1 Location Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Continuous location problems . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Covering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Set covering location problem . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Maximal covering location problems . . . . . . . . . . . . . . . . . . 20
1.2.3 Continuous maximal covering location problems . . . . . . . . . . . . 22

1.3 Ordered Weighted Averaging operators . . . . . . . . . . . . . . . . . . . . . 27
1.3.1 Ordered Median Location Problem . . . . . . . . . . . . . . . . . . . 30
1.3.2 Representation of the sorting . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 A branch-and-price approach for the continuous multifacility monotone
ordered median problem 38
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 The Continuous Multifacility Monotone Ordered Median Problem . . . . . . 42
2.3 A set partitioning-like formulation . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1 Initial variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.2 The pricing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Matheuristic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.1 Heuristic pricer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Aggregation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.1 Computational performance of the branch-and-price procedure . . . 56
2.5.2 Computational performance of the matheuristics . . . . . . . . . . . 58

2.6 Computational results for alternative `τ -norms . . . . . . . . . . . . . . . . 63
2.7 Aggregated results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

XVIII



Contents XIX

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Continuous maximal covering location problems with interconnected fa-
cilities 70
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 The Maximal Covering Location Problem with

Interconnected Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.1 Spanning subgraphs of facilities . . . . . . . . . . . . . . . . . . . . . 76

3.3 An Integer Programming Formulation for the MCLPIF . . . . . . . . . . . . 79
3.3.1 Planar O-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Branch-and-cut approaches for the MCLPIF . . . . . . . . . . . . . . . . . . 88
3.4.1 Incomplete formulation 1 . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.2 Incomplete formulation 2 . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.3 Separation of violated inequalities . . . . . . . . . . . . . . . . . . . 90

3.5 Matheuristic approach for larger instances . . . . . . . . . . . . . . . . . . . 91
3.5.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5.2 Construction of initial solutions . . . . . . . . . . . . . . . . . . . . . 92
3.5.3 Location-allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.4 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6.1 Computational performance of (MCLPIFIP) . . . . . . . . . . . . . . 95
3.6.2 Computational performance of the incomplete formulations . . . . . 96
3.6.3 Computational performance of the matheuristic . . . . . . . . . . . . 100

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Multitype maximal covering location problems: hybridizing discrete and
continuous problems 106
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 The Multitype Maximal Covering Location Problem . . . . . . . . . . . . . 111
4.3 The hybridized discrete-continuous maximal covering location problem . . . 113

4.3.1 A ‘natural’ non-linear model . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.2 An integer linear optimization model . . . . . . . . . . . . . . . . . . 116

4.4 The particular case of the Euclidean plane . . . . . . . . . . . . . . . . . . . 119
4.4.1 A branch-and-cut algorithm based on (HMCLPIP ) . . . . . . . . . . 119
4.4.2 An alternative IP model . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.1 The test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Hybridized maximal covering location problem under uncertainty . . . . . . 128
4.6.1 Robust optimization models capturing uncertainty . . . . . . . . . . 130



XX Contents

4.6.2 Stochastic optimization models . . . . . . . . . . . . . . . . . . . . . 134
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Fairness in maximal covering location problems 140
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2 The generalized Fair Maximal Covering Location Problem . . . . . . . . . . 144
5.3 Mathematical Programming Formulations for α-FOWA MCLP . . . . . . . 148

5.3.1 Continuous framework . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.2 Discrete framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Conclusions and further research . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions and future research lines 162

References 168





Chapter 1

Background

2





4 Chapter 1. Background

A mathematical model trying to describe a real-world situation often calls for maximizing,
or minimizing (the word optimizing includes both), some objective function of the variables
which describe the problem (Craven, 2012). This could be the case when a factory requires
to calculate the conditions of operation of any process which maximize the benefits or
minimize the costs. The technical requirements (usually complex) of the problem required
using advanced mathematical optimization tools for its resolution beyond the popular
gradient equal to zero method.

A mathematical problem in which it is required to calculate the optimum of some
function subject to constraints, is called mathematical programming problem. Mathemat-
ical optimization or mathematical programming is a important branch of Mathematics
which has observed an intensive growth since the last century. The origins date back to
the studies of Pierre de Fermat and Joseph-Louis Lagrange founding calculus-based for-
mulas to identify optima of functions while Sir Isaac Newton and Johann Carl Friedrich
Gauss proposed iterative methods for moving towards an optimum. However, the term
“ linear programming” for certain optimization cases was due to George Bernard Dantzig in
1947, although much of the theory had been introduced by Leonid Vitalyevich Kantorovich
(Kantorovich, 1960).

Dantzig (1949) carried out an analysis of military operations and proposed that the
interrelationships between the activities of a large organization should be viewed as a type
of linear programming model and proposed the Simplex algorithm to solve them. It was
soon recognized that such models can be used in many other contexts, and this brought
about the great interest in the theorical as well as the computational aspects of this field
(Vajda, 2009). On the other hand, Neumann (1947) developed the duality theory of the
linear programming models being crucial contribution to this field.

Dantzig (2014) defines mathematical programming as the study or use of mathemati-
cal programs which comprises theorems about the forms of a solution; algorithms to seek
a solution (or certifications that none exists); formulations of problems into mathemati-
cal programs, including understanding the quality of one formulation in comparison with
another; analysis of results; theorems about the model structure, including properties per-
taining to feasibility, redundancy and/or implied relations; theorems about approximation
arising from imperfections of models, levels of aggregation, computational error, and other
deviations; and developments in connection with other disciplines.

In mathematical programming models, it is required to find the optimum (maximum
or minimum) of an objective function F : S −→ R on the domain S ⊂ Rd, and subject to
a set of constraints defined by functions gi : S −→ R, for i = 1, . . . , d. A general way to
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express a mathematical program is:

opt
x∈S

F (x),

s.t. gi(x) ≤ bi, i = 1, . . . , d,

x ∈ S,

where opt means maximize or minimize the objective function and bi ∈ R, for i = 1, . . . , d.
Since these formulations represent real world problems, there are different applications

of mathematical optimization in all fields of research. Some examples are Data Analysis
(Blanco et al., 2021d; Marín et al., 2022), Project scheduling and Management Science
(Correia et al., 2012), Medicine (Carrizosa et al., 1992), among others.

Part of the objectives of this thesis is to derive and solve mathematical programs for
problems that arise in the context of the location of facilities. This chapter shows a brief
background of the theoretical contents that we use in this PhD dissertation. It is defined
by four main concepts. We will start in Section 1.1 with the contextualization of Location
Science, which studies location problems. We study its roots and define the main elements
involved in continuous location problems, that is, the location space for the facilities is
the metric space where our set of clients is located. Part of the problems studied in this
thesis are the maximal covering location problems that belong to the branch of covering
problems which is a core in Location Science. We explain in Section 1.2 what the covering
problems are and the two paradigms considered in the literature when to classify this
type of problems. Finally we focus on the continuous maximal covering problems. Later
in Section 1.3 we define multicriteria optimization problems and the popular aggregation
operators used in the literature to deal with them, and those that have been used in the
context of localization. The chapter ends in Section 1.4 by explaining the notion of fairness
and its use in the literature and in location problems.

1.1 Location Science

One of the research areas of Operations Research that has had its greatest development
since the 1960s has been Location Science (Smith et al., 2009). Thanks to this growing
activity it has been recognized by the American Mathematical Society with the code 90B85.
A location problem arises whenever a decision maker desires to locate something is raised.
This discipline is mainly defined by the facility location problems. These problems consist,
in a general and non-rigorous manner, of finding the optimal locations for one or more
facilities with respect a set of demand nodes, existing facilities, feasible domains, and a
given objective function.

Although the development of the Location Science dates since the 1960s, the origins
of this area of research are much older, from the time of the Greeks. Wesolowsky (1993)
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states that the Greek geometers had already given at least three solutions to the location
problem that is nowadays known as the Weber Problem.

More recently, according to Kuhn (1967), it may be argued that location analysis
was originated in the 17th century with Pierre de Fermat’s (1601–1665)1 problem: given
three points in the plane, find a fourth point minimizing the sum of its distances to the
three given points. During the 17th century different solutions were proposed to solve the
problem. Evangelista Torricelli (1608–1647) was the first to propose a geometric approach
to find that fourth point, the so-called Fermat-Torricelli point (see Laporte et al., 2019a,
for details).

However in the last century, the Weber Problem introduced by Weber (1909) is the
one that is assumed to determine the era of modern location analysis (Smith et al., 2009).
This problem consists of finding a point in the plane that minimizes the sum of weighted
Euclidean distances to a set of fixed demand points.

Although the Weber Problem is considered as the problem founding location analysis,
it is a natural extension of the problem previously proposed by Launhardt (1900) (see
Laporte et al., 2019a; Pinto, 1977, for an extended discussion). It consists of the three-
node Weber Problem, that is, finds the fourth point which minimizes the sum of weighted
Euclidean distances to three given points.

Both the Weber Problem and the Laundhard Problem were motivated by the location
of a facility in industrial context that minimize the weighted sum from suppliers and
customers, where weights represented relative volumes of interactions. Launhardt (1900)
proposed a geometric solution scheme for the problem, while Weber (1909) presented a
deeper analysis of the problem. The problem was solved using a different approach but
this resulted in the same solution.

Weiszfeld (1937) provide an algorithm to solve the Weber Problem with an arbitrary
number of fixed nodes. This is a least squares method with iteratively changing weights,
that converges to an optimal solution.

The 1960s set the foundations of Location Science as new scientific area with the natural
extension of the Weber Problem from locating a single facility to the multi-facility case
(Cooper, 1963; Miehle, 1958, among others). Indeed, Cooper (1963) introduced the planar
p-median problem being a fundamental problem in Location Science, which still attracts
the attention of the scientific community (Alcaraz et al., 2012; Labbé et al., 2017, among
others).

After that, different versions of the problem were introduced which involve location
spaces: the p-median on a network by Hakimi (1964, 1965), and the single facility location
problem in a discrete setting by Balinski (1965), among others; or the objective function:
Hakimi (1964) proposes p-centre problem, which finds the location of p facilities on a
network to minimize the maximum distance from demand to the closest facility, and the

1The problem is presented in his essay on maxima and minima.
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covering location problems introduced by Toregas et al. (1971). These are used when the
facilities that provide a service, a costumer can receive it only if is located close-enough to
the facilities (Garcia-Quiles and Marín, 2019).

There are different classifications schemes for location problems. Concretely, ReVelle
and Eiselt (2005) characterizes location problems based on four components (costumers,
facilities, a space, and a metric). Daskin (1995) classifies the location models into: p-
median, p-center and covering problems. Others classify the models depending the space:
discrete, network or continuous. The more general classification scheme is defined by
Hamacher and Nickel (1998): (1) number and type of new facilities, (2) solution space
characteristics, (3) a set of costumers and the relation with new facilities, (4) a metric
that indicates distances or times to measure how far are facilities from users, and (5) the
objective function.

The new facilities are characterize by: the number of them to locate, which it could be
specified before solve the problem, as p-median or p-center, or determined by the problem
as, for instance, set covering problems or uncapacitated facility location problems; the
nature of service, that is, the facility could be attractive services, or instead it can be
obnoxious facilities and the decision maker might want it to be as far as possible from the
demand nodes; and finally, by the size of the facility, sometimes the problem is to locate
capacitated or uncapacitated facilities as, for instance, in the location of warehouses.

Different solution spaces can be considered for location problems. The most popular
are the discrete, the networks and continuous frameworks. One has a discrete spaces
when a finite set of potential locations for the facilities is provided, this could be the case
when the facilities to locate is physical services like ATM or schools. Networks spaces
appears when the facilities are to be located geometrically in a graph. The are useful to
represent communication networks, where the nodes represent the important elements of
the communication network as cities, and the arcs represent the connections between the
nodes like roads. In this case it could be located physical services of a network such as bus
stops or subway entrances. The continuous framework is used when the problem can not
be discretized or the facilities can be more flexibly located like routers or antennas. Other
spaces used in the literature are the sphere (Drezner, 1985) or functional spaces (Puerto
and Rodríguez-Chía, 1999).

Normally, two types are usually considered for the set of users: a finite set of demand
clients or by regions in the solution space. When a finite set of demand clients is given,
we also have a set of associated weight representing the value of demand on this costumer.
In case we have regions, each one has associated a probability measure which gives the
demand in each point of the region.

The metric allows one to determine the the relationship between the new facilities and
the costumers. This relationship is fundamental in location problems. The most popular
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metrics are the `τ -norms, with τ ≥ 1, given by

‖x‖τ =

(
d∑
l=1

|x|τ
) 1

τ

,

or the polyhedral norms with a symmetric polytope B (with respect to the origin) (Ward
and Wendell, 1985),

‖x‖B = min{
G∑
g=1

|βg| : x =

G∑
g=1

βgvg},

where {±v1, . . . ,±vG} are the extreme points of B. Figure 1.1 show different examples of
unit balls of the considered norms.

`∞
`10

`4

`2

`1

(a) `τ -norms with τ ∈ {1, 2, 4, 10,∞}

v1

v2

v3v4

v5

v6

(b) A example of block norm

Figure 1.1: Examples of norms

Due to the evolution of computer technologies, Location Science has observed a rapid
growth in last decades (Church, 1999), and more realistic versions of facility location prob-
lems have been proposed in the literature.

In a general p-facility location problem, we are given a set A = {a1, . . . , an} of clients
in a given space S endowed with a norm measure ‖ · ‖. Location problems look for the
locations of a set X = {X1, . . . , Xp} of p new facilities in the defined space such as the
quality of a solution is evaluated by a function on the relation between both sets, A and
X . Following the shape of a mathematical programming model defined at the beginning
of this Chapter, a general shape to represent objective functions in location analysis is

opt
X={X1,...,Xp}∈S

F ({‖a−X‖a∈A}),

where F is a globalizing function, and opt means optimize (minimize or maximize). Note
that if p = 1 we have a single-facility model or if p > 1 a multi-facility model.
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The determination of the function F is a crucial decision to represent the problem.
Some examples of these objective functions which turns into classical location problems
are:

• The Weber Problem (Weber, 1909) is a single-facility, p = 1, location problem in the
plane, S = R2, which tries to minimize the weighted Euclidean distance to a set of
fixed points. Let be w(a) the associated weight for each a ∈ A, and `2-norm, ‖ · ‖2,
as metric. The objective function states as follows,

min
X∈R2

∑
a∈A

w(a)‖a−X‖2.

• The planar p-median problem introduced by Cooper (1963) where each demand node
must be served by one out of p new facilities to be located. This is the natural
extension of the Weber problem to multiple facilities. Thus, the objective function
is quite similar to the presented before,

min
X={X1,...,Xp}⊂R2

∑
a∈A

w(a) min
j=1,...,p

‖a−Xj‖2.

• The center problem introduced by Hakimi (1964) look for a facility location problem
on a network minimizing the maximum distance from the demand nodes to its closest
facility. In this case, we are in a graph, G = (V,E), so that the vertices of the graph
are the demand nodes, A = V , the facility belongs to edges or vertices of the graph,
S = V ∪ E, and the space is endowed with ‖ · ‖2-norm. The objective function is:

min
X∈S

max
v∈V
‖v −X‖2.

• The set covering problem introduced by Toregas et al. (1971) minimizes the number
of open restricted facilities such that all demand nodes are covered. In this case the
facilities belong to a finite set of potential facilities S ⊂ R2, the Euclidean distance
as metric, and the facilities have a restricted area to provide the service, that is, a
node is said to be covered if there is at least one open facility that is less than a given
value away R. The objective function can be written as,

min
X⊂S:d(X ,a)≤R,a∈A

|X |,

where |X | representing the cardinality of X , that is, the number of opened facilities.

• The maximal covering location problem introduced by Church and ReVelle (1974)
assumes the existence of a budget for opening facilities and the goal is to accom-
modate it to satisfy as much demand of the users as possible. Here, the authors
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consider the Euclidean space, S = R2 and ‖ · ‖ the Euclidean norm, and the facilities
have a restricted area to provide the service. Let be w(a) the associated weight for
each a ∈ A, and R the maximum distance to provide service from the facility. The
objective function is:

max
X⊂S

∑
a:d(X ,a)≤R,a∈A

w(a).

For further examples in location analysis, see the recent book by Laporte et al. (2019b).
This dissertation aims to solve particular problems in continuous metric spaces. In the

next section we introduce continuous problems and how to represent them as mathematical
programming problems.

1.1.1 Continuous location problems

This section focuses in a particular type of location problems where the facilities sites
are to be located in a continuous space and demands is defined as point into the space.
Concretely, we describe the so-called continuous multi-facility Weber Problem mentioned
in the previous section. We first review the related literature, and we formulate the problem
under mathematical programming lens.

In the last years, a lot of attention has been paid to the discrete aspects of location
analysis and a large body of literature has been published on this topic (see, e.g., Beasley,
1985; Elloumi et al., 2004; Espejo et al., 2009; García et al., 2011; Marín et al., 2009, 2010;
Puerto et al., 2013; Puerto and Tamir, 2005). One of the reasons of this flourish is the recent
development of integer programming and the success of MIP solvers. In spite of that, as
we said in the previous section, the mathematical origins of this theory emerged very close
to some classical continuous problems as the well-known Fermat or Weber Problem (see,
e.g., Laporte et al., 2019a; Nickel and Puerto, 2006, and the references therein). However,
the continuous counterparts of location problems have been mostly analyzed and solved
using geometric constructions, valid on the plane and the three dimensional space, that
are difficult to extend when the dimensions grow or the problems are slightly modified to
include some side constraints (Blanco et al., 2017; Carrizosa et al., 1995, 1998; Fekete et al.,
2005; Nickel et al., 2003; Puerto and Rodríguez-Chía, 2011). These problems, although
very interesting, quickly fall within the field of global optimization and they become very
hard to solve. Even those problems that might be considered as easy, as for instance
the classical Weber Problem with Euclidean norms, are most of the times solved with
constructive algorithms (as the Weiszfeld algorithm, Weiszfeld (1937)). Moreover, most
problems studied in continuous location assume that a single facility is to be located, since
their multifacility counterparts lead to difficult non-convex problems (Blanco, 2019; Blanco
et al., 2014; Brimberg, 1995; Carrizosa et al., 1998; Mallozzi et al., 2019; Manzour-al Ajdad
et al., 2012; Puerto, 2020; Reinelt, 1992a; Valero-Franco et al., 2013).
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The Weber Problem was introduced at the core of industrial location. In fact, it consists
of locating an industrial plant that minimizes the transport cost of bringing the needed raw
materials to the plant from a fixed number of suppliers as well as the costs of transporting
the final product to a given set of markets on the Euclidean plane. Figure 1.2 shows this
case where triangles and stars represent the markets and the suppliers respectively, and
the optimal location for the industrial plant is represented as a square.

(a) Set example (b) Weber Problem solution

Figure 1.2: Example of Weber Problem with markets (triangles), raw materials (stars),
and optimal facility location (square)

Although Weber introduced the problem in the industrial context, mathematical model
under this problem consists of finding the coordinates of a facility by minimizing the
weighted Euclidean distance to the given demand points, in this case a set of raw materials
and a set of market locations. The multi-facility version of the Weber Problem consists of
locating p facilities in the euclidean space which minimize the weighted distance to their
closest point.

Here, we present the generalized version of the multi-facility problem, that is, locate p
facilities in a metric space S ⊆ Rd endowed by a ‖ · ‖-norm. Let us assume that we are
given a set of demand nodes A = {a1, . . . , an} ⊂ S indexed by the set N = {1, . . . , n}.
Each demand point ai ∈ A has associated a non-negative demand weight ωi. Throughout
the thesis we often call a demand point interchangeably by the node ai or by the index
i. Demand points may represent users or regions and the weights allow one to give more
importance to different users or take into account the size/population of each of the regions.
Historically, the Weber Problem considers the Euclidean distance, ‖ · ‖2, as metric, but we
assume any `τ or polyhedral norm.

The goal for the multi-facility location problem (MFLP) is to locate p facilities, X =

{X1, . . . , Xp} in S, indexed by P = {1, . . . , p}, minimizing the weighted distances to their
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closest demand nodes, that is,

min
X={X1,...,Xp}

∑
i∈N

ωi min
j∈P
‖ai −Xj‖. (MFLP)

The following set of binary variables is defined to provide a suitable mathematical
programming formulation for (MFLP)

zij =

1, if node ai is allocated to facility Xj ,

0, otherwise,
for all i ∈ N, j ∈ P.

A formulation for the multi-facility location problem (MFLP) is,

min
∑
i∈N

ri, (MFLP1)

s.t. ri ≥ Dij −M(1− zij), ∀i ∈ N, ∀j ∈ P, (MFLP2)

Dij ≥ ‖ai −Xj‖, ∀i ∈ N, ∀j ∈ P, (MFLP3)∑
j∈P

zij = 1, ∀i ∈ N, (MFLP4)

Xj ∈ S, ∀j ∈ P, (MFLP5)

where Dij is an auxiliary variable which represents the distance between a demand node
and its closest facility, and ri is also an auxiliary variable which represents the distance
between the demand node ai and its closest facility. Thus, the objective function (MFLP1)
minimizes the the weighted distances to their closest demand nodes. The set of constraints
(MFLP2) assures the correct allocation for a demand node to its closest facility, where M
is a big constant. Family of constraints (MFLP3) gives the correct value of the distance to
variable D. Finally, constraints (MFLP4) ensure that each demand node is allocated to a
single facility. Note that we only have a set of continuous variables represented as Xj , for
j ∈ P .

Theorem 1 (Megiddo and Supowit (1984)). The MFLP is a NP-hard problem.

Proof. Megiddo and Supowit (1984) prove the NP hardness of this problem for the partic-
ular case of the Euclidean plane, that is, d = 2 and ‖ · ‖2.

One of the most challenging aspects to deal with this problem is to adequately describe
the nonlinear constraint (MFLP3) to solve the problem.

Weiszfeld (1937) was the first author to solve the problem when there were more than 3
points. The author proposed an iterative gradient type algorithm to find or to approximate
the solutions of the (MFLP). Weiszfeld was unaware of Weber’s work and for several
decades this algorithm remains forgotten until in 1973, when Kuhn (1973) rediscovered
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it and proved its convergence, under some conditions in the Euclidean case. After, Katz
(1974) gives another convergence result. With the generalization of (MFLP) to `τ or
polyhedral norms (this is changing the Euclidean norm in (MFLP3) for any norm), several
authors tried to generalize the Weiszfeld’s algorithm (see Chandrasekaran and Tamir, 1989,
for interesting questions concerning resolubility of the algorithm). Morris and Verdini
(1979) gave the generalization of the algorithm for `τ -norms with τ ∈ [1, 2]. There are
studies of its local and global convergence given by Brimberg and Love (1992, 1993), and
it was extended by Frenk et al. (1994) under more general assumptions of quasinconvexity
of the objective function. After proving local and global convergence, there are also several
works that sought to accelerate its convergence (see, e.g, Brimberg et al., 1998; Drezner,
1995, among others).

Other authors derived the same approach as Weiszfeld being aware of the Weber’s work
independently (Cooper, 1963; Kuhn and Kuenne, 1962; Vergin and Rogers, 1967). The
work of these authors together with the Weiszfeld algorithm has motivated the development
of numerous extensions of the Weber Problem.

Examples of these extensions are: Drezner and Weslowsky (1980) dealt with the single-
facility location problem with demand areas instead of points, after improved by Carrizosa
et al. (1998); the work by O’Kelly (1992) extend facilities to hubs; Carrizosa et al. (1995)
gave a generalized Weber Problem where both demand locations and the facility to be
located may be regions and are assumed to be distributed according to some probability
measures inside each region; Butt and Cavalier (1996) gave an algorithm to solve the single-
facility version of (MFLP) in the presence of convex polygonal forbidden regions, i. e., the
facility can not belong to these regions; or Klamroth (2001) considered linear barriers in
the Weber Problem, that is, the costumers are divided on two sides of a linear barrier and
the barrier has a finite of possible points to go from one side to another. These are some
extensions in the vast literature related about this topic.

The interest in solving Weber’s problem using geometric approaches was due to the fact
that optimization solvers were not capable of returning solutions to problems with nonlinear
constraints. With the development of the second-order cone optimization (SOC) and its
use in mathematical programming problems, it allowed solvers to incorporate solution
approaches to these problems. Thus, in case the norm used is Euclidean, the solvers are
capable of solving problem with constraints of the type (MFLP3). In fact, the family of
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constraints (MFLP3) when the Euclidean norm is used, it can be rewritten as,

tijl ≥ ail −Xjl, ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`2-norm1)

tijl ≥ −ail +Xjl, ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`2-norm2)
d∑
l=1

t2ijl ≤ D2
ij , ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`2-norm3)

tijl ≥ 0,

where tijl are auxiliary variables that allow to model the absolute values |ail −Xjl| with
constraints (`2-norm1) and (`2-norm2), being ail andXjl the l-th coordinates of the demand
point ai and the facility Xj , respectively. Finally, the family of constraints (`2-norm3)
assures the value of the Euclidean distance given by the auxiliary variable defined above,
Dij . Note that for `1, the Manhattan distance, the last constraint is only defined by the
same expression without the squares over the variables.

After, Blanco et al. (2014) defined a general framework to represent any `τ -norm for
τ = r

s ≥ 1 as a set of SOC constraints. A general overview for any value of r and s is
stated as follow,

tijl ≥ ail −Xjl, ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`τ -norm1)

tijl ≥ −ail +Xjl, ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`τ -norm2)

trijl ≤ ξsijlDr−s
ij , ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`τ -norm3)

d∑
l=1

ξijl ≤ Dij , ∀i ∈ N, j ∈ P, (`τ -norm4)

tijl, ξijl ≥ 0, ∀i ∈ N, j ∈ P, l = 1, . . . , d, (`τ -norm5)

where tijl are the same auxiliary variables defined earlier. The variables ξijl are also aux-
iliary variables that allow to adequately represent the ` r

s
-norm. Note that the family of

constraints (`τ -norm4) must be still reformulated as SOC constraints (see Blanco et al.,
2014, for further details on this representation). Table 1.1 shows some examples of refor-
mulation of (`τ -norm3) for different norms, in particular, τ ∈ {3

2 , 3, 4}.

` 3
2

`3 `4

t2ijl ≤ ψijlξijl, t2ijl ≤ ψijlDij , t2ijl ≤ ψijlDij ,

ψ2
ijl ≤ Dijtijl, ψ2

ijl ≤ ξijltijl, ψ2
ijl ≤ ξijlDij ,

Table 1.1: Constraints for different values of τ to represent (`τ -norm3)

Therefore, any `τ -norm for τ ≥ 1 can be rewritten as SOC constraints and most of the
commercial optimization solvers can solve this kind of problems. Other useful norms used



1.2. Covering problems 15

in the literature are the polyhedral norms (see, e.g., Nickel and Puerto, 2006; Ward and
Wendell, 1985). If ‖ · ‖ is a polyhedral norm, then (MFLP3) is equivalent to:

g∑
l=1

egl(ail −Xjl) ≤ Dij , ∀i ∈ N, j ∈ P, e ∈ Ext‖·‖o , (Pol-norm)

where Ext‖·‖o = {eo1, . . . , eog} are the extreme points of the unit ball of the dual norm of
‖ · ‖.

This reformulation has allowed to model and solve some other versions of continuous
location problems as Blanco et al. (2017) located a facility when the distance measure
is different at each one of the sides of a given hyperplane; Blanco et al. (2018) fitted
hyperplanes with respect to a given set of points minimizing the different distance-based
errors; the work by Blanco (2019) in which it is assumed that the facilities must be located
in a region around their initially assigned location (the neighborhood); or Blanco and
Puerto (2021b) proposed an extension of hub location problem where the positions of the
hubs are allowed to belong to a region around an initial set of potential positions, among
others.

As we have seen, the representation of the norm in an optimization programming
problem has been a challenging task on the part of the existing literature being solved by
geometric algorithms until the incorporation of SOC constraints in the solvers. Most of
the problems considered in this thesis solve location problems in which the facilities can
be located in any part of the considered space. We will see that these SOC constraints
can be applied to any location problem that involves the use of the rules considered in this
chapter.

1.2 Covering problems

Covering location problem is a particular type of problems within Location Science. These
problems arise when deciding where to locate facilities that provide a service but the user
can only receive the service if he/she is at a certain distance from his closest facility. When
the customer is within that certain distance, the customer is said to be covered. An example
of this type of problem is when we must locate ambulances at a maximum distance of 7
minutes from people for them to be covered. This section presents a historical background
of this kind of problems and we focus on a particular type of them that will be used in the
following chapters of this thesis.

The first mentions to covering problems are attributed to Berge (1957), where the
author provides an algorithm to find the minimum cover in a graph. After, Hakimi (1965)
solved the minimum number of policed patrols required to protect a highway network. The
problems were solved using algorithms based on geometric properties. It was not until the
work proposed by Toregas et al. (1971) that the problem was formulated mathematically
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for the first time in the context of location and by Roth (1969) outside of this context.
Two different paradigms have been considered when classifying this type of problems.

The first considers a cost-oriented objective and the main goal is to satisfy the demand of
all the users by minimizing the setup costs of the facilities. These problems are referred
to in the literature as Set Covering Location Problems (SCLP), and were mathematically
introduced by Toregas et al. (1971). Particularly, if all the facilities have the same setup
costs, the problem is equivalent to minimizing the number of opened facilities. The most
popular problem in this family is the p-center problem (Hakimi, 1965).

Normally, SCLP solutions show that one can cover an important percentage the demand
with a few facilities, and the total coverage of the demand is usually achieved by a large
number of facilities. Therefore, this gives rise to problems that are not in line with reality
by assuming that there are sufficient resources to open this large number of facilities.
Thus, the second paradigm assumes the existence of a budget for opening facilities and
the goal is to accommodate it to satisfy as much demand of the users as possible. These
problems belong to the family of Maximal Covering Location Problems (MCLP) that have
attracted the attention of many researchers since its introduction by Church and ReVelle
(1974), both because its practical interest in different disciplines (see Chung, 1986) and
the mathematical challenges it poses.

Figure 1.3 shows the differences between these two kind of paradigms. Figure 1.3a
shows the solution for the SCLP in which 7 have been selected to cover all demand points
and Figure 1.3b shows the solution for MCLP where only three facilities can be selected
and have to maximize the covered demand.

(a) SCLP solution. (b) MCLP solution for 3 facilities.

Figure 1.3: Example of the two paradigms considered to classify the covering problems

Due to its applicability in real-world situations, covering problems will appear in all
those location problems in which customers and facilities have to be close enough to provide
the service. Applications of those are in different areas such as deployment of emergency
services (ReVelle, 1989; Toregas et al., 1971), in natural disaster management (Mandal
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et al., 2021), humanitarian logistics (Li et al., 2018), in mail advertising (Dwyer and Evans,
1981), fire stations (Schilling et al., 1980), bus stops (Gleason, 1975), in subway and high-
ways (Boffey and Narula, 1998), among others. The Table 1.2 given by Church and Murray
(2018b) lists examples of coverage in different applications.

Standard Context
3− 50 km Cellular antenna
5− 6 min Emergency 911 call
70 dB audibility Outdoor warning or message
400 m Reasonable waking distance for bus access
70 miles Essential air service access for rural communities
800 m Suitable acces for rail/subway
1 day ride Mail delivery
120 miles Doppler radar moisture detection
1500 m Visibility distance of camera mounted on tower
60 min Areomedical response for trauma care

Table 1.2: Some coverage standards examples from Church and Murray (2018b)

Like most location problems, the SCLP and MCLP may be defined as continuous
problems (in which facilities may be located anywhere on the plane), as discrete problems
(in which they may be located only at a set of potential facility locations) or as network
problems (in which they may be located anywhere on the network). This distinction in
the decision space is motivated by the installation to locate, it is known that in covering
problems the discrete space is used for the location of physical services (as ATM, schools,
hospitals, among others), the continuous for facilities that allow a flexible location (as
sensors, routers, radars) and the networks for facilities that belong to a connected network
(as bus stops, subway entrances). The literature has several examples and applications on
different spaces, in the discrete for the assignment of fire equipment to fire house (Walker,
1974); in the continuous as the work by Goodchild and Lee (1989) in which involving the
placement or siting of fire watch tower for quick detection of fire in forests; and in networks
as Gendreau et al. (1997) where a set of vertices must be covered; among others.

In the rest of this section, we explicitly introduce the two paradigms for a complete
view of covering problems. Section 1.2.1 details the mathematical formulation for the SCLP
in the discrete context as it was first formulated by Toregas et al. (1971), albeit with the
notation developed in the previous sections. After, Section 1.2.2 introduces discrete MCLP
and develops some applications. Finally, Section 1.2.3 focuses on the possible formulations
of the continuous MCLP that will be used in the following chapters.

1.2.1 Set covering location problem

The SCLP where the coverage of all demand is required tries to minimize location cost
of the facilities. Usually SCLP considers a finite set of demand points in the plane, here
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we consider in some metric space S ⊂ Rd. Let A = {a1, . . . , an} ⊆ S be a finite set of
demand points indexed by the set N = {1, . . . , n}. We are also given a potential set of
facilities, B = {b1, . . . , bm} ⊆ S, where the services are to be chosen, indexed by the set
M = {1, . . . ,m}. Each potential facility bj ∈ B has associated a non-negative opening cost
cj .

The literature on covering problems considers different points of view regarding cover-
age areas. On some occasions, the coverage area can be seen as the limit that the facility
has to provide its service or as the limit that a user is willing to move to obtain the service.
Therefore, the areas can be defined from the point of view of the facility or the client. In
this chapter we consider the point of view of the facility, but throughout this thesis we will
exchange this point of view according to the problem studied, and we will define it when
it comes.

Thus, each potential position for the facilities, bj ∈ B could have associated a coverage
area Rj , but sometimes the radius is the same for all facilities, R, in the literature. It is
usual to define the coverage areas as Euclidean balls with certain coverage radia. In this
dissertation, we consider ball-shaped coverage areas centered in a point b in the form:

BR(b) = {z ∈ Rd : ‖z − b‖ ≤ R},

where ‖ · ‖ is the metric of the space S. A demand node ai is covered by the facility if the
distance between ai and the facility does not exceed R. The node ai is said to be covered
if there is at least one open facility covering it. For any finite subset of open facilities,
X = {X1, . . . , Xp} ⊆ B, we denote by C(X) ⊆ N the set of indices of covered nodes by the
open facility X in X , i.e.,

C(X) = {i ∈ N : ai ∈ BR(X)(X), for some X ∈ X}, (Cov-Set)

we also denote C(X ) =
⋃p
j∈=1 C(Xj) the set of indices of covered nodes by at least one

open facility in X .
The goal of the SCLP is to find a subset of facilities X = {X1, . . . , Xp} ⊆ B minimizing

the opening cost of the facilities and covering all demand clients, that is,

min
X={X1,...,Xp}⊆B :

i∈C(X ), ∀i∈N

p∑
j=1

cj . (SCLP)

For the sake of deriving a suitable mathematical programming formulation for the
SCLP, it is required to introduce the following decision variable:

yj =

1, if facility bj ∈ B is selected,

0, otherwise,
for all , j ∈M.
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Using the above decision variables, the discrete SCLP can be formulated as follows:

min
∑
j∈M

cjyj , (d-SCLP1)

s.t.
∑
j∈M :

ai∈BRj (bj)

yj ≥ 1, ∀i ∈ N, (d-SCLP2)

yj ∈ {0, 1}, ∀j ∈M. (d-SCLP3)

The objective function (d-SCLP1) minimizes the total fixed cost of opening yj facilities at
site j ∈ M . In the particular case where the cost are equal for each potential location,
cj = 1 ∀j ∈ M , the goal is to minimize the number of open centers. The family of
constraints (d-SCLP2) assures that all demand nodes are covered by at least one facility
and each demand node is covered if and only if it belongs to the ball of a open facility.
Finally (d-SCLP3) define the domain of y-variables.

In (d-SCLP) we assume that we have a potential facility locations B, but in the lit-
erature is usually used B = A, that is, the potential facility locations are the same as
the demand nodes. That problem is known as the node covering problem and it has been
widely studied (see, e.g, Balinski, 1965).

Theorem 2 (Karp (1972)). The SCLP is an NP-complete problem.

Although the SCLP is NP-complete, the linear relaxations of the problem provide good
lower bounds (Garcia-Quiles and Marín, 2019). One of the main drawbacks of covering
problems, in particular of the LSCP is that they have usually many different optimal
solutions, that is, sets of facilities with the same solution, we see this property in some
solutions of the proposed problem in Chapter 5.

The constant growth of this area of Location Science has brought an important and
rich literature on this topic. Thanks to this, extensions of covering problems within the
two paradigms explained have been developed by the research community. Some example
are: capacited set covering problems (Current and Storbeck, 1988) where the problem has
facility capacity restrictions; the probabilistic set covering problems (Revelle and Hogan,
1989) where consider some of deterministic parameters as probabilistic; the anti-covering
problems (Moon and Chaudhry, 1984) that maximizes the set of selected location sites so
that there are no two selected sites within a pre-specified distance. For interested readers
about other types of covering problems see Church and Murray (2018b) or Garcia-Quiles
and Marín (2019) and references therein.

ReVelle (1989) gives a review focused on emergency service, Plastria (2002) provides
a review in the context of continuous covering models, Snyder (2011) and Farahani et al.
(2012) review models and extensions of covering problems, Murray (2016) is a survey on
MCLP and Garcia-Quiles and Marín (2019) give a general view of covering models.
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The rest of this section focuses in the MCLP which is the main topic of the following
chapters of this thesis. We will present a general background of these problems, the general
formulation and extensions of this work in the literature. Finally, we will focus our attention
on the case where the location space is continuous.

1.2.2 Maximal covering location problems

Sometimes, SCLP leads to unrealistic problems since the number of facilities needed to
cover all the points can be excessive. The demand points are required to be covered, re-
gardless of their quantity and density, resulting in solutions that could be not economically
feasible. On the other hand, the SCLP considers all demand points equally. These concerns
lead to the Maximal Covering Location Problem (MCLP) model introduced by Church and
ReVelle (1974). The MCLP does not require that all demand points be covered. Instead,
the MCLP maximize the amount of demand covered within a maximal service distance by
locating a fixed number of facilities (Church and Murray, 2018a).

The MCLP was introduced by Church and ReVelle (1974), although, at the same time
White and Case (1974) also realized that there needed to be more flexibility on covering
location problems. The authors defined the same problem, a covering location problem with
a budget of facilities to be located, but they considered all the demand points identically.

Since its introduction, the MCLP and its extensions of it have been studied in many
works and it has attracted significant attention from both researchers and practitioners
(Wei and Murray, 2015), both by its technical merit and practical interest. Indeed, since
its first publication and until 2015 Church and ReVelle (1974) had around 1550 citations
(Murray, 2016). At the days of writing this thesis it has more than 3200 citations in Google
Scholar, which represents an increase in research and interesting about the problem.

There are tons of applications of the MCLP in the literature, including the location
of health clinics (Bennett et al., 1982), positioning ambulances (Saydam and McKnew,
1985), cluster analysis (Chung, 1986), placement of emergency warning sirens (Current
and O’Kelly, 1992), selecting sites for nature reserve (Church et al., 1996), cellular network
design (Kalvenes et al., 2005), designing police patrol areas (Curtin et al., 2010), locating
fire stations (Murray, 2013), just to cite a few. For interested readers on applications are
referred to the recent survey in MCLP by Murray (2016) or the book on covering problems
by Church and Murray (2018b).

As usual, the use of MCLP has been applied in different location spaces based on the
applications. The classical MCLP was defined in a network space, where the facilities can
be located in any node of the graph. For the sake of readability, we formulate the classical
one as a discrete problem.

Similar to the SCLP, a demand point or area is said to be covered if it is within
a predefined service distance or time from at least one facility. Here, as we defined in
previous sections, we assume that we are given a set of demand nodes in some metric
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space S ⊆ Rd. Thus, we are given the set of demand nodes A = {a1, . . . , an}, indexed by
N = {1, . . . , n}, and unlike the SCLP, each demand point ai ∈ A has associated a non-
negative demand weight ωi. This is one of the main differences between both problems.
Furthermore the number of facilities to be located is limited, all demand in the region
may not be covered. A budget constraint is incorporated in the MCLP to relax the rigid
requirement of complete coverage of all demand in the SCLP. We are also given a finite set
of candidate facilities, B = {b1, . . . , bm}, indexed by M = {1, . . . ,m}, with covering area
Rj , j ∈M, albeit in this case there are no cost for opening facilities.

Using the notation defined by (Cov-Set), the goal of the MCLP is locate p facilities
X = {X1, . . . , Xp} in B maximizing the covered demand on the finite set A, that is,

max
X={X1,...,Xp}⊆B

∑
i∈C(X )

ωi. (D-MCLP)

For the sake of deriving a suitable mathematical programming formulation for the
problem we use the following sets of decision variables:

yj =

1, if facility bj ∈ B is selected,

0, otherwise,
for all , j ∈M.

xi =

1, if demand node ai is covered by the facilities

0, otherwise,
for all , i ∈ N.

Using the above variables, the discrete MCLP can be formulated as follows:

max
∑
i∈N

ωixi, (d-MCLP1)

s.t.
∑
j∈M

yj = p, (d-MCLP2)

xi ≤
∑
j∈M :

ai∈BRj (bj)

yj , ∀i ∈ N, (d-MCLP3)

xi ∈ {0, 1}, ∀i ∈ N, (d-MCLP4)

yj ∈ {0, 1}, ∀j ∈M. (d-MCLP5)

In the above model, the objective function (d-MCLP1) maximizes the weighted coverage
of the nodes in A by the facilities. Constraints (d-MCLP2) ensure that exactly p facilities
are selected in the finite set B. Inequalities (d-MCLP3) state whether a demand point is
covered by open facilities. Specifically, if a demand point ai is covered, i.e., xi = 1, then
there must be at least one facility at a distance less than its coverage radius Rj . Finally,
constraints (d-MCLP4) and (d-MCLP5) state the domain of the decision variables, which,
with the linear objective function, make the MCLP a linear mixed integer optimization
program.
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Theorem 3 (Megiddo et al. (1983)). The MCLP is NP-hard.

Although the MCLP was introduced in the context of networks, the location of the
facilities was limited to the nodes of the network and could therefore be considered as a
discrete setting. These assumptions could result in unrealistic problems and the location
within the arcs of the graphs began to be considered. Some recent examples of these
problems are those made by Berman et al. (2016); Blanquero et al. (2016) or Baldomero-
Naranjo et al. (2021).

1.2.3 Continuous maximal covering location problems

An important distinction in location analysis and modeling has long been discrete ver-
sus continuous approaches. In previous sections we have reviewed the literature in both
contexts, firstly explaining the roots of the location science with the Weber Problem, and
finally presenting discrete extensions like the SCLP. The discrete frameworks have enabled
discrete integer programming formulations for the problems, allowing for efficient exact
approaches. In some situations, however, neither potential facility sites are necessarily
known and finite. Thus, one aspect of a continuous space location model is that facilities
may be sited anywhere in the decision space. In this section, we focus in the continuous
version of the MCLP.

Two paradigms have been considered in the literature when dealing with continuous
MCLP: (1) consider the demand set as a finite set of nodes in the metric space; or (2) as
a demand distributed throughout the feasible region defined by some function.

Mehrez and Stulman (1982) were the first authors to consider the first paradigm, where
the demand is distributed by a finite set of nodes. The authors are credited as the ones
that introduced the continuous MCLP using the Euclidean distance, although they did
not formulate it mathematically. They exploited the geometric properties of coverage and
gave a method to solve the problem based on constructing a finite set where the optimal
solution could be found. Later, the works of Mehrez (1983) and Mehrez and Stulman
(1984) proposed a discrete formulation for the continuous MCLP using the finite set they
discovered. Church (1984) also formulated the continuous MCLP as discrete using the
same set, but for rectilinear and Euclidean distances. The sets were named Diamond
Intersect Points Set (DIPS) if rectilinear distance was used, and Circle Intersect Points
Set (CIPS) in case the Euclidean distance was used. These three works were published
independently at the same time, and the strategy to solve it was the same, identifying
a finite dominating set of locations as potential facility sites. Afterwards, the concept
of discrete demand was generalized. Murray and Tong (2007) proposed a generalization
in which the demand could be points, lines and polygons. This type of demand can be
treated as discrete since the lines and polygons are defined as a set of points and an object
will be covered if and only if the set of points that defines it is covered (see Murray and
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Tong, 2007, for further details). Again, the geometric properties of the problem allows
for the construction of finite dominating sets, and the authors introduced a method for
identifying a finite set of potential facility locations called Polygon Intersection Point Set
(PIPS). Thus, the continuous location problem could be formulated as a mixed integer
optimization problem.

Later, the scientific community realized that the representation of demand spaces as
points could lead to precision errors (Current and Schilling, 1990; Daskin et al., 1989;
Murray and O’Kelly, 2002). This is how the second paradigm arises, the study of covering
problems where the demand is found throughout the space. Murray and O’Kelly (2002)
analyze the problem of locating warning sirens where demand for service exists everywhere
in the region and sirens can be located anywhere in the region. The authors gave a general
framework which can be applied to general continuous MCLP problems. Since then, other
works have been published with different solution strategies and extensions of the problem.
For instance, when complete coverage of an entire space is required, it is possible to solve
as a p-center problem. The extension of the center problem, introduced in Section 1.1, is
the p-center problem which looks for the location of p facilities minimizing the maximum
distance to any point in the space to its closest facility. In the case of covering problems,
if the optimal solution for the p-center, it satisfies the coverage requirements then the
solution is optimal. Suzuki and Okabe (1995), and Suzuki and Drezner (1996) gave an
heuristic approach for solving the p-center problem based on Voronoi diagrams, to solve
the location of the facilities anywhere in order to serve polygonal-shaped regions. Wei
et al. (2006) relaxed the assumption of the polygon shape extending the heuristic. In case
the complete regional coverage is not possible. Murray et al. (2008) and Matisziw and
Murray (2009a,b) introduced the use of a medial axis to indicate where an optimal facility
location can be found in a continuous space. Preparata (1977) defined the medial axis of
an arbitrary simple polygon as the set of points of the plane internal to the polygon which
have more than one closest point on the boundary of its (the medial axis was introduced
by Blum, 1967).

Most of the the proposed approaches for solving continuous covering location are based
on constructing finite dominating sets, since they allow one to use tools from linear integer
programming to solve the problem (see e.g., Blanco and Puerto, 2021a; Cordeau et al.,
2019), even at the price of incurring on errors when computing the dominating set. This
use is motivated by the fact that continuous location in covering problems is usually applied
in problems of locating routers, sensors or alarms, among others, and the covered demand
is usually a finite set of users or buildings. This is why, in this thesis, we analyze covering
problems in which we will locate in metric spaces to serve a finite set of demands.

Similar to the discrete counterpart, in the continuous MCLP that we consider during
this thesis, we are given a metric space S ⊆ Rd endowed by a ‖·‖-norm as distance measure,
and a finite set of demand points A = {a1, . . . , an} ⊆ S, indexed by N = {1, . . . , n}, and
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each demand point ai ∈ A has associated a non-negative demand weight ωi. Thus, the
goal of the continuous MCLP is locate p facilities X = {X1, . . . , Xp} in the metric space S
maximizing the covered demand, that is,

max
X={X1,...,Xp}⊆S

∑
i∈C(X )

ωi. (C-MCLP)

Theorem 4. The (C-MCLP) is NP-hard.

Proof. The problem reduces to a discrete MCLP by Church (1984) which is NP-hard
(Megiddo et al., 1983).

There are different formulations available in the literature to model the continuous
MCLP. Unlike the discrete case, we must allocate the point to the facility that covers it so
that its demand is only counted once.

Let us denote by P = {1, . . . , p} the index set for the centers. A mathematical program-
ming formulation for the problem can be derived by using the following set of variables:

zij =

1, if node ai is covered by facility Xj ,

0, otherwise,
for all i ∈ N, j ∈ P,

and Xj ∈ S ⊆ Rd: coordinates of the jth facility in X for all j ∈ P .
A ‘natural’ nonlinear formulation, similar to the presented (MFLP) is the following,

max
∑
i∈N

∑
j∈P

ωizij , (c-MCLPNL
1 )

s.t.
∑
j∈P

zij ≤ 1, ∀i ∈ N, (c-MCLPNL
2 )

‖ai −Xj‖ ≤ Rj , if zij = 1, ∀i ∈ N, (c-MCLPNL
3 )

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P, (c-MCLPNL
4 )

Xj ∈ S, ∀j ∈ P, (c-MCLPNL
5 )

where the objective function (c-MCLPNL
2 ) accounts for the weighted number of covered

points. Constraints (c-MCLPNL
2 ) enforce that covered demand points are accounted only

once in the objective function, even if it can be covered by more than one center. The
family of constraints (c-MCLPNL

3 ) ensure that covered points are those with a center in their
coverage radius. Finally, (c-MCLPNL

4 ) and (c-MCLPNL
5 ) fix the domain of the variables.

Note that constraint (c-MCLPNL
3 ) can be equivalently rewritten as:

‖ai −Xj‖ ≤ Rj +M(1− zij), ∀i ∈ N, j ∈ P, (c-MCLPNL
6 )

for a big enough constant M > maxi,k∈N ‖ai − ak‖.
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The above formulation is clearly discrete and non linear, but the nonlinear constraints
(c-MCLPNL

6 ) can be efficiently reformulated as a set of second order cone constraints,
resulting in a Mixed Integer Second Order Cone Optimization (MISOCO) problem (see
Blanco et al., 2014). The value of the distance in the nonlinear constraint must be changed
by the one given by the set of constraints (`τ -norm1)-(`τ -norm5), in addition to adding all
of them in case of `τ -norms, or (Pol-norm) if polyhedral norms are used.

However, in case the problem uses discrete demand (points, lines, polygons or other ge-
ometric objects), it is possible to derive discrete potential facility locations that sufficiently
represent continuous space. Such discrete sets of potential facility locations are known as
a finite dominating set (FDS). Church (1984) proved that for the plane (S = R2), and
the rectilinear and Euclidean norms (`1- and `2-norm) it is enough to inspect a explicit
finite set of potential centers to find the optimal location of the problem. In particular, the
so-called DIPS and CIPS which consists of the demand points and the pairwise intersection
of the balls (disks) centered at the demand points and the corresponding covering radii.
Murray and Tong (2007) proved that for any demand objects, points, lines or polygons, a
finite set of potential facility sites could be identified.

In general, Murray and Tong (2007) generalized the process of generating the FDS for
discrete demand as follows:

1. Identify demand objects to be covered.

2. Derive covering areas around each demand object.

3. Find the intersection points of covering areas.

The first step (1) is trivial whatever the representation of the demand, however it must
be done for a good representation of the problem. Once the demand has been established,
the second step is to find the area where the facilities can cover the demand. For this, in
each demand we place the coverage area defined by the facilities. This will give us as a
result a set of areas where the facilities can be located to cover that demand. Finally, step
3 looks for the intersection of all those demand-centered coverage areas, giving rise to a set
of finite points where at least one optimal solution of the problem is found. The difficulty
of this step highly depend on the dimension of the decision space and the metric used to
construct the coverage areas.

This dissertation only considers points in the location space as demand. An example
of the FDS generation process for demand points and considered by Church (1984) is
illustrated in Figure 1.4. Church consider the Euclidean plane, that is, S = R2 and ‖ · ‖2
the Euclidean distance. The author also considers the same coverage radius for all the
facilities to locate. In Figure 1.4a we show a set of given demand points. In Figure 1.4b
we draw the areas around each of these demand points where one should locate a facility
to cover it. Note the Euclidean ball shape centered in each demand nodes. With these
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balls, the points of intersection can be derived giving the set of potential facilities in Figure
1.4c. This is the FDS of defined demand nodes, called by Church (1984) as CIPS. Thus,
the problem turns into the discrete version of the MCLP, and the (d-MCLP) can be used,
resulting in other suitable formulation for the continuous MCLP.

(a) (b) (c)

Figure 1.4: Depiction of major steps of FDS process following Murray and Tong (2007).
(a) Demand points. (b) Covering areas of demand. (c) FDS

The discrete version of the continuous MCLP, although allows a linear representation
of the planar MCLP may has a large number of x-variables. If we assume that all covering
radius are equal for all the facilities (Rj = R, ∀j ∈ P ), we could have a large FDS (in
worst case, O(n2)). On the other hand, if we assume different covering radius we could
have in worst case O(pn2).

Another equivalent linear representation of the problem, in case we assume that centers
must cover at least one demand point, and that we exploit in this dissertation, is based on
the following straightforward observation.

Lemma 1. Let C(X1), . . . , C(Xp) ⊆ N be p nonempty disjoint subsets of N . Then, they
induce a solution to the MCLP if and only if:⋂

i∈C(Xj)

BRj (ai) 6= ∅, ∀j ∈ P.

The above result allows us to rewrite constraints (c-MCLPNL
3 ) as linear constraints and
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formulate the MCLP as:

max
∑
i∈N

∑
j∈P

ωizij (c-MCLPIP
1 )

s.t.
∑
j∈P

zij ≤ 1, ∀i ∈ N, (c-MCLPIP
2 )

∑
i∈N

zij ≥ 1, ∀j ∈ P, (c-MCLPIP
3 )∑

i∈S
zij ≤ |S| − 1, ∀j ∈ P and S ⊆ N :

⋂
i∈S

BRj (ai) = ∅, (c-MCLPIP
4 )

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P, (c-MCLPIP
5 )

where the set of constraints (c-MCLPIP
3 ) give the assumption of the center must cover

at least one demand point, and (c-MCLPIP
4 ) enforces that the set of points covered by a

center must verify the condition of Lemma 1. Once the solution of the problem above is
obtained, z∗, explicit coordinates of the centers, can be found in the following sets:

Xj ∈
⋂
i∈N :
z∗
ij

=1

BRj (ai), ∀j ∈ P,

which can be formulated as a convex feasibility problem:

min 0

s.t. ‖Xj , ai‖ ≤ Rj , ∀i ∈ N : z∗ij = 1,

Xj ∈ Rd,

for all j ∈ P .
The convex problem above can be efficiently handled for the most common distance

measures using the reformulation given by (`τ -norm) in the particular case of `τ -norms or
by (Pol-norm) in case of polyhedral norms. Thus, for this wide family of distance measures,
and once the discrete part of the problem is solved, the coordinates of the centers can be
solved in polynomial-time by using interior-point techniques (Nesterov and Nemirovskii,
1994).

1.3 Ordered Weighted Averaging operators

The previous sections establish the criteria used to locate new facilities. However, in
many decision and planning problems involve multiple objectives that should be considered
simultaneously due to more than one viewpoint or scenario (multiple conflicting criteria).
Such problems are generally known as multiple criteria decision making problems and
their solutions should be optimal to several criteria at the same time. This section recall
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a general class of parameterized aggregation operators to address with different objective
functions in multi-objective problems.

The Ordered Weighted Averaging (OWA) operators were introduced by Yager (1988)
to provide a means for aggregating scores associated with the satisfaction to multiple
criteria. Subsequently they have proved to be a useful family of aggregation operators
for many different types of problems and have attracted much interest among researchers.
They provide a general class of parameterized aggregation operators that include the min,
max, average. Since its introduction, the OWA operators have been successfully used
in various fields such as multicriteria and group decision making (Chiclana et al., 2003;
Herrera et al., 1996), database query management and data mining (Torra, 2004; Yager,
2003), classification problems using support vector machine (Maldonado et al., 2018; Marín
et al., 2022), among others. See Yager and Kacprzyk (1997) and Yager et al. (2011) for
further applications.

Formally, an OWA operator is a mapping Φλ : Rp → R with associated weighting

vector λ = (λ1, . . . , λp) ∈ Rp satisfying λj ∈ [0, 1], ∀j ∈ {1, . . . , p} and
p∑
j=1

λj = 1. For a

given vector x = (x1, . . . , xp) ∈ Rp, the OWA operator is defined as:

Φλ(x1, . . . , xp) =

p∑
j=1

λjx(j), (OWA)

where x(j) is the jth-largest input vector component of x, i.e., x(j) ∈ {x1, . . . , xp} such
that x(1) ≤ . . . ≤ x(p). These operators are weighted sums of the different criteria, but
where weights are associated with the position of the criteria when they are sorted in non
decreasing order. According to Yager, the key feature of this operator is the ordering of
the arguments by value, a process that introduces a nonlinearity into the operation (Yager
and Kacprzyk, 1997, Chapter 2).

Therefore, the use of an OWA operator is generally composed of the following three
steps (Xu, 2005):

1. Reorder the input arguments in non descending order.

2. Determine the weights associated with the operator by using a proper method.

3. Use the weights to aggregate these reordered arguments.

When aggregating different criteria by means of an OWA operator, a crucial step is to
provide the adequate weights λ that are assigned to the sorted sequence. Weight vector
determination is often a prerequisite step in many OWA-related applications. The most
popular OWA operators (min – λ = (1, 0, . . . , 0) and max– λ = (0, . . . , 0, 1)) serve as
reference weights to define the notion of orness of a vector of λ-weights defining an OWA
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operator:

orness(λ) =

p∑
j=1

p− i
p− 1

λi.

The degree of orness emphasizes the higher (better) values or the lower (worse) values
in a set of attributes associated with the different agents/services. Given a vector of λ
weights, as closer its orness to 1, closer to the min-operator while as closer to 0, closer to
the max-operator. Assuming that all the criteria are to be minimized, the min-operator
allows one to generate solutions protected under worst-case scenario (pessimistic), while the
max-operator produces solution in which the best situation for all the criteria is assumed
(optimistic). In the middle, one can find an equilibrium between those extreme choices.
In particular, for λ = (1

p , . . . ,
1
p)– the mean operator, its orness degree takes value 0.5. In

Table 1.3 we show a list with some of the most popular OWA operators and their orness
degree.

OWA λ-vector Operator orness

Average λj = 1
p

1
p

∑
j∈P

Wj
1
2

Minimum λ1 = 1, λj = 0 (j ≥ 2) minj∈P Wj 1

k-Average λj = 1
k (j ≤ k), λj = 0 (j > k) 1

k

k∑
j=1

W(k) 1− k−1
2(p−1)

α-Min-Average λ1 = 1
1+(p−1)α , λj = α

1+(p−1)α (j ≥ 2) 1−α
1+(p−1)α minj∈P Wj + α

1+(p−1)α

∑
j∈P

Wj
−pα+p+2α
2pα−2α+2

Gini λj = 2(p−j)+1
p2 for all j 1

p2

∑
j∈P

Wj +
2

p2

∑
j∈P

(p− j)W(j)
4p+1

6p

Harmonic λj = 1
p (H(p)−H(j − 1)) (H(k) =

k∑
`=1

1

`
) 1

p

∑
j∈P

(H(p)−H(j − 1))W(j)
3
4

Table 1.3: Some examples of OWA operators

It is clear that an OWA operator (identified with a λ-weight) is not uniquely deter-
mined by its orness degree (unless its orness degree is in {0, 1} or p = 2). Thus, sev-
eral optimization-based methods have been proposed in order to construct, with different
paradigms, λ-weights with a given orness degree β ∈ (0, 1) (see, e.g., Liu and Chen, 2004;
Filev and Yager, 1995; Fullér and Majlender, 2001). The main idea when searching for
λ-weights with a given orness degree is to solve problems in the form:

min L(λ)

s.t. orness(λ) = β,

λ ∈ Rp+,

where L is a loss function measuring some properties of the weights. For instance, if

L(λ) = −
p∑
j=1

λj log λj one obtain the maximal entropy monotone OWA (O’Hagan, 1988),
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or choosing L(λ) =

p∑
j=1

(λj − λ)2 one obtains the minimum variance weights (Fullér and

Majlender, 2003), where λ stands for the mean of the vector λ.
This operator has been applied in the literature for other purposes such as the ordered

median function introduced by Puerto and Fernández (1994) to provide a common frame-
work for most of the classical location problems, or SAND studied by Francis et al. (2000)
functions to study aggregation errors in multifacility location models.

1.3.1 Ordered Median Location Problem

The Ordered Median location problem (OMP) has been recognized as a powerful tool from
a modeling point of view within the field of location analysis (Puerto and Rodríguez-Chía,
2019). This problem provides a common framework for most of the classical location
problems such as the median, center, k-center, among others. The goal of the OMP is to
optimize the ordered weighted average of the considered measure between the set of clients
and the set of facilities to locate, once we have applied rank dependent compensation
factors on them. For an extensive definition of these kind of problems see the books of
Nickel and Puerto (2006) and Puerto and Rodríguez-Chía (2019).

The objective function in the OMP is called as ordered median function and it is a
weighted average of ordered elements. The ordered median function is a mapping Φλ :

Rp −→ R for some λ = (λ1, . . . , λp) ∈ Rp. For x = (x1, . . . , xp) ∈ Rp, the ordered median
function is defined as:

Φλ(x1, . . . , xp) =

p∑
j=1

λjx(j), (OMf)

where x(j) is the jth-largest input vector component of x, i.e., x(j) ∈ {x1, . . . , xp} such
that x(1) ≤ . . . ≤ x(p). As it happened in the OWA operators defined by Yager, we have
that ordered median functions are nonlinear functions induced by the sorting.

As we already mentioned, for different values of λ-vector lead different class of problems.
If λ-vectors satisfy the requirement of the OWA operators defined by Yager, the Table 1.3
gives the same examples for ordered median functions. However, we can consider other
examples like the range objective function where λ = (−1, . . . , 1).

This type of objective function has been successfully applied to different problems
within the literature of location analysis. Examples of applications are in locating hyper-
planes to fitting set of points (Blanco et al., 2021c), in segmentation of 2D and 3D Scanning-
Transmission Electron Microscope (Calvino et al., 2022), covering with polyellpisoids (Blanco
and Puerto, 2021a), in hub location problems (Puerto et al., 2011, 2016), in p-median prob-
lems both discrete (Deleplanque et al., 2020; Marín et al., 2020) and continuous (Blanco
et al., 2014, 2016), in locating facilities with neighborhoods (Blanco, 2019), among others.
See Nickel and Puerto (2006) and Puerto and Rodríguez-Chía (2019) for other applications



1.3. Ordered Weighted Averaging operators 31

of ordered median functions.

1.3.2 Representation of the sorting

As mentioned above, both OWA operators and ordered median functions are nonlinear
objective functions induced by the sorting of the vector to which it is applied. The literature
is rich in attempts to represent this sorting in mathematical programming models. In this
section we present the best known and most used in a general way to represent the sorting
of the vector in a model.

Let (1.8) be a general model which includes any of the operators for a defined vector
x in some domain D(x).

max
x

Φλ(x) =

p∑
j=1

λjx(j) (1.8)

s.t. x ∈ D(x).

The value of x can represent a vector of real numbers, a variable which define the problem
or a result given by some relation between variables like, for example, the value of variable
Dij in the problem (MFLP).

For any value of λ-vector, the book by Domínguez-Marín (2003) gives different models
and solution methods for the discrete ordered median problem. Ordering the values of a
vector is equivalent to find a permutation providing the correct order. Since any permu-
tation can be represented by an assignment problem, the sorting can be formulated as an
Integer Linear Program (ILP), adding some additional constraints to obtain the correct
permutation. To this aim, given a permutation σ ∈ P({1, . . . , p}), the following binary
variables are defined,

sjk =

1, if σ(j) = k, i.e., if xj is the kth smallest value,

0, otherwise,
for all j, k ∈ {1, . . . , p}.
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Then, the (1.8) can be reformulated on the following ILP formulation,

max

p∑
j=1

λjsjkxj (2I)

s.t.

p∑
j=1

sjk = 1, ∀k ∈ {1, . . . , p},

p∑
k=1

sjk = 1, ∀j ∈ {1, . . . , p},

p∑
k=1

sjkxj ≤
p∑

k=1

sj+1kxj , ∀j ∈ {1, . . . , p− 1},

sjk ∈ {0, 1}, ∀j, k ∈ {1, . . . , p},

x ∈ D(x),

where the first family of constraints ensures that each j is placed at only one position,
and the second set of constraints assures each position is assigned to a single coordinate
of the vector x. Finally, the third family guarantee the non-decreasing order of the sorted
real numbers. The last two sets of constrains are the domain of the variables. Note that
the product of variable s with the vector x could be the product between two variables
if the vector represents a variable for the problem. This can be linearized by reformula-
tions presented in the literature (see, e.g, Domínguez-Marín, 2003, for further details on
reformulations).

In case the λ-vector is monotone other formulations have been proposed. Ogryczak
and Tamir (2003) provide a suitable linear programming representation of the problem of
minimizing the sum of the k largest (equivalently, smallest) linear functions on a polyhedral
set in Rd. This representation is extended to the minimization of monotone OWA functions
by means of a telescopic sum of k-sum functions.

If we use λ = (λ1, . . . , λp) such that λ1 ≥ λ2 ≥ . . . ≥ λp, the (OT) reformulation given
by Ogryczak and Tamir (2003) is,

max

p−1∑
k=1

(λk − λk+1)

ktk − p∑
j=1

z+
jk

 (OT)

s.t. z+
jk ≥ tk − xj , ∀j, k ∈ {1, . . . , p},

z+
jk ≥ 0, ∀j, k ∈ {1, . . . , p},

tk ∈ R, ∀k ∈ {1, . . . , p},

xj ∈ D(x), ∀j ∈ {1, . . . , p}.

Also for the same monotone λ-vector, Blanco et al. (2014) provide a linear programming
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formulation of the problem. This formulation is based on an assignment problem whose
dual problem allows to compute the value of the ordered median function.

max

p∑
j=1

uj −
p∑
j=1

vk (BEP)

s.t. uj − vk ≤ λkxj , ∀j, k ∈ {1, . . . , p},

uj , vk ≥ 0, ∀j, k ∈ {1, . . . , p},

xj ∈ D(x), ∀j ∈ {1, . . . , p}.

Both (2I) and (BEP) are based on reformulating the sorting problem as an assignment
problem, but the difference is the auxiliary variables to represent the sorting.

The reader can observe that while the general λ-case results in a non–concave problem,
the use of monotone weights, λ1 ≥ · · · ≥ λp, gives rise to ordered median function is
concave (see proposition 1.1 in Nickel and Puerto (2006). In that proposition, the lambdas
are defined as non-increasing monotones, and thus, the ordered median function is convex).

1.4 Fairness

The term fairness is defined as “the quality of treating people equally or in a way that is
right or reasonable” (Cambridge Dictionary). It is an abstract but widely studied concept
in Decision Sciences in which some type of indivisible resources are to be shared among
different agents. The importance of fairness issues in resource allocation problems has been
recognized and well studied in a variety of settings with tons of applications in different
fields (see e.g., Jiang et al., 2021; Kelly et al., 1998; Li and Li, 2006; Luss, 1999). Fair so-
lutions should imply impartiality, justice and equity allocation patterns, which are usually
quantified by means of inequality measures that are minimized. Several measures have
been proposed in the literature to this end, although the most popular one is the max-min
(or min-max) approach which assures that the most damaged agent in the share is as less
damaged as possible (see e.g., Bertsekas et al., 1992; Hayden, 1981; Jaffe, 1981; Megiddo,
1974). Other proposals of fairness measures are the minimum envy (Caragiannis et al.,
2009; Espejo et al., 2009; Lipton et al., 2004; Netzer et al., 2016) or certain families of
ordered weighted averaging criteria (Hurkała and Hurkała, 2013; Ogryczak et al., 2014;
Ogryczak and Trzaskalik, 2006), among others.

This section briefly introduces the concept of fairness, its applications in various fields
and some of the proposed measures to quantify the fairness of the solution of a mathemat-
ical optimization problem.

In many resource reallocation problems there has been special attention to the notion
of fairness. For this reason, that importance has been widely recognized in the literature
and has been well studied by the academic research in a wide variety of ways. These appli-
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cations of fairness range from social or humanitarian contexts to engineering applications
or location problems.

The social context is an important field where the fairness is used. Gross (2008) high-
lighted the importance of studying these theoretical concepts in the literature of equity
and justice to apply them to real contexts such as the fair allocation of water for irri-
gation farms. Huang and Rafiei (2019) consider the notion of fairness in the context of
humanitarian resources and summarize the related literature.

Furthermore, fairness has been widely analyzed in communication networks where it
is usual to share limited resources among a large number of users (see e.g., Bonald and
Massoulié, 2001; Luss, 1999; Kleinberg et al., 1999; Ogryczak et al., 2014).

The allocation of public resources is one of the most known application for equity and
fairness. One can find applications in emergency medical services resources such as the
allocation of beds among patients or ambulances in emergency calls. In (Leclerc et al., 2012,
Chapter 4), the authors collect certain measurements from the literature and study them
in this particular application, the equity allocation of ambulances. Another application of
equity allocation is in the healthcare scheduling, where beds and other resources should be
fairly allocated to reduce the mortality (see e.g, Zhou et al., 2020).

In the context of location, concretely, in the public sector, equity and fairness is crucial.
However, one can find few papers incorporating fairness in facility location (see e.g., Chanta
et al., 2014; Espejo et al., 2009). A review of measures for equity facility location problems
was early done by Marsh and Schilling (1994) and recent done by Barbati and Piccolo
(2016).

However, due to the fuzzy nature of notion of fairness and different possible inter-
pretations of equity, there is no principle that is universally accepted as “the most fair”
(Bertsimas et al., 2012). One approach to quantify the degree of fairness associated with a
solution of any problem is through a fairness measure. This fairness measure is a function
that maps the solution into a real number. Therefore, different measures have been pro-
posed in the literature to this end together with an axiomatic theory of desired properties
of these operators.

The most popular one is the max-min (or min-max) approach which assures that the
most damaged agent in the share is as less damaged as possible (see e.g., Jiang et al., 2021;
Kelly et al., 1998; Li and Li, 2006; Luss, 1999; Megiddo, 1974). The max-min ratio is given
by the maximum ratio of any two user’s resource allocation.

Other proposals of fairness measures are the minimum envy which is a measure that
considers the differences in service quality between all possible pairs of agents (see e.g.,
Caragiannis et al., 2009; Chanta et al., 2014; Espejo et al., 2009; Lipton et al., 2004; Netzer
et al., 2016).

Jain et al. (1984) proposed a different operator to measure the equality of an allocation,
that is, if all users get the same amount of resources. The Jain’s index takes value 1 for
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the most fair allocation pattern while it takes value 0 for the less fairer one. If a system
allocates resources to p agents and we denote as x ∈ Rp the vector of resource allocation
between the p agents such as xj is the allocation of resources for the agent j, the Jain’s
index is defined as:

Ψ(x) =

 p∑
j=1

xj

2

p∑
j=1

x2
j

, xj ≥ 0 ∀j ∈ {1, . . . , p}. (J-Index)

This index is also generalized by Lan et al. (2010). In that work, they developed a method
to construct fairness schemes based on some axioms. The authors proposed generalized
Jain’s index using power functions.

An alternative approach that is the α-fairness approach that has become popular in
the last two decades (Bertsimas et al., 2011, 2012; Kelly et al., 1998; Lan et al., 2010; Mo
and Walrand, 2000, see e.g.,). The α-fairness measure was early introduced by Atkinson
(1970) and according to him, this function maximizes the constant elasticity social welfare.
Again, for a vector x ∈ Rp of resource allocation between p agents, the α-fairness operator
for α ≥ 0 is defined as

Ψα(x) =


1

1−α

p∑
j=1

x1−α
j if α ≥ 0, α 6= 1,

p∑
j=1

log(xj) if α = 1.

(α-fairness)

The parameter α is known as the inequality aversion parameter since it controls the
rate of the difference between the allocation resources xj . Consider an agent k with lower
amount of resources xk than the agent k′ with amount of resources xk′ . If we increase
the resources in xk then we would have a higher welfare than if we increase in xk′ . Thus,
an increase in the resources of xk would be more desirable to reduce the unfairness in the
allocation of the resources. This can be performed by tuning, adequately, the parameter
α since when it increases, the difference between the values of resources for the agents
decreases (for a constructive proof of this, see Lan et al., 2010). This property, also known
Principle of transfer or Pigou-Dalton (Erkut, 1993), yielding then to fair solutions.

For different values of α ≥ 0, we get different measures. For instance, for α = 0 we
get the utilitarian principle, which is neutral toward inequalities; for α = 1 the scheme
corresponds to proportional fairness (introduced by Nash, 1950); and when α → ∞ the
allocation converges to the max-min fairness.

The above mentioned fairness measures allow the decision maker to focus the objective
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of an allocation problem to different fairness schemes. In the literature, this approach
can be done modeling as a multiobjective mathematical programming problem, which are
usually hard to solve (Ehrgott and Gandibleux, 2000). Also, the goal of finding solutions
satisfying all the decision makers is usually unattainable in practice, and some services
must sacrifice their resources for the benefit of others. Thus, it is widely accepted that
the use of aggregation functions may yield compromise solutions for the different criteria,
and then, an adequate procedure to provide solutions to hard multiobjective problems.
OWA operators defined in Section 1.3 have been also used in the literature to guide the
optimization problem to obtain fairer solutions. For instance, Ogryczak and Trzaskalik
(2006) show that fairly efficient solution of LP-based resource allocation problem can be
identified with an OWA optimal solution with appropriate strictly monotonic weights;
Hurkała and Hurkała (2013) present a multiple types of facilities and the authors want to
provide fairness solutions maximizing the production; and Ogryczak et al. (2014) review fair
optimization models and methods for the location problems and for the resource allocation
problems in communication networks.
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Chapter 2. A Branch-and-Price approach for the

Continuous Multifacility Monotone Ordered Median Problem

In this chapter, we address the Continuous Multifacility Monotone Ordered Median
Problem. The goal of this problem is to locate p facilities in Rd minimizing a monotone
ordered weighted median function of the distances between given demand points and its
closest facility. We propose a new branch-and-price procedure for this problem, and three
families of matheuristics based on: solving heuristically the pricer problem, aggregating
the demand points, and discretizing the decision space. We give detailed discussions of
the validity of the exact formulations and also specify the implementation details of all the
solution procedures. Besides, we assess their performance in an extensive computational
experience that shows the superiority of the branch-and-price approach over the compact
formulation in medium-sized instances. To handle larger instances it is advisable to resort
to the matheuristics that also report rather good results.

2.1 Introduction

Motivated by the recent advances on discrete multifacility location problems with ordered
median objectives (Deleplanque et al., 2020; Espejo et al., 2021; Fernández et al., 2014;
Labbé et al., 2017; Marín et al., 2020), and the available results on conic optimization
(Blanco et al., 2014; Puerto, 2020), we analyze here a family of difficult continuous mul-
tifacility location problems with ordered median objectives and distances induced by a
general family of norms. These problems gather the essential elements of discrete and
continuous location analysis, making their solution a challenging question.

In this chapter, we develop an ad hoc branch-and-price algorithm for solving this general
family of continuous location problems. The continuous multifacility Weber problem has
been already studied using branch-and-price methods (Krau, 1997; Du Merle et al., 1999;
Righini and Zaniboni, 2007; Venkateshan and Mathur, 2015). In addition, in discrete
location, these techniques have also been applied to the p-median problem (see, e.g., Avella
et al., 2007). However a branch-and-price approach for location problems with ordered
median objectives has been only developed for the discrete version by Deleplanque et al.
(2020) beyond a multisource hyperplanes application (Blanco et al., 2021c).

Our goal is to analyze the Continuous Multifacility Monotone Ordered Median Prob-
lem (MFMOMP, for short), in which we are given a finite set of demand points, A, and
the goal is to find the optimal location of p new facilities such that: (1) each demand point
is allocated to a single facility; and (2) the measure of the goodness of the solution is an
ordered weighted aggregation of the distances of the demand points to their closest facility
(see, e.g., Nickel and Puerto, 2006). We consider a general framework for the problem,
in which the demand points (and the new facilities) lie in S = Rd, the distances between
points and facilities are polyhedral- or `τ -norms for τ ≥ 1, and the ordered median func-
tions are assumed to be defined by non-decreasing monotone weights. These problems are
analyzed in Blanco et al. (2016), in which the authors provide a Mixed Integer Second
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Order Cone Optimization (MISOCO) reformulation of the problem able to solve, for the
first time, problems of small to medium size (up to 50 demand points), using off-the-shell
solvers.

The family of problems under analysis has a broad range of applications in different
fields. On the one hand, continuous location has been proven to be an adequate tool in
case the services to be located are sensors, surveillance cameras, etc., that are allowed to
be flexibly positioned in the space. Also, multifacility location problems can be seen as
a unified modelling tool to extend classical clustering algorithms, as the k-means or k-
median approaches, or more general approaches (Blanco et al., 2021c). The use of ordered
median objective functions determines, at the same time, the positions of the optimal
location of the services balancing equity and efficiency of the list of distances from the
demand points to their closest facilities (see e.g. Aouad and Segev, 2019; Calvino et al.,
2022; Espejo et al., 2009; Fourour and Lebbah, 2020; Muñoz-Ocaña et al., 2020; Ogryczak
et al., 2011; Olender and Ogryczak, 2019; Tamir, 2001). The connection between discrete
location and its continuous counterpart has been a topic of study since the introduction
of the continuous problem (Cooper, 1963; Kalczynski et al., 2021). Thus, the extension of
some facility location problems that have been analyzed in a discrete space (voting, exam
qualifications, etc.) to the continuous framework, is a topic of interest in the Location
Science field (Drezner and Nickel, 2009; Espejo et al., 2009; Ponce et al., 2018). We also
refer the reader to Bruno et al. (2014); Drezner and Hamacher (2004); Love et al. (1988);
Mirchandani and Francis (1990); and the references therein to find more applications in
the fields of industry, urban or regional planning, clustering, mobile location, commerce,
public service facilities, or transport facilities.

Our contribution is to introduce a new set partitioning-like (with side constraints)
reformulation for this family of problems that allows us to develop a branch-and-price
algorithm for solving it. This approach gives rise to a decomposition of the original problem
into a master problem (set partitioning with side constraints), and a pricing problem that
consists of a special form of the maximal weighted independent set problem combined with
a single facility location problem. We compare this new strategy with the one obtained
by solving Mixed Integer Non-Linear Programming (MINLP) formulations using standard
solvers. Our results show that it is worth to use the new reformulation since it allows us to
solve larger instances and reduce the gap when the time limit is reached. Moreover, we also
exploit the structure of the branch-and-price approach to develop some new matheuristics
for the problem that provide good quality feasible solutions for fairly large instances of
several hundreds of demand points.

The chapter is organized in six sections and two appendixes. Section 2.2 formally
describes the problem considered in this chapter, namely the MFMOMP, and develops
MISOCO formulations for it. Section 2.3 is devoted to present the new set partitioning-
like formulation and all the details of the branch-and-price algorithm proposed to solve
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it. There, we present how to obtain initial variables for the restricted master problem, we
discuss and formulate the pricing problem and set properties for handling it, and describe
the branching strategies and variable selection rules implemented in our algorithm. The
next section, namely Section 2.4, deals with some heuristic algorithms proposed to provide
solutions for large-sized instances. In this section, we also describe how to solve heuristically
the pricing problem which gives rise to a matheuristic algorithm consisting of applying the
branch-and-price algorithm but solving the pricing problem only heuristically. Obviously,
since in this case the optimality of the pricing problem is not guaranteed, we cannot ensure
optimality for the solution of the master problem, although we always obtain feasible
solutions. In addition, we also present two heuristics more: the aggregation heuristic
based on clustering strategies that allows us to provide bounds for the problem, and the
discretization heuristic based on discretizing the space to become it in a discrete p-median
problem. Section 2.5 reports the results of an exhaustive computational study with real-
world instances of different nature. There, we compare the standard formulations with
the branch-and-price approach and also with the heuristic algorithms. Finally, 2.6 reports
the details of the computational experiment for different norms showing the usefulness
and generality of our approach, and 2.7 shows the computational results disaggregated by
different parameters of the instances. The chapter ends with some conclusions in Section
2.8.

2.2 The Continuous Multifacility Monotone Ordered Median
Problem

In this section, we describe the problem under study and fix the notation for the rest of
the chapter. We are given a metric space S = Rd with a metric ‖ · ‖ associated, a set
of n demand points in Rd, A = {a1, . . . , an} ⊂ Rd, and p ∈ N (p > 0). Our goal is to
find p new facilities located in Rd that minimize a function of the closest distances from
the demand points to the new facilities. We denote the index sets of demand points and
facilities by N = {1, . . . , n} and P = {1, . . . , p}, respectively. Several elements are involved
when finding the best p new facilities to provide service to the n demand points. In what
follows, we describe them:

• Closeness Measure: Given a demand point ai, i ∈ N , and a facility x ∈ Rd, we use
norm-based distances to measure the point-to-facility closeness. Thus, we consider
the following measure for the distance between ai and x:

δi(x) = ‖ai − x‖,

where ‖ · ‖ is a polyhedral- or an `τ -norm (with τ ≥ 1).
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• Allocation Rule: Given a set of p new facilities, X = {x1, . . . , xp} ⊂ Rd, and a demand
point ai, i ∈ N , once all the distances between ai and xj (j ∈ P ) are calculated, one
has to allocate the point to a single facility. As usual in the literature, we assume
that each point is allocated to its closest facility, i.e., the closeness measure between
ai and X is:

δi(X ) = min
x∈X

δi(x),

and the facility x ∈ X , reaching such a minimum is the one where ai is allocated to
(in case of ties among facilities, a random assignment is performed).

• Aggregation of Distances: Given the set of demand points A, the distances {δi(X ) :

i ∈ N} = {δ1, . . . , δn} must be aggregated (abusing of notation, and unless necessary,
we will avoid the dependence of X in the δ-values). To this end, we use the family of
ordered median criteria. Given λ ∈ Rn+ the λ-ordered median function is defined as:

OMλ(A;X ) =
∑
i∈N

λi δ(i), (OM)

where (δ(i))(i∈N) is a permutation of (δi)(i∈N) such that δ(1) ≤ · · · ≤ δ(n). Some
particular choices of λ-weights are shown in Table 2.1. Note that most of the classical
continuous location problems can be cast under this ordered median framework, e.g.,
the multisource Weber problem, λ = (1, . . . , 1), or the multisource p-center problem,
λ = (0, . . . , 0, 1).

Summarizing all the above considerations, given a set of n demand points in Rd, A =

{a1, . . . , an} ⊂ Rd and λ ∈ Rn+ (with 0 ≤ λ1 ≤ · · · ≤ λn), the Continuous Multifacility
Monotone Ordered Median Problem (MFMOMPλ) can be stated as:

min
X={x1,...,xp}⊂Rd

OMλ(A;X ). (MFMOMPλ)

Observe that the problem above is NP-hard since the multisource p-median problem is
just a particular instance of (MFMOMPλ) where λ = (1, . . . , 1) (see Sherali and Nordai,
1988). In the following result we provide a suitable Mixed Integer Second Order Cone
Optimization (MISOCO) formulation for the problem.

Theorem 5. Let ‖ · ‖ be an `τ -norm in Rd, where τ = r
s with r, s ∈ N \ {0}, r > s

and gcd(r, s) = 1 or a polyhedral norm. Then, (MFMOMPλ) can be formulated as a
MISOCO problem.

Proof. First, assume that {δi(X ) : i ∈ N} = {δ1, . . . , δn} are given. Then, sorting the
elements and multiplying them by the λ-weights can be equivalently written as the following
assignment problem (see Blanco et al., 2014, 2016), whose dual problem (right side) allows
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to compute the value of the ordered median function:∑
k∈N

λkδ(k) = max
∑
i,k∈N

λkδiσik = min
∑
i∈N

ui +
∑
k∈N

vk

s.t.
∑
k∈N

σik = 1, ∀i ∈ N, s.t. ui + vk ≥ λkδi, ∀i, k ∈ N,∑
i∈N

σik = 1, ∀k ∈ N, ui, vk ∈ R, ∀i, k ∈ N.

σik ∈ [0, 1], ∀i, k ∈ N.

The formulation is similar to the represented in Section 1.3.2 given by (BEP), although
in this case we have a minimization problem with non-increasing monotone vector of λ.

Now, we can embed the above representation of the ordered median aggregation of
δ1, . . . , δn, into (MFMOMPλ). On the other hand, we have to represent the allocation
rule (closest distances). This family of constraints is given by

δi = min
j∈P
‖ai − xj‖, ∀i ∈ N.

In order to represent it, we use the following set of decision variables: wij = 1 if ai is
allocated to facility j, wij = 0 otherwise, ∀i ∈ N, j ∈ P ; in addition, z- and r-variables are
auxiliary variables.

Then, a Compact formulation for (MFMOMPλ) is:

min
∑
i∈N

ui +
∑
k∈N

vk

s.t. ui + vk ≥ λkri, ∀i, k ∈ N, (C1)

zij ≥ ‖ai − xj‖, ∀i ∈ N, j ∈ P, (C2)

ri ≥ zij −M(1− wij), ∀i ∈ N, j ∈ P, (C3)∑
j∈P

wij = 1, ∀i ∈ N, (C4)

xj ∈ Rd, ∀j ∈ P,

wij ∈ {0, 1}, ∀i ∈ N, j ∈ P,

zij ≥ 0, ∀i ∈ N, j ∈ P,

ri ≥ 0, ∀i ∈ N,

where (C3) allows to compute the distance between the points and its closest facility and
(C4) assures single allocation of points to facilities. Here M is a big enough constant
M > maxi,k∈N ‖ai − ak‖.

Finally, in case ‖ · ‖ is the ` r
s
-norm, constraint (C2) can be rewritten as the set of

constraints given in (`τ -norm), or in case the norm is a polyhedral norm can be rewritten



2.2. The Continuous Multifacility Monotone Ordered Median Problem 45

as the family of constraints given by (Pol-norm). Therefore, the final compact formulation
is a MISOCO reformulation for (MFMOMPλ).

Note that (MFMOMPλ) is an extension of the single-facility ordered median location
problem (see, e.g., Blanco et al., 2014), where apart from finding the location of p new
facilities, the allocation patterns between demand points and facilities are also determined.
In the rest of the chapter, we will exploit the combinatorial nature of the problem by means
of a set partitioning-like formulation which is based on the following observation:

Proposition 1. Any optimal solution of (MFMOMPλ) is characterized by p pairs
(S1, x1), . . . , (Sp, xp) with Sj ⊂ N and xj ∈ Rd, ∀j ∈ P , such that:

1.
⋃
j∈P Sj = N .

2. Sj ∩ Sj′ = ∅, j, j′ ∈ P : j 6= j′.

3. For each j ∈ P , xj ∈ arg min
x∈{x1,...,xp}

‖ai − x‖, ∀i ∈ Sj.

4. (x1, . . . , xp) ∈ arg min
y1,...,yp

∑
j∈P

∑
i∈Sj

λ(i)‖ai − yj‖, where (i) ∈ N such that ‖ai − yj‖ is

the (i)-th smallest element in {‖ai − yj‖ : i ∈ N, j ∈ P}.

From the structure of the optimal solutions of (MFMOMPλ) described in Proposition
1, we can conclude that there exists a finite candidate set of admissible solutions of this
problem given by the different partitions of N in p subsets and one of their associated
p best facilities, as defined in Proposition 1 (4). In addition, if the demand points A
are non-collinear and τ > 1 the solution of the problem in Proposition 1 (4) is unique;
otherwise, we can always restrict the choices of x1, . . . , xp to the extreme points of the
set of optimal solutions which is finite. From the above discussion, we conclude that
there exists a finite dominating set of candidates, that we will denote as FDS, to optimal
solutions of (MFMOMPλ).

From now on, we will call a pair (S, x) with S ⊂ N and x ∈ Rd a suitable pair if

1. There exist (S2, x2), . . . , (Sp, xp) such that
p⋃
j=2

Sj = N \ S, Sj ∩ Sj′ = ∅ for j, j′ ∈

{2, . . . , p} : j 6= j′, xj ∈ Rd, j = 2, . . . , p.

2. (S, x), (S2, x2), . . . , (Sp, xp) ∈ FDS.

In words, a suitable pair is any pair (S, x) that can be part of a candidate solution of
(MFMOMPλ) within the set FDS. By the finiteness of the sets of admissible solutions,
it also follows that the number of suitable pairs is finite as well.
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2.3 A set partitioning-like formulation

The compact formulation shown in the previous section is affected by the size of p and d,
and it exhibits the same limitations as many other compact formulations for continuous
location models even without ordering constraints. For this reason, in the following we
propose an alternative set partitioning-like formulation (Du Merle et al., 1999; du Merle
and Vial, 2002) for (MFMOMPλ).

Let S ⊂ N be a subset of demand points that are assigned to the same facility. Let
R = (S, x) be a suitable pair composed by a subset S ⊂ N and a facility x ∈ Rd. We
denote by δRi the contribution of demand point i ∈ S in the subset with respect to the
facility x. Finally, for each suitable pair R = (S, x) we define the variable

yR =

{
1 if subset S is selected and its associated facility is x,
0 otherwise.

We denote by R = {(S, x) : suitable pairs, S ⊂ N and x ∈ Rd}.
The set partitioning-like formulation is

min
∑
i∈N

ui +
∑
k∈N

vk (MP1)

s.t.
∑

R=(S,x)∈R:i∈S

yR = 1, ∀ i ∈ N, (MP2)

∑
R∈R

yR = p, (MP3)

ui + vk ≥ λk
∑

R=(S,x)∈R:i∈S

δRi yR, ∀ i, k ∈ N, (MP4)

yR ∈ {0, 1}, ∀R ∈ R, (MP5)

ui, vk ∈ R, ∀i, k ∈ N. (MP6)

The objective function (MP1) and constraints (MP4) give the correct ordered median
function of the distances from the demand points to the closest facility (see Section 2.2).
Constraints (MP2) ensure that all demand points appear in exactly one set S in each
feasible solution. Exactly p facilities are open due to constraint (MP3). Finally, (MP5)
define the variables as binary.

The reader might notice that this formulation has an exponential number of variables,
and therefore in the following we describe the necessary elements to address its solution
by means of a branch-and-price scheme, namely:

1. Initial Pool of Variables: Generation of initial feasible solutions induced by a set of
initial subsets of demand points (and their costs).

2. Pricing Problem: In set partitioning problems, instead of solving initially the problem
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with the whole set of variables, the variables have to be incorporated on-the-fly by
solving adequate pricing subproblems derived from previously computed solutions
until the optimality of the solution is guaranteed. The pricing problem is derived
from the relaxed version of the master problem and using the strong duality properties
of the induced Linear Programming Problem.

3. Branching: The rule that creates new nodes of the branch-and-bound tree when a
fractional solution is found at a node of the search tree. We have adapted the Ryan
and Foster branching rule to our problem.

4. Stabilization: The convergence of column generation approaches can be sometimes
erratic since the values of dual variables in the first iterations might oscillate, leading
to variables of the master problem that will never appear in the optimal solution of
the problem. Stabilization tries to avoid that behavior.

In what follows, we describe how each of the above items is implemented in our proposal.

2.3.1 Initial variables

In the solution process of the set partitioning-like formulation using a branch-and-price
approach, it is convenient to generate an initial pool of variables before starting solving
the problem. The adequate selection of these initial variables might help to reduce the
CPU time required to solve the problem. We apply an iterative strategy to generate this
initial pool of y-variables. In the first iteration, we randomly generate p positions for the
facilities. The demand points are then allocated to their closest facilities, and at most
p subsets of demand points are generated. We incorporate the variables associated with
these subsets to the master problem (MP). In the next iterations, instead of generating p
new facilities, we keep those with more associated demand points, and randomly generate
the remainder. After a fixed number of iterations, an initial set of columns is generated to
define the restricted master problem, and also an upper bound of our problem. Since the
optimal position of the facilities belongs to a bounded set contained in the rectangular hull
of the demand points, the random facilities are generated in the smallest hyperrectangle
containing A.
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2.3.2 The pricing problem

To apply the column generation procedure we define the restricted relaxed master of (MP),
in the following (RRMP).

ρ∗MP := min
∑
i∈N

ui +
∑
k∈N

vk Dual Multipliers

(RRMP)

s.t.
∑

R=(S,x)∈R:i∈S

yR ≥ 1, ∀ i ∈ N, αi ≥ 0

−
∑
R∈R0

yR ≥ −p, γ ≥ 0

ui + vk − λk
∑

R=(S,x)∈R:i∈S

δRi yR ≥ 0, ∀ i, k ∈ N, εik ≥ 0

yR ≥ 0, ∀R ∈ R0,

ui, vk ∈ R, ∀i, k ∈ N,

where R0 ∈ R represents the initial pool of columns used to initialize the set partitioning-
like formulation (MP). Constraints (MP2) and (MP3) are slightly modified from equations
to inequalities in order to get nonnegative dual multipliers. This transformations keeps
the equivalence with the original formulation since coefficients affecting the y-variables in
constraint (MP4) are nonnegative. The notation for the dual variables associated with
each family of constraints is written in the right column (α, γ, ε).

The value of the distances is unknown beforehand because the location of facilities can
be anywhere in the continuous space. Hence, its determination requires solving continuous
optimization problems.

By strong duality, the objective value of the continuous relaxation (RRMP), can be
obtained as:

ρ∗MP = max
∑
i∈N

αi − pγ (Dual RRMP)

s.t.
∑
i∈N

εik = 1, ∀ k ∈ N,∑
k∈N

εik = 1, ∀ i ∈ N,∑
i∈S

αi − γ −
∑
i∈S

∑
k∈N

δRi λkεik ≤ 0, ∀R = (S, x) ∈ R0,

αi, γ, εik ≥ 0, ∀ i, k ∈ N.
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Hence, for any variable yR in the master problem, its reduced cost is

cR − zR = −
∑
i∈S

α∗i + γ∗ +
∑
i∈S

∑
k∈N

δRi λkε
∗
ik,

where (α∗, γ∗, ε∗) is the dual optimal solution of the current (RRMP).
To certify optimality of the relaxed problem one has to check implicitly that all the

reduced costs for the variables not currently included in the (RRMP) are nonnegative.
Otherwise, new variables must be added to the pool of columns. This can be done solving
the so-called pricing problem.

The pricing problem consists of finding the minimum reduced cost among the variables
that have not yet been included in the pool. That is, we have to find the set S ⊂ N and
the position of the facility x (its coordinates) which minimizes the reduced cost.

For a given set of dual multipliers, (α∗, γ∗, ε∗) ≥ 0, the problem to be solved is

min
S⊂N
x∈Rd

−
∑
i∈S

α∗i + γ∗ +
∑
i∈S

∑
k∈N

δSi λkε
∗
ik

s.t. δSi ≥ ‖x− ai‖, ∀i ∈ S.

The above formal problem can be reformulated by means of a mixed integer program.
We define variables wi = 1, i ∈ N if the demand point belongs to S, and zero otherwise.
We also define variables ri, i ∈ N to represent the distance from demand point i to facility
x and zero in case wi = 0. Finally, zi, i ∈ N are auxiliary variables to represent the
distances from demand point i to facility x in any case.

min −
∑
i∈N

α∗iwi + γ∗ +
∑
i∈N

ciri (2.3)

s.t. zi ≥ ‖x− ai‖, ∀i ∈ N, (2.4)

ri +M(1− wi) ≥ zi, ∀i ∈ N, (2.5)

wi ∈ {0, 1}, ∀i ∈ N, (2.6)

zi, ri ≥ 0, ∀i ∈ N, (2.7)

where M is a big enough constant (M > max{‖ai − ai′‖ : i, i′ ∈ N, i 6= i′}) and ci =∑
k∈N λkε

∗
ik, i ∈ N.

Objective function (2.3) is the minimum reduced cost associated with the optimal
solution of the pricing problem. Constraints (2.4) define the distances. As in Section 2.2,
this family of constraints is defined ad hoc for a given norm. Constraints (2.5) set correctly
the r-variables. Finally, constraints (2.6) and (2.7) are the domain of the variables.

As it has been shown in the proof of Theorem5, the above problem can be formulated
as a MISOCO problem in case of polyhedral or `τ -norms.
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The so-called Farkas pricing should be adequately defined in case the feasibility of
(RRMP) is not ensured. That strategy allows one to detect such an infeasibility by means
of solving a pricing problem similar to (RRMP). However, we avoid the use of the Farkas
pricing applying the following strategy: (a) we introduce in the firstly solved master prob-
lem the initial pool of variables as described in Section 2.3.1; and (b) since the feasibility
of the master problem might be lost along the branching process of our branch-and-price
approach, we add an artificial variable y(N,x0) whose local lower bound is never set to zero
and with δ(N,x0)

i being a big enough value. This strategy allows us to assure that (MP2)
is satisfied by this variable, and the overall master problem is always feasible.

When the pricing problem is optimally solved, one can obtain a theoretical lower bound
even if more variables must be added. The following remark explains how the result is
applied to our particular problem.

Remark 1. Desrosiers and Lübbecke (2005) provide theoretical lower bounds for binary
programming problems that are embedded into branch-and-price approaches, in case the
number of binary variables that can take value one is upper bounded . In our case, the
number of y-variables in (MP) that take value one is exactly p. Thus, one can compute a
lower bound for (MP) as:

LB = zRRMP + pmin
S,x

c(S,x), (2.8)

where zRRMP is the objective value of any of the relaxed problems (RRMP) and c(S,x) is
the reduced cost of the variable defined by (S, x).

It is important to remark that this bound can be computed at each node of the branch-
and-bound tree. The bounds are particularly useful at the root node since they may help to
accelerate the optimality certification, or for large instances where the linear relaxation is
not solved within the time limit.

Observe also that for adding a variable to the master problem, it suffices to find one
variable yR with negative reduced cost. This search can be performed by solving exactly
the pricing problem, although that might have a high computational load. Alternatively,
one could also solve heuristically the pricing problem, hoping for variables with negative
reduced costs. In what follows, this approach will be called the heuristic pricer. The key
observation is to check if a candidate facility is promising to this end.

Given the coordinates of a facility, x, we construct a set of demand points, S, compatible
with the conditions of the node of the branch-and-bound tree by allocating demand points
in S to x whenever the reduced cost c(S,x) − z(S,x) = γ∗ +

∑
i∈S ei < 0, where ei =

−α∗i +
∑

k∈N δi(x)λkε
∗
ik. In that case, the variable y(S,x) is candidate to be added to the

pool of columns. Here, we detail how the heuristic pricer algorithm is implemented at the
root node. For deeper nodes in the branch-and-bound tree we refer the reader to Section
2.3.3.
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For the root node, there is a very easy procedure to solve this problem, just selecting
the negative ones, i.e., we define S = {i ∈ N : ei < 0} and, in case c(S,x) − z(S,x) < 0, the
variable y(S,x) could be added to the problem. Additionally, the region where the facility
is generated can be significantly reduced, in particular to the hyperrectangle defined by
demand points with negative ei.

In both exact and heuristic pricer, we use multiple pricing, i.e., several columns are
added to the pool at each iteration, if possible. In the exact pricer, we take advantage
that the solver saves different solutions besides the optimal one, so it might provide us
more than one column with negative reduced cost. In the heuristic pricer, we add the best
variables in terms of reduced cost as long as their associated reduced costs are negative.

2.3.3 Branching

When the relaxed (MP) is solved, but the solution is not integer, the next step is to
define an adequate branching rule to explore the searching tree. In this problem, we apply
an adaptation of the Ryan and Foster branching rule (Ryan and Foster, 1981). Given a
solution with fractional y-variables in a node, it might occur that

0 <
∑

R=(S,x)∈R:i1,i2∈S

yR < 1, for some i1, i2 ∈ N, i1 < i2. (2.9)

Provided that this happens, in order to find an integer solution, we create the following
branches from the current node:

• Left branch: i1 and i2 must be served by different facilities.∑
R=(S,x)∈R:i1,i2∈S

yR = 0.

• Right branch: i1 and i2 must be served by the same facility.∑
R=(S,x)∈R:i1,i2∈S

yR = 1.

Remark 2. The above information is easily translated to the pricing problem adding one
constraint to each one of the branches: 1) wi1 +wi2 ≤ 1 for the left branch; and 2) wi1 = wi2

for the right branch.

It might also happen that being some yR fractional,
∑

R=(S,x)∈R:i1,i2∈S yR is integer
for all i1, i2 ∈ N, i1 < i2. The following result allows us to use this branching rule and
provides a procedure to recover a feasible solution encoded in the current solution of the
node.
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Theorem 6. If
∑

R=(S,x)∈R:i1,i2∈S yR ∈ {0, 1}, for all i1, i2 ∈ N , such that i1 < i2, then
there exists an integer feasible solution of (MP) with the same objective function value.

Proof. Let XS be the set of all facilities which are part of a variable y(S,x) belonging to the
pool of columns. We define XS for all used partitions S. First, it is proven in Barnhart
et al. (1998) that, under the hypothesis of the theorem, the following expression holds for
any set S in a partition. ∑

x∈XS

y(S,x) ∈ {0, 1}.

If
∑

x∈XS y(S,x) = 0, then y(S,x) = 0, for all x ∈ XS , because of the nonnegativity of the
variables. However, if ∑

x∈XS

y(S,x) = 1, (2.10)

y(S,x) could be fractional, for some x ∈ XS .
Observe that, currently, the distance associated with demand point i ∈ S in the problem

is
δSi =

∑
x∈XS

y(S,x)δi(x).

Thus, from the above we construct a new facility x∗ for S.

x∗l =
∑
x∈XS

y(S,x)xl, ∀l = 1, . . . , d, (2.11)

so that δi(x∗) ≤ δSi , ∀i ∈ S.
Indeed, by the triangular inequality and by (2.10),

δi(x
∗) = ‖x∗ − ai‖ = ‖

∑
x∈XS

y(S,x)(x− ai)‖ ≤
∑
x∈XS

y(S,x)‖x− ai‖ = δSi ,

for all i ∈ S. The inequality being strict unless x− ai, for all x ∈ XS , are collinear.
Finally, we have constructed the variable y(S,x∗) = 1 as part of a feasible integer solution

of the master problem (MP). Therefore, it ensures that either the solution is binary or
there exists a binary feasible solution with the same objective function value.

Among all the possible choices of pairs i1, i2 verifying (2.9), we propose to select the
one provided by the following rule:

arg max
i1,i2:

0<
∑
R=(S,x)∈R:
i1,i2∈S

yR<1

θmin


∑

R=(S,x)∈R:
i1,i2∈S

yR, 1−
∑

R=(S,x)∈R:
i1,i2∈S

yR

+
1− θ

‖ai1 − ai2‖

 .

(θ-rule)
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This rule uses the most fractional y-solution, but also pays attention to the pairs of
demand points which are close to each other in the solution, assuming they will be part of
the same variable with value one at the optimal solution. It has been successfully applied in
a related Discrete Ordered Median Problem (Deleplanque et al., 2020). The parameter θ is
chosen in [0, 1], where for θ = 0, the closest demand points among the pairs with fractional
sum will be selected, while for θ = 1, the most fractional branching will be applied.

The above branching rule affects the heuristic pricer procedure, since not all S ⊂ N

are compatible with the branching conditions leading to a node. In case that we have
to respect some branching decisions, the pricing problem gains complexity. Therefore, we
develop a greedy algorithm which generates heuristic variables respecting the branching
decision in the current node. This algorithm uses the information from the branching rule
to build the new variable to add.

The candidate set S is built by means of a greedy algorithm similar to the one presented
in Sakai et al. (2003). First, we construct a graph of incompatibilities G = (V,E), with V
and E defined as follows: for each maximal subset of demand points i1 < i2 < · · · < im,
that according to the branching rule have to be assigned to the same subset, we include
a vertex vi1 with weight ωi1 =

∑
i∈{i1,...,im} ei; next, for each vi, vi′ ∈ V , such that i and

i′ cannot be assigned to the same subset at the current node, we define {vi, vi′} ∈ E.
The subset S minimizing the reduced cost for a given x can be calculated solving the
Maximum Weighted Independent Set Problem over G. The algorithm solves this problem
heuristically applying the GGWMIN selection vertex rule proposed by Sakai et al. (2003).

2.3.4 Convergence

Due to the huge number of variables that might arise in column generation procedures,
it is very important checking the possible degeneracy of the algorithm. Accelerating the
convergence has been traditionally afforded by means of stabilization techniques. In recent
papers, it has been shown how heuristic pricers avoid degeneracy (e.g., Benati et al., 2022;
Blanco et al., 2021c). Stabilization and heuristic pricers have in common that both do
not add in the first iterations variables with the minimum associated reduced cost. This
idea has been empirically shown to accelerate convergence (see, e.g., Du Merle et al., 1999;
Pessoa et al., 2010).

For the sake of readability, all the computational analysis is included in Section 2.5.
There, the reader can see how our heuristic pricer needs less variables to certify optimality
than the exact pricer for medium- and large-sized instances, therefore, accelerating the
convergence.
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2.4 Matheuristic approaches

(MFMOMPλ) is an NP-hard combinatorial optimization problem, and both the compact
formulation and the proposed branch-and-price approach are limited by the number of
demand points (n) and facilities (p) to be considered. Actually, as we will see in Section
2.5, the two exact approaches are only capable of solving, optimally, small- and medium-
sized instances. In this section, we derive three different matheuristic procedures, capable
to handle larger instances in reasonable CPU times. The first approach is based on using
the branch-and-price scheme but solving only heuristically the pricing problem. The second
is an aggregation based-approach that will also allow us to derive theoretical error bounds
on the approximation. A third heuristic based on discretizing the space is proposed.

2.4.1 Heuristic pricer

The matheuristic procedure described here has been successfully applied in the literature.
See, e.g., Albornoz and Zamora (2021); Benati et al. (2022); Deleplanque et al. (2020), and
the references therein. Recall that our pricing problem is NP-hard. In order to avoid the
exact procedure for large-sized instances, where not even a single iteration could be solved
exactly, we propose a matheuristic. It consists of solving each pricing problem heuristically.
The inconvenience of doing that is that we do not have a theoretic lower bound during the
process. Nevertheless, for instances where the time limit is reached, we are able to visit
more nodes in the branch-and-bound tree which could allow us to obtain better incumbent
solutions than the unfinished exact procedure.

2.4.2 Aggregation schemes

The second matheuristic approach that we propose is based on applying aggregation tech-
niques to the input data (the set of demand points). This type of approaches has been
successfully applied to solve large-scale continuous location problems (see Blanco et al.,
2021c, 2018; Current and Schilling, 1990; Daskin et al., 1989; Irawan, 2016a).

Let A = {a1, . . . , an} ⊂ Rd be a set of demands points. In an aggregation procedure,
the set A is replaced by a multiset A′ = {a′1, . . . , a′n}, where each point ai in A is assigned
to a point a′i in A′. In order to be able to solve (MFMOMPλ) for A′, the cardinality of
the different elements of A′ is assumed to be smaller than the cardinality of A, and then,
several ai might be assigned to the same a′i.

Once the points in A are aggregated into A′, the procedure consists of solving
(MFMOMPλ) for the demand points in A′. We get a set of p optimal facilities for the
aggregated problem, X ′ = {x′1, . . . , x′p}, associated with its objective value OMλ(A′;X ′).
These positions can also be evaluated in the original objective function of the problem for
the demand points A, OMλ(A;X ′). The following result allows us to get upper bound of
the error incurred when aggregating demand points.
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Theorem 7. Let X ∗ be the optimal solution of (MFMOMPλ) and ∆ = max
i∈N
‖ai − a′i‖.

Then
|OMλ(A;X ∗)− OMλ(A;X ′)| ≤ 2∆

∑
i∈N

λi. (2.12)

Proof. By the triangular inequality and the monotonicity and sublinearity of the or-
dered median function we have that OMλ(A;X ) ≤ OMλ(A′;X ) + OMλ(A′;A) for all
X = {x1, . . . , xp} ⊂ Rd. Since ∆ ≥ ‖ai − a′i‖ for all i ∈ I we get that |OMλ(A;X ) −
OMλ(A′;X )| ≤ ∆

∑
i∈I λi for all X = {x1, . . . , xp} ⊂ Rd. Applying (Geoffrion, 1977,

Theorem 5), we get that |OMλ(A;X ∗)− OMλ(A′;X ′)| ≤ ∆
∑

i∈I λi, and then:

|OMλ(A;X ∗)− OMλ(A;X ′)| ≤ |OMλ(A;X ∗)− OMλ(A′;X ′)|+

|OMλ(A′;X ′)− OMλ(A;X ′)|

≤ 2∆
∑
i∈I

λi.

There are different strategies to reduce the dimensionality by aggregating points. In
our computational experiments we consider two differentiated approaches: the k-Means
Clustering (KMEANS) and the Pick The Farthest (PTF). In KMEANS, we replace the
original points by the centroids. Alternatively, in PTF, an initial random demand point
from A is chosen and the rest are selected as the farthest demand point from the last one
chosen, until a predefined number of points is reached (Daskin et al., 1989).

2.4.3 Discretization

We propose a third heuristic algorithm which consists of solving a discrete version of our
problem, also known as the Discrete Ordered Median Problem (DOMP for short) (Nickel
and Puerto, 2006). In this matheuristic, the potential facilities are chosen among the
demand points to solve the DOMP with the solution methods developed in Deleplanque
et al. (2020). This approach produces suboptimal solutions since the feasible domain of
the DOMP is a discrete set contained in the solution space of (MFMOMPλ). The reader
can see in Section 2.5.2 that, for large-sized instances, this methodology provides rather
good results.

2.5 Computational study

In order to compare the performance of our branch-and-price and our matheuristic ap-
proaches, we report the results of our computational experiments. We consider different
sets of instances used in the location literature with size ranging from 20 to 654 demand
points in the plane. In all of them, the number of facilities to be located, p, ranges in
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{2, 5, 10} and we solve the instances for the λ-vectors in Table 2.1, {W, C, K, D, S, A}.
We set k = n

2 for the k-center and k-entdian, and α = 0.9 for the centdian and k-entdian.

Notation λ-vector Name

W (1, . . . , 1) p-median
C (0, . . . , 0, 1) p-center

K (0, . . . , 0,

k︷ ︸︸ ︷
1, . . . , 1) k-center

D (α, . . . , α, 1) centdian

S (α, . . . , α,

k︷ ︸︸ ︷
1, . . . , 1) k-entdian

A (0 = 0
n−1 ,

1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 ,

n−1
n−1 = 1) ascendant

Table 2.1: Examples of Ordered Median aggregation functions

For the sake of readability, we restrict the computational study of this document to
`1-norm based distances. However, the reader can find extensive computational results for
other norms in 2.6 and 2.7.

The models were coded in C and solved with SCIP v.7.0.2 (Gamrath et al., 2020) using
as optimization solver SoPLex 5.0.2 in a Mac OS Catalina with a Core Intel Xeon W
clocked at 3.2 GHz and 96 GB of RAM memory.

2.5.1 Computational performance of the branch-and-price procedure

In this section we report the results for our branch-and-price approach based on the classical
dataset provided by Eilon et al. (1974). From this dataset, we randomly generate five
instances with sizes n ∈ {20, 30, 40, 45} and we also consider the entire complete original
instance with n = 50. Together with the number of facilities p and the different ordered
weighted median functions (type), a total of 378 instances has been considered.

Firstly, concerning convergence (Section 2.3.4), each line in Table 2.2 shows the aver-
age results of 45 instances, five for each type of ordered median objective function to be
minimized {W, D, S} and p ∈ {2, 5, 10}, solved to optimality. The results has been split
by size (n) and by Heurvar: FALSE when only the exact pricer is used; TRUE if the heuristic
pricer is used and the exact pricer is called when it does not provide new columns to add.
The reader can see a significant reduction of the CPU time (Time) caused by a decrease of
the number of calls to the exact pricer (Exact) even though the number of total iterations
(Total) increases. Additionally, a second effect is that the necessary number of variables
to certify optimality (Vars) is slightly less when the heuristic is applied for n = 40. Hence,
we will use the heuristic pricer for the rest of the experiments.

Secondly, we have tuned the values of θ for the branching rule (θ-rule) for each of the
objective functions (different values for the λ-vector) based in our computational experi-
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n Heurvar Iterations Vars Time

Exact Total

20 FALSE 13 13 2189 64.92
TRUE 4 23 2219 18.02

30 FALSE 15 15 2827 1034.97
TRUE 3 60 2856 191.84

40 FALSE 50 50 4713 9086.33
TRUE 13 136 4511 2229.21

Table 2.2: Average number of pricer iterations, variables and time using the combined
heuristic and exact pricers or only using the exact pricer

type θ = 0.0 θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.7 θ = 0.9 θ = 1.0

W 0.04 0.04 0.04 0.04 0.04 0.04 0.02
C 27.94 28.34 28.29 28.47 28.64 28.74 28.19
K 12.83 12.63 12.80 12.46 12.73 13.15 12.88
D 0.09 0.07 0.09 0.09 0.09 0.09 0.02
S 0.11 0.14 0.14 0.14 0.14 0.13 0.10
A 7.73 7.66 7.69 7.71 7.64 7.73 7.33

Table 2.3: GAP(%) for `1-norm, Eilon et al. (1974) instances

ence. In Table 2.3, we show the average gap at termination of the above-mentioned 378
instances when we apply our branch-and-price approach fixing a time limit of 2 hours.

Therefore we set θ = 0 for the center problem (C), θ = 0.5 for the k-center problem (K),
and θ = 1 for the p-median (W), centdian (D), k-entdian (S), and ascendant problems (A).
Recall that when we use θ = 0, we are selecting a pure distance branching rule. In contrast,
when θ = 1, we select the most fractional variable. On the other hand, when θ = 0.5, we
use a hybrid selection between the two extremes of the (θ-rule). In the following, the above
fixed parameters will be used in the computational experiments for exact and matheurisitic
methods.

The average results obtained for the Eilon et al. (1974) instances, with a CPU time limit
of 2 hours, are shown in Table 2.4. There, for each combination of n (size of the instance),
p (number of facilities to be located) and type (ordered median objective function to be
minimized), we provide the average results for `1-norm with a comparison between the
compact formulation (C) (Compact) and the branch-and-price approach (B&P). The table
is organized as follows: the first column gives the CPU time in seconds needed to solve
the problem (Time) and within parentheses the number of unsolved instances (#Unsolved),
i.e., those for which the lower and upper bound do not coincide within the time limit; the
second column shows the gap at the root node; the third one gives the gap at termination,
i.e., the remaining MIP gap in percentage (GAP(%)) when the time limit is reached, 0.00
otherwise; in the fourth column we show the number of variables (Vars) needed to solve the
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problem; in the fifth column we show the number of nodes (Nodes) explored in the branch-
and-bound tree; and, in the last one, the RAM memory (Memory (MB)) in Megabytes
required during the execution process is reported. Within each column, we highlight in
bold the best result between the two formulations, namely Compact or B&P.

The branch-and-price algorithm is able to solve optimally 58 instances more than the
compact formulation. However, for some instances (mainly Center and k-center problems
or when p = 2) the solved instances with the compact formulation need less CPU time.
Thus, the first conclusion could be that when p increases decomposition techniques become
more important because the number of variables is not so dependant of this parameter.
The second conclusion from the results is that the branch-and-price is a very powerful
tool when the gap at the root node is close to zero which does not happen when a big
percentage of the positions of the λ-vector are zeros. Concerning the memory used by the
tested formulations, the compact formulation needs bigger branch-and-bound trees to deal
with fractional solutions whereas that branch-and-price uses more variables.

Since the average gap at termination for the branch-and-price algorithm is much smaller
than the one obtained by the compact formulation (7.98% against 35.81%), we will use
decomposition-based algorithms to study medium- and large-sized instances.

2.5.2 Computational performance of the matheuristics

In this section, we show the performance of our matheuristic procedures. Firstly, we will
test them for n = 50 (Eilon et al., 1974) where the solutions can be compared with the
theoretic bounds provided by the exact method. Secondly, we will compare them using
larger instances. Specifically, we use two instances from the TSP library (Reinelt, 1991),
which is a well known repository of complex instances for the the TSP and related prob-
lems (Goldengorin and Krushinsky, 2011): att532.tsp and p654.tsp. They contain the
coordinates of 532 cities of the continental US (Padberg and Rinaldi, 1987) and 654 points
from a drilling problem example (Reinelt, 1992b), respectively. The spatial distribution of
the demand points for each of the instances that we use is shown in Figure 2.1, where one
can see the different nature of the datasets that we test.

Tables 2.5, 2.6, and 2.7 present a similar layout. The instances are solved with 18
different configurations of ordered weighted median functions and number of open facilities.
Each of these 18 problems has been solved by means of the following strategies: branch-
and-price procedure (B&P); the heuristic used to generate initial columns (InitialHeur);
the decomposition-based heuristic (Matheur); the aggregation-based approaches described
in Section 2.4.2 (KMEANS-20, KMEANS-30, PTF-20, PTF-30) for |A′| = {20, 30}; and
the discretization strategy explained in Section 2.4.3 (Discretization). The reported results
are the CPU time and:

1. the gap (GAPLB(%)) which is calculated with respect to the lower bound of the branch-
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n type p Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20

W
2 1.59 ( 0 ) 22.90 ( 0 ) 93.92 0.00 0.00 0.00 224 2131 9518 1 4 103
5 1588.99 ( 1 ) 8.34 ( 0 ) 100.00 0.00 3.38 0.00 470 2408 10967305 1 1278 49
10 — ( 5 ) 3.95 ( 0 ) 100.00 0.46 43.84 0.00 880 2127 19785215 2 3425 28

C
2 0.06 ( 0 ) 237.96 ( 4 ) 78.92 22.59 0.00 10.78 224 97635 7 4652 4 2239
5 12.58 ( 0 ) — ( 5 ) 100.00 29.46 0.00 17.16 470 15251 40379 18660 12 464
10 511.69 ( 2 ) 1831.83 ( 4 ) 100.00 37.64 7.59 20.28 880 4243 7928195 21617 725 160

K
2 0.35 ( 0 ) 1412.69 ( 1 ) 91.43 7.55 0.00 1.42 224 37917 630 670 3 953
5 243.88 ( 0 ) 404.99 ( 3 ) 100.00 15.40 0.00 3.85 470 9363 657827 6642 77 279
10 32.22 ( 4 ) 3156.63 ( 2 ) 100.00 18.53 36.95 3.26 880 4071 12150962 9244 2265 111

D
2 2.18 ( 0 ) 30.36 ( 0 ) 93.78 0.03 0.00 0.00 224 2135 9222 1 5 108
5 1535.82 ( 1 ) 12.18 ( 0 ) 100.00 0.00 6.69 0.00 470 2401 8972062 1 1225 49
10 5030.79 ( 4 ) 6.88 ( 0 ) 100.00 0.46 48.19 0.00 880 2127 15660031 4 2798 28

S
2 2.24 ( 0 ) 54.23 ( 0 ) 93.77 0.16 0.00 0.00 224 2119 7677 1 5 106
5 1238.87 ( 1 ) 15.75 ( 0 ) 100.00 0.06 4.40 0.00 470 2401 8141244 2 745 50
10 — ( 5 ) 7.61 ( 0 ) 100.00 0.53 50.12 0.00 880 2126 16072018 5 2835 28

A
2 0.85 ( 0 ) 783.95 ( 1 ) 91.63 4.45 0.00 0.35 224 16973 1340 400 4 738
5 411.21 ( 0 ) 2304.77 ( 0 ) 100.00 10.18 0.00 0.00 470 7405 878975 1697 126 222
10 60.27 ( 4 ) 883.79 ( 1 ) 100.00 17.10 31.87 1.73 880 3288 10637608 2721 1723 79

30

W
2 139.91 ( 0 ) 526.92 ( 0 ) 93.86 0.00 0.00 0.00 334 3142 787145 1 38 260
5 — ( 5 ) 64.66 ( 0 ) 100.00 0.00 52.05 0.00 700 2963 17382888 1 8647 109
10 — ( 5 ) 19.51 ( 0 ) 100.00 0.00 76.26 0.00 1310 2472 12250097 1 4692 55

C
2 0.11 ( 0 ) 39.44 ( 4 ) 79.19 21.41 0.00 15.46 334 125429 66 931 8 1443
5 30.64 ( 0 ) 1564.58 ( 4 ) 100.00 31.68 0.00 22.73 700 30216 69019 2817 19 389
10 4212.55 ( 3 ) — ( 5 ) 100.00 34.18 16.67 27.51 1310 12928 9619002 6027 1823 190

K
2 4.44 ( 0 ) 409.69 ( 4 ) 90.88 8.65 0.00 7.58 334 45846 8511 147 10 1696
5 2956.65 ( 4 ) 5199.43 ( 3 ) 100.00 12.01 17.79 5.82 700 18893 12169516 815 2570 534
10 — ( 5 ) 2740.67 ( 4 ) 100.00 18.84 69.60 12.31 1310 7416 9299590 2992 3105 187

D
2 201.28 ( 0 ) 454.39 ( 0 ) 93.77 0.00 0.00 0.00 334 3087 757445 1 49 258
5 — ( 5 ) 65.46 ( 0 ) 100.00 0.00 57.16 0.00 700 2957 9914066 1 7439 111
10 — ( 5 ) 21.25 ( 0 ) 100.00 0.00 79.34 0.00 1310 2464 10108803 1 4631 55

S
2 203.04 ( 0 ) 370.63 ( 0 ) 93.68 0.00 0.00 0.00 334 3184 566382 1 41 263
5 — ( 5 ) 160.85 ( 0 ) 100.00 0.03 56.47 0.00 700 2963 9283122 2 7054 112
10 — ( 5 ) 42.86 ( 0 ) 100.00 0.09 79.91 0.00 1310 2469 9530286 3 4686 56

A
2 21.89 ( 0 ) 3640.13 ( 2 ) 91.15 4.46 0.00 3.26 334 12721 26764 41 12 845
5 5403.72 ( 4 ) 2750.01 ( 3 ) 100.00 7.76 28.99 2.60 700 8615 8044660 188 2288 357
10 — ( 5 ) 804.71 ( 4 ) 100.00 13.38 70.51 6.64 1310 5529 7159232 1465 2364 165

40

W
2 4028.70 ( 4 ) 1675.34 ( 0 ) 93.79 0.01 12.34 0.00 444 5211 26828725 1 2515 645
5 — ( 5 ) 1647.86 ( 0 ) 100.00 0.02 67.11 0.00 930 4028 12240990 3 10977 229
10 — ( 5 ) 348.57 ( 0 ) 100.00 0.09 81.57 0.00 1740 4001 7841923 2 4267 125

C
2 0.25 ( 0 ) — ( 5 ) 75.52 30.52 0.00 29.73 444 136451 237 259 15 1541
5 116.02 ( 0 ) — ( 5 ) 100.00 42.30 0.00 41.65 930 27041 195892 158 42 224
10 3022.45 ( 4 ) — ( 5 ) 100.00 36.47 31.47 33.88 1740 12733 7126207 667 2024 110

K
2 58.78 ( 0 ) — ( 5 ) 90.67 14.52 0.00 14.52 444 14164 93918 11 27 897
5 — ( 5 ) — ( 5 ) 100.00 21.45 56.58 21.44 930 10132 6803627 28 5632 360
10 — ( 5 ) — ( 5 ) 100.00 19.04 75.08 17.71 1740 8823 5436226 280 2606 198

D
2 5908.68 ( 4 ) 436.48 ( 1 ) 93.67 0.02 15.22 0.01 444 5669 16542227 2 3164 709
5 — ( 5 ) 855.62 ( 1 ) 100.00 0.11 68.93 0.08 930 4094 7984937 2 10233 233
10 — ( 5 ) 331.54 ( 0 ) 100.00 0.07 83.85 0.00 1740 4004 5704188 2 4413 126

S
2 4977.44 ( 4 ) 429.96 ( 1 ) 93.60 0.47 14.33 0.47 444 5195 12853124 1 2430 657
5 — ( 5 ) 2159.56 ( 1 ) 100.00 0.14 70.18 0.02 930 4082 7715457 4 9805 233
10 — ( 5 ) 615.35 ( 0 ) 100.00 0.17 84.62 0.00 1740 3999 5409994 4 4687 126

A
2 533.79 ( 0 ) — ( 5 ) 90.85 8.30 0.00 8.19 444 6506 455652 3 48 769
5 — ( 5 ) — ( 5 ) 100.00 14.76 58.65 14.17 930 5538 3684557 10 3409 331
10 — ( 5 ) — ( 5 ) 100.00 12.35 74.52 10.21 1740 6285 4403838 161 2000 214

45

W
2 — ( 5 ) 483.59 ( 1 ) 94.05 0.04 27.06 0.02 499 7219 24989615 2 5854 1085
5 — ( 5 ) 1745.55 ( 2 ) 100.00 0.32 71.65 0.27 1045 4855 11473640 4 11171 374
10 — ( 5 ) 635.43 ( 0 ) 100.00 0.03 83.54 0.00 1955 4239 5717627 1 3767 168

C
2 0.46 ( 0 ) — ( 5 ) 74.99 39.01 0.00 38.99 499 109398 628 104 17 1364
5 144.75 ( 0 ) — ( 5 ) 100.00 40.69 0.00 40.62 1045 20483 215522 31 44 176
10 — ( 5 ) — ( 5 ) 100.00 32.80 37.16 31.54 1955 14204 6469050 219 1915 110

K
2 342.18 ( 0 ) — ( 5 ) 91.23 16.93 0.00 16.93 499 10490 497310 4 59 845
5 — ( 5 ) — ( 5 ) 100.00 22.98 64.55 22.98 1045 6631 5434589 11 6520 295
10 — ( 5 ) — ( 5 ) 100.00 16.68 77.74 16.48 1955 8738 4555667 78 2681 220

D
2 — ( 5 ) 364.11 ( 1 ) 93.96 0.02 29.64 0.02 499 6473 14042725 1 6338 973
5 — ( 5 ) 1744.42 ( 2 ) 100.00 0.17 73.98 0.11 1045 4731 7322624 3 10301 365
10 — ( 5 ) 667.13 ( 0 ) 100.00 0.02 84.73 0.00 1955 4231 5228591 1 4875 169

S
2 — ( 5 ) 623.35 ( 2 ) 93.87 0.10 28.98 0.09 499 7260 10776521 2 4776 1093
5 — ( 5 ) — ( 5 ) 100.00 0.72 76.35 0.62 1045 4899 7356115 7 10281 378
10 — ( 5 ) 1848.85 ( 0 ) 100.00 0.18 85.38 0.00 1955 4258 4378226 4 4283 168

A
2 4681.25 ( 0 ) — ( 5 ) 91.28 11.43 0.00 11.43 499 6849 3057137 2 121 975
5 — ( 5 ) — ( 5 ) 100.00 17.39 65.13 17.17 1045 5476 2139768 4 2517 415
10 — ( 5 ) — ( 5 ) 100.00 10.28 76.58 8.88 1955 6105 3577556 56 1976 244

50

W
2 — ( 1 ) 331.87 ( 0 ) 94.13 0.00 34.44 0.00 554 8094 24416531 1 6585 1464
5 — ( 1 ) 410.87 ( 0 ) 100.00 0.00 76.08 0.00 1160 5292 9438723 1 9646 466
10 — ( 1 ) 1005.02 ( 0 ) 100.00 0.00 84.68 0.00 2170 4914 5017512 1 3878 225

C
2 0.34 ( 0 ) — ( 1 ) 75.02 30.33 0.00 30.31 554 80356 367 37 22 1064
5 379.06 ( 0 ) — ( 1 ) 100.00 41.37 0.00 41.37 1160 15314 443313 14 137 143
10 — ( 1 ) — ( 1 ) 100.00 37.49 46.67 36.94 2170 12538 5837062 213 2937 98

K
2 1135.78 ( 0 ) — ( 1 ) 91.28 15.46 0.00 15.46 554 10042 1334361 3 84 926
5 — ( 1 ) — ( 1 ) 100.00 24.86 68.28 24.86 1160 6541 4368607 4 6095 324
10 — ( 1 ) — ( 1 ) 100.00 23.05 79.98 23.04 2170 7164 2448072 15 1851 205

D
2 — ( 1 ) 328.07 ( 0 ) 94.07 0.00 37.30 0.00 554 8035 12235346 1 7096 1485
5 — ( 1 ) 4430.48 ( 0 ) 100.00 0.08 78.70 0.00 1160 5415 5502769 5 8618 485
10 — ( 1 ) 1408.05 ( 0 ) 100.00 0.00 86.81 0.00 2170 4914 3617149 2 4412 219

S
2 — ( 1 ) 516.57 ( 0 ) 93.95 0.00 37.29 0.00 554 7579 8797114 1 4912 1387
5 — ( 1 ) — ( 1 ) 100.00 0.57 79.68 0.57 1160 5704 5750451 5 9004 508
10 — ( 1 ) 3413.97 ( 0 ) 100.00 0.00 87.36 0.00 2170 4962 3126980 5 5175 230

A
2 — ( 1 ) — ( 1 ) 91.49 10.36 19.20 10.36 554 8056 3163853 2 1161 1369
5 — ( 1 ) — ( 1 ) 100.00 19.06 67.25 18.75 1160 5872 2177800 4 3290 542
10 — ( 1 ) — ( 1 ) 100.00 10.17 78.48 9.36 2170 5764 2718050 16 1862 268

Total Average: 645.10 ( 229 ) 772.80 ( 171 ) 96.71 10.19 35.81 7.98 897 13958 6581088 1111 3014 427

Table 2.4: Results for Eilon et al. (1974) instances for `1-norm



60
Chapter 2. A Branch-and-Price approach for the

Continuous Multifacility Monotone Ordered Median Problem

Figure 2.1: Demand points of each of the instances that we use in our computational study:
n = 50, n = 532, and n = 654 (from left to right)

type p B&P InitialHeur Matheur KMEANS-20 KMEANS-30 PTF-20 PTF-30 Discretization

Time GAPLB(%) Time GAPLB(%) Time GAPLB(%) Time GAPLB(%) Time GAPLB(%) Time GAPLB(%) Time GAPLB(%) Time GAPLB(%)

W
2 331.87 0.00 0.00 1.44 134.54 0.00 74.60 3.10 5204.85 2.80 35.14 7.58 7200.18 2.50 12.94 1.23
5 410.87 0.00 0.00 11.53 9.51 0.00 21.47 12.55 398.93 11.25 16.38 17.88 187.03 7.90 2680.48 1.17
10 1005.02 0.00 0.00 21.57 2.84 0.00 4.23 17.16 59.08 8.79 16.11 23.45 57.35 9.88 4.95 3.11

C
2 7200.64 43.49 0.00 43.49 6.61 39.68 7200.16 47.05 7200.52 32.36 7200.21 31.46 7200.47 41.39 7205.96 43.11
5 7200.19 70.56 0.00 73.45 7200.00 46.66 7200.09 82.76 7200.10 76.52 7200.09 94.74 7200.09 72.70 7203.66 70.86
10 7200.19 58.58 0.00 101.43 7200.18 28.93 7200.16 104.98 7200.19 73.44 7200.16 154.72 7200.18 70.54 7203.84 87.77

K
2 7200.13 18.28 0.00 21.40 227.64 19.79 3589.02 21.19 7200.40 22.00 7200.35 20.05 7200.57 18.81 7203.55 16.83
5 7200.34 33.09 0.00 33.09 392.07 22.37 7200.10 26.84 7200.15 36.08 7200.10 42.99 7200.13 30.43 7203.81 26.59
10 7200.28 29.94 0.00 41.73 864.26 11.79 7200.17 35.38 7200.20 19.91 7200.17 41.97 7200.19 15.93 7202.90 38.36

D
2 328.07 0.00 0.00 1.45 130.00 0.00 42.82 3.76 5213.35 2.82 18.77 7.70 5105.83 2.47 5730.24 1.25
5 4430.48 0.00 0.00 11.43 10.73 0.00 7.87 12.53 162.45 10.95 17.50 16.36 191.88 8.13 4714.13 1.12
10 1408.05 0.00 0.00 21.38 3.06 0.43 4.76 17.00 50.22 10.18 22.26 23.27 135.57 9.07 811.58 3.03

S
2 516.57 0.00 0.00 1.62 111.73 0.00 25.43 2.97 7200.20 2.59 35.77 7.34 7200.27 2.33 7203.79 1.24
5 7200.43 0.57 0.00 12.28 14.96 0.64 36.68 12.60 498.07 11.81 41.88 18.33 746.57 8.26 7203.80 1.77
10 3413.97 0.00 0.00 21.24 3.22 0.66 10.99 16.86 29.98 7.98 50.52 23.29 114.10 8.97 2756.51 4.06

A
2 7200.39 11.56 0.00 11.56 155.18 10.91 2611.77 9.05 7200.15 10.62 7200.41 13.49 7200.09 13.69 7203.98 10.27
5 7200.40 23.08 0.00 23.61 325.35 14.00 7200.10 19.96 7200.16 18.63 7200.11 26.03 7200.13 22.18 7204.38 16.41
10 7200.24 10.33 0.00 31.65 129.77 6.29 7200.17 17.48 7200.21 16.63 7200.17 33.49 7200.21 21.82 7204.03 22.39

Total Average: 4658.23 16.64 0.00 26.97 940.09 11.23 3157.25 25.73 4645.51 20.85 3614.23 33.56 4763.38 20.39 5330.81 19.48

Table 2.5: Heuristic results for instances of n = 50, Eilon et al. (1974)

and-price algorithm when the time limit is reached. Thereby, we have a theoretic
gap knowing exactly the room for improvement of our heuristics;

2. or GAPBest(%) as the gap with respect to the best known integer solution. We calcu-
late it for large-sized instances since the branch-and-price provides poor lower bounds
even using (2.8).

In order to obtain Table 2.5, a time limit of 2 hours was fixed for this experiment with
n = 50. For these instances, B&P and Matheur report the best performance in most of the
cases. In general they present less gap and, in average, it is better not wasting the time
solving the exact pricer letting the algorithm go further adding columns or branching before
certifying optimality. Thus, with the Matheur strategy we obtain an 11.23% of average gap.
In fact, this matheuristic finds the optimal solution (certified by the exact method) at least
in six instances. Concerning the time, the other heuristics obtain good quality solution in
much smaller CPU times. For the Eilon dataset, the aggregation schemes exhibit that the
larger the aggregated set the smaller the gap and the larger the CPU time, as expected.

Figure 2.2 illustrates the optimal solution (square points) of a particular instance (B&P)
and the solution when the solution space is limited to the demand points coordinates
(Discretization). One can observe in that figure that although the continuous nature of
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(a) B&P (b) Discretization

Figure 2.2: Solutions for n = 50 (Eilon et al., 1974), S, p = 10, and `1-norm

type p B&P InitialHeur Matheur KMEANS-20 KMEANS-30 PTF-20 PTF-30 Discretization

Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%)

W
2 86427.79 3.78 0.04 3.78 86427.79 3.78 214.12 13.36 607.50 6.06 29.81 3.09 807.38 12.08 86465.01 0.00
5 86430.70 3.16 0.04 3.16 86430.70 3.16 15.25 27.80 115.15 21.13 38.83 15.75 296.68 18.38 86417.45 0.00
10 86431.06 1.62 0.04 2.59 86431.06 1.62 7.16 27.35 310.76 35.82 7.42 40.26 51.25 36.48 86423.45 0.00

C
2 86406.87 0.08 0.04 0.08 38146.48 0.00 86403.24 4.55 86400.09 12.48 86428.73 9.69 86401.42 8.36 86474.06 1.70
5 86407.73 6.65 0.04 6.65 12456.56 6.65 86400.07 18.75 86400.10 31.08 86400.07 17.39 86400.10 3.09 86427.62 0.00
10 86407.25 28.72 0.04 28.72 86405.98 28.72 15064.77 33.06 86400.16 0.00 14624.77 59.63 86400.16 18.58 86460.43 7.32

K
2 86419.13 2.23 0.04 2.23 86419.13 2.23 1601.48 7.51 86406.88 9.01 3974.78 7.09 86403.41 8.29 86445.75 0.00
5 86418.39 2.64 0.04 2.64 86418.39 2.64 86400.08 16.05 86400.12 15.28 86400.09 21.98 86402.98 21.14 86462.28 0.00
10 86418.91 4.83 0.04 4.83 86418.91 4.83 13699.21 83.01 86400.17 9.35 86400.13 37.08 86400.18 31.92 86446.91 0.00

D
2 86428.55 3.78 0.04 3.78 86428.55 3.78 234.79 12.45 809.15 5.78 17.49 2.85 206.49 12.99 86448.31 0.00
5 86427.84 3.16 0.04 3.16 86427.84 3.16 35.12 26.28 119.24 21.67 75.10 14.79 241.96 15.48 86466.61 0.00
10 86427.84 1.61 0.04 2.59 86427.84 1.61 8.04 24.60 656.42 23.75 14.80 45.41 37.98 35.53 86464.28 0.00

S
2 86428.95 3.71 0.04 3.71 86428.95 3.71 518.28 13.83 7700.72 5.74 49.64 2.85 408.46 12.02 86451.83 0.00
5 86428.30 2.95 0.04 2.95 86428.30 2.95 29.61 26.42 1267.17 20.84 87.31 15.90 661.87 13.14 86427.65 0.00
10 86428.12 2.63 0.04 2.63 86428.12 2.63 19.91 30.84 1681.79 38.23 40.72 44.90 76.69 35.11 86468.68 0.00

A
2 86428.30 2.79 0.04 2.79 86428.30 2.79 798.53 4.91 86402.27 2.72 1291.04 7.08 74404.87 11.16 86434.48 0.00
5 86426.24 2.28 0.04 2.28 86426.24 2.28 66616.11 15.03 86400.12 18.50 20039.72 26.95 86400.25 16.98 86419.49 0.00
10 86426.11 4.03 0.04 4.03 86426.11 4.03 17972.81 10.69 86400.17 16.75 86400.13 31.32 86400.18 29.85 86482.04 0.00

Total Average: 86423.23 4.48 0.04 4.59 79633.63 4.48 20891.03 22.03 43937.66 16.34 26240.03 22.45 42689.02 18.92 86449.24 0.50

Table 2.6: Heuristic results for instances of n = 532, Padberg and Rinaldi (1987)

the problem is not completely captured by the discrete version of the problem, the structure
of the clusters of demand points obtained by discretizing the space is similar to the one
obtained by the exact approach, being this method an adequatate heuristic for larger
instances in which the exact approach is not able to certify optimality.

For large-sized problems (Tables 2.6 and 2.7) we set the time limit to 24 hours. The
best solutions are found by the discretization matheuristic except for the center problems
(see Figure 2.3 where the solutions obtained with the Matheur and the Discretization
approaches clearly differ). Among the other strategies, decomposition-based matheuristic
stands out, but the improvement from the initial heuristic is null for some cases.

Some instances have the best performance using KMEANS-20 or PTF-20 matheusris-
tics. It is not appreciated a big improvement taking 30 points instead of 20 for the ag-
gregation method. To find an explanation for that, Figure 2.4 depicts the aggregation
(triangular points) and the solution for a particular instance. The reader can see how the
demand points are concentrated by zones. Adding more points to A′ gives an importance
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type p B&P InitialHeur Matheur KMEANS-20 KMEANS-30 PTF-20 PTF-30 Discretization

Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%) Time GAPBest(%)

W
2 86441.18 18.56 0.06 18.56 86441.18 18.56 13.31 8.04 755.99 40.81 32.59 19.19 697.98 40.02 86426.03 0.00
5 86444.11 13.10 0.06 13.68 86444.11 13.10 6.56 45.35 97.79 79.07 7.46 68.54 74.85 76.34 86408.63 0.00
10 86439.34 15.13 0.06 32.85 86439.34 15.13 2.64 101.43 31.49 112.39 1.58 157.47 68.11 133.94 86437.47 0.00

C
2 86407.88 4.16 0.07 4.16 86407.32 0.00 420.97 8.91 86400.83 3.43 5765.05 0.00 86401.06 0.00 86436.12 2.27
5 86407.52 6.54 0.06 8.92 51003.35 4.47 86424.42 32.61 86400.09 0.00 86400.15 20.98 86400.09 1.64 86420.51 12.42
10 86408.46 20.39 0.06 20.39 83212.74 3.23 42425.62 31.02 86400.17 1.36 86400.16 63.01 86400.13 2.00 86419.39 0.00

K
2 86424.57 5.30 0.06 5.30 86424.57 5.30 274.39 4.34 40549.49 14.86 365.79 13.07 15942.12 10.65 86404.35 0.00
5 86424.89 11.27 0.06 11.27 86424.89 11.27 854.51 38.53 86400.13 64.01 2868.28 49.15 86400.26 42.60 86441.63 0.00
10 86425.31 32.55 0.06 32.55 86425.31 32.55 6695.50 149.41 86400.19 105.65 13189.85 162.33 86400.14 126.61 86436.97 0.00

D
2 86440.98 18.55 0.07 18.55 86440.98 18.55 29.22 6.78 737.65 40.14 23.55 18.85 669.43 39.84 86429.90 0.00
5 86440.05 13.09 0.06 13.67 86440.05 13.09 15.08 46.33 123.71 81.13 6.47 71.68 96.06 82.16 86444.51 0.00
10 86439.96 15.12 0.06 32.79 86439.96 15.12 7.19 99.40 21.26 101.71 3.05 156.24 106.33 133.98 86428.90 0.00

S
2 86440.27 17.23 0.07 17.23 86440.27 17.23 19.02 8.52 427.39 37.97 27.17 18.58 515.89 36.72 86424.95 0.00
5 86439.85 12.69 0.07 13.27 86439.85 12.69 9.14 45.19 200.77 77.05 6.68 68.55 143.32 79.93 86421.39 0.00
10 86440.73 15.01 0.06 33.18 86440.73 15.01 6.69 102.11 32.23 108.25 2.44 156.15 107.15 134.09 86437.97 0.00

A
2 86439.83 7.51 0.06 7.51 86439.83 7.51 264.51 3.79 11439.37 13.09 416.03 10.15 6083.81 11.98 86432.48 0.00
5 86443.12 9.69 0.06 9.69 86443.12 9.69 256.67 35.94 40907.89 51.62 414.57 43.77 15986.23 42.06 86405.38 0.00
10 86438.72 33.58 0.06 33.58 86438.72 33.58 4315.73 86.09 86400.18 121.59 29377.52 127.07 86400.14 121.93 86407.30 0.00

Total Average: 86432.60 14.97 0.06 18.18 84288.13 13.67 7891.18 47.43 34095.92 58.56 12517.13 68.04 31049.62 62.03 86425.77 0.82

Table 2.7: Heuristic results for instances of n = 654, Reinelt (1992b)

(a) Matheur (b) Discretization

Figure 2.3: Solutions for n = 532 (Padberg and Rinaldi, 1987), C, p = 2, and `1-norm

(a) KMEANS-20 (b) KMEANS-30

Figure 2.4: Solutions for n = 654 (Reinelt, 1992b), W, p = 5, and `1-norm
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to some aggregated points that does not represent properly the original data of this in-
stance of n = 654. In this case, we can see an example for which the aggregation algorithm
works better under the less is more paradigm.

2.6 Computational results for alternative `τ -norms

In this section, we show the results of our computational experiments for other `τ -norms,
in particular, we have considered τ ∈ {3

2 , 2, 3}. We have shown in Theorem 5 the general
way to reformulate (MFMOMPλ) as MISOCO formulation for general values of τ using
(`τ -norm) or polyhedral norms using (Pol-norm). In (`2-norm) and Table 1.1, the reader
can see the sets of constraints for the τ considered, for all i ∈ N, j ∈ P, l ∈ {1, . . . , d}.
Tables 2.8, 2.9, and 2.10 report the results.
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n type p Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20

W
2 75.10 ( 0 ) 966.81 ( 0 ) 100.00 0.00 0.00 0.00 524 500 31161 1 187 25
5 — ( 5 ) 332.73 ( 0 ) 100.00 0.00 58.11 0.00 1270 397 2323815 1 11580 12
10 — ( 5 ) 152.66 ( 0 ) 100.00 0.00 97.34 0.00 2480 377 1280023 1 7438 10

C
2 0.70 ( 0 ) 520.73 ( 4 ) 100.00 21.46 0.00 17.11 524 13259 317 650 9 174
5 57.47 ( 0 ) 74.10 ( 4 ) 100.00 34.21 0.00 33.65 1270 1333 15338 302 44 13
10 3863.55 ( 1 ) 1270.00 ( 2 ) 100.00 18.56 2.45 17.81 2480 1638 1164203 1936 1159 15

K
2 6.23 ( 0 ) 1227.76 ( 2 ) 100.00 6.46 0.00 2.58 524 7247 3052 197 20 212
5 — ( 5 ) 824.52 ( 3 ) 100.00 10.90 27.82 6.21 1270 2719 3205611 1120 7563 57
10 — ( 5 ) 2409.37 ( 3 ) 100.00 17.66 96.76 8.78 2480 1235 1093174 3003 8496 24

D
2 63.65 ( 0 ) 724.11 ( 0 ) 100.00 0.00 0.00 0.00 524 437 31224 1 153 22
5 — ( 5 ) 284.21 ( 0 ) 100.00 0.00 65.95 0.00 1270 383 2204675 1 12441 11
10 — ( 5 ) 163.89 ( 0 ) 100.00 0.08 95.40 0.00 2480 370 1140802 3 9200 9

S
2 58.41 ( 0 ) 1040.72 ( 0 ) 100.00 0.00 0.00 0.00 524 519 25556 1 155 25
5 — ( 5 ) 423.48 ( 0 ) 100.00 0.11 59.03 0.00 1270 397 2398328 3 12161 12
10 — ( 5 ) 175.32 ( 0 ) 100.00 0.34 98.74 0.00 2480 383 878394 4 8683 10

A
2 16.20 ( 0 ) 2802.48 ( 1 ) 100.00 3.44 0.00 0.35 524 2987 5372 54 37 146
5 — ( 5 ) 2131.87 ( 2 ) 100.00 10.91 47.25 3.22 1270 2548 1996233 413 8655 69
10 — ( 5 ) 3440.13 ( 1 ) 100.00 11.84 99.32 2.01 2480 1288 705456 2001 7031 30

30

W
2 3007.98 ( 0 ) 854.86 ( 4 ) 86.97 19.38 0.00 19.38 784 852 1101778 1 2823 71
5 — ( 5 ) 3389.46 ( 3 ) 87.13 22.60 79.53 22.60 1900 845 744808 1 12424 47
10 — ( 5 ) 2960.90 ( 0 ) 89.05 0.00 88.07 0.00 3710 773 341608 2 3070 32

C
2 1.27 ( 0 ) 110.41 ( 4 ) 81.07 30.05 0.00 26.62 784 10754 416 190 15 137
5 311.13 ( 0 ) — ( 5 ) 81.71 45.91 0.00 44.26 1900 3340 57541 200 116 33
10 4.95 ( 4 ) — ( 5 ) 81.93 45.96 75.89 45.96 3710 1758 407909 231 1166 17

K
2 77.50 ( 0 ) 19.84 ( 4 ) 85.63 39.16 0.00 38.71 784 1708 28803 5 115 80
5 — ( 5 ) 20.48 ( 4 ) 85.80 18.37 66.83 17.99 1900 1986 956059 19 11102 61
10 — ( 5 ) 194.29 ( 4 ) 86.29 22.05 84.71 21.13 3710 1574 390091 234 2707 42

D
2 2441.14 ( 1 ) 300.79 ( 4 ) 86.55 22.86 2.74 22.86 784 918 1208553 1 3490 77
5 — ( 5 ) 4831.03 ( 2 ) 86.99 24.04 74.25 24.04 1900 841 798302 3 10071 48
10 — ( 5 ) 2546.68 ( 0 ) 87.46 0.05 86.29 0.00 3710 774 343890 2 4196 32

S
2 2363.80 ( 0 ) 470.41 ( 4 ) 86.86 32.35 0.00 32.35 784 895 822524 1 2187 72
5 — ( 5 ) 4534.78 ( 2 ) 86.78 18.98 76.88 18.98 1900 840 726885 1 10244 48
10 — ( 5 ) 2666.23 ( 0 ) 88.10 0.04 87.16 0.00 3710 776 410399 5 4551 31

A
2 327.89 ( 0 ) 93.44 ( 4 ) 85.31 49.21 0.00 49.18 784 1259 70967 2 365 104
5 — ( 5 ) 95.22 ( 4 ) 86.39 7.72 70.59 7.37 1900 1346 626210 9 8166 74
10 — ( 5 ) 169.25 ( 4 ) 86.14 13.71 84.74 10.99 3710 1487 307003 141 2647 54

40

W
2 — ( 5 ) — ( 5 ) 100.00 32.33 45.10 32.33 1044 1292 1282229 1 15092 131
5 — ( 5 ) — ( 5 ) 100.00 67.86 96.95 67.86 2530 1298 364182 1 8105 102
10 — ( 5 ) — ( 5 ) 100.00 92.83 100.00 92.83 4940 1339 165306 1 2712 83

C
2 4.22 ( 0 ) — ( 5 ) 100.00 44.51 0.00 44.51 1044 2468 1043 2 20 35
5 3879.78 ( 3 ) — ( 5 ) 100.00 77.56 41.01 77.56 2530 2525 606460 2 4626 27
10 — ( 5 ) — ( 5 ) 100.00 78.16 91.15 78.16 4940 2206 237096 13 883 22

K
2 2889.87 ( 0 ) — ( 5 ) 100.00 61.39 0.00 61.39 1044 2226 614033 1 2098 125
5 — ( 5 ) — ( 5 ) 100.00 83.30 92.54 83.30 2530 2213 451617 1 4187 94
10 — ( 5 ) — ( 5 ) 100.00 75.79 100.00 75.79 4940 2169 163856 3 1240 83

D
2 — ( 5 ) — ( 5 ) 100.00 32.13 40.95 32.13 1044 1529 1548255 1 11470 153
5 — ( 5 ) — ( 5 ) 100.00 68.37 99.29 68.37 2530 1310 360994 1 12324 99
10 — ( 5 ) — ( 5 ) 100.00 91.94 100.00 91.94 4940 1357 141565 1 4573 79

S
2 — ( 5 ) — ( 5 ) 100.00 30.53 42.63 30.53 1044 1443 1109568 1 14496 145
5 — ( 5 ) — ( 5 ) 100.00 72.37 98.23 72.37 2530 1299 358058 1 11144 97
10 — ( 5 ) — ( 5 ) 100.00 90.94 100.00 90.94 4940 1362 176603 1 2825 76

A
2 2886.85 ( 4 ) — ( 5 ) 100.00 61.20 14.49 61.20 1044 1876 1127650 1 3383 212
5 — ( 5 ) — ( 5 ) 100.00 82.57 93.62 82.57 2530 1656 402572 1 4383 134
10 — ( 5 ) — ( 5 ) 100.00 75.96 100.00 75.96 4940 1782 145643 1 2437 114

45

W
2 — ( 5 ) — ( 5 ) 100.00 34.65 46.87 34.65 1174 1462 974796 1 11024 145
5 — ( 5 ) — ( 5 ) 100.00 83.70 97.65 83.70 2845 1444 367765 1 3877 126
10 — ( 5 ) — ( 5 ) 100.00 100.00 100.00 100.00 5555 1522 122910 1 1081 101

C
2 6.63 ( 0 ) — ( 5 ) 100.00 57.24 0.00 57.24 1174 2438 1160 1 23 34
5 4337.92 ( 3 ) — ( 5 ) 100.00 84.59 49.89 84.59 2845 2696 467399 1 1217 33
10 — ( 5 ) — ( 5 ) 100.00 64.84 96.12 64.84 5555 2327 135558 3 578 24

K
2 6688.87 ( 4 ) — ( 5 ) 100.00 63.44 14.13 63.44 1174 2443 1718920 1 6733 142
5 — ( 5 ) — ( 5 ) 100.00 71.76 95.10 71.76 2845 2663 453635 1 3364 169
10 — ( 5 ) — ( 5 ) 100.00 91.29 99.70 91.29 5555 2231 158192 1 781 97

D
2 — ( 5 ) — ( 5 ) 100.00 30.83 48.64 30.83 1174 1508 933735 1 10637 153
5 — ( 5 ) — ( 5 ) 100.00 91.29 98.36 91.29 2845 1470 374986 1 5117 129
10 — ( 5 ) — ( 5 ) 100.00 100.00 100.00 100.00 5555 1528 159745 1 1184 106

S
2 — ( 5 ) — ( 5 ) 100.00 31.76 45.32 31.76 1174 1556 1059244 1 8872 160
5 — ( 5 ) — ( 5 ) 100.00 86.56 99.18 86.56 2845 1477 452467 1 4738 125
10 — ( 5 ) — ( 5 ) 100.00 100.00 100.00 100.00 5555 1522 131588 1 976 100

A
2 — ( 5 ) — ( 5 ) 100.00 60.42 25.43 60.42 1174 1992 861937 1 4928 221
5 — ( 5 ) — ( 5 ) 100.00 84.00 97.37 84.00 2845 1822 297805 1 4261 172
10 — ( 5 ) — ( 5 ) 100.00 93.77 100.00 93.77 5555 2008 141643 1 845 175

50

W
2 — ( 1 ) — ( 1 ) 100.00 36.39 57.48 36.39 1304 1749 759779 1 11084 186
5 — ( 1 ) — ( 1 ) 100.00 88.42 97.49 88.42 3160 1659 270228 1 3125 135
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 1777 122705 1 1843 127

C
2 6.06 ( 0 ) — ( 1 ) 100.00 57.05 0.00 57.05 1304 2813 879 1 28 36
5 — ( 1 ) — ( 1 ) 100.00 94.44 86.11 94.44 3160 2767 489141 1 1274 41
10 — ( 1 ) — ( 1 ) 100.00 66.91 100.00 66.91 6170 2678 117338 2 535 32

K
2 — ( 1 ) — ( 1 ) 100.00 66.85 22.51 66.85 1304 2554 1624297 1 9722 141
5 — ( 1 ) — ( 1 ) 100.00 95.48 92.64 95.48 3160 2458 501803 1 1496 132
10 — ( 1 ) — ( 1 ) 100.00 99.57 100.00 99.57 6170 2418 128940 1 669 115

D
2 — ( 1 ) — ( 1 ) 100.00 31.81 51.21 31.81 1304 1704 1059488 1 10438 182
5 — ( 1 ) — ( 1 ) 100.00 91.53 97.42 91.53 3160 1671 405884 1 1222 156
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 1710 156712 1 1360 127

S
2 — ( 1 ) — ( 1 ) 100.00 23.29 56.18 23.29 1304 2040 757576 1 10234 215
5 — ( 1 ) — ( 1 ) 100.00 46.71 98.40 46.71 3160 1772 404250 1 2374 166
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 1739 144453 1 764 131

A
2 — ( 1 ) — ( 1 ) 100.00 58.75 40.71 58.75 1304 2006 519352 1 6759 215
5 — ( 1 ) — ( 1 ) 100.00 86.23 95.15 86.23 3160 2175 396890 1 2119 208
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 2127 127758 1 672 183

Total Average: 1016.47 ( 282 ) 1438.77 ( 277 ) 96.64 44.54 59.19 43.82 2451 1902 628495 143 4813 85

Table 2.8: Results for Eilon et al. (1974) instances for ` 3
2
-norm
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n type p Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20

W
2 26.03 ( 0 ) 24.22 ( 0 ) 100.00 0.00 0.00 0.00 204 2385 50632 1 41 120
5 — ( 5 ) 20.33 ( 0 ) 100.00 0.00 52.53 0.00 470 2504 8992191 1 15633 53
10 — ( 5 ) 9.15 ( 0 ) 100.00 0.00 89.75 0.00 880 2178 5306625 1 13982 28

C
2 0.16 ( 0 ) 757.86 ( 4 ) 100.00 18.45 0.00 10.76 204 45528 119 13798 4 962
5 16.30 ( 0 ) — ( 5 ) 100.00 32.78 0.00 21.37 470 7002 13102 7867 31 148
10 983.51 ( 0 ) 2223.12 ( 3 ) 100.00 27.39 0.00 10.97 880 3717 650055 9690 1569 75

K
2 5.03 ( 0 ) 1648.82 ( 1 ) 100.00 7.02 0.00 1.49 204 11126 6787 349 11 301
5 4231.23 ( 4 ) 2850.11 ( 2 ) 100.00 13.04 23.89 2.37 470 5627 8109266 1830 7136 117
10 — ( 5 ) 1822.27 ( 2 ) 100.00 16.01 85.45 6.61 880 2925 4227203 4287 11279 68

D
2 25.62 ( 0 ) 20.60 ( 0 ) 100.00 0.00 0.00 0.00 204 2365 45501 1 37 119
5 — ( 5 ) 15.53 ( 0 ) 100.00 0.00 50.45 0.00 470 2495 9156476 1 11659 52
10 — ( 5 ) 17.64 ( 0 ) 100.00 0.05 87.20 0.00 880 2175 5927899 2 15624 28

S
2 25.31 ( 0 ) 28.86 ( 0 ) 100.00 0.00 0.00 0.00 204 2445 42178 1 37 126
5 — ( 5 ) 49.89 ( 0 ) 100.00 0.03 49.72 0.00 470 2491 9117840 3 12277 53
10 — ( 5 ) 24.45 ( 0 ) 100.00 0.25 87.53 0.00 880 2183 5399238 4 15145 29

A
2 15.72 ( 0 ) 1663.90 ( 1 ) 100.00 3.21 0.00 0.17 204 6400 13975 133 19 288
5 — ( 5 ) 1603.15 ( 2 ) 100.00 9.93 36.09 1.74 470 5066 6284524 703 9720 138
10 — ( 5 ) 2420.97 ( 1 ) 100.00 15.86 87.63 0.94 880 2987 3478065 2125 11095 60

30

W
2 1214.67 ( 0 ) 264.29 ( 0 ) 86.79 0.00 0.00 0.00 304 3787 1814638 1 559 339
5 — ( 5 ) 80.27 ( 0 ) 86.91 0.00 72.61 0.00 700 2914 3104800 1 12866 107
10 — ( 5 ) 34.14 ( 0 ) 87.86 0.00 84.94 0.00 1310 2474 1626671 1 18935 54

C
2 0.43 ( 0 ) 104.99 ( 4 ) 81.07 14.80 0.00 11.58 304 45929 422 1794 6 643
5 76.89 ( 0 ) 503.59 ( 4 ) 81.71 27.87 0.00 20.17 700 8380 40315 1409 165 100
10 1.89 ( 4 ) — ( 5 ) 81.93 38.05 41.89 33.92 1310 4996 2709802 2978 4156 69

K
2 54.31 ( 0 ) 744.55 ( 4 ) 85.50 6.60 0.00 6.45 304 7743 62564 44 58 368
5 — ( 5 ) 5040.71 ( 4 ) 86.00 11.54 67.36 8.59 700 5932 2838928 295 15993 170
10 — ( 5 ) — ( 5 ) 87.68 17.84 83.29 13.27 1310 4040 1799130 1270 12831 88

D
2 1247.78 ( 0 ) 222.14 ( 0 ) 86.38 0.00 0.00 0.00 304 3810 1731910 1 529 335
5 — ( 5 ) 139.30 ( 0 ) 86.94 0.00 73.46 0.00 700 2939 2824067 1 12906 108
10 — ( 5 ) 38.85 ( 0 ) 87.51 0.00 85.28 0.00 1310 2480 1519282 1 16694 55

S
2 1271.98 ( 0 ) 186.78 ( 0 ) 86.69 0.00 0.00 0.00 304 3699 1631950 1 518 324
5 — ( 5 ) 540.52 ( 0 ) 87.12 0.02 73.42 0.00 700 2905 3042832 3 13666 109
10 — ( 5 ) 94.57 ( 0 ) 87.66 0.08 84.50 0.00 1310 2465 1569091 2 13710 55

A
2 220.34 ( 0 ) 3254.28 ( 3 ) 85.20 2.15 0.00 1.69 304 4997 136052 16 110 403
5 — ( 5 ) 1745.13 ( 4 ) 86.59 5.37 71.23 3.06 700 4216 1909608 51 10892 174
10 — ( 5 ) 1207.09 ( 4 ) 86.97 11.27 83.28 6.38 1310 3735 1103129 465 10680 106

40

W
2 — ( 5 ) 252.49 ( 0 ) 100.00 0.00 31.03 0.00 404 6365 7312331 1 5864 817
5 — ( 5 ) 364.88 ( 0 ) 100.00 0.00 94.01 0.00 930 4168 1925927 1 11549 234
10 — ( 5 ) 355.67 ( 0 ) 100.00 0.00 99.63 0.00 1740 3922 862095 1 8294 120

C
2 1.55 ( 0 ) — ( 5 ) 100.00 23.26 0.00 22.73 404 29032 1164 419 9 448
5 594.78 ( 0 ) — ( 5 ) 100.00 36.17 0.00 35.69 930 5983 271138 92 862 57
10 4207.08 ( 1 ) — ( 5 ) 100.00 37.29 11.40 35.81 1740 4780 1357589 266 5116 40

K
2 719.29 ( 0 ) — ( 5 ) 100.00 8.69 0.00 8.69 404 5651 701127 4 429 412
5 — ( 5 ) — ( 5 ) 100.00 16.32 89.79 16.31 930 4724 1771444 4 11673 171
10 — ( 5 ) — ( 5 ) 100.00 16.50 99.43 16.47 1740 4836 700210 44 13117 100

D
2 — ( 5 ) 259.07 ( 0 ) 100.00 0.00 30.59 0.00 404 6694 6885185 1 7289 865
5 — ( 5 ) 485.52 ( 0 ) 100.00 0.00 94.27 0.00 930 4240 2040736 1 9260 238
10 — ( 5 ) 473.11 ( 0 ) 100.00 0.01 99.90 0.00 1740 3891 692838 1 10352 119

S
2 — ( 5 ) 691.25 ( 0 ) 100.00 0.02 29.89 0.00 404 6224 6075474 1 5159 806
5 — ( 5 ) 244.29 ( 0 ) 100.00 0.00 94.33 0.00 930 4120 2196020 1 11994 230
10 — ( 5 ) 1223.93 ( 0 ) 100.00 0.07 99.90 0.00 1740 3910 925128 3 11056 120

A
2 3347.72 ( 4 ) — ( 5 ) 100.00 4.09 9.28 4.09 404 5760 2823594 2 1885 763
5 — ( 5 ) — ( 5 ) 100.00 9.56 91.43 9.08 930 4410 1346465 5 6365 258
10 — ( 5 ) — ( 5 ) 100.00 9.54 99.86 8.60 1740 4404 677970 41 9029 141

45

W
2 — ( 5 ) 388.20 ( 0 ) 100.00 0.00 41.73 0.00 454 9960 4536228 1 6272 1570
5 — ( 5 ) 207.18 ( 0 ) 100.00 0.00 96.23 0.00 1045 4741 1544401 1 10363 360
10 — ( 5 ) 282.84 ( 0 ) 100.00 0.00 100.00 0.00 1955 4318 494940 1 10023 172

C
2 2.49 ( 0 ) — ( 5 ) 100.00 22.33 0.00 22.32 454 4517 1618 6 13 67
5 398.50 ( 0 ) — ( 5 ) 100.00 35.75 0.00 35.62 1045 4850 162356 10 453 46
10 — ( 5 ) — ( 5 ) 100.00 35.00 76.29 34.76 1955 4710 1628650 35 5534 36

K
2 5287.03 ( 2 ) — ( 5 ) 100.00 12.13 5.66 12.12 454 6140 4935475 3 2537 535
5 — ( 5 ) — ( 5 ) 100.00 17.38 93.84 17.36 1045 5116 2086094 4 9338 226
10 — ( 5 ) — ( 5 ) 100.00 14.67 100.00 14.67 1955 4781 618710 5 11268 120

D
2 — ( 5 ) 358.37 ( 0 ) 100.00 0.00 40.50 0.00 454 9220 4961123 1 5740 1483
5 — ( 5 ) 207.01 ( 0 ) 100.00 0.00 96.12 0.00 1045 4756 1837767 1 8596 363
10 — ( 5 ) 483.48 ( 0 ) 100.00 0.00 100.00 0.00 1955 4310 486390 1 9703 172

S
2 — ( 5 ) 370.88 ( 0 ) 100.00 0.00 40.04 0.00 454 9566 4705056 1 5430 1507
5 — ( 5 ) 1332.07 ( 0 ) 100.00 0.20 95.75 0.00 1045 4809 2080272 4 10194 370
10 — ( 5 ) 1487.71 ( 0 ) 100.00 0.02 99.90 0.00 1955 4315 659990 3 10857 173

A
2 — ( 5 ) — ( 5 ) 100.00 6.72 25.73 6.26 454 6957 2069919 4 3364 1078
5 — ( 5 ) — ( 5 ) 100.00 11.97 91.39 11.12 1045 4895 1615563 6 3655 373
10 — ( 5 ) — ( 5 ) 100.00 7.59 100.00 7.46 1955 4486 483721 6 8786 172

50

W
2 — ( 1 ) 456.01 ( 0 ) 100.00 0.00 48.21 0.00 504 10414 4777385 1 6240 2007
5 — ( 1 ) 615.74 ( 0 ) 100.00 0.03 96.50 0.00 1160 5458 1930033 3 6233 470
10 — ( 1 ) 204.96 ( 0 ) 100.00 0.00 100.00 0.00 2170 4971 355938 1 7946 232

C
2 4.78 ( 0 ) — ( 1 ) 100.00 22.61 0.00 22.61 504 4342 2935 2 17 59
5 — ( 1 ) — ( 1 ) 100.00 34.42 67.17 34.37 1160 5142 2940681 4 5728 51
10 — ( 1 ) — ( 1 ) 100.00 40.27 83.64 40.21 2170 5198 1333733 18 3970 41

K
2 — ( 1 ) — ( 1 ) 100.00 11.24 18.49 11.24 504 6665 4998109 3 3635 673
5 — ( 1 ) — ( 1 ) 100.00 17.43 91.41 17.43 1160 5674 3154623 3 5249 284
10 — ( 1 ) — ( 1 ) 100.00 14.01 100.00 13.91 2170 5463 567705 7 10827 156

D
2 — ( 1 ) 405.36 ( 0 ) 100.00 0.00 47.33 0.00 504 9675 4367022 1 6329 1789
5 — ( 1 ) 209.77 ( 0 ) 100.00 0.00 94.73 0.00 1160 5302 2598004 1 4692 469
10 — ( 1 ) 605.10 ( 0 ) 100.00 0.00 100.00 0.00 2170 5000 548086 1 7504 233

S
2 — ( 1 ) 451.37 ( 0 ) 100.00 0.00 48.39 0.00 504 10286 3512436 1 6039 1986
5 — ( 1 ) 815.35 ( 0 ) 100.00 0.07 96.27 0.00 1160 5236 3055646 3 6241 459
10 — ( 1 ) 204.63 ( 0 ) 100.00 0.01 100.00 0.01 2170 4900 386889 1 9984 231

A
2 — ( 1 ) — ( 1 ) 100.00 5.95 32.08 5.36 504 8326 1790159 4 2035 1513
5 — ( 1 ) — ( 1 ) 100.00 12.91 91.62 11.92 1160 5559 1874166 7 3311 483
10 — ( 1 ) — ( 1 ) 100.00 7.13 100.00 6.88 2170 5089 462300 9 10198 231

Total Average: 673.68 ( 267 ) 557.40 ( 157 ) 96.65 8.44 53.08 6.79 886 6179 2347788 663 7186 310

Table 2.9: Results for Eilon et al. (1974) instances for `2-norm
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Continuous Multifacility Monotone Ordered Median Problem

n type p Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20

W
2 151.03 ( 0 ) 743.17 ( 0 ) 100.00 0.00 0.00 0.00 524 471 56126 1 418 24
5 — ( 5 ) 267.56 ( 0 ) 100.00 0.00 62.95 0.00 1270 415 2700255 1 13112 14
10 — ( 5 ) 133.91 ( 0 ) 100.00 0.00 98.54 0.00 2480 406 1259405 1 13418 13

C
2 0.91 ( 0 ) — ( 5 ) 100.00 30.56 0.00 29.19 524 9181 507 417 11 121
5 71.86 ( 0 ) — ( 5 ) 100.00 35.58 0.00 30.56 1270 3061 17235 1473 62 32
10 2142.39 ( 0 ) — ( 5 ) 100.00 47.17 0.00 47.00 2480 912 261767 553 879 8

K
2 16.05 ( 0 ) 5363.15 ( 2 ) 100.00 9.14 0.00 2.07 524 12397 7592 424 40 352
5 — ( 5 ) 2946.11 ( 3 ) 100.00 14.87 38.13 5.02 1270 3466 2839547 1556 8104 75
10 — ( 5 ) 3206.51 ( 2 ) 100.00 8.25 93.62 5.18 2480 1348 1021924 2630 6013 23

D
2 125.29 ( 0 ) 810.43 ( 0 ) 100.00 0.00 0.00 0.00 524 498 53138 1 300 26
5 — ( 5 ) 230.99 ( 0 ) 100.00 0.00 60.85 0.00 1270 382 2732256 1 12124 11
10 — ( 5 ) 112.30 ( 0 ) 100.00 0.09 99.24 0.00 2480 377 1083407 2 11367 10

S
2 104.35 ( 0 ) 973.36 ( 0 ) 100.00 0.05 0.00 0.00 524 530 45754 1 239 27
5 — ( 5 ) 255.50 ( 0 ) 100.00 0.11 64.54 0.00 1270 398 2470849 2 10763 12
10 — ( 5 ) 125.04 ( 0 ) 100.00 0.26 99.51 0.00 2480 378 1131966 4 11380 10

A
2 33.54 ( 0 ) 2705.24 ( 1 ) 100.00 4.22 0.00 0.15 524 3049 11374 71 74 150
5 — ( 5 ) 1648.71 ( 2 ) 100.00 8.18 42.12 1.90 1270 2262 2117999 329 6961 64
10 — ( 5 ) 4194.46 ( 1 ) 100.00 13.35 99.33 1.41 2480 1216 842028 2054 8107 29

30

W
2 2404.31 ( 4 ) 435.00 ( 4 ) 86.64 14.53 12.54 14.53 784 843 2130171 1 10112 65
5 — ( 5 ) 3934.80 ( 2 ) 86.35 5.57 77.53 5.57 1900 860 830494 1 12706 48
10 — ( 5 ) 2479.98 ( 0 ) 86.89 0.03 86.14 0.00 3710 816 306492 3 4764 37

C
2 2.30 ( 0 ) 1631.39 ( 4 ) 81.07 29.54 0.00 29.53 784 7137 675 7559 17 94
5 571.24 ( 0 ) 2360.18 ( 4 ) 81.71 48.42 0.00 46.18 1900 2388 71418 386 212 27
10 8.07 ( 4 ) 1801.17 ( 4 ) 81.93 48.01 71.16 47.51 3710 1236 316323 33 1003 10

K
2 211.31 ( 0 ) 17.36 ( 4 ) 85.39 24.11 0.00 23.96 784 1808 86793 7 303 81
5 — ( 5 ) 27.59 ( 4 ) 86.11 14.05 63.23 13.64 1900 1707 1143862 12 9716 52
10 — ( 5 ) 34.09 ( 4 ) 85.92 22.77 85.05 22.13 3710 1409 365197 168 4413 35

D
2 4446.26 ( 3 ) 3777.09 ( 3 ) 86.24 18.03 10.14 18.03 784 946 2197143 1 9689 71
5 — ( 5 ) 3574.66 ( 2 ) 86.38 9.19 74.99 9.19 1900 853 958686 1 12995 45
10 — ( 5 ) 2472.72 ( 0 ) 86.60 0.06 85.43 0.00 3710 796 375899 3 5968 35

S
2 3256.59 ( 3 ) 305.27 ( 4 ) 86.54 17.51 9.82 17.51 784 850 1889060 1 8632 70
5 — ( 5 ) 3697.87 ( 1 ) 86.19 1.29 78.49 1.23 1900 760 873284 2 12851 40
10 — ( 5 ) 2525.29 ( 0 ) 87.92 0.12 87.51 0.00 3710 791 351574 4 4490 32

A
2 1365.87 ( 0 ) 61.55 ( 4 ) 85.11 21.30 0.00 21.04 784 1141 327100 3 1255 96
5 — ( 5 ) 11.83 ( 4 ) 85.51 7.43 72.18 6.75 1900 1251 643473 8 9003 67
10 — ( 5 ) 100.35 ( 4 ) 85.84 15.80 84.79 13.75 3710 1385 306764 101 4475 51

40

W
2 — ( 5 ) — ( 5 ) 100.00 26.96 51.29 26.96 1044 1248 1344963 1 16445 121
5 — ( 5 ) — ( 5 ) 100.00 83.14 95.28 83.14 2530 1267 482105 1 5041 104
10 — ( 5 ) — ( 5 ) 100.00 92.94 100.00 92.94 4940 1350 188692 1 3381 85

C
2 6.66 ( 0 ) — ( 5 ) 100.00 38.00 0.00 37.95 1044 2502 1762 5 22 37
5 2658.74 ( 2 ) — ( 5 ) 100.00 81.92 39.02 81.92 2530 2235 434526 1 3523 25
10 — ( 5 ) — ( 5 ) 100.00 75.34 100.00 75.34 4940 1921 349858 12 1348 18

K
2 4990.55 ( 1 ) — ( 5 ) 100.00 50.04 3.02 50.04 1044 2202 1651655 1 5136 113
5 — ( 5 ) — ( 5 ) 100.00 74.12 97.64 74.12 2530 2018 479613 1 7167 86
10 — ( 5 ) — ( 5 ) 100.00 69.68 100.00 69.68 4940 1934 210396 3 2563 72

D
2 — ( 5 ) — ( 5 ) 100.00 20.20 42.95 20.20 1044 1247 1505294 1 12264 125
5 — ( 5 ) — ( 5 ) 100.00 89.82 98.91 89.82 2530 1248 463628 1 8186 98
10 — ( 5 ) — ( 5 ) 100.00 90.59 100.00 90.59 4940 1350 153036 1 5215 87

S
2 — ( 5 ) — ( 5 ) 100.00 25.20 43.94 25.20 1044 1323 1360254 1 12167 126
5 — ( 5 ) — ( 5 ) 100.00 70.38 96.48 70.38 2530 1294 462667 1 6780 91
10 — ( 5 ) — ( 5 ) 100.00 84.09 100.00 84.09 4940 1334 139121 1 6489 81

A
2 — ( 5 ) — ( 5 ) 100.00 24.46 22.07 24.46 1044 1810 1460678 1 5826 191
5 — ( 5 ) — ( 5 ) 100.00 62.67 99.14 62.67 2530 1646 345643 1 7108 134
10 — ( 5 ) — ( 5 ) 100.00 85.25 100.00 85.25 4940 1767 155190 1 3426 113

45

W
2 — ( 5 ) — ( 5 ) 100.00 26.30 54.64 26.30 1174 1398 1133697 1 11416 134
5 — ( 5 ) — ( 5 ) 100.00 92.43 99.51 92.43 2845 1413 401143 1 5947 113
10 — ( 5 ) — ( 5 ) 100.00 100.00 100.00 100.00 5555 1469 153297 1 2343 104

C
2 6.40 ( 0 ) — ( 5 ) 100.00 46.67 0.00 46.67 1174 2326 1132 2 24 34
5 5003.88 ( 3 ) — ( 5 ) 100.00 75.71 60.00 75.71 2845 2532 500043 1 5891 29
10 — ( 5 ) — ( 5 ) 100.00 75.66 100.00 75.64 5555 2236 171358 7 722 22

K
2 — ( 5 ) — ( 5 ) 100.00 44.43 28.39 44.43 1174 2477 1611616 1 11832 146
5 — ( 5 ) — ( 5 ) 100.00 80.52 99.07 80.52 2845 2482 426670 1 6214 157
10 — ( 5 ) — ( 5 ) 100.00 84.97 100.00 84.97 5555 2165 160867 1 1944 90

D
2 — ( 5 ) — ( 5 ) 100.00 24.77 54.89 24.77 1174 1406 1171833 1 12252 135
5 — ( 5 ) — ( 5 ) 100.00 98.15 98.67 98.15 2845 1412 424560 1 4188 113
10 — ( 5 ) — ( 5 ) 100.00 100.00 100.00 100.00 5555 1466 152963 1 2822 104

S
2 — ( 5 ) — ( 5 ) 100.00 23.69 56.00 23.69 1174 1479 1069851 1 11291 141
5 — ( 5 ) — ( 5 ) 100.00 72.98 99.95 72.98 2845 1450 514193 1 5809 107
10 — ( 5 ) — ( 5 ) 100.00 100.00 100.00 100.00 5555 1467 159205 1 2847 101

A
2 — ( 5 ) — ( 5 ) 100.00 24.73 37.56 24.73 1174 1731 695531 1 6228 178
5 — ( 5 ) — ( 5 ) 100.00 65.14 97.05 65.14 2845 1800 295359 1 4504 160
10 — ( 5 ) — ( 5 ) 100.00 95.05 100.00 95.05 5555 2027 131122 1 1477 172

50

W
2 — ( 1 ) — ( 1 ) 100.00 75.57 61.16 75.57 1304 1616 1047768 1 11081 161
5 — ( 1 ) — ( 1 ) 100.00 99.83 100.00 99.83 3160 1623 406553 1 2969 141
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 1709 186637 1 934 128

C
2 11.71 ( 0 ) — ( 1 ) 100.00 62.36 0.00 62.36 1304 2575 2112 1 38 37
5 — ( 1 ) — ( 1 ) 100.00 90.14 87.76 90.14 3160 2577 540242 1 1441 34
10 — ( 1 ) — ( 1 ) 100.00 99.12 100.00 99.12 6170 2587 112265 1 572 26

K
2 — ( 1 ) — ( 1 ) 100.00 36.29 46.27 36.29 1304 2810 957166 1 10628 164
5 — ( 1 ) — ( 1 ) 100.00 91.13 98.89 91.13 3160 2450 434558 1 4069 127
10 — ( 1 ) — ( 1 ) 100.00 90.03 100.00 90.03 6170 2410 142538 1 1231 108

D
2 — ( 1 ) — ( 1 ) 100.00 31.05 63.12 31.05 1304 1666 878351 1 10528 162
5 — ( 1 ) — ( 1 ) 100.00 74.10 100.00 74.10 3160 1695 285611 1 4410 134
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 1777 83410 1 545 129

S
2 — ( 1 ) — ( 1 ) 100.00 36.71 60.33 36.71 1304 1577 983547 1 10718 148
5 — ( 1 ) — ( 1 ) 100.00 94.34 99.55 94.34 3160 1635 583530 1 2230 129
10 — ( 1 ) — ( 1 ) 100.00 100.00 100.00 100.00 6170 1737 153870 1 775 135

A
2 — ( 1 ) — ( 1 ) 100.00 24.67 48.59 24.67 1304 2258 514472 1 5470 226
5 — ( 1 ) — ( 1 ) 100.00 75.58 100.00 75.58 3160 1998 403520 1 2368 182
10 — ( 1 ) — ( 1 ) 100.00 91.23 100.00 91.23 6170 2051 117660 1 1968 170

Total Average: 928.16 ( 292 ) 1680.95 ( 276 ) 96.54 41.27 61.20 40.52 2451 1819 711082 237 5823 82

Table 2.10: Results for Eilon et al. (1974) instances for `3-norm
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2.7 Aggregated results

In order to show the influence of p, the Ordered Median aggregation function, and the
`τ -norm, we have aggregated the results of the 1512 instances used in Tables 2.4, 2.8, 2.9,
and 2.10.

n p Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20
2 31.53 ( 0 ) 995.23 ( 27 ) 97.64 5.78 0.00 3.18 352 11676 19115 909 76 311
5 598.89 ( 77 ) 645.63 ( 36 ) 100.00 9.40 31.41 5.29 841 3424 4014722 1775 6812 86
10 1887.11 ( 100 ) 944.99 ( 27 ) 100.00 10.49 68.18 5.25 1623 1837 4961903 2579 7318 38

30
2 800.60 ( 11 ) 782.84 ( 68 ) 86.56 15.67 1.47 14.99 527 12187 724493 448 1706 341
5 605.00 ( 98 ) 1716.72 ( 59 ) 89.26 13.33 54.38 11.70 1258 4621 3293952 259 8505 124
10 1688.00 ( 115 ) 1273.04 ( 52 ) 89.74 12.60 77.60 10.90 2427 2794 3021553 672 5907 64

40
2 1269.05 ( 71 ) 637.73 ( 92 ) 97.42 22.37 18.71 22.30 702 10587 3899173 30 5302 452
5 1285.99 ( 105 ) 920.48 ( 92 ) 100.00 43.95 76.39 43.86 1674 4274 2224552 13 7266 162
10 3970.16 ( 115 ) 558.03 ( 90 ) 100.00 47.30 88.85 46.92 3228 3561 1806857 63 4752 102

45
2 1404.32 ( 86 ) 417.24 ( 94 ) 97.47 24.07 27.13 24.05 789 9011 3575284 6 5658 592
5 1528.56 ( 106 ) 914.34 ( 99 ) 100.00 47.27 79.86 47.20 1883 4121 2010197 4 5773 216
10 — ( 120 ) 900.91 ( 90 ) 100.00 50.95 92.38 50.81 3630 3778 1503232 18 3886 130

50
2 231.73 ( 19 ) 414.88 ( 18 ) 97.50 26.53 34.60 26.50 877 8218 3270850 3 5870 733
5 379.06 ( 23 ) 1296.44 ( 19 ) 100.00 49.11 85.88 49.05 2091 4208 2014876 3 4056 261
10 — ( 24 ) 1140.29 ( 18 ) 100.00 53.29 93.65 53.22 4033 3983 1167240 13 3434 158

Total Average: 788.01 ( 1070 ) 950.76 ( 881 ) 96.64 26.11 52.32 24.78 1614 5964 2567113 538 5209 226

Table 2.11: Results for Eilon et al. (1974) instances disaggregated by p

n type Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20

W 317.70 ( 36 ) 223.81 ( 0 ) 99.49 0.04 42.20 0.00 939 1358 4396856 1 6710 40
C 586.30 ( 3 ) 1167.87 ( 50 ) 98.24 29.65 0.84 22.22 939 16897 840935 6801 376 368
K 208.19 ( 33 ) 2302.80 ( 26 ) 99.29 12.07 33.55 4.07 939 8287 2776965 2663 4251 214
D 490.31 ( 35 ) 202.43 ( 0 ) 99.48 0.05 42.83 0.00 939 1345 3918058 2 6411 39
S 246.13 ( 36 ) 264.52 ( 0 ) 99.48 0.16 42.80 0.00 939 1364 3810920 3 6202 41
A 94.15 ( 34 ) 2244.67 ( 14 ) 99.30 9.39 36.97 1.16 939 4622 2247746 1058 4463 168

30

W 1513.57 ( 44 ) 1106.95 ( 13 ) 89.87 5.18 52.47 5.17 1404 1895 3535132 1 7636 102
C 298.00 ( 15 ) 1014.47 ( 52 ) 84.44 34.66 17.14 30.95 1404 21207 1107742 2046 725 263
K 223.54 ( 39 ) 1637.34 ( 48 ) 88.77 18.00 44.82 15.96 1404 8338 2429087 501 5244 283
D 1618.90 ( 44 ) 1283.18 ( 11 ) 89.57 6.19 52.42 6.18 1404 1905 2728170 1 7388 103
S 1512.19 ( 43 ) 1267.56 ( 11 ) 89.80 5.88 52.85 5.84 1404 1883 2558116 2 6886 101
A 718.27 ( 39 ) 1701.10 ( 44 ) 88.68 13.30 47.19 11.06 1404 3974 1721747 207 4355 208

40

W 4028.70 ( 59 ) 774.14 ( 30 ) 99.48 33.01 72.86 33.00 1868 2957 5069956 1 7853 233
C 980.10 ( 20 ) — ( 60 ) 97.96 50.13 26.17 49.58 1868 19156 881914 158 1541 215
K 2015.89 ( 41 ) — ( 60 ) 99.22 42.57 59.51 42.46 1868 5091 1589810 32 4656 226
D 5908.68 ( 59 ) 461.24 ( 32 ) 99.47 32.77 72.91 32.76 1868 3053 3668574 1 8229 244
S 4977.44 ( 59 ) 865.44 ( 32 ) 99.47 31.20 72.88 31.17 1868 2965 3231789 2 8253 232
A 1271.93 ( 53 ) — ( 60 ) 99.24 37.56 63.59 37.20 1868 3620 1419121 19 4108 281

45

W — ( 60 ) 545.90 ( 33 ) 99.50 36.46 76.57 36.45 2101 3670 4325838 1 6928 371
C 631.76 ( 26 ) — ( 60 ) 97.92 50.86 34.95 50.71 2101 14393 812873 35 1369 165
K 2695.65 ( 51 ) — ( 60 ) 99.27 44.77 64.85 44.75 2101 4696 1888145 9 5273 253
D — ( 60 ) 565.54 ( 33 ) 99.50 37.10 77.13 37.10 2101 3542 3091420 1 6813 355
S — ( 60 ) 1176.85 ( 37 ) 99.49 34.68 77.24 34.64 2101 3672 2778561 2 6696 369
A 4681.25 ( 55 ) — ( 60 ) 99.27 40.71 68.02 40.45 2101 3846 1280588 7 3555 361

50

W — ( 12 ) 504.08 ( 6 ) 99.51 41.69 79.67 41.68 2333 4106 4060816 1 5964 479
C 80.39 ( 7 ) — ( 12 ) 97.92 56.37 47.61 56.32 2333 11574 985006 25 1392 139
K 1135.78 ( 11 ) — ( 12 ) 99.27 48.78 68.21 48.77 2333 4721 1721732 3 4630 280
D — ( 12 ) 1231.14 ( 6 ) 99.51 35.71 79.72 35.71 2333 4047 2644819 1 5596 464
S — ( 12 ) 1080.38 ( 7 ) 99.50 33.47 80.29 33.47 2333 4097 2304729 2 5704 477
A — ( 12 ) — ( 12 ) 99.29 41.84 72.76 41.59 2333 4273 1188832 4 3434 466

Total Average: 788.01 ( 1070 ) 950.76 ( 881 ) 96.64 26.11 52.32 24.78 1614 5964 2567113 538 5209 226

Table 2.12: Results for Eilon et al. (1974) instances disaggregated by type
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n norm Time (#Unsolved) GAProot(%) GAP(%) Vars Nodes Memory (MB)

Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P Compact B&P

20

`1 436.31 ( 27 ) 536.32 ( 21 ) 96.86 9.14 12.95 3.27 387 12007 6217790 3685 959 322
` 3

2
431.87 ( 51 ) 988.85 ( 22 ) 100.00 7.55 41.56 5.10 1425 2112 1027930 538 5279 49

`2 237.07 ( 49 ) 695.93 ( 21 ) 100.00 8.00 36.12 3.13 518 6200 3712315 2266 6961 154
`3 330.68 ( 50 ) 1287.62 ( 26 ) 100.00 9.55 42.16 6.80 1425 2264 1036285 529 5743 56

30

`1 507.49 ( 51 ) 719.49 ( 33 ) 96.81 8.47 33.60 5.77 582 16294 6498700 857 2749 394
` 3

2
1149.07 ( 55 ) 2365.89 ( 57 ) 85.90 22.91 48.76 22.36 2131 1818 519097 58 4414 59

`2 567.61 ( 54 ) 450.17 ( 37 ) 85.92 7.53 45.62 5.84 771 6524 1636955 463 8071 200
`3 1098.91 ( 64 ) 2343.41 ( 52 ) 85.46 16.54 49.94 16.14 2131 1499 731911 461 6256 53

40

`1 895.06 ( 66 ) 941.95 ( 49 ) 96.56 11.16 44.14 10.67 772 14886 7295651 89 3794 429
` 3

2
1932.07 ( 77 ) — ( 90 ) 100.00 67.76 69.78 67.76 2838 1742 514263 2 5889 101

`2 1337.71 ( 70 ) 483.36 ( 45 ) 100.00 8.97 59.71 8.75 1025 6284 2142580 49 7183 330
`3 2330.98 ( 78 ) — ( 90 ) 100.00 63.60 71.65 63.60 2838 1650 621616 2 6227 95

45

`1 1292.16 ( 70 ) 984.00 ( 58 ) 96.63 11.66 49.03 11.45 868 13141 6512940 30 4305 523
` 3

2
1924.73 ( 82 ) — ( 90 ) 100.00 73.90 72.99 73.90 3191 1895 489638 1 3902 123

`2 1374.31 ( 77 ) 568.64 ( 45 ) 100.00 9.10 66.84 8.98 1151 5691 1939349 5 6785 490
`3 1434.25 ( 83 ) — ( 90 ) 100.00 68.40 76.98 68.40 3191 1819 509691 1 5431 113

50

`1 505.06 ( 15 ) 1480.61 ( 10 ) 96.66 11.82 53.46 11.72 966 11475 5577448 18 4265 634
` 3

2
6.06 ( 17 ) — ( 18 ) 100.00 74.63 77.52 74.63 3545 2101 443749 1 3651 140

`2 4.78 ( 17 ) 440.92 ( 9 ) 100.00 9.23 73.10 9.11 1278 6261 2147547 4 5899 632
`3 11.71 ( 17 ) — ( 18 ) 100.00 76.23 81.43 76.23 3545 2042 435212 1 3999 130

Total Average: 788.01 ( 1070 ) 950.76 ( 881 ) 96.64 26.11 52.32 24.78 1614 5964 2567113 538 5209 226

Table 2.13: Results for Eilon et al. (1974) instances disaggregated by norm

2.8 Conclusions

In this chapter, the Continuous Multifacility Monotone Ordered Median Problem is ana-
lyzed. This problem finds solutions in a continuous space and to solve it we have proposed
two exact methods, namely a compact formulation and a branch-and-price procedure,
using binary variables. Along the chapter, we give full details of the branch-and-price
algorithm and all its crucial steps: master problem, restricted relaxed master problem,
pricing problem, initial pool of columns, feasibility, convergence, and branching.

Moreover, theoretic and empirical results have proven the utility of the obtained lower
bound. Using that bound, we have tested three matheuristics that we propose. The
decomposition-based heuristics have shown a very good performance on the computational
experiments. For large-sized instances, the best known solutions have been obtained re-
ducing the solution space by means of a discretization of the continuous problem.

Among the extensive computational experiments and configurations of the problem,
we highlight the usefulness of the branch-and-price approach for medium- to large-sized
instances, but also the utility of the compact formulation and the aggregation-based heuris-
tics for small values of p or for some particular ordered weighted median functions.

Further research on the topic includes the design of similar branch-and-price approaches
to other continuous facility location and clustering problems. Specifically, the application
of set-partitioning column generation methods to hub location and covering problems with
generalized upgrading (see, e.g., Blanco and Marín, 2019) where the index set for the
y-variables must be adequately defined.
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In this chapter we analyze a continuous version of the maximal covering location prob-
lem, in which the facilities are required to be linked by means of a given graph structure
(provided that two facilities are allowed to be linked if a given distance is not exceed). We
propose a mathematical programming framework for the problem and different resolution
strategies. First, we provide a Mixed Integer Non Linear Programming formulation for
the problem and derive some geometrical properties that allow us to reformulate it as an
equivalent pure integer linear programming problem. We propose two branch-and-cut ap-
proaches by relaxing some sets of constraints of the former formulation. We also develop
a matheuristic algorithm for the problem capable to solve instances of larger sizes. We
report the results of an extensive battery of computational experiments comparing the
performance of the different approaches.

3.1 Introduction

In many practical situations in location analysis, the facilities to be located are required
to be interconnected. This is the case of the optimal design of forest fire-fighters centers
that must be communicated to a central server at a give radius (Demaine et al., 2009) or
in the location of sensors that have to be connected to each others (Romich et al., 2015).
Some facility location problems have been analyzed with some kind of interconnection
between facilities (see, e.g., Blanco et al., 2016), although interconnection between services
has been mostly studied in the context of hub location, in which the routing costs induce
such a connectivity between the hub nodes (see Contreras and O’Kelly, 2019, and the
references therein). Another possibility is to consider that an interconnection graph for
the centers has to be constructed provided that two facilities are allowed to be linked if
the distance between them does not exceed a given limit. The incorporation of this type
of interconnection to discrete facility location problems has been recently proposed by
Cherkesly et al. (2019). There, the authors provide a model to simultaneously decide the
facilities to open as well as spanning tree of the open facilities (where connection between
nodes is allowed only when a given distance is not exceed) with both the p-median and
the p-center problems. However, as far as we know, there are no previous attempts to deal
with this notion of interconnection in continuous facility location problems.

In this chapter we analyze a novel version of the continuous maximal covering location
problem, called the Maximal Covering Location Problem with Interconnected Facilities
whose goals are: (1) to determine the positions of p facilities in a d-dimensional space in
order to maximize the weighted number of covered points; and (2) to decide the activated
links between the new facilities following the particularities of a given graph structure,
provided that two facilities are allowed to be linked if the distance between them does not
exceed a given radius. Cherkesly et al. (2019) analyze the discrete version of this problem
in case the given graph structure is a spanning tree of the facilities. In contrast, we consider
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a more general framework in which different graph structures can be given to construct the
network of facilities. This model allows the decision maker to choose the most appropriate
graph to link the facilities. For instance, one may consider λ-connected graphs as the input
structure, being the tree-shaped interconnection a particular case of our problem. Thus,
we provide here a flexible modeling approach to incorporate interconnection in continuous
facility location problems, which can be adapted to different useful situations.

We further analyze the following useful input types of spanning graphs for the intercon-
nected facilities: complete, cycle, matching, star, ring-star and line, although one may also
consider spanning trees or other λ-connected structures. The importance of the graphs
that we analyze in more detail comes from the usefulness of them in different situations.
For instance, complete graphs induce conservative robust networks of facilities under fail-
ures since all the facilities are at most at a limit distance from the others. Matching-shaped
structures allow also robust distribution networks in which each facility is supported by
its paired facility. Cycle- and ring-star-shaped graphs are useful in the design of telecom-
munications networks where an alternative path is assured to provide the service in case
of failure (Contreras et al., 2017; Labbé et al., 2004). Star-shaped interconnections are
appropriate when one facility acts as a main server linked to all the others. This is the
case of a main switch that provide service to wifi routers. All the routers are linked to this
switch and a star structure is adequate to design a network with high quality connections
of users. Also, in Digital Data Service in which one desires to connect terminals to hub
servers by point-to-point links and also to connect the servers through a ring structure
(Labbé et al., 2004; Xu et al., 1999).

The main contributions of this chapter are:

• We propose a general framework for the Maximal Covering Location Problem with
Interconnected Facilities (MCLPIF) in a d-dimensional space, in which the dis-
tance/costs are measured by means of `τ (τ ≥ 1) or polyhedral based-norms and
where general spanning graph structures are required to link the facilities.

• We derive a Mixed Integer Non-Linear Programming (MINLP) formulation for the
problem and show how it can be reformulated as a Mixed Integer Second Order
Cone Optimization (MISOCO) problem that can be solved using any of the available
off-the-shelf solvers (Gurobi, CPLEX, XPRESS, etc.).

• We provide a decomposition of the problem by exploiting its geometry. We prove
that the MCLPIF is equivalent to solve a pure Integer Linear Programming (ILP)
problem and use its solution to derive a Second Order Cone programming problem,
whose optimal solution coincides with the one of the MCLPIF.

• We further analyze the planar Euclidean MCLPIF and derive two branch-and-cut
approaches for solving it.
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• We develop a novel matheuristic approach for the problem by using aggregation
techniques and simplified ILP formulations.

The rest of the chapter is organized as follows. The MCLPIF is introduced Section
3.2. We provide a MINLP formulation for the MCLPIF and reformulate it as a MISOCO
problem. Section 3.3 is devoted to analyze the geometry of the MCLPIF and reformu-
late it as an ILP problem. In Section 3.4 we derive two branch-and-cut approaches for
solving the planar Euclidean MCLPIF by means of relaxing subsets of constraints of the
ILP formulation. In Section 3.5 we describe our matheuristic approach for solving the
problem. The results of our computational experience are reported in Section 3.6 showing
the performance of the different proposed approaches. Finally, we draw some conclusions
and point out some further research topics.

3.2 The Maximal Covering Location Problem with
Interconnected Facilities

In this section we introduce the Maximal Covering Location Problem with Interconnected
Facilities (MCLPIF) and fix the notation for the rest of the chapter. In this problem,
apart from the requisites of the MCLP defined in Section 1.2.3, the centers are required
to be linked, within a maximum allowed distance, r ≥ 0, and following the specifications
of a given graph structure. As already mentioned, this interconnection is useful in many
practical situations in which communication between facilities is required for the adequate
performance of the system.

As in Section 1.2.3, we are given metric space Rd with a metric ‖ · ‖, a finite set of
demand points A = {a1, . . . , an} ⊂ Rd, indexed by N = {1, . . . , n} and each point ai ∈ A
has associated a positive demand weight ωi. As we said, the coverage radius can be seen as
the limit to provide service by the facility or as the limit that the user is willing to reach.
In this chapter, we assume the later, thus each demand point ai ∈ A has also associated
a nonnegative coverage radius Ri. We denote by G the undirected complete graph with
nodes P = {1, . . . , p} and S(G) certain undirected spanning subgraph structure of G. In
this subgraph structure the decision maker incorporates the desired particularities for the
topology of the network of facilities.

With the notation above, the goals of the MCLPIF are:

• To determine the positions of p facilities in a d-dimensional space, X1, . . . , Xp ∈ Rd,
that maximize the weighted covered points, provided that the coverage area of the
facilities is determined by the radius Ri, for i ∈ N , and

• To decide the activated links between the new facilities following the particularities of
the structure S(G), provided that two facilities can be interconnected if the distance
between them does not exceed the radius r.



3.2. The Maximal Covering Location Problem with
Interconnected Facilities 75

Lemma 2. The MCLPIF is NP-hard.

Proof. The MCLPIF reduces to the MCLP in case S(G) is a 0-connected subgraph or
S(G) is any spanning subgraph and r big enough, i.e., any link is possible between the
facilities. Thus, by the work of Church (1984), the problem reduces to a discrete MCLP
which is known to be NP-hard (Megiddo et al., 1983).

We provide here a very general framework for the problem that can be adapted to
the different situations in which it may be applied. In what follows, we give a suitable
mathematical programming formulation for the MCLPIF. Apart from the decisions on the
demand points that are covered by the facilities, i.e., the z-variables used in Section 1.2.3,
we use the following set of binary variables to decide on the activated links between the
facilities:

xjk =

1 if facilities k and j are linked in S(G),

0 otherwise,
for all j, k ∈ P, j < k.

With these sets of variables, the MCLPIF can be formulated as the following Mixed
Integer Non Linear Programming problem, that we call (MCLPIFNL):

max
∑
i∈N

ωi
∑
j∈P

zij

s.t.
∑
j∈P

zij ≤ 1, ∀i ∈ N, (MCLPIFNL
1 )

‖Xj − ai‖ ≤ Ri, if zij = 1, ∀i ∈ N, j ∈ P, (MCLPIFNL
2 )

‖Xj −Xk‖ ≤ r, if xjk = 1, ∀j, k ∈ P, j < k, (MCLPIFNL
3 )

x ∈ S(G), (MCLPIFNL
4 )

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P,

xjk ∈ {0, 1}, ∀j, k ∈ P, j < k,

Xj ∈ Rd, ∀j ∈ P.

In the above formulation, apart from the constraints of the MCLP (constraints (MCLPIFNL
1 )

and (MCLPIFNL
2 )), constraints (MCLPIFNL

3 ) ensure that the facilities are allowed to be
linked only in case the distance between them is smaller or equal to r. In (MCLPIFNL

4 ) we
incorporate all the constraints ensuring the desired properties of the spanning subgraph of
facilities S(G). Similarly to constraints defined en Chapter 1.2.3, the family of constraints
(c-MCLPNL

6 ), (MCLPIFNL
3 ) can be equivalently rewritten as:

‖Xj −Xk‖ ≤ r +M(1− xjk), ∀j, k ∈ P, j < k,

for a big enough constant M > maxi,j∈N ‖ai − aj‖+ 2r.
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3.2.1 Spanning subgraphs of facilities

The spanning subgraph of the facilities, S(G), represents the requirements of the decision
maker on the desired network. Several options are possible when designing such a network.
We will focus on network structures that can be modeled by fixing the values of the x-
variables in (MCLPIFNL). However, at the end of this section we will describe other
possibilities that can be considered.

Observe that in the continuous MCLP (and also in the MCLPIF), in contrast to its
discrete counterpart, the labels {1, . . . , p} assigned to the facilities are arbitrary, in the
sense that any permutation of the labels is an alternative solution of the problem. Taking
into account this observation we consider the following six spanning graph structures and
their incorporation, in terms of the x-variables, into the problem:

• Complete. A complete graph can be model by fixing the values of all the x-values
to one, i.e., xjk = 1 for all j, k ∈ P , j < k.

• Cycle. A spanning cycle of facilities can be set as:

xjk =

{
1 if (k = j + 1) or (j = 1 and k = p),
0 otherwise.

• Line. Similarly to cycles, one can enforce a line (path) by setting:

xjk =

{
1 if k = j + 1,

0 otherwise.

• Star. The star shape on the sets of nodes {1, . . . , p} can be enforced by fixing the
central node of the star to 1 and the links as:

xjk =

{
1 if j = 1 and k 6= 1,

0 otherwise.

• Ring-Star. The structure of a ring-star graph on {1, . . . , p} can be incorporated,
similarly to the star as:

xjk =

{
1 if (j = 1 and k 6= 1) or (j 6= 1 and k = j + 1) or (j = 2 and k = p),
0 otherwise.

• Matching. A perfect matching on {1, . . . , p} (with even p) is a pairwise group of
the vertices, and then, in our case, can be set as:

xjk =

{
1 if j is odd and k = j + 1,

0 otherwise.
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In Figure 3.1 we show the shapes of the six spanning subgraphs described above.
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Figure 3.1: Shapes for the spanning graphs of facilities. From left to right: Complete,
Cycle, Line, Star, Ring-Star, and Matching.

Example 1. We consider a set of 15 demand points on the plane, A = {(0.34, 0.59),
(0.13, 0.90), (0.67, 0.53), (0.41, 0.03), (0.36, 0.20), (0.09, 0.10), (0.29, 1.), (0.68, 0.56), (0.08, 0.50),
(0.86, 0.71), (0.66, 0.63), (0.87, 0.05), (0.22, 0.44), (0.22, 0.11), (0.11, 0.53)}, Ri = 0.1, for all
i = 1, . . . , 15, r = 0.3, ωi = 1, for all i and ‖ · ‖ the Euclidean distance. A solution of the
classical MCLP for p = 6 is drawn in Figure 3.2. On the other hand, the solutions for the
MCLPIF for the same number of facilities and shapes (Complete, Cycle, Line, Star, Ring-
Star and Matching) are drawn in Figure 3.3. Demand points are drawn with solid circles
while optimal facilities are drawn with asterisks. Links in the solutions are represented by
segments joining the asterisks in the pictures.

Figure 3.2: Solution to the MCLP for the data of Example 1.
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Figure 3.3: Solutions of the MCLPIF for the data of Example 1 and shapes (from left to
right): Complete, Cycle, Line, Star, Ring-Star and Matching.

Other graph structures can be modeled and incorporated to the problem. In particular
the structure required by Cherkesly et al. (2019) for the interconnected discrete maxi-
mal covering location problem, spanning trees. For instance, one may use the subtour
elimination constraints (SEC) formulation of the problem:∑

j,k∈P :
k<j

xjk = p− 1, (ST1)

∑
j,k∈S:
j<k

xjk ≤ |S| − 1, ∀S ⊆ P, S 6= ∅. (ST2)

The SEC constraints, (ST2), can be efficiently separated, avoiding the use of exponentially
many constraints in the formulation. Other compact formulations are the ones proposed
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by Miller et al. (1960) or the following flow-based formulation:∑
j,k∈P :
k<j

xjk = p− 1, (FlowST1)

∑
`∈P
6̀=1

fj1` = 1, ∀j ∈ P, j 6= 1, (FlowST2)

∑
`∈P
6̀=j

fj`j = 1, ∀j ∈ P, j 6= 1, (FlowST3)

∑
`∈P

fjk` −
∑
`∈P

fj`k = 0, ∀j, k ∈ P, j 6= 1, k 6= 1, ` 6= j, (FlowST4)

fjk` + fj`k ≤ xk`, ∀j, k, ` ∈ P, j 6= 1, k < `, (FlowST5)

where fjk` indicates the amount of flow to sent from node 1 to node j using arc (k, `) in the
graph of facilities. (FlowST1) indicates that the tree must have p − 1 edges. Constraints
(FlowST2), (FlowST3) and (FlowST4) are the flow conservation constraints. Finally, con-
straints (FlowST5) avoid using links that are not activated.

Finally, we would like to highlight that the strategy explained in Chapter 1.2.3 to
reformulate the continuous MCLP as a discrete MCLP by means of the DFS is no longer
valid for the MCLPIF as shown in the following simple counter example.

Example 2. Let us consider the set of five demand points on the plane A = {(0, 0),

(1, 0), (3.25, 0), (5, 0), (6, 0)}, Ri = 0.5 for i = 1, . . . , 5, r = 2.5, p = 3, ‖ · ‖ the Euclidean
norm, and as S(G) a line. The DFS is a Circle Intersection Points set (CIPS) defined
by Church (1984), which is CIPS = A ∪ {(0.5, 0), (5.5, 0)}. However, the unique optimal
solution to the problem to cover the five demand points is to locate the facilities in X∗1 =

(0.5, 0), X∗2 = (3, 0) and X∗3 = (5.5, 0) as shown in Figure 3.4.

Figure 3.4: Unique optimal solution of the instance of Example 2.

3.3 An Integer Programming Formulation for the MCLPIF

The formulation (MCLPIFNL) for the MCLPIF is a Mixed Integer Non Linear Program-
ming problem, which can be reformulated as a Mixed Integer Second Order Cone Op-
timization (MISOCO) problem and then, solved using any of the available off-the-shelf
software (CPLEX, Gurobi, XPress, ...). However, the capability of MISOCO solvers to
solve large-size instances is nowadays limited compared to the efficiency of the routines for
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solving Mixed Integer Linear Programs. In this section we provide a novel pure Integer
Linear Programming formulation for the MCLPIF that only uses the z-variables already
used in (c-MCLPNL) and (MCLPIFNL).

First, observe that the difficult decisions of the MCLPIF are those associated to the
z and the x-variables, since the continuous variables (coordinates of the centers) can be
calculated from them in polynomial time.

Theorem 8. Let (z̄, x̄) be a feasible solution for the MCLPIF. Then, optimal positions for
the facilities, X1, . . . , Xp ∈ Rd, can be computed in polynomial time.

Proof. Note that once the z and the x variables are fixed in (MCLPIFNL), the problem
turns into:

ξ(x̄, z̄) := max
∑

i∈N,j∈P :
z̄ij=1

ωi (SP1)

s.t. ‖ai −Xj‖ ≤ R, ∀i ∈ N, j ∈ P : z̄ij = 1, (SP2)

‖Xj −Xk‖ ≤ r, ∀j, k ∈ P, j < k : x̄jk = 1, (SP3)

Xj ∈ Rd, ∀j ∈ P, (SP4)

which can be reformulated as a (continuous) SOC problem, and then, solved by interior
point methods in polynomial time for any desired accuracy (see Nesterov and Nemirovskii,
1994).

In what follows we analyze the feasible region of the problem (SP) above, and detail
how this information can be exploited and incorporated to the x and z variables in order to
project out the X-variables in (MCLPIFNL) in a similar way to the presented in Chapter
1.2.3. For the sake of this analysis, from now on, we assume that each facility covers at
least one demand point, which is assured by constraints c-MCLPNL

2 that we recall by:∑
i∈N

zij ≥ 1, ∀j ∈ P.

Let (z̄, x̄) ∈ {0, 1}n×p × {0, 1}p×p be a feasible solution for the MCLPIF. Denote by
Cj = {i ∈ N : z̄ij = 1}, the demand points allocated to facility j, and Kj = {k ∈ P :

x̄min{j,k}max{j,k} = 1}, the set of facilities linked to facility j (according to the solution).
Then, we get that:

• By constraints (SP2):
Xj ∈

⋂
i∈Cj

BRi(ai), ∀j ∈ P, (Cov)

that is, Xj must belong to the intersection of all ‖ · ‖-balls centered at the points
covered by the facility and their radii.
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• By constraints (SP3):
Xj ∈

⋂
k∈Kj

Br(Xk), ∀j ∈ P, (Link)

that is, the j-th facility must be reachable (at distance r) to all the facilities linked
to it.

The above conditions fully characterize all the feasible solutions of (SP). However,
although (Cov) is clearly determined from the input data (the demand points and the radius
Ri), (Link) depends on the coordinates of the X-variables, whose values are unknown. In
what follows we derive a necessary and sufficient condition for the existence of feasible
values of the X-variables in terms of the z and x-variables.

Let us denote by ⊕ the Minkowski sum operator 1 in Rd. Given C = {C1, . . . , Cp}
with C1, . . . , Cp ⊂ N and K = {K1, . . . ,Kp} with K1, . . . ,Kp ⊂ P , we denote:

zCij =

{
1 if i ∈ Cj ,
0 otherwise

and xKjk =

{
1 if k ∈ Kj ,

0 otherwise
,

for all i ∈ N, j, k ∈ P .
The following result allows us to reformulate (MCLPIFNL) using the variables z and x.

Theorem 9. Let C = {C1, . . . , Cp} with C1, . . . , Cp ⊂ N be nonempty disjoint sets of
demand points and K = {K1, . . . ,Kp}, with K1, . . . ,Kp ⊂ P , the sets defining the graph
structure S(G). Then, the following conditions are equivalent:

1. The set

Mj(C; K) :=
⋂
i∈Cj

BRi(ai) ∩
⋂
k∈Kj

(( ⋂
i∈Ck

BRi(ai)
)
⊕ Br(0)

)
, (M-SETS)

is non empty, for all j ∈ P .

2. There exists X = (X1, . . . , Xp) ∈ Rd such that (zC, xK,X) is a feasible solution for
MCLPIF.

Proof. Let us assume that C = {C1, . . . , Cp} and K = {K1, . . . ,Kp} are given such that
theM-sets in (M-SETS) are nonempty. Then, we construct the z̄ and x̄-values as:

z̄ij = zCij and x̄jk = xKjk.

Let us denote by Lj =
⋂
i∈Cj BRi(ai) for all j ∈ P .

Assume that there not exist X = (X1, . . . , Xp) such that (x̄, z̄,X) is feasible for
MCLPIF, i.e., for all X = (X1, . . . , Xp) ∈ L1 × · · · × Lp there exist jX ∈ P and kX ∈ KjX

1A⊕B = {a+ b : a ∈ A, b ∈ B} ∀A,B ⊂ Rd



82
Chapter 3. Continuous maximal covering location problems

with interconnected facilities

such that ‖XjX −XkX‖ > r, or equivalently, XjX 6∈ Br(XkX ). Thus, we have that for all
X ∈ L1 × · · · × Lp:(

L1 ×
⋂
k∈K1

(Lk ⊕ Br(0))
)
× · · · ×

(
Lp ×

⋂
k∈Kp

(Lk ⊕ Br(0))
)

= ∅

Then, any of the sets Mj = Lj ∩
⋂
k∈Kj (Lk ⊕ Br(0)) is empty, contradicting the non-

emptiness of theM-sets.
The other implication is straightforward.

From the above result we can reformulate the MCLPIF as an Integer Linear Program-
ming problem, projecting out the continuous variables in (MCLPIFNL).

Corollary 1. A solution to the MCLPIF can be obtained by solving the following integer
linear programming formulation:

max
∑
i∈N

∑
j∈P

ωizij (3.3)

s.t.
∑
j∈P

zij ≤ 1, ∀i ∈ N, (3.4)

∑
i∈N

zij ≥ 1,∀j ∈ P, (3.5)∑
i∈Cj

zij +
∑
k∈Kj

∑
i∈Ck

zik +
∑
k∈Kj

xjk ≤ |Cj |+
∑
k∈L
|Ck|+ |Kj | − 1,

∀C1, . . . , Cp ⊂ N,K1, . . . ,Kp ⊂ P, withMj(C; K) = ∅, (3.6)

x ∈ S(G), (3.7)

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P, (3.8)

xjk ∈ {0, 1}, ∀j, k ∈ P, j < k. (3.9)

Proof. By Theorem 9, any feasible solution, in the X-variables, given the values of the z
and the x-variables, verifies that

Xj ∈Mj :=Mj(C,K) =
⋂
i∈Cj

BR(ai) ∩
⋂
k∈Kj

(( ⋂
i∈Ck

BR(ai)
)
⊕ Br(0)

)
and also that the optimal solution of MCLPIF can be obtained by choosing adequately
Xj ∈Mj for j ∈ P . Thus, in order to ensure that the z and x variables induce non empty
setsM1, . . . ,Mp, one must require that the sets C1, . . . , Cp andK1, . . . ,Kp inducing empty
M-sets are not allowed.

Constraints (3.6) enforce that in caseMj = ∅ the solution if no longer valid.
Once the clusters of points and links are obtained with the formulation above, one is

assured that (SP) is feasible, and its solutions are the desired coordinates of the centers.
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The above mathematical programming formulation reduces the search of an optimal
solution of the MCLPIF to the binary variables, avoiding continuous variables and non
linear constraints, at the price of adding the exponentially many constraints in (3.6). Also,
note that constraints (3.6) are added just in case the sets Mj(C; K) (M-sets, for short)
are empty. These sets are constructed as described in (M-SETS), and although they are
convex sets, they are not computationally easy to handle. These sets belong to the family
of generalized Minkowski sets (see Peters and Herrmann, 2019).

The following result allows us to reduce the emptiness tests on theM-sets. We denote
by Oi1i2 =

(
BRi1 (ai1) ∩ BRi2 (ai2)

)
⊕ Br(0) for any i1, i2 ∈ N . Note that in case |S| = 1

the set Oi1i1 reduces to BRi1+r(ai1).

Lemma 3. Let S ⊆ N then:( ⋂
i∈S

BRi(ai)
)
⊕ Br(0) =

⋂
i1,i2∈S

Oi1i2

Proof. First, observe that the intersection of the Ri-disks centered at the points indexed
by S is identical to the pairwise intersections in that index set, i.e.⋂

i∈S
BR(ai) =

⋂
i1,i2∈S

(
BRi1 (ai1) ∩ BRi2 (ai2)

)
. (3.10)

Let us now check the identity in the result. On the one hand, let us assume that z ∈⋂
i∈S BR(ai)⊕Br(0). Then, by (3.10), there exist x ∈

⋂
i1,i2∈S

(
BRi1 (ai1) ∩ BRi2 (ai2)

)
and

y ∈ Br(0) such that z = x + y. It implies that x ∈ BRi1 (ai1) ∩ BRi2 (ai2), ∀i1, i2 ∈ S and

z ∈
(
BRi1 (ai1) ∩ BRi2 (ai2)

)
⊕ Br(0) = Oi1i2 . Thus, z ∈

⋂
i1,i2∈S Oi1i2 .

On the other hand, let z ∈
⋂
i1,i2∈S Oi1i2 . Then, ∀i1, i2 ∈ S, there exists xi1i2 , yi1i2 : z =

xi1i2+yi1i2 , implying that xi,i′ ∈ Br(z), ∀i, i′ ∈ Ck, i 6= i′. Then, Br(z)∩(BR(ai) ∩ BR(ai′)) 6=
∅ for all i1, i2 ∈ S. By Helly’s Theorem, it assures that Br(z)∩

⋂
i1,i2∈S(BR(ai)∩BR(ai′) 6= ∅.

Then, there exists x ∈ Br(z)∩
(
BRi1 (ai1) ∩ BRi2 (ai2)

)
∀i1, i2 ∈ S. Thus, z can be written

as z = x + (z − x), with x ∈
⋂
i1,i2∈S

(
BRi1 (ai1) ∩ BRi2 (ai2)

)
and (z − x) ∈ Br(0), being

then z ∈
⋂
i,i′∈S

(
BRi1 (ai1) ∩ BRi2 (ai2)

)
⊕ Br(0).

The case |S| = 1 follows analogously.

The following Theorem allows us to replace the exponential number of constraints (3.6)
by a polynomial number of them (for fixed dimension d).

Theorem 10. Let C = {C1, . . . , Cp} with C1, . . . , Cp ⊂ N and K = {K1, . . . ,Kp} with
K1, . . . ,Kp ⊂ P . Then,Mj(C; K) = ∅ if and only:⋂

i∈S0

BRi(ai) ∩
⋂

i1,i2∈S1

Oi1i2 = ∅,
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for all S0, S1 ⊆ N with |S0|+ |S1| = d+ 1.

Proof. First, observe that by Lemma 3 we get that:

Mj(C,K) =
⋂
i∈Cj

BR(ai) ∩
⋂
k∈Kj

( ⋂
i1,i2∈Ck

Oi1i2

)

Next, note that Mj(C; K) is a convex set since it is the intersections of convex sets (D-
balls and Minkowski sums of intersection of balls with a ball). By Helly’s Theorem (Helly,
1930), only intersection of (d+ 1)-wise sets is needed.

In particular, the above theorem allows simplifying constraints (3.6) in the planar
(d = 2) case, as stated in the following result, whose proof is straightforward.

Corollary 2. Let C = {C1, . . . , Cp} with C1, . . . , Cp ⊂ N , K = {K1, . . . ,Kp} with
K1, . . . ,Kp ⊂ P and j ∈ P . Then, in the planar case, Mj(C; K) = ∅ if and only any of
the following conditions is verified:

1. BRi1 (ai1) ∩ BRi2 (ai2) ∩ BRi3 (ai3) = ∅, for all i1, i2, i3 ∈ Cj.

2. BRi1 (ai1) ∩ BRi2 (ai2) ∩ Oi3i4 = ∅, for all i1, i2 ∈ Cj, i3, i4 ∈ C` for some ` ∈ Ck for
some k ∈ Kj.

3. BRi1 (ai1) ∩Oi2i3 ∩Oi4i5 = ∅, for all i1 ∈ Cj, i2, i3 ∈ C`1, i4, i5 ∈ C`2 for `1, `2 ∈ Kj.

4. Oi1i2∩Oi3i4∩Oi5i6 = ∅, for all i1, i2 ∈ C`1, i3, i4 ∈ C`2, i5, i6 ∈ C`3 , for `1, `2, `3 ∈ Kj.

As a consequence of Corollary 2, in the planar case, constraints (3.6) can be replaced
by the following set of constraints. Let i, i1, . . . , i6 ∈ N and j, k, k1, k2, k3 ∈ P .

• If BRi1 (ai1) ∩ BRi2 (ai2) ∩ BRi3 (ai3) = ∅:

– If BR`1 (a`1) ∩ BR`2 (a`2) = ∅ for some `1, `2 ∈ {i1, i2, i3}:

z`1j + z`2j ≤ 1, ∀j ∈ P, (Int1)

that is, points a`1 and a`2 cannot be covered by the same facility.

– If all pairwise intersections are non empty:

zi1j + zi2j + zi3j ≤ 2, ∀j ∈ P, (Int2)

which assures that the three points cannot be simultaneously covered by the
same facility.

• If BRi1 (ai1) ∩ BRi2 (ai2) ∩Oi3i4 = ∅ (with BRi1 (ai1) ∩ BRi2 (ai2 ) 6= ∅):
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– If BR`(a`) ∩Oi3i4 = ∅ for some ` ∈ {i1, i2}:

z`j + zi3k + zi4k + xjk ≤ 3, ∀j, k ∈ P, j < k, (Int3)

ensuring that a` is not allowed to be allocated to a facility, j, that is linked to
the facility, k, which covers ai3 and ai4 .

– If all pairwise intersections are non empty:

zi1j + zi2j + zi3k + zi4k + xjk ≤ 4, ∀j, k ∈ P, j < k, (Int4)

avoiding that ai1 and ai2 are allocated to a facility, j, that is linked to the
facility, k, which covers ai3 and ai4 .

• If BRi1 (ai1) ∩Oi2i3 ∩Oi4i5 = ∅ (with BRi1 (ai1) ∩Oi2i3 ,BRi1 (ai1) ∩Oi4i5 6= ∅):

– If Oi2i3 ∩Oi4i5 = ∅:

zi2k1 + zi3k1 + zi4k2 + zi5k2 + xjk1 + xjk2 ≤ 5, ∀j, k1, k2 ∈ P, j < k1, k2, (Int5)

assuring that the facility covering ai2 and ai3 (k1) and the facility covering ai4
and ai5 (k2) cannot share a common linked facility (j).

– If all pairwise intersections are non empty:

zi1j+zi2k1+zi3k1+zi4k2+zi5k2+xjk1+xjk2 ≤ 6, ∀j, k1, k2 ∈ P, j < k1, k2, (Int6)

avoiding to link the facility that covers ai1 , j, both with the facility covering ai2
and ai3 , k1, and the facility covering ai4 and ai5 , k2.

• If Oi1i2 ∩Oi3i4 ∩Oi5i6 = ∅ (with nonempty pairwise intersections):

zi1k1 + zi2k1 + zi3k2 + zi4k2 + zi5k3 + zi6k3+ (Int7)

xjk1 + xjk2 + xjk3 ≤ 8, ∀j, k1, k2, k3 ∈ P, j < k1, k2, k3,

which is the generalization of (Int5) to the case of three facilities (k1, k2, k3) sharing
a fourth common linked facility (j).

Summarizing the above comments we obtain the following result for the planar MCLPIF.

Theorem 11. The planar MCLPIF can be equivalently formulated as the following Integer
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Linear Programming problem:

max
∑
i∈N

∑
j∈P

ωizij (MCLPIFIP
1 )

s.t.(Int1)− (Int7), (MCLPIFIP
2 )∑

j∈P
zij ≤ 1, ∀i ∈ N, (MCLPIFIP

3 )

∑
i∈N

zij ≥ 1, ∀j ∈ P, (MCLPIFIP
4 )

x ∈ S(G),

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P,

xjk ∈ {0, 1}, ∀j, k ∈ P, j < k.

The above integer linear programming formulation is a compact model for MCLPIF
with a polynomial number of constraints (O(p3n6)). Apart from the large number of
constrains it has, the main drawback of this formulation is that each of the constraints
(Int1)-(Int7) requires checking either intersection of ‖ · ‖-balls, O-sets or both.

In the following section we give the details of the explicit construction of O-sets on the
plane that allows geometrically checking the emptiness of the intersections in practice.

3.3.1 Planar O-sets

In what follows we study the geometry of the O-sets defined above in order to exploit it
in the Integer Programming Formulation for the MCLPIF. Given ai1 , ai2 ∈ Rd, this set is
defined as:

Oi1i2 =
(
BRi1 (ai1) ∩ BRi2 (ai2)

)
⊕ Br(0).

This set is the Minkowski sum of the intersection of two D-balls centered at demand points
ai1 and ai2 and a D-ball centered at the origin. Since both sets are convex and bounded,
Oi1i2 is also bounded and convex. In Figure 3.5a we illustrate the shape of this convex set
in the planar case. There, we show the two centers of the Euclidean balls (disks), ai1 and
ai2 , and the boundary of the intersection BRi1 (ai1)∩BRi2 (ai2) (drawn with a dashed line).
The disks Br(0) are then moved all around the points in the intersection of the disks. The
border of Oi1i2 is drawn with a thick line in the picture. In Figure 3.5b we show different
shapes for the planar O-sets.
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ai1 ai2

r

R

R

(a) Elements of a planar O-set. (b) Different shapes for planar Oi1i2 .

Figure 3.5: Planar O-sets.

Note that Oi1i2 is a non empty set provided that BRi1 (ai1) ∩ BRi2 (ai2) is non empty
and r > 0. Also, observe that Oi1i2 ⊂ BRi1+r(ai1) ∩ BRi2+r(ai2). This is clear since any
element in x ∈ Oi1i2 can be written as x = z + y where z ∈ BRi1 (ai1) ∩ BRi2 (ai2) and
y ∈ Br(0). Then, ‖x− ai1‖ ≤ ‖(z+ y)− ai1‖ ≤ ‖z− ai1‖+ ‖y− 0‖ = Ri1 + r (analogously
for ai2). In case ai1 = ai2 , Oi1i2 coincides with BRi1+r(ai1). Otherwise (ai1 6= ai2), Oi1i2

is nothing but a smoothing of BRi1+r(ai1) ∩ BRi2+r(ai2) by two balls of radius r in the
two peaks of such a shape (see Figure 3.6 where the boundary of Oi1i2 is drawn with a
thick line and the boundary of the intersection BRi1+r(ai1) ∩ BRi2+r(ai2) is drawn with
a thiner gray line). Actually, as one can also observe from Figure 3.6 that Oi1i2 can be
decomposed in three parts. On the one hand, the middle part in the picture coincide with
BRi1+r(ai1)∩BRi2+r(ai2) inside the strip delimited by the intersections points of the balls
centered at {q1, q2} = ∂BRi1 (ai1)∩∂BRi2 (ai2) and radius r (here, ∂A denotes the boundary
of the bounded set A). On the other hand, the two other parts of Oi1i2 are just the balls
with centers in {q1, q2} and radius r.
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Figure 3.6: Comparison of Oi1i2 and BR+r(ai1) ∩ BR+r(ai2).

Thus, Oi1i2 can be written as the following (non disjoint) union:

Oi1i2 = Br(q1) ∪ Br(q2) ∪
(
BRi1+r(ai1) ∩ BRi2+r(ai1) ∩ Si1i2

)
,

where {q1, q2} = ∂BRi1 (ai1) ∩ ∂BRi2 (ai2) and Si1i2 = {z ∈ Rd : α0 + αtz ≤ 0 ≤ β0 + βtz}
where α0, β0 ∈ R, α, β ∈ Rd are the coefficients of the hyperplane passing through the
points intersecting each of the balls centered at q1 and q2 and radius r and ∂BRi1+r(ai1)∩
∂BRi2+r(ai2) and such that q1, q2 ∈ Si1i2 (strip delimited by the dotted lines in Figure 3.6).

3.4 Branch-and-cut approaches for the MCLPIF

The main bottleneck of formulation (MCLPIFIP) is the large number of constraints in the
form (Int1)-(Int7) it has. Furthermore, checking the emptiness of the intersections of balls
and O-sets requires much memory and CPU time. We propose two exact methodologies
for solving the planar MCLPIF in which the family of constraints (Int1)-(Int7) is initially
relaxed. When solving these relaxed problems, one may obtain solutions which are not
feasible for the MCLPIF. We provide an efficient separation strategy that allows either
certifying the feasibility of a solution or generating a violated inequality for it. This
procedure is embedded within an enumeration tree and it is applied not only at the root
node but also at all generated nodes.

In what follows we describe the two incomplete formulations that we propose for the
problem as well as the separation oracle that we apply to generate the violated constraints.

3.4.1 Incomplete formulation 1

In our first incomplete formulation, we initially incorporate the covering constraints (Int1)
and (Int2). The solutions obtained when solving this relaxed model verify that the demand
points are allocated to the p servers (taking into account the coverage radii), but the
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facilities are not assured to be adequately linked within a given distance r. This approach
is particularly useful in instances where the radius r is large, compared to the coverage
radii, Ri’s, since the number of constraints induced by the O-sets is small, and it may be
convenient to incorporate them as long as they are violated. The incomplete formulation
reads as follows:

max
∑
i∈N

ωi
∑
j∈P

zij (INC1
1)

s.t. (Int1), (Int2), (INC1
2)∑

j∈P
zij ≤ 1, ∀i ∈ N, (INC1

3)∑
i∈N

zij ≥ 1, ∀j ∈ P, (INC1
4)

x ∈ S(G),

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P,

xjk ∈ {0, 1}, ∀j, k ∈ P, j < k.

3.4.2 Incomplete formulation 2

In our second incomplete formulation, we consider a relaxed version of the M-sets that
appear in Theorem 9. In particular, we use the following straightforward result that states
that these sets are subsets of the intersections of certain balls.

Proposition 2. Let C = {C1, . . . , Cp} with Cj ⊂ N , for all j ∈ P and K = {K1, . . . ,Kp}
with Kj ⊂ P for all j ∈ P . Then:

Mj(C,K) ⊂ Lj(C,K) :=
⋂
i∈Cj

BRi(ai) ∩
⋂
k∈Kj

( ⋂
i∈Ck

BRi+r(ai)
)
, for all j ∈ P.

Furthermore, the above inclusion is strict, except in case Cj is a singleton.

Using the above result, one may obtain a relaxed version of (MCLPIFIP) by replacing
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constraints (Int3)-(Int7) by the following ones:

zi1j + zi2k + xjk ≤ 2, if BRi1 (ai1) ∩ BR′i2 (ai2) = ∅, (Int′3)

zi1k1 + zi2k2 + xjk1 + xjk2 ≤ 3, if BR′i1 (ai1) ∩ BR′i2 (ai2) = ∅, (Int′4)

zi1j + zi2j + zi3k + xjk ≤ 3, if BRi1 (ai1) ∩ BRi2 (ai2) ∩ BR′i3 (ai3) = ∅,

(Int′5)

zi1j + zi2k1 + zi3k2 + xjk1 + xjk2 ≤ 4, if BRi1 (ai1) ∩ BR′i2 (ai2) ∩ BR′i3 (ai3) = ∅,

(Int′6)

zi1k1 + zi2k2 + zi3k3 + xjk1 + xjk2 + xjk3 ≤ 5, if BR′i1 (ai1) ∩ BR′i2 (ai2) ∩ BR′i3 (ai3) = ∅.

(Int′7)

for i, i1, . . . , i6 ∈ N, ∀j, k, k,k2, k3 ∈ P, j < k, k,k2, k3 and where R′i = Ri + r.
The second incomplete formulation reads as:

max
∑
i∈N

∑
j∈P

ωizij (INC2
1)

s.t. (Int1), (Int2), (Int′3)− (Int′7), (INC2
2)∑

j∈P
zij ≤ 1, ∀i ∈ N, (INC2

3)∑
i∈N

zij ≥ 1, ∀j ∈ P, (INC2
4)

x ∈ S(G),

zij ∈ {0, 1}, ∀i ∈ N, j ∈ P,

xjk ∈ {0, 1}, ∀j, k ∈ P, j < k.

The main advantage of this incomplete formulation compared to (INC1), is that its
feasible region is closer to (MCLPIFIP), and then, theoretically, a smaller number of
violated should be added.

3.4.3 Separation of violated inequalities

Given a feasible solution, (z̄, x̄), obtained at a MIP node of any of the incomplete for-
mulations ((INC1) or (INC2)), the separation oracle tries to obtain the positions of the p
facilities with covering points provided by z̄ and links derived from x̄. Both incomplete
formulations assure that one can construct the facilities covering the demand points at
their coverage radii. However, we are not assured to be able to link the facilities within
the required distance r. We check the feasibility of the obtained solution by solving the
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following problem:

ρ(z̄, x̄) := min
∑
j∈P

∑
k∈Kj

qjk

s.t. ‖Xj −Xk‖ ≤ r + qjk, ∀j ∈ P, k ∈ Kj ,

‖Xj − ai‖ ≤ Ri, ∀j ∈ P, i ∈ Cj ,

qjk ≥ 0, ∀j ∈ P, k ∈ Kj ,

X1, . . . , Xp ∈ R2,

where Kj = {k ∈ P : x̄min{j,k}max{j,k} = 1} and Cj = {i ∈ N : z̄ij = 1} for all j ∈ P .
The set of nonnegative continuous slack variables qjk allows us to account for the excess

of distance (with respect to r) when linking facilities j and k. Since the overall sum of
these variables is minimized, in case ρ(z̄, x̄) = 0, the solution is feasible for the MCLPIF
(and the optimal values for X1, . . . , Xp are valid coordinates for the servers). Otherwise,
the solution violates one of the constraints (3.6) and we add the following constraint to
the incomplete formulation:∑

j∈P

∑
i∈Cj

zij +
∑
j∈P

∑
k∈Kj :

j<k

xjk ≤
∑
j∈P

(|Cj |+ |Kj |)− 1. (CUT(C,K))

This separation strategy is embedded within the branch-and-bound tree by checking fea-
sibility, and eventually, adding lazy cuts, at each MIP node of the tree.

3.5 Matheuristic approach for larger instances

The MCLPIF is computationally costly, even for medium size instances, as we will see in
Section 3.6. In this section we provide a family of heuristic approaches capable to solve
larger instances in reasonable CPU times. One of the most popular families of heuristic
algorithms in continuous location is the family of aggregation techniques (see e.g., Current
and Schilling, 1990; Daskin et al., 1989; Emir-Farinas and Francis, 2005; Irawan, 2016b).
Aggregation is a useful tool for manipulating data and determining the appropriate policies
to employ for large-scale optimization models.

Recall that an instance of the MCLPIF consists of a tuple (A, w,R, r,S) where A =

{a1, . . . , an} is the set of demand points, w is the vector of demand weights, R is the
vector of coverage radii, r is the maximum allowed distance between the centers and S is
the graph structure required for the facilities. Aggregating points of (A, w,R, r,S) means
replacing it by another instance (A′, w′, R′, r,S) in which obtaining the solution to the
MCLPIF is easier than for the original one by reducing the number of demand points of A,
i.e., |A′| � |A|. Once the solution of this aggregated instance is obtained (the centers) the
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objective function of the original problem is evaluated by computing the weighted sum of
covered points with the obtained centers. However, this strategy may reduce the accuracy
of the model, incurring in different source errors (Current and Schilling, 1990). Below we
describe the different phases of our strategy to aggregate the demand points and palliate
the incurred aggregation errors. Figure 3.7 shows a flowchart of our matheuristic, which
consists of four phases: Aggregation, Construction of Initial Solutions, Location-Allocation,
and Improvement.

(A, w,R, r,S) (A′, w′, R′, r,S)
Solve

(MCLPIF(X̄)) : z̄

Solve
(MCLPIF(z̄)) : X̄

Aggregation InitialSol

Loc-Alloc Solution
Improvement

Figure 3.7: Flowchart of the matheuristic

3.5.1 Aggregation

The first phase of our procedure consists of aggregating the demand points. We apply two
different strategies: the k-Mean Clustering, replacing the original points by the obtained
centroids and the Pick the Farthest (PTF) strategy proposed by Daskin et al. (1989). We
denote by A′ the new set of demand points and by N ′ = {1, . . . , |A′|} the index set for
these points.

Once the points are aggregated, the weights of the aggregated demand points in A′ are
set to the sum of the weights of the original demand points allocated to it with any of the
two aggregation strategies. The coverage radius of an aggregated demand point is set to
the minimum of the coverage radii of the original points assigned to it.

3.5.2 Construction of initial solutions

In the next phase of our matheuristic, we construct initial feasible centers (X-variables)
for the aggregated instance. First, the approach tries choosing the p centers out from the
set A′, as suggested Drezner (1984) and Callaghan et al. (2017) for the p-center problem,
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by solving the following Integer Linear Programming Problem:

min
∑

j,k∈P :j<k
xjk=1

D̃jk

s.t.
∑
j∈P

hij ≤ 1, ∀i ∈ N ′, (INI1)∑
i∈N ′

hij = 1, ∀j ∈ P, (INI2)

D̃jk ≥ ‖a′i1 − a
′
i2‖(hi1k + hi2j − 1), ∀k, j ∈ P with xjk = 1, j < k, (INI3)

D̃jk ≤ r, ∀k, j ∈ P with xjk = 1, j < k, (INI4)

hij ∈ {0, 1}, ∀i ∈ N ′, j ∈ P,

D̃jk ≥ 0, ∀j ∈ P,

where we use the variables hij =

{
1 if ai is selected as the jth facility,
0 otherwise

∀i ∈ N ′,∀j ∈ P

and D̃jk is the distance between the jth and the kth facilities in case xjk = 1. In the
problem above a set of p demand points is selected from A′ (constraints INI1 and INI2)
verifying the distance limit constraints of the graph structure (constraints INI3 and INI4).
There, if i1 is selected as the jth facility and i2 as the kth facility, the distance D̃jk is
computed as the distance between demand points a′i1 and a′i2 , as desired. Although in this
phase we only require to construct a feasible solution for the problem, we select the one
with smallest overall sum of the distances between the linked facilities.

In case the above problem is feasible, with optimal values for the h-variables, h̄, we set
as initial centers for our problem the set X̄ = {X̄1, . . . , X̄p} = {a′i ∈ A′ :

∑
j∈P h̄ij = 1}. In

case the problem above is infeasible, we compute the initial solution by solving the MCLP
of the aggregated points, with a single center (p = 1), c, and radius r

2 . Then, we select,
randomly, a set of p points in B r

2
(c) which are assured to verify that the distance between

all the facilities is at most r and each of the selected facilities covers at least one demand
point.

3.5.3 Location-allocation

The third phase consists of applying an alternate convex search strategy (Gorski et al.,
2007), also known as location-allocation approach in Facility Location (see e.g., Gharaei
et al., 2020). The rationale of this approach is to alternate in solving subproblems in the
solution spaces of the two main sets of variables (X and z). We proceed iteratively, and
each iteration consists of solving a pair of subproblems, one in each space of variables.
When solving the subproblem in one solution space we fix the values of the variables of
the other space.



94
Chapter 3. Continuous maximal covering location problems

with interconnected facilities

Formally, let (MCLPIF(X̄)) and (MCLPIF(z̄)), denote the subproblems of a MCLPIF
formulation, when X̄ and z̄ (for z-values equal to one) are fixed, respectively. We start
with the initial centers obtained in the previous phase. In the k-th iteration, the allocation
of demand points to centers is performed (by inspection) and the z-values are computed.
Then, the z-variables with value one are fixed (while the other are still free to take any
binary value) and the MCLPIF is solved, obtaining new centers. The procedure terminates
when two consecutive iterations produce the same solution.

3.5.4 Improvement

When the Location-Allocation phase is terminated, a set of feasible centers, X1, . . . , Xp is
obtained. The objective function of the original MCLPIF can be evaluated to know the
objective value for this solution.

In order to mitigate aggregation errors that affect the evaluation of the objective func-
tion (see Daskin et al., 1989), we apply a last step, in which slight translations of the centers
X1, . . . , Xp are allowed to cover a larger amount of (weighted) demand points. This phase
is performed by solving the following MISOCO problem:

max
∑
i∈N

wiyi

s.t. ‖Xj(i) − ai‖ ≤ Ri +M(1− yi), ∀i ∈ N, (AUX1)

‖Xj −Xk‖ ≤ r, ∀j, k ∈ P, j < k : x̄jk = 1, (AUX2)

yi ∈ {0, 1},∀i ∈ N,

Xj ∈ Rd,∀j ∈ P,

where we use the binary variables yi =

{
1 if ai is covered by the j(i) center,
0 otherwise

and l(i) =

arg minj∈P ‖X ′j − ai‖, for all i ∈ N .
To accelerate the resolution of the above problem, we fix the y-variables to zero in case

‖ai −X ′j‖ ≥ Ri + 1.5%Ri, and to one if ‖ai −X ′j‖ ≤ Ri/2, for i ∈ N, j ∈ P .
Note that the error that most affect to the objective function of the MCLPIF is the one

in which the centroid is covered by the center but some of the points assigned to it are not.
The above auxiliary problem mitigates this effect by allowing the facilities to accommodate
in the space (but close to the given centers) to cover the most demand as possible.

Finally, the objective function of the MCLPIF is evaluated with the obtained center in
order to compute the effective covered demand.
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3.6 Computational experiments

In this section, we report the results of our computational experience in order to evaluate
the performance of the different proposed approaches for solving the planar MCLPIF. We
consider different datasets from the location analysis literature with sizes ranging from 10 to
2863 demand points with coordinates normalized in the unit square (available in github.

com/vblancoOR/mclpif). The number of centers to be located, p, ranges in {2, 6, 10}.
We consider the same radius for all the demand points and ranging in {0.1, 0.2, 0.3}, and
the limit distance between linked facilities r ∈ {0.3, 0.5}. The graph structures that we
analyze are Comp (complete), Cycle, Line, Matching, Star and Ring-Star (see Section
3.2.1). Note that if p = 2 the MCLPIF coincides for all these graphs.

The models were coded in Python 3.7 in a MacBook Pro with a Core i5 CPU clocked
at 2 GHz and 8GB of RAM memory. We use Gurobi 9.0 as optimization solver. A time
limit of 1 hour was fixed for all the instances.

The complete results obtained in our computational experiments are available in the
github repository github.com/vblancoOR/mclpif.

3.6.1 Computational performance of (MCLPIFIP)

In order to evaluate formulation (MCLPIFIP) we randomly generate 5 samples of sizes in
{10, 20} from the classical planar 50-points dataset provided by Eilon et al. (1974). In
Table 3.1, the results are organized by graph structure (Graph), number of demand points
(n) and number of centers to be located (p). We report the average consumed CPU time
(in seconds) for solving the ILP problems (IP_Time), the average CPU time (in seconds)
required to generate the constraints of (MCLPIFIP) (ContrGen_Time) and the average total
CPU time (in seconds) required for both tasks plus the CPU time (in seconds) of solving the
continuous nonlinear problem (SP) (Tot_Time). We also report the information concerning
the number of constraints of problem (MCLPIFIP). In particular, we provide the average
number of constraints involving only balls (#Ball_Ctrs), the constraints involving O-sets
(#O_Ctrs) and the overall number of constraints in the problem (#All_Ctrs). In column
%OoM we report the percentage of instances that flagged “Out Of Memory” when trying to
solve the problem.

Observe that the CPU times for solving the ILP formulation are small, but the CPU
times needed to generate the constraints are huge compared to the size of the instances.
Concretely, 99.04% of the total time is consumed generating the constraints of the problem.
As expected, this approach is computationally inefficient because of the large number of
constraints in the problem and the high computational cost needed to compute intersections
of balls and O-sets. Even for the small instances, the number of linear constraints needed
to represent the nonlinear nature of the problem is excessive.
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Graph n p IP_Time ContrGen_Time Tot_Time #Ball_Ctrs #O_Ctrs #All_Ctrs %OoM

Complete

10
2 0.00 21.07 21.07 121 903 1036 0%
6 0.30 24.66 24.96 1267 191936 193218 0%

20
2 0.05 1314.88 1314.93 763 25142 25927 0%
6 16.52 1387.05 1403.57 9155 3781055 3790236 3%
10 48.78 1584.20 1632.98 13310 12221020 12234360 50%

Cycle

10
2 0.00 21.07 21.07 121 903 1036 0%
6 0.03 22.76 22.79 566 20936 21518 0%

20
2 0.05 1314.88 1314.93 763 25142 25927 0%
6 1.80 1345.31 1347.12 3916 408220 412162 0%
10 3.11 1355.91 1359.01 6527 750784 757341 0%

Line

10
2 0.00 21.07 21.07 121 903 1036 0%
6 0.02 22.39 22.41 499 13843 14357 0%

20
2 0.05 1314.88 1314.93 763 25142 25927 0%
6 0.64 1341.90 1342.55 3374 196500 199899 0%
10 1.42 1351.65 1353.07 5984 427510 433525 0%

Matching

10
2 0.00 21.07 21.07 121 903 1036 0%
6 0.01 21.32 21.33 364 4498 4878 0%

20
2 0.05 1314.88 1314.93 763 25142 25927 0%
6 0.20 1323.10 1323.30 2288 86756 89070 0%
10 0.37 1350.02 1350.38 3813 163321 167164 0%

Star

10
2 0.00 21.07 21.07 121 903 1036 0%
6 0.05 21.87 21.92 515 33159 33689 0%

20
2 0.05 1314.88 1314.93 763 25142 25927 0%
6 4.37 1343.42 1347.79 3432 549085 552543 0%
10 19.20 1380.24 1399.44 6259 2696969 2703257 7%

Ring-Star

10
2 0.00 21.07 21.07 121 903 1036 0%
6 0.11 22.63 22.73 864 75528 76408 0%

20
2 0.05 1320.04 1320.31 763 25142 25927 0%
6 7.81 1353.78 1361.59 6196 1418769 1424991 0%
10 27.95 1421.35 1449.30 11233 4313033 4324296 7%

Table 3.1: Results of computational experiment for solving the (MCLPIFIP).

3.6.2 Computational performance of the incomplete formulations

We analyze now the two proposed branch-and-cut approaches for the MCLPIF. As in the
previous experiments, we randomly generate 5 samples with sizes in {10, 20, 30, 40}, and
the whole dataset of size 50 from the 50-points instance from the work of Eilon et al.
(1974). 2088 instances were solved in this experiment.

We compare the performance of the three following approaches: NL: Compact Mixed
Integer Non Linear formulation (MCLPIFNL); B&C1: branch-and-cut approach based on
the incomplete formulation (INC1); and B&C2: branch-and-cut approach based on the
incomplete formulation (INC2)

The results are reported in Table 3.2. We report, for each of the three approaches: the
average CPU times (in seconds) only for the optimality solved instances and the percentage
of unsolved instances, the MIP Gaps obtained at the end of the time limit and also the
average number of cuts required to solve the problem up to optimality in the branch-and-
cut approaches. Next to the average CPU times, in parenthesis, we report the standard
deviations of those times. In the last column we also report the percentage deviation of
the best solution found, with any of the three approaches, with respect to the solution of
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the classical MCLP.
As can be observed, the branch-and-cut approaches clearly outperform (in CPU time)

the Mixed Integer Programming Formulation (MCLPIFNL). In 87% of the instances the
CPU times required with the branch-and-cut algorithms are smaller than the CPU times
required by the MISOCO formulation. The overall average of the CPU times (for those
instances in which optimality was certified within the time limit) for (MCLPIFNL) was 105

seconds, while for B&C1 was 23 seconds, i.e., in average, the incomplete formulation con-
sumed 25% less of the time than that required for the non linear formulation. Concerning
the two branch-and-cut schemes, one can observe that the results are similar, both in CPU
times and in percentage of unsolved instances.

The nonlinear formulation was not able to solve 283 of the instances while the branch-
and-cut approaches only failed in 53 of them. The results are more impressive for the
complete graph structure with 10 facilities and n = 50 where none of the 6 instances were
solved within the time limit with the non linear formulation while branch-and-cut algo-
rithms solved each of them in at most 102.35 seconds. In contrast to the results reported
in Section 3.6.1 for (MCLPIFIP) where 99% of the CPU time was consumed checking
intersection and loading constraints to the models, in the branch-and-cut algorithms this
percentage is approximately 50% in average in all the instances. The number of cuts added
through the execution of the two branch-and-cut approaches is also similar. The MIP Gaps
of the compact approach are also greater than those obtained with the branch-and-cut ap-
proaches. In particular, in 86.69% of the instances, the compact formulation obtained
higher gaps than the incomplete formulations.

We further analyze the results for the cases in which p ≥ 6, where the the CPU times for
solving the problem for p = 6 are, in average, larger than those for solving the problems for
p = 10. On the one hand, note that our approaches are based on relaxing the MCLPIF to
the MCLP. Then, as closer is the optimal solution of our problem to the one of the MCLP,
less number of cuts are needed, and smaller CPU times are required for solving the problem.
For larger values of p, in general, the covered demand will be larger and the density of
the coverage areas within the convex hull of the demand points implies that the solution
of the MCLP will be closer to the one of the MCLPIF. Otherwise, the representation of
the interconnection of our problem is initially weak in the relaxed problem, and it has
to be sequentially incorporated to the problem, increasing its resolution computational
cost. Analyzing the last column in Table 3.2, one can observe that, in many cases (Cycle
with n = 30, 40, Line with n = 40, 50, Matching with n = 30, 40, 50, or Ring-Star with
n = 30, 40, 50) the solution of the MCLPIF is closer, in average, to the one of the MCLP for
p = 10 than for p = 6, implying an increase on the CPU times for solving the problems for
six facilities. On the other hand, we also observe that, since the instances were randomly
generated, some of them seems to be more difficult to solve than others. It can be checked
on the values of the standard deviations reported in parenthesis next to the CPU times.



98
Chapter 3. Continuous maximal covering location problems

with interconnected facilities

Some of those values are particularly high, indicating that there is a significant difference
between the difficulties of solving the same problem of instances with the same size.

From the last column, one can also observe that, as expected, the MCLPIF with a
Complete graph is the most restrictive situation with an average deviation of 21% with
respect to the solution of the classical MCLP, i.e., the MCLPIF covers, in average, only
79% of the points that were covered with the MCLP. The results for the Matching graph
indicate that this graph is the most flexible one with an overall average deviation of 2.5%

and with 75% of the instances coinciding, in optimal objective value with the MCLP.
We would like also to highlight that the MCLPIF is much more difficult to solve than

the MCLP. The maximum CPU time that Gurobi consumed for solving the MCLP was
1.06 seconds while some of the instances of the MCLPIF were not able to be solved within
the time limit of one hour.
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Average CPU Times (std) UnSolved MIP Gaps Number of Cuts MCLP
Graph n p (MCLPIFNL) B&C1 B&C2 (MCLPIFNL) B&C1 B&C2 (MCLPIFNL) B&C1 B&C2 B&C1 B&C2 Dev

Comp

10
2 0.11 (0.02) 0.01 (0.01) 0.03 (0.02) 0% 0% 0% 0% 0% 0% 0 0 5%
6 3.09 (5.70) 0.09 (0.05) 0.09 (0.05) 0% 0% 0% 0% 0% 0% 0 0 30%

20
2 0.31 (0.12) 0.13 (0.32) 0.41 (0.92) 0% 0% 0% 0% 0% 0% 14 14 8%
6 44.96 (45.99) 0.83 (2.04) 0.85 (2.07) 0% 0% 0% 0% 0% 0% 12 12 25%

10 585.15 (908.89) 4.74 (13.83) 4.79 (13.89) 40% 0% 0% 7% 0% 0% 27 27 38%

30
2 0.74 (0.20) 0.55 (1.17) 1.67 (3.46) 0% 0% 0% 0% 0% 0% 52 52 4%
6 578.80 (744.90) 64.15 (328.49) 62.05 (317.06) 0% 0% 0% 0% 0% 0% 791 791 24%

10 1346.49 (986.54) 5.06 (9.97) 5.26 (10.83) 87% 0% 0% 9% 0% 0% 23 23 30%

40
2 1.77 (0.48) 21.24 (69.87) 21.17 (69.36) 0% 0% 0% 0% 0% 0% 589 589 4%
6 1224.02 (1069.98) 101.23 (286.68) 101.44 (287.16) 40% 0% 0% 9% 0% 0% 1408 1408 27%

10 TL (–) 120.52 (346.62) 121.34 (348.42) 100% 0% 0% 16% 0% 0% 600 600 33%

50
2 2.43 (0.87) 28.20 (54.64) 28.21 (54.54) 0% 0% 0% 0% 0% 0% 683 683 6%
6 2482.97 (0) 533.88 (647.74) 529.82 (641.57) 83% 50% 50% 17% 36% 36% 20203 20261 28%

10 TL (–) 57.41 (33.19) 57.88 (33.45) 100% 0% 0% 27% 0% 0% 270 270 34%

Cycle

10
2 0.11 (0.02) 0.01 (0.01) 0.03 (0.02) 0% 0% 0% 0% 0% 0% 0 0 5%
6 1.08 (1.27) 0.09 (0.09) 0.10 (0.09) 0% 0% 0% 0% 0% 0% 1 1 13%

20
2 0.31 (0.12) 0.13 (0.32) 0.41 (0.92) 0% 0% 0% 0% 0% 0% 14 14 8%
6 29.06 (47.91) 2.37 (7.25) 2.39 (7.21) 0% 0% 0% 0% 0% 0% 73 73 4%

10 15.62 (32.95) 0.97 (1.81) 0.99 (1.81) 3% 0% 0% 6% 0% 0% 3 3 1%

30
2 0.74 (0.20) 0.55 (1.17) 1.67 (3.46) 0% 0% 0% 0% 0% 0% 52 52 4%
6 309.24 (669.25) 14.57 (35.85) 14.82 (36.06) 7% 3% 3% 16% 7% 7% 1449 1454 4%

10 240.64 (781.95) 9.91 (18.14) 9.97 (18.12) 27% 0% 0% 9% 0% 0% 140 140 1%

40
2 1.77 (0.48) 21.24 (69.87) 21.17 (69.36) 0% 0% 0% 0% 0% 0% 589 589 4%
6 642.03 (1128.76) 147.90 (579.12) 145.84 (569.60) 17% 17% 17% 40% 22% 22% 7327 7365 5%

10 26.54 (27.56) 28.66 (47.35) 29.14 (50.48) 33% 3% 3% 22% 3% 3% 1333 1341 1%

50
2 2.43 (0.87) 28.20 (54.64) 28.21 (54.54) 0% 0% 0% 0% 0% 0% 683 683 6%
6 251.40 (302.48) 46.25 (43.98) 46.77 (44.39) 33% 17% 17% 53% 2% 2% 5465 5487 5%

10 23.32 (24.00) 229.11 (250.34) 229.59 (250.18) 33% 17% 17% 25% 100% 100% 5601 5614 2%

Line

10
2 0.11 (0.02) 0.01 (0.01) 0.03 (0.02) 0% 0% 0% 0% 0% 0% 0 0 5%
6 0.79 (1.05) 0.07 (0.06) 0.08 (0.06) 0% 0% 0% 0% 0% 0% 0 0 7%

20
2 0.31 (0.12) 0.13 (0.32) 0.41 (0.92) 0% 0% 0% 0% 0% 0% 14 14 8%
6 31.42 (57.77) 0.60 (0.88) 0.61 (0.88) 0% 0% 0% 0% 0% 0% 11 11 1%

10 16.00 (34.51) 0.58 (0.47) 0.61 (0.49) 3% 0% 0% 11% 0% 0% 7 7 0%

30
2 0.74 (0.20) 0.55 (1.17) 1.67 (3.46) 0% 0% 0% 0% 0% 0% 52 52 4%
6 115.28 (204.42) 6.07 (12.37) 6.06 (12.33) 17% 0% 0% 20% 0% 0% 126 126 2%

10 278.66 (853.01) 2.57 (1.91) 2.58 (1.91) 27% 0% 0% 9% 0% 0% 21 21 0%

40
2 1.77 (0.48) 21.24 (69.87) 21.17 (69.36) 0% 0% 0% 0% 0% 0% 589 589 4%
6 214.17 (665.38) 195.66 (597.97) 194.14 (591.21) 30% 3% 3% 32% 3% 3% 3347 3351 3%

10 20.25 (12.50) 21.56 (45.95) 21.69 (45.99) 33% 0% 0% 22% 0% 0% 221 221 0%

50
2 2.43 (0.87) 28.20 (54.64) 28.21 (54.54) 0% 0% 0% 0% 0% 0% 683 683 6%
6 249.02 (318.41) 527.34 (899.32) 523.99 (893.52) 33% 17% 17% 58% 2% 2% 7740 7873 2%

10 44.63 (51.95) 95.29 (159.3) 95.15 (158.87) 33% 0% 0% 27% 0% 0% 166 166 1%

Matching

10
2 0.11 (0.02) 0.01 (0.01) 0.03 (0.02) 0% 0% 0% 0% 0% 0% 0 0 5%
6 0.63 (0.89) 0.05 (0.02) 0.06 (0.03) 0% 0% 0% 0% 0% 0% 0 0 2%

20
2 0.31 (0.12) 0.13 (0.32) 0.41 (0.92) 0% 0% 0% 0% 0% 0% 14 14 8%
6 79.95 (156.40) 0.38 (0.37) 0.40 (0.40) 0% 0% 0% 0% 0% 0% 5 5 1%

10 4.53 (5.84) 0.35 (0.19) 0.37 (0.20) 7% 0% 0% 11% 0% 0% 3 3 0%

30
2 0.74 (0.20) 0.55 (1.17) 1.67 (3.46) 0% 0% 0% 0% 0% 0% 52 52 4%
6 271.20 (665.90) 110.58 (430.55) 109.45 (426.21) 23% 0% 0% 29% 0% 0% 1559 1559 1%

10 4.93 (4.11) 2.13 (3.12) 2.14 (3.10) 33% 0% 0% 12% 0% 0% 23 23 0%

40
2 1.77 (0.48) 21.24 (69.87) 21.17 (69.36) 0% 0% 0% 0% 0% 0% 589 589 4%
6 57.05 (84.64) 4.18 (3.68) 4.25 (3.72) 33% 3% 3% 52% 3% 3% 989 992 2%

10 10.39 (8.44) 10.88 (18.71) 10.72 (17.55) 33% 0% 0% 19% 0% 0% 85 85 0%

50
2 2.43 (0.87) 28.20 (54.64) 28.21 (54.54) 0% 0% 0% 0% 0% 0% 683 683 6%
6 260.67 (323.67) 58.34 (65.40) 58.63 (65.77) 33% 0% 0% 66% 0% 0% 643 643 1%

10 18.84 (12.24) 10.50 (7.85) 10.68 (7.82) 33% 0% 0% 16% 0% 0% 19 19 0%

Star

10
2 0.11 (0.02) 0.01 (0.01) 0.03 (0.02) 0% 0% 0% 0% 0% 0% 0 0 5%
6 1.03 (1.33) 1.52 (6.07) 1.52 (6.06) 0% 0% 0% 0% 0% 0% 85 85 14%

20
2 0.31 (0.12) 0.13 (0.32) 0.41 (0.92) 0% 0% 0% 0% 0% 0% 14 14 8%
6 48.58 (98.70) 4.83 (24.08) 4.83 (24.01) 0% 0% 0% 0% 0% 0% 179 179 5%

10 310.28 (736.97) 0.49 (0.43) 0.51 (0.43) 23% 7% 7% 7% 7% 7% 3662 3797 7%

30
2 0.74 (0.20) 0.55 (1.17) 1.67 (3.46) 0% 0% 0% 0% 0% 0% 52 52 4%
6 312.57 (659.61) 2.93 (4.39) 2.97 (4.42) 17% 7% 7% 28% 4% 4% 3041 3066 4%

10 204.10 (701.49) 2.17 (4.35) 2.23 (4.35) 43% 17% 17% 9% 4% 4% 8397 8481 7%

40
2 1.77 (0.48) 21.24 (69.87) 21.17 (69.36) 0% 0% 0% 0% 0% 0% 589 589 4%
6 57.05 (84.64) 4.18 (3.68) 4.25 (3.72) 33% 3% 3% 52% 3% 3% 989 992 2%

10 10.39 (8.44) 10.88 (18.71) 10.72 (17.55) 33% 0% 0% 19% 0% 0% 85 85 0%

50
2 2.43 (0.87) 28.20 (54.64) 28.21 (54.54) 0% 0% 0% 0% 0% 0% 683 683 6%
6 260.67 (323.67) 58.34 (65.40) 58.63 (65.77) 33% 0% 0% 66% 0% 0% 643 643 1%

10 18.84 (12.24) 10.50 (7.85) 10.68 (7.82) 33% 0% 0% 16% 0% 0% 19 19 0%

Ring-Star

10
2 0.11 (0.02) 0.01 (0.01) 0.03 (0.02) 0% 0% 0% 0% 0% 0% 0 0 5%
6 1.68 (2.16) 0.10 (0.36) 0.30 (0.91) 0% 0% 0% 0% 0% 0% 7 8 19%

20
2 0.31 (0.12) 0.13 (0.32) 0.41 (0.92) 0% 0% 0% 0% 0% 0% 14 14 8%
6 17.07 (24.42) 3.41 (9.93) 7.17 (22.99) 0% 0% 0% 0% 0% 0% 242 227 9%

10 143.76 (315.97) 22.89 (120.98) 24.06 (124.39) 0% 0% 0% 0% 0% 0% 1212 1209 7%

30
2 0.74 (0.20) 0.55 (1.17) 1.67 (3.46) 0% 0% 0% 0% 0% 0% 52 52 4%
6 292.19 (677.35) 4.43 (9.79) 5.48 (9.64) 0% 10% 10% 0% 7% 7% 8523 3271 8%

10 439.26 (684.12) 15.35 (45.86) 19.16 (45.97) 20% 0% 0% 11% 0% 0% 676 651 7%

40
2 1.77 (0.48) 21.24 (69.87) 21.17 (69.36) 0% 0% 0% 0% 0% 0% 590 590 4%
6 392.52 (631.57) 32.68 (73.44) 32.72 (73.22) 13% 33% 33% 25% 34% 34% 10959 11044 10%

10 378.73 (827.33) 79.19 (183.46) 79.86 (184.70) 40% 17% 17% 18% 24% 24% 6671 6753 8%

50
2 2.43 (0.87) 28.20 (54.64) 28.21 (54.54) 0% 0% 0% 0% 0% 0% 683 683 6%
6 394.67 (316.61) 79.50 (74.41) 80.29 (75.40) 33% 33% 33% 33% 7% 7% 9364 9493 10%

10 70.98 (49.37) 69.46 (24.96) 69.81 (24.86) 50% 33% 33% 23% 52% 52% 9130 9155 8%

Table 3.2: Results of our computational experiments for the Non Linear and the branch-
and-cut approaches.
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In Figure 3.8 we show the comparison on the performance of the CPU Times averaged
by number of demand points for each of the graph types for both the Non Linear for-
mulation and the branch-and-cut procedure B&C1, showing again that the branch-and-cut
approaches outperform the non linear formulation in most of the instances.
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Figure 3.8: Graphics of averaged CPU times for the different graphs by number of demand
points.

3.6.3 Computational performance of the matheuristic

Finally, we run our matheuristic algorithm (Section 3.5) on different larger size instances to
test its performance. First, we run the approach for the 50-points instance from the work
of Eilon et al. (1974), in order to test the accuracy of the obtained solution with respect to
best solution obtained with the exact approach. In Table 3.3 we report the required CPU
times for solving the instances as well as the deviation of the objective value with respect
to the best solution obtained with B&C1.

We run the matheuristic for the two different aggregation schemes (Cluster and PTF)
with 30 aggregated points.

As expected, the matheuristic approaches obtained solutions close to the best ones
obtained with the exact approach. In fact, in 10.2% of these instances, the exact approach
was not able to certify optimality within the time limit while the matheuristic was able
to obtain good quality solutions in much lower CPU times. More concretely, in 9% of the
instances the matheuristic obtained strictly better solutions than the exact approach. In
65% of the instances the matheuristic obtained solutions with a deviation less than 5%

with respect to the exact approach and in 90% of the instances the deviation was smaller
than 10%.

Concerning the two strategies that we used for the matheuristic approach, PTF out-
performs the 30-Means in terms of both accuracy and CPU time. Thus, in the rest of the



3.6. Computational experiments 101

B&C1 30-Means PTF
Graph p Time Time Dev Time Dev

Comp
2 28.20 1.09 4.10% 1.74 3.86%
6 2069.58 10.76 -10.06% 32.88 -11.04%
10 50.20 84.92 8.94% 44.64 4.29%

Cycle
2 28.20 1.09 4.10% 1.67 3.86%
6 633.77 5.82 8.33% 8.01 4.4%
10 755.27 26.80 -8.96% 30.07 -14.69%

Line
2 28.20 1.09 4.10% 1.69 3.86%
6 953.57 4.95 9.85% 3.87 5.99%
10 80.29 5.37 7.49% 12.40 3.13%

Matching
2 28.20 1.09 4.10% 1.91 1.92%
6 49.48 2.38 2.88% 3.35 1.85%
10 9.98 4.09 3.71% 5.95 3.49%

Star
2 28.20 1.09 4.10% 1.69 3.86%
6 17.84 2.82 7.57% 3.26 5.67%
10 624.22 25.01 8.03% 16.37 5.39%

Ring-Star
2 28.20 1.09 4.10% 1.72 5.38%
6 1244.99 45.05 13.25% 27.11 4.21%
10 1250.11 63.34 -6.14% 23.69 -12.44%

Table 3.3: Results of the matheuristic for the 50-points instance by Eilon et al. (1974).

computational experiments we use the PTF as the default scheme for our matheuristic
algorithm.

We also analyze our matheuristic on larger real-world instances with sizes 200 (AP-
dataset from Ernst and Krishnamoorthy, 1996), 324, 500, 708 and 818 (coordinates and
demands in São José dos Campos from Senne et al., 2010) and 2863 (Taillard, 2003). We
set in these experiments p = 10, but the same radii and distance limits as in the previous
experiments. The matheuristic algorithm used the PTF aggregation strategy with 30

points.
In Table 3.4 we show the average results of our matheuristic on these 180 instances.

We report the CPU times required by the approach in each of its phases: the construction
of initial solutions (Initial), the location-allocation (Loc-Alloc) and the improvement
(Impr). We also report the average total CPU time to solve the instances (Total). In order
to check the convenience of the improvement phase, we also report the deviation of the
solution obtained after the improvement phase with respect to the one constructed before
this phase (Dev_Impr).

We also run B&C1 for these instances, but the approach only obtained feasible solutions,
within the time limit, for the dataset with 200 demand points, where it was able to solve 26
out of the 36 instances. In these solutions, the instances in which optimality was certified
(15 instances), the average deviation of the heuristic approach with respect B&C1 was 0.27%.

The last column reported in Table 3.4 shows that the improvement phase is very con-
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venient since it clearly improves the solution obtained after the location-allocation phase.
In this phase, the solution improves, in average, 4.88% with respect to the one obtained in
the previous phase. Indeed, there is an instance in which in this phase improves 42.81%.
On the other hand, in 17.59% of the instances the solution is not improved. The CPU
times required for this phase are reasonable, needing tiny times for all the instances except
for the largest one.
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Average times (sec.)
Graph n Initial Loc-Alloc Impr Total Dev_Impr

200

Comp 11.23 3.15 0.47 14.85 2.53%
Cycle 2.42 27.86 0.41 30.70 3.06%
Line 1.94 18.54 0.35 20.83 2.57%

Matching 1.16 1.66 0.38 3.20 5.8%
Star 1.61 25.67 0.32 27.60 2.29%

Ring-Star 3.72 126.32 0.55 130.59 1.53%
Average 3.68 33.87 0.41 37.96 2.96%

324

Comp 120.56 148.02 0.66 269.24 6.52%
Cycle 2.12 27.08 0.85 30.04 4.35%
Line 1.77 26.08 0.64 28.50 3.81%

Matching 1.16 1.68 0.72 3.56 9.47%
Star 1.92 72.04 1.05 75.02 2.96%

Ring-Star 3.37 39.37 0.63 43.37 3.26%
Average 21.82 52.38 0.76 74.96 5.06%

500

Comp 356.95 8.15 1.21 366.31 5.47%
Cycle 2.51 39.21 1.12 42.84 2.82%
Line 2.06 2.76 1.15 5.97 4.75%

Matching 1.48 4.30 1.19 6.97 6.67%
Star 1.86 102.22 2.01 106.08 4.69%

Ring-Star 3.73 21.30 1.56 26.59 3.3%
Average 61.43 29.66 1.37 92.46 4.62%

708

Comp 365.90 5.54 3.68 375.11 4.71%
Cycle 2.37 10 5.33 17.70 5%
Line 1.71 8.74 3.78 14.23 4.02%

Matching 1.32 1.21 1.53 4.07 9.76%
Star 1.97 22.70 6.47 31.14 3.01%

Ring-Star 3.87 29.91 11.98 45.77 3.65%
Average 62.86 13.02 5.46 81.34 5.03%

818

Comp 371.25 223.11 2.57 596.93 7.72%
Cycle 1.95 38.58 14.23 54.76 4.63%
Line 1.62 2.94 4.87 9.42 3.78%

Matching 1.13 2.36 2.86 6.35 13.15%
Star 1.65 9.08 4.77 15.51 3.83%

Ring-Star 3.54 47.11 7.30 57.95 3.82%
Average 63.52 53.86 6.10 123.49 6.16%

2863

Comp 366.72 126.75 199.88 693.34 7.32%
Cycle 2.29 2.44 120.08 124.82 4.01%
Line 1.73 4.19 625.25 631.18 4.45%

Matching 1.20 1.42 17.28 19.91 7.78%
Star 1.84 60.32 74.57 136.73 4.68%

Ring-Star 3.34 35.58 277.22 316.14 4.48%
Average 62.85 38.45 219.05 320.35 5.45%

Table 3.4: Results of the Heuristic for different n data-sets.

One may note that the matheuristic is capable of obtaining feasible solutions for the
MCLPIF in small times, even for instances for which the exact approach is not able to
provide a single feasible solution within the time limit of one hour. As can be observed
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Figure 3.9: Average CPU times by instance size with the matheuristic algorithm.

from Table 3.4, the matheuristic scales very well. We represent in Figure 3.9 the average
CPU times for each of the size instances run in these experiments where it seems that there
is a linear trend in the CPU times when increasing the number of demand points.

3.7 Conclusions

In this chapter, we analyze a novel version of the Continuous Maximal Covering Location
Problem in which the facilities are required to be linked through a given graph structure
provided that the distance between the linked facilities does not exceed a given limit. We
provide a general framework for the problem for any finite dimensional space and any
`τ -norm based distance and we formulate it as a Mixed Integer Second Order Cone Op-
timization problem. We further analyze the geometry of the problem and prove that the
continuous variables of the formulation can be projected out and the nonlinear constraints
can be replaced by polynomially many linear constraints, resulting in a compact pure In-
teger Linear Optimization problem. We also derive two branch-and-cut solution strategies
for solving the problem based on different relaxations for the MCLPIF. Finally, we develop
a matheuristic algorithm which is capable to obtain good quality solutions for larger in-
stances in reasonable CPU times. We test all the approaches in an extensive battery of
computational experiments.

Further research on the topic includes, among others, the consideration of more so-
phisticated graph structures in the MCLPIF, as trees, or in general, λ-connected graphs.
Although the geometrical analysis derived in this chapter can be exploited, unlike what
happens for the graph structures studied in this chapter, the linear constraints defining
the x-variables must be incorporated to the models, in the form of the so-called connected
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subgraph polytope, increasing considerably the difficulty of the problem. One possibility
is to model the λ-connectivity of the spanning subgraphs of facilities via cut sets in the
x-variables, i.e., constraints in the form

∑
l∈S:j<l xjl +

∑
l∈S:l<j xlj ≥ λxjk, for all j, k ∈ N

and S ⊂ P with k ∈ S and j 6∈ S. These constraints are exponentially many, and its
incorporation must be done via a branch-and-cut approach which in turns implies study-
ing a separation oracle for the violation of λ-connectivity constraints. The separation of
connectivity constraints is a topic that has been intensively applied in node and arc routing
problems (see e.g., Padberg and Grötschel, 1985). One choice to detect one or more of the
violated constraints is by computing the Gomory-Hu tree of the graph constructed with a
solution of the relaxed problem, x̄, using the procedure proposed by Gusfield (1990).

Also, it would be interesting to extend the interconnection framework to other con-
tinuous multifacility location problems. In particular, to continuous multifacility ordered
median location problems (Blanco et al., 2016; Nickel and Puerto, 2006), which are of great
interest in the location community since they allow unifying, in a single model, most of the
existing continuous location problems in the literature. A first step could be done by using
block norms (Ward and Wendell, 1985) since in that case, the distances can be represented
by linear constraints (Nickel and Puerto, 2006).
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This chapter introduces a general modeling framework for a multitype maximal cov-
ering location problem in which the position of facilities in different metric spaces are
simultaneously decided to maximize the demand generated by a set of points. From the
need of intertwining location decisions in discrete and in continuous sets, a general hy-
bridized problem is considered in which some types of facilities are to be located in finite
sets and the others in continuous metric spaces. A natural non-linear model is proposed
for which an integer linear programming reformulation is derived. A branch-and-cut algo-
rithm is developed for better tackling the problem. The study proceeds considering the
particular case in which the continuous facilities are to be located in the Euclidean plane.
In this case, taking advantage from some geometrical properties it is possible to propose an
alternative integer linear programming model. The results of an extensive battery of com-
putational experiments performed to assess the methodological contribution of this chapter
is reported on. The data consists of up to 920 demand nodes using real geographical and
demographic data.

4.1 Introduction

A feature shared by most of the exiting literature focusing the MCLP concerns the existence
of a single type of facility. However, in practice, this may not be the case. If not by other
reasons, the progressive technology development often calls for older equipment that is still
operational to be used together with more recent one. Another possibility emerges when
two technologies can be looked at as complementing each other. For instance, when locating
equipment for early fire detection in forests, surveillance facilities requiring human resources
operating them may be complemented with equipment such as remotely controlled cameras
to ensure a better coverage of the area of interest. When facilities can be installed in
different phases (e.g. multi-period facility location) the facilities to be located in each
phase can also be looked at as belonging to a different group (that we still call type) of
facilities.

In this chapter we investigate maximal covering location problems with multiple facil-
ity types. We assume that the number of facilities of each type to be located is known
beforehand, that each type of facilities is characterized by the shape of their coverage areas
and the metric space from which they are selected. A plan is to be devised for a multi-
stage process with each stage corresponding to installing one type of facility. The facilities
opened in each stage perform the same tasks and thus complement the facilities installed
in previous stages. In turn, they will be complemented by the facilities to be located in the
subsequent stages. We show that instead of making sequential decisions for each facility
type, coverage gains can be achieved by making an integrated decision involving all facility
types.

We start by presenting a general formulation for the problem. Afterwards, motivated
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by some practical settings we investigate the hybridization of discrete and continuous
facility location. We consider that several types of facilities are to be selected in finite
sets of possibilities (one for each type) whereas the other types of facilities can be located
continuously in the whole space.

By considering a hybrid setting it becomes possible to take advantage from choosing
some services in finite sets of pre-specified preferred locations and then deciding flexible
positions of the servers in the whole space. This setting can be useful, for instance, in
telecommunications networks with a certain number of the servers (sensors, antennas,
routers, etc.) being located inside adequately prepared infrastructures (buildings, offices,
air-conditioned cabins, roofs, etc.) and additional servers being located at any place in the
given space. The goal is of course to capture/cover as much demand as possible no matter
the equipment doing it. The continuous facilities can be looked at as a set of servers to be
located in the future and that must complement the equipment located in a discrete setting.
To decide the positions of the centers, one could proceed by first locating the initial centers
(in a fully discrete framework) maximizing the covered demand and then locate the future
centers (in a fully continuous framework), maximizing the covered demand of the customers
that are still uncovered by the initial servers. Although allowing the application of well-
known existing tools in the context discrete and continuous maximal covering location,
this procedure may easily lead to sub-optimal solutions: a better planning (i.e., covering
more demand) can be obtained by considering an integrated approach which is what we
propose.

The literature is quite rich when it comes to considering multitype facility location
problems. Nevertheless, more often than not, we are led to problems stemming from logis-
tics or telecommunications applications in which a multi-layered or a hierarchical facility
structure is to be setup. In such a case, each facility type lies within a specific layer of
the network or in the hierarchy and has a specialized function. The reader can refer to
Contreras and Ortiz-Astorquiza (2019) and Heckmann and Nickel (2019) as well as to the
references there in for overviews on many such problems.

In the current work, we are concerned with facilities that provide the same service, and
thus can be used to complement each other although having some different characteristics.
Wu et al. (2006) investigated one such problem in the context of capacitated facility loca-
tion. In that paper, general setup costs are considered that depend on the size and location
of the facility. The problem lies in the context of fixed-charge facility location (Fernández
and Landete, 2019).

Mesa (1991) investigated several multi-period problems on networks. In particular,
the author introduced the so-called absolute multi-period (α1, . . . , α|T |)−median problem
where T stands for the number of periods in the planning horizon. This is possibly the
first multi-period extension of the network p-median. We can look at the facilities to be
located in each period as being of different types. Unlike we are considering in the current
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chapter, some facilities may just replace others (the former are closed when the latter are
opened) and the location space is the same for all facilities.

Berman and Drezner (2008) consider a two-type discrete facility location problem. This
is a p-median problem under uncertainty consisting of locating p initial facilities plus an
uncertain number of extra additional ones. In both cases, the potential facilities to open
belong to a finite set that coincides with the demand points and thus the problem is cast
as a stochastic discrete p-median problem. In the current chapter we assume that we know
beforehand the number of each type of facility to locate. Furthermore, we consider specific
location spaces according to the different types of facilities.

Heyns and van Vuuren (2018) investigate a problem in which multiple types of facilities
can be located in specific zones identified beforehand. Type-specific location requirements
are assumed for the facilities. In each zone a finite set of candidate locations for the
facilities are assumed, i.e., a pure discrete facility location setting is adopted. All facility
types can in principle be located in all zones.

Considering also a finite set for locating the facilities, we find works considering a
hierarchy between the facility-types in line to the models discussed by Contreras and
Ortiz-Astorquiza (2019), i.e., the facilities in a higher level extend the service provided
by the facilities in lower levels. Moore and ReVelle (1982) are possibly the first authors
introducing such type of problem. In each potential facility location one must decide the
type of facility to locate (if some). Other works deepening this type of analysis include
Espejo et al. (2003), Ratick et al. (2009), and Xia et al. (2009). More recently, Küçükaydın
and Aras (2020) also investigate a multitype discrete facility location problem but they
consider so-called consumer preference. Each demand point has a preference for one facility
type. The facilities are to be located in such a way that an optimal coverage in terms of
the consumer preference is achieved.

In the current chapter we go beyond the existing literature by proposing a general mod-
eling framework for a multitype maximal covering location problem. We do not restricted
the problem to a discrete setting. Instead, we assume some location space for each facil-
ity type. The general framework proposed is motivated by some applications calling for
hybridizing discrete and continuous facility location problems. For this reason, we deepen
the study by considering that hybridized case: several types of facilities are to be located
in a finite set of possible locations with their service being complemented by other facility
types that can be located anywhere in underlying continuous space. We propose a ‘natural’
non-linear model that nonetheless, raises some computational difficulties. For this reason
we also develop an integer linear model. Afterwards we focus on on the Euclidean plane.
This allows using other types of modeling frameworks that we also investigate. We report
on a series results obtained from a series of computational tests performed to assess the
different models proposed. Real geographical data is consider in these tests.

The remainder of the chapter is organized as follows. In Section 4.2 the investigated
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problem is detailed and a general mathematical model is introduced. Section 4.3 specializes
the general modeling framework to a hybridized discrete-continuous setting. Afterwards, in
Section 4.4 we focuses on the the Euclidean plane provided additional insights in this case.
The results of the computational tests performed to asses different developments proposed
in the chapter are reported in Section 4.5. The chapter end with an further research
line presented in Section 4.6 where some models were presented to capture uncertainty in
multitype MCLP problems. And an overview of the work done and some other suggestions
for further research were presented in Section 4.7.

4.2 The Multitype Maximal Covering Location Problem

Consider a finite set A = {a1, . . . , an} of demand points in Rd indexed in set N =

{1, . . . , n}, each of which with a weight given by a non-negative value ci representing
the demand of node ai, for all i ∈ N . Throughout the chapter we often call a demand
point interchangeably by the node ai or by the index i.

Let us assume that there is a finite set of facility types, indexed in a set T = {1, . . . , T}.
A facility of type t ∈ T can be located in some metric space that we denote by S(t) ⊆ Rd.
Consider a distance function of interest, say ‖ · ‖(t), in S(t). Also for a facility of type t ∈ T
we consider a coverage radius, say ρ(t), t ∈ T . Given one such facility, we say that node ai,
i ∈ N , is covered by the facility if the distance between ai and the facility does not exceed
ρ(t). The node ai is said to be covered if there is at least one open facility (no matter its
type) covering it. For any finite subset of open facilities of type t ∈ T , X (t) ⊆ S(t), we
denote by C(X (t)) ⊆ N the indices of the nodes in A covered by at least one point in X (t),
i.e.,

C(X (t)) = {i ∈ N : ‖ai − b‖(t) ≤ ρ(t), for some b ∈ X (t)}.

Given p = (p1, . . . , pT ) ∈ N× T· · · ×N , the problem that we call the p-Multitype
Maximal Covering Location Problem (p-MTMCLP, for short) seeks to locate pt facilities
of type t ∈ T so that the covered demand is maximized.

With the above notation, the p-MTMCLP can be formally formulated as the following
optimization problem:

V(p) := max
X (t)⊆S(t), |X (t)|=pt

∑
i∈

⋃
t∈T C(X (t))

ci. (p-MTMCLP)

Observe that the difference between the different types of facilities to be located is the
metric space where the locations are to be found as well as the coverage radii. In case the
metric spaces coincide for two different types of facilities, one may also consider that they
are of the same type and define different coverage radii, resulting in the same model.

The following example illustrates the problem we are investigating. Furthermore, it
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shows that a sequential decision making process in which we locate one type of facility in
each step may lead to a sub-optimal solution.

Example 3. We randomly generated a set of 50 demand nodes in [0, 1]× [0, 1]—our set A.
Let us assume three types of facilities with S(1) = A and S(2) = S(3) = R2. Additionally,
assume that ‖ · ‖(1) = ‖ · ‖(2) are the Euclidean norm and ‖ · ‖(3) is the `3-norm. Regarding
the coverage radii we take ρ(1) = 0.2 and ρ(2) = ρ(3) = 0.1. The number of facilities to
open was fixed to p = (2, 2, 1). The weights ci were all set equal to one.

(a) (S(1) → S(2)&S(3)) (b) (S(2)&S(3) → S(1)) (c) p-MTMCLP

Figure 4.1: Sequential versus integrated decision making.

First, we look into locating two facilities in S(1) maximizing the number of covered
points in A, and after that we look for the best three additional facilities (two in S(2)

and one in S(3)) maximizing the number of covered points (i.e., covered demand) that
were not already covered with the two initial facilities. We denote the resulting solution
as (S(1) → S(2)&S(3)). Using the same instance, a different solution is obtained when we
revert the sequence of decisions, i.e., we first look simultaneously for the two + one facilities
in S(2) and S(3), respectively and after that we seek to find the additional two facilities
in S(1) maximizing the still not covered demand. The resulting solution is denoted by
(S(2)&S(3) → S(1)). In a third experiment, we compute the solution using the integrated
model (p-MTMCLP).

The solution (S(1) → S(2)&S(3)), which is depicted in Figure 4.1a, is such that 74%
of the demand nodes are covered. In case of solution (S(2)&S(3) → S(1)), depicted in Fig-
ure 4.1b, this percentage decreases to 66%. Finally, when we consider the solution obtained
using model (p-MTMCLP)—Figure 4.1c—we obtain a 76% demand coverage. These re-
sults show that a sequential decision making process (even aggregating some types) may
lead to a sub-optimal solution, which gives strength to the integrated modeling framework
we are investigating.

It is also worth noticing the change in the shape of the covered area associated with
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facility to be located is S(3).

The above model is much general and accommodates many situations as discussed in
the introductory section. In particular the location spaces S(t), t ∈ T , may correspond to
finite sets, networks, continuous spaces or a combination of all. Heyns and van Vuuren
(2018) and Küçükaydın and Aras (2020) consider a pure discrete setting. In the next
section we focus on a case that raises some interesting challenges and that corresponds to
having some types of facilities to be located in discrete spaces and the others located in
continuous ones.

4.3 The hybridized discrete-continuous maximal covering lo-
cation problem

In this section we propose suitable mathematical programming formulations for a wide
family of problems in the shape of (p-MTMCLP) namely, the one that result when one
assumes that the metric spaces S(t) are either finite sets of points or the entire space Rd.

We keep considering the set of demand points A already introduced as well as the
index set for their elements, N = {1, . . . , n}. We assume that two main families of types
of facilities are to be located, say T1 of type discrete and T2 of type continuous, so we have
a total of T = T1 + T2 types of facilities. In particular, we consider the set of type indices
given by T = T1 ∪ T2 where T1 = {1, . . . , T1}, and T2 = {T1 + 1, . . . , T}.

For the first T1 types of facilities, we consider that S(t) = {b(t)1 , . . . , b
(t)

m(t)} is a finite set
of points in Rd, indexed in set M (t) = {1, . . . ,m(t)} that have been identified as potential
locations for the facilities of type t, for t ∈ T1.

As in the general framework, a facility of type t ∈ T is endowed with a coverage radius
ρ(t). However, for the finite location spaces, we can go further in terms of coverage radii
specification by assuming facility-dependent radii for the facilities in S(1), . . . ,S(T1). We
assume that a facility located at b(t)j is endowed with a coverage radius equal to ρj(t). In
fact, the hybridized discrete-continuous setting we are considering is motivated by some
practical applications (e.g. in telecommunication networks planning) an thus it makes
sense to consider different coverage areas (typically larger) for the facilities chosen from
the pre-specified sets S(1), . . . ,S(T1) than those for the extra facilities—facilities located in
S(T1+1), . . . ,S(T ) since the physical infrastructures may be prepared for a better service.
Moreover, the fact that we know the potential locations in advance allows specifying a
coverage radius that is location-specific. On the other hand, the common radii assumed
for the different types of continuous facilities reflect a guaranteed coverage provided by the
equipment no matter the point in the space it will end up being located.

For each t ∈ T we denote by Pt the index set for the facilities of type t to be located,
i.e., Pt = {1, . . . , pt}.
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For t ∈ T2, we consider metric spaces St = Rd such that pT1+1, . . . , pT locations are
to be found respectively, in each of these spaces for installing additional facilities. These
facilities have a coverage radius equal to ρ(t), respectively for type t ∈ T2. In case one
requires the continuous facilities to be located in a specific region of Rd instead of the entire
space, most of the results presented in this chapter can be adapted conveniently in case
the sets S(t) are polyhedra or second order cone representable sets, by adding the suitable
constraints defining each specific set.

In the following example we illustrate the problem on a three-dimensional instance.

Example 4. We randomly generated a set of 50 demand nodes in [0, 1]× [0, 1]× [0, 1]−our
set A. In this case, we consider that ‖ · ‖(1) = ‖ · ‖(2) is the Euclidean norm. Finally, the
rest of parameters are selected in the same way: two types of facilities with S(1) = A and
S(2) = R3, the coverage radii we take ρ(1) = 0.2 and ρ(2) = 0.1, the number of facilities to
open was fixed to p = (2, 3), and the weights ci were all set equal to one.

Figure 4.2: Solution of p-MTMCLP for the 3-dimensional instance of Example 4.

In the figure, the covered areas for the discrete facilities are drawn in light gray color
while those of the continuous facilities are drawn in dark gray. Red dots indicate covered
points and black dots the uncovered ones. The solution achieves an overall demand coverage
of 32% being 16% covered by each of the two types of facilities.

4.3.1 A ‘natural’ non-linear model

The modeling framework (p-MTMCLP) derived in the previous section is of course valid
in the hybridized discrete-continuous setting we are considering. The only distinguishing
aspect is that in the definition of a set X (t) ⊆ S(t) for the finite spaces (i.e., t = 1, . . . , T1)
we must now consider location-specific radii namely, ρj(t) for location b

(t)
j ∈ S(t), j ∈M (t).

For the sake of deriving a suitable mathematical programming formulation for the
problem we introduce the following decision variables:
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ytj =

1, if facility b(t)j ∈ S(t) is selected,

0, otherwise,
for all t ∈ T1, j ∈M (t).

xti =


1, if demand node ai is covered

by the facilities located in S(t),

0, otherwise,

for all t ∈ T1, i ∈ N.

ztik =


1, if node ai is covered

by the k-th facility in S(t),

0, otherwise,

for all i ∈ N, t ∈ T2, k ∈ Pt.

Xt
k ∈ S(t) : Coordinates of the k-th out of the pt facilities located in S(t), for t ∈ T2, k ∈

Pt.

Using the above decision variables, (p-MTMCLP) can be formulated as follows:

max
∑
i∈N

ci

∑
t∈T1

xti +
∑
t∈T2

pt∑
k=1

ztik

 , (p-MTMCLPNL1 )

s.t.
∑

j∈M(t)

ytj = pt, ∀t ∈ T1, (p-MTMCLPNL2 )

xti ≤
∑

j∈M(t):

‖ai−b
(t)
j
‖(t)≤ρj(t)

ytj , ∀i ∈ N, ∀t ∈ T1, (p-MTMCLPNL3 )

T1∑
t=1

xti +

T∑
t=T1+1

pt∑
k=1

ztik ≤ 1, ∀i ∈ N, (p-MTMCLPNL4 )

‖ai −Xt
k‖(t) ≤ ρ(t) + U(1− ztik), (p-MTMCLPNL5 )

∀i ∈ N, ∀t ∈ T2, ∀k ∈ Pt,

xti ∈ {0, 1}, ∀t ∈ T1, ∀i ∈ N, (p-MTMCLPNL6 )

ytj ∈ {0, 1}, ∀t ∈ T1, ∀j ∈M (t), (p-MTMCLPNL7 )

ztik ∈ {0, 1}, ∀i ∈ N, ∀t ∈ T2, ∀k ∈ Pt, (p-MTMCLPNL8 )

Xt
k ∈ S(t), ∀t ∈ T2, ∀k ∈ Pt. (p-MTMCLPNL9 )

In the above model, the objective function (p-MTMCLPNL1 ) measures the weighted cov-
erage of the nodes in A using either the discrete or the continuous facilities; constraints
(p-MTMCLPNL2 ) ensure that exactly pt discrete facilities are selected in the finite set S(t);
Inequalities (p-MTMCLPNL3 ) state that node i is covered by a discrete facility iff there is
such a facility covering it that has been opened. Inequalities (p-MTMCLPNL4 ) guarantee
that at most one open facility “nominated” for each node and thus each weight ci is ac-
counted for at most once in the objective function. Constraints (p-MTMCLPNL5 ) ensure
the proper definition of the z-variables. In these constraints, ‖ai − Xk‖(t) denotes the
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‖ · ‖(t)-based distance between point aj and the k-th continuous facility in S(t) and U is
a large enough value. Finally, constraints (p-MTMCLPNL6 )–(p-MTMCLPNL9 ) state the
domain of the decision variables.

The large U can be fine tuned. We can consider a common U for all t ∈ T . In this
case, any value U ≥ max i,j∈N

t∈T
‖ai − aj‖(t). Alternatively, for every t ∈ T we can set a

t-specific value Ut ≥ maxi,j∈N ‖ai − aj‖(t).
Observe that for p2 = . . . , pT = 0, the problem to solve is a classical discrete p1-MCLP,

which can be formulated as above but omitting all terms involving facilities of types 2, . . . , T

and thus removing all the z- and X-variables. The case pt = 0 ∀t ∈ T \{T1 + 1} and
pT1+1 = 1 reduces to the classical continuous pT1+1-MCLP which can be also formulated
using a reduced set of variables.

Remark 3. (p-MTMCLPNL) is a Mixed-Integer Non-Linear Programming (MINLP) prob-
lem because of (p-MTMCLPNL5 ). In case for some t ∈ T2 ‖ · ‖(t) is the Euclidean norm,
such a type of constraints can be re-written as a set of linear and second-order cone in-
equalities given in (`2-norm).

Consequently, if all the types of continuous facilities use the Euclidean norm,
(p-MTMCLPNL) simplifies to a mixed-integer second-order cone programming problem,
which can be solved using any available off-the-shelf solver.

Remark 4. In Remark 3 one can replace Euclidean distances by polyhedral-norm based
distances (deriving linear programming models using (Pol-norm)) or by `τ -norm (with τ ≥
1) based distances inducing again mixed-integer second-order cone optimization problems
(using the set of inequalities given in (`τ -norm)). One may even consider mixed distances
(one for each demand point, if one desires to model different coverage areas).

Remark 5. Apart from regular coverage areas represented by convex surfaces, one could
also represent non-convex coverage areas by means of unions of convex (second-order cone
representable sets). This type of sets can be efficiently represented using disjunctive con-
straints that are usually modeled through binary variables (see Dolu et al., 2020, for further
details on suitable representations of these regions in a location problem).

4.3.2 An integer linear optimization model

The above mixed integer non-linear model becomes intractable for medium or large size
instances of the problem even if Euclidean distances are considered. Therefore, to success-
fully tackle the problem other possibilities must to be considered.

Next, we derive an integer linear model based upon projecting out the X-variables
—which represent the coordinates of the services—by ensuring that these can be easily
found (in poly-time) once the different sets of demand points allocated to the same facility
are known.
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In what follows, we impose that every selected facility must cover at least one demand
point, which, we believe, is a reasonable assumption in practice. Furthermore, we consider
T1 = T2 = 1, i.e., a single type of discrete and a single type of continuous facilities are
to be located. The presented results and models can be adapted to the general case.
Nevertheless, this would make the contents of this section significantly more involved but
not more informative. Accordingly, that there are p1 discrete and p2 continuous facilities
to locate.

Lemma 1 defined in Chapter 1.2.3 allows us to rewrite constraints (p-MTMCLPNL5 )
(for T = 2) as linear constraints and thus to formulate the Hybridized (p1, p2)-Maximal
Covering Location problem (HMCLP, for short) as follows:

max
∑
i∈N

ci

[
xi +

∑
k∈K

zik

]
, (HMCLPIP1 )

s.t.
∑
j∈M

yj = p1, (HMCLPIP2 )

xi ≤
∑
j∈M

‖ai−bj‖(1)≤ρj(1)

yj , ∀i ∈ N, (HMCLPIP3 )

xi +

p2∑
k=1

zik ≤ 1, ∀i ∈ N, (HMCLPIP4 )∑
i∈Q

zik ≤ |Q| − 1, ∀k ∈ P2, ∀Q ⊆ N :
⋂
i∈Q

Bρ(2)(ai) = ∅, (HMCLPIP5 )

xi ∈ {0, 1}, ∀i ∈ N,

yj ∈ {0, 1}, ∀j ∈M,

zik ∈ {0, 1}, ∀i ∈ N, ∀k ∈ P2.

In this model, we have simplified some notation namely by removing the type index from
the decision variables as well as from set M since we only have one type of discrete and
one type of continuous facilities. Also in the above model, (HMCLPIP5 ) ensure that the
set of points covered by a continuous facility verifies the condition of Lemma 1, i.e., sets of
incompatible demand points are not allowed to be allocated to the same continuous facility.
This constraint replaces the non-linear constraint in (p-MTMCLPNL).

Moreover, the above model does no include the variables Xk. In fact, once an optimal
solution is obtained for (HMCLPIP ), we can use the values of the z-variables, say {z̄},
to find explicit optimal coordinates for the new facilities to install. In particular, the
coordinates of the k-th facility to install (k ∈ P2) can be given by any vector Xk satisfying:

Xk ∈
⋂
i∈N :
z̄ik=1

Bρ(2)(ai), for all k ∈ P2.
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A center Xk in the above intersection can be found in polynomial time either solving a
second order cone optimization problem or by solving a one-center facility location problem.

Solving (HMCLPIP ) requires incorporating exponentially many constraints—inequalities
(HMCLPIP5 ). Interestingly, the above formulation can be simplified (reducing from expo-
nential to polynomially many constraints in the form of (HMCLPIP5 )) by means of Helly’s
Theorem (Helly, 1923) (see also Danzer et al., 1963). Invoking that result, provided that
the continuous space is Rd, only intersections of (d+ 1)-wise balls are needed to check:

Bρ(2)(ai1) ∩ · · · ∩ Bρ(2)(aid+1
),

for all ai1 , . . . , aid+1
∈ A.

Despite this simplification, the number of constraints may still be large and thus making
the problem more difficult to solve. Instead, the problem can be tackled by considering
an incomplete formulation (removing (HMCLPIP5 )) and iteratively incorporating these
constraints on-the-fly, as needed.

The selection of the constraints to incorporate in each iteration is found using the
following separation strategy: After solving (HMCLPIP ) with none or part of the con-
straints (HMCLPIP5 ) a solution, say z̄, is obtained. Then, for each k ∈ P2 the define set
Qk = {i ∈ N : z̄ik = 1}. One can check for the validity of the set Qk as a feasible cluster of
demand points for our problem by solving the 1-center problem for the points in such a set.
In case the optimal coverage radius obtained is less than or equal to ρ(2), one knows that
Qk is a valid subset of demand points that can be covered by the same server. Otherwise,
the solution violates the relaxed constraints, and thus we add the cut∑

i∈Qk

zik′ ≤ |Qk| − 1, ∀k′ ∈ P2, (4.3)

to ensure that such a solution is no further deemed feasible and thus obtained again.
The 1-center problem with Euclidean distances on the plane is known to be solvable

in polynomial time (see e.g., Elzinga and Hearn, 1972). Extensions to higher dimensional
spaces and generalized covering shapes have been recently proved to be also poly-time
solvable (Blanco and Puerto, 2021a).

The above procedure can be embedded into a branch-and-cut approach by means of
lazy constraints.

The following result holds, which helps finding (and thus ignoring) dominated cuts:

Proposition 3. Let z ∈ {0, 1}n×p2 and Q,Q′ ⊆ N be such that Q ⊂ Q′. Then, if z

violates (HMCLPIP5 ) for the set Q violates, then, z also violates the constraint for the set
Q′. Thus, the cut induced by Q strictly dominates the one induced by Q′.

Proof. We suppose thatQ violates the constraint (HMCLPIP5 ), this means
⋂
i∈Q Bρ(2)(ai) =
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∅ and we get
∑
i∈Q

zik > |Q| − 1. Therefore,

∑
i∈Q′

zik =
∑
i∈Q

zik +
∑

i∈Q′\Q

zik > |Q| − 1 + (|Q′| − |Q|) = |Q′| − 1, ∀k ∈ P2.

Then, we have that Q′ also violates the constraints and the cut induced by Q strictly
dominates the one induced by Q′.

In the next section we provide further details on how we can take advantage from these
contents using a more specific setting.

4.4 The particular case of the Euclidean plane

In this section we focus on the particular case in which the continuous facilities are to be
located in the Euclidean plane. This allows deepening the discussion already presented
and also to consider an alternative model for the problem.

4.4.1 A branch-and-cut algorithm based on (HMCLPIP )

Let us take again the integer linear model (HMCLPIP ). In the case of the plane (d = 2),
the application of Helly’s Theorem described above guarantees that we only need to check
intersection or 3-wise balls. In particular, we need to check if such intersections are empty.
If so, we incorporate the adequate constraints to avoid searching for facilities in those
intersections. Note that is true for every norm we adopt. Two cases may emerge for any
set of three demand points {ai1 , ai2 , ai3} ⊂ A:

Case 1: Bρ(2)(al1) ∩ Bρ(2)(al2) = ∅ for some l1, l2 ∈ {i1, i2, i3}.

In this case, points al1 and al2 are incompatible—they cannot be covered by the same
center. Hence impose

zl1k + zl2k ≤ 1, ∀k ∈ P2. (2-Wise)

Case 2: The pairwise intersections are non-empty but
Bρ(2)(ai1) ∩ Bρ(2)(ai2) ∩ Bρ(2)(ai3) = ∅.

In this case, the three points cannot be covered by the same facility and thus we
impose

zi1k + zi2k + zi3k ≤ 2, ∀k ∈ P2. (3-Wise)

Constraints (2-Wise) and (3-Wise) for all subsets of three points in A replace the
constraint (HMCLPIP5 ) in formulation (HMCLPIP ) in the planar case. Although these
constraints (in worst case) are O(n3), most of them are needless to construct the optimal
solution of the problem.
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The problem can now be solved considering an incomplete formulation (removing con-
straints (3-Wise) from (HMCLPIP )) and incorporating these constraints on-the-fly, as
needed using a similar strategy than the one used for the general formulation and described
above. It avoids checking the three-wise intersections of points which can be computation-
ally costly for large instances. We embed this approach into a Branch-and-Cut scheme
which is reinforced by the following elements:

Separation Oracle Given an optimal solution z̄ to the incomplete model, for every k ∈ P2

we consider the set Qk = {i ∈ N : z̄ik = 1}. The validity of the cluster Qk is
checked using the algorithm proposed by Elzinga and Hearn (1972) that computes
(in polynomial time), the center and the minimum radius covering the demand points
in Qk.

To make this work self-contained, we recall that the algorithm proposed by Elzinga
and Hearn (1972) is based on the construction of disks covering three points until
the whole set is covered. Thus is accomplished sequentially in such a way that the
covering radius increases at each step of the procedure.

We take further advantage from this procedure to incorporate more than a single cut
in each iteration of the branch-and-cut algorithm. Considering a set of points Qk, if
at some step when applying the algorithm by Elzinga and Hearn (1972) the coverage
radius becomes larger than ρ(2) (it is not feasible to clustering the points in Qk to be
served by the same server), then all the sets of two or three points used to construct
the minimum enclosing disks so far are used to generate constraints (2-Wise) and
(3-Wise). This strategy has proven to alleviate the resolution of the problem.

Initial Pool of Constraints We propose procedure to generate an initial pool of con-
straints in the form of (3-Wise) to be included in the initial incomplete model. First,
we construct clusters of demand points with maximum distance between two clus-
tered points fixed to ρ(2) + ε, with ε > 0 (implemented in the Python module scipy
through the function fcluster). At each of these clusters, we checked the validity
of them as a solution of our MCLP using the same strategy used in our separation
oracle. In case some of them is not valid, we incorporate the pool all the constraints
of type (3-Wise) that are violated. The procedure is repeated for different values of
ε.

Symmetries Our formulation (HMCLPIP ) is highly symmetric in the sense that any
permutation of the k indices in the z-variables results in an alternative solution
(with the same objective value). To break symmetries in our model thus hoping to
speed up the resolution of the problem, we incorporate the following constraints that
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we can observe to be straightforwardly valid for the problem:∑
i∈N

wizi(k−1) ≤
∑
i∈N

wizik, ∀k ∈ P2\{1}. (4.4)

With these constraints, among all the possible sorting of facilities, we choose one
producing a non-decreasing sequence of covered demand.

4.4.2 An alternative IP model

As largely explained, model (HMCLPIP ) is quite general; it is valid in metric spaces of any
dimension d ≥ 2 and for every distance of interest. In 2-dimensional spaces and in addition
to the developments presented in Section 4.4.1, we can derive an alternative Integer Linear
Programming formulation. This is accomplished by finding a finite dominating set, which
is done using the discretization technique proposed by Church (1984) for the MCLP.

Let B be the set consisting of the demand points in A and also the intersection points
of the pairwise intersections of the boundary of the ‖ · ‖(2)-balls centered at the demand
points with radius ρ(2), i.e.,

B = A ∪
⋃
i,l∈N :
i<l

(
∂Bρ(2)(ai) ∩ ∂Bρ(2)(al)

)
,

where ∂Bρ(2)(a) stands for the boundary of the ball Bρ(2)(a). Inspired by the terminology
used by Church (1984) the set B will be designated by the Balls Intersection Points Set
(BIPS).

Lemma 4. There exists an optimal solution to (p1, p2)-MTMCLP where the continuous
facilities belong to the set B.

Proof. Let X 2 = {X1, . . . , Xp2} be optimal positions for the continuous facilities. Clearly,
Xk belongs to the intersection of the balls centered at the covered points, i.e.,

Xk ∈
⋂

i∈N : ‖ai−Xk‖(2)≤ρ(2)

Bρ(2)(ai).

Thus, we can replace Xk by any of those intersection points keeping the same coverage
level. Clearly, these points belong to B.

Considering the set B, it is possible to reformulate (p1, p2)-MTMCLPNL as an integer
linear programming problem, in which the selection of the continuous facilities is replaced
by the search of the optimal B-points to open. Let us denote by B = {γ1, . . . , γ|B|} and
L = {1, . . . , |B|}, and consider the following sets of decision variables:
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y1
j =

1, if facility bj is selected,

0, otherwise,
∀j ∈M ,

y2
l =

1, if point γl ∈ B is selected,

0, otherwise,
∀l ∈ L.

The problem can be reformulated as follows:

max
∑
i∈N

cixi (HMCLPBIPS1 )

s.t.
∑
j∈M

y1
j = p1, (HMCLPBIPS2 )

∑
l∈L

y2
l = p2, (HMCLPBIPS3 )

xi ≤
∑
j∈M

‖ai−bj‖(1)≤ρj(1)

y1
j +

∑
l∈L

‖ai−γl‖
(2)≤ρ(2)

y2
l , ∀i ∈ N, (HMCLPBIPS4 )

xi ∈ {0, 1}, ∀i ∈ N,

y1
j ∈ {0, 1}, ∀j ∈M,

y2
l ∈ {0, 1}, ∀l ∈ L,

where constraint (HMCLPBIPS2 ) enforces opening exactly p1 of the facilities from S(1),
while constraint (HMCLPBIPS3 ) ensures opening exactly p2 of the additional (continuous)
facilities in S(2) = R2. Constraints (HMCLPBIPS4 ) allow to determine whether a demand
point is covered or not by any of the available open facilities (from S(1) or B). Note that
in the above model the domain of the x-variables can be relaxed to the interval [0, 1].

The problem above is a particular version of the classical Discrete Maximal Covering
Location problem in which two different types of facilities are desired to be open, p1 of
type discrete and p2 of type continuous.

A major issue of concern in the above model is the number of y2-variables, which
coincides with the number of points in B. This number is of order O(n2) considering one
type of continuous facilities but will be of course larger if additional continuous facility
types exist since we must add additional sets of y−variables—one for each facility type.

Still considering a single type of continuous facilities, the size of the set B can be
reduced following the strategy proposed in Church (1984). However, again we must note
that that author worked only with `1- and `2-norm for which a dominance relation between
the points allows removing some elements from B. In our case, although working in the
Euclidean plane, we can consider distances other than the `1-norm and the `2-norm. This,
again, creates some challenges to the above model since finding the BIPS is far from
straightforward.

Overall, the model just proposed can be promising under a particular case: only one
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type of continuous facilities exist and the distances of interest reduce to `1 or `2 norms.

4.5 Computational experiments

In this section we report on the results of a series of computational experiments performed
to empirically assess our methodological contribution for the hybridized MCLP presented
in the previous sections.

4.5.1 The test data

To run the experiments, we made use of real geographic and demographic information from
Manhattan Island, NY, USA. The data was collected from data.cityofnewyork.us. The
main instance consists of the (planar) geographical coordinates of the 920 main buildings
on the island with demand weights given by the number of people living in at each of the
buildings. The complete data set used in our experiments is available in our repository
github.com/vblancoOR/MTMCLP.

To test the scalability of the problem we are investigating, different subsets of the
complete data we considered each with a different size. We sorted the location indices
of the buildings according to demands and we made subsets from the buildings with the
largest demands. We have considered subsets of cardinality n ∈ {400, 500, 700, 920} with
920 corresponding to the complete data set. Figure 4.3 depicts the different sizes considered
for the Manhattan data set.

(a) n = 100. (b) n = 400. (c) n = 700. (d) n = 920.

Figure 4.3: Different instances considered from the Manhattan dataset.

We assume one type of discrete facility and one type of continuous facility. Additionally,
we suppose that the potential facility location for the discrete facilities correspond to
buildings underlying the instance of the problem and we consider that the coverage radius
is equal for all of them. As for facilities to locate we adopted p1, p2 ∈ {1, 2, 3, 4, 5}.
Finally, we consider two radii for each type of facilities: for discrete facilities we consider
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ρ(1) ∈ {0.008, 0.012} and for the continuous radii the values are ρ(2) ∈ {0.005, 0.01}. These
radii are adjusted to the real coordinates (latitude and longitude) of the demand points
and are equivalent to {810, 1280} (for ρ(1)) and {430, 1050} (for ρ(2)) meters. Combining
all the parameters, a total of 400 instances have been tested (four values for n, five values
for p1, five values for p2, two values for ρ1 and two values for ρ2).

In the tests whose results we detail next, we run: (i) the non-linear formulation
(p-MTMCLPNL), (ii) the integer programming formulation (HMCLPIP ) (with constraints
(2-Wise) and (3-Wise) and the Branch-and-Cut approach derived from an incomplete for-
mulation of (HMCLPIP ) in which only the pair-wise intersection constraints are consid-
ered, and (iii) the integer programming formulation (HMCLPBIPS),

All the experiments have been run on a virtual machine in a physical server equipped
with 12 threads from a processor AMD EPYC 7402P 24-Core Processor, 64 Gb of RAM
and running a 64-bit Linux operating system. The models were coded in Python 3.7 and
we used Gurobi 9.1 as optimization solver. A time limit of 1 hour was fixed for all the
instances.

4.5.2 Results

Figure 4.4 depicts results for the smallest instances with the purpose of comparing the non-
linear formulation (p-MTMCLPNL) and the complete pure integer formulation (HMCLPIP ).
We show in that figure the average CPU times for both approaches by aggregating the dif-
ferent values of p1 and ρ(1). The instances with n = 100 demand nodes were considered
in these tests.

We show how the computational times increase when the number of continuous facilities
to locate increases for the two values of ρ(2). In particular we observe that the CPU time
reaches the time limit for p2 = 5. These results give strong evidence to our intuition:
the non-linear formulation is computationally demanding even for small instances of the
problem.

Given the results presented in Figure 4.4 we decided to proceed the tests without the
non-linear model.

Focusing on model (HMCLPIP ), Table 4.1 contains the number constraints (2-Wise)
and (3-Wise) generated as well as the CPU time required for that generation. In this table
we observe that the linear model grows a lot when the number of demand points increases,
which makes is clearly more difficult to tackle. Moreover, the CPU time required to check
all intersections increases significantly for constraints (3-Wise). Summing up, we easily
conclude that making use of a branch-and-cut approach such as the one we propose in
Section 4.4.1 is totally advisable in this case since we can avoid the clear burden that
corresponds to computing and using all the constraints.

Next, we focus on the results corresponding to running the B&C procedure devised for
tackling model (HMCLPIP ) and also the when formulation (HMCLPBIPS) is adopted. The



4.5. Computational experiments 125

1 2 3 4 5

0

600

1200

1800

2400

3000

3600

p2

TimeNL

TimeIP

(a) ρ(2) = 0.005

1 2 3 4 5

p2

(b) ρ(2) = 0.01

Figure 4.4: Average of CPU times required by models (p-MTMCLPNL) (straight line) and
(HMCLPIP ) (dashed line) when solving the instances with 100 demand nodes.

common ground for this comparison is the Euclidean plane using the Euclidean distance.
In fact, this is the setting in which we can use model (HMCLPBIPS). Another possibility
would be to use the `1-norm but then we would clearly be favor model (HMCLPBIPS),
which is already done using the Euclidean distance.

In tables (4.2) and (4.3) we present the results obtained. Each table refer to a different
covering radius for the continuous facilities (ρ(2) = 0.005 and ρ(2) = 0.01, respectively)
and are similarly organized. Both tables show the information aggregating the different
values of the discrete facilities, p1, and the radii of them, ρ(1). The first three columns
provide the details of the instance being solved: the radii used for the continuous facilities,
the number of demand nodes, and the number of continuous facilities to locate. Next,
seven blocks of columns are presented. In the blocks, the columns contains results for
model (HMCLPBIPS) (BIPS) and the branch-and-cut procedure devised for tackling model
(HMCLPIP ) (B&C). Some blocks only contain information of the branch-and-cut approach
since it is not applicable to the BIPS approach. The first block (columns 4 and 5) gives
the overall CPU time in seconds (averaged only on the instances that were solved up to
optimality within the time limit) required to solve the problem. This time includes: the
time required by Gurobi to solve the IP models (second block) of solved instances; the pre-
processing time—time for generating the BIPS in the case of Constraints (HMCLPBIPS4 )
and the time for building the initial pool of Constraints (2-Wise) in the case of model
(HMCLPIP ) (third block); the time to generate the difficult constraint (HMCLPBIPS4 ) and
its respective in the (HMCLPIP ) formulation (fourth block); callback times for the branch-
and-cut approach (fifth block); percentage gap at termination and number of unsolved
instances within the time limit– out of 10 (sixth block); and total number of constraints
used (sixth block). The percentage gaps and the number of unsolved instances are not
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(2-Wise) (3-Wise)
n ρ(2) CPUTime # Inequalities CPUTime # Inequalities

400 0.005 0.62 71780 490.70 1457
0.01 0.55 61532 2658.11 5925

500 0.005 0.91 112404 1483.38 3701
0.01 0.91 94279 9273.37 16600

600 0.005 1.35 161160 3997.49 6937
0.01 1.29 133860 25277.75 30218

700 0.005 1.85 218260 9596.85 12171
0.01 1.80 179211 61696.80 58717

920 0.005 3.14 369085 52788.62 40047
0.01 3.09 290690 358966.03 184221

Table 4.1: Averaged number of Constraints (2-Wise) and (3-Wise) generated and the CPU
time (seconds) required for their generation.

reported for the BIPS approach since all the instances were solved up to optimality within
the time limit.

In view of the results of tables (4.2) and (4.3) we draw several conclusions. First,
we realize that the difficulty in using model HMCLPBIPS stems from loading constraints
(HMCLPBIPS4 ). In fact, to accomplish this we need to check all the intersections. This
takes a long time if the size of BIPS is large. Another challenge for that model regards the
time to find the BIPS. When the number of demand nodes increases and the radius is large
enough to require checking all (or a large majority of) points, then it takes a long time.
From the above observations we conclude that in applications with a huge number of points
and large radii (e.g. clustering problems easily lead to such cases) model HMCLPBIPS may
become intractable. Still concerning this model, we note that the CPU time required to
solve it seems quite indifferent to the number of continuous facilities to locate.

We turn now our attention to the B&C algorithm devised for model (HMCLPIP ). From
tables (4.2) and (4.3) we see that the model becomes more challenging when the number
of continuous facilities to locate increase. Nevertheless, in those cases in which a proven
optimal solution could not be found within the time limit imposed, the final gap is quite
small. Still concerning the B&C procedure we observe that the pre-processing time as well
as that for generating violated cuts and for the callback checks are all very low. This
makes the whole algorithm more efficient. The number of continuous facilities to locate is
clearly the factor influencing the most the performance of the algorithm since the number
of incorporate cuts increases significantly. Still, we see that the B&C algorithm outperforms
the plain use of model HMCLPBIPS when the number of continuous facilities to locate is
small (one or two). Nevertheless, we must recall that the comparison that can be observed
in both tables can be made only because we are working on the Euclidean plane and
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using the Euclidean distance. As discussed above, if this was not the case, then we would
certainly need to resort to the B&C algorithm devised since it is quite insensitive to the
adopted norm, which is far from the case when we need to determine BIPS. The results
show that the B&C approach is certainly a viable algorithm, which is quite general.

CPUTime (secs.)
Total Solving Prepr. Ctrs. Gen. Callback MIPGAP #Unsolved #Ctrs

n p2 BIPS B&C BIPS B&C BIPS B&C BIPS B&C B&C B&C B&C BIPS B&C

400

1 53.45 6.24 0.27 3.75 7.10 1.38 46.09 1.10 0 0 0 402 72587
2 53.28 51.91 0.23 49.41 7.10 1.36 45.96 1.10 0.04 0 0 402 144373
3 53.46 229.64 0.24 227.00 7.10 1.37 46.12 1.12 0.15 0 0 402 216159
4 53.43 732.37 0.24 729.61 7.10 1.36 46.08 1.09 0.31 0 0 402 287945
5 53.01 1516.04 0.23 1512.93 7.10 1.37 45.68 1.09 0.65 0 0 402 359731

500

1 103.46 10.21 0.47 5.98 14.56 1.86 88.43 2.38 0 0 0 502 113418
2 103.23 87.44 0.42 83.17 14.56 1.85 88.25 2.37 0.05 0 0 502 225835
3 102.28 473.58 0.46 469.20 14.56 1.85 87.26 2.32 0.21 0 0 502 338252
4 102.60 1326.84 0.52 1322.02 14.56 1.85 87.51 2.34 0.63 0 0 502 450669
5 103.73 2589.89 0.50 2584.69 14.56 1.85 88.67 2.34 1.65 0.01 5 502 563086

700

1 318.71 56.62 1.60 50.02 59.45 3.23 257.66 3.36 0.01 0 0 702 219694
2 318.78 391.64 1.52 384.99 59.45 3.23 257.81 3.34 0.07 0 0 702 437987
3 321.05 1631.95 1.57 1624.82 59.45 3.24 260.03 3.34 0.81 0.01 1 702 656280
4 320.33 3165.19 1.57 3158.33 59.45 3.23 259.31 3.38 1.56 0.12 9 702 874573
5 319.01 TL 1.57 TL 59.45 3.25 258.00 3.34 0.03 28.21 10 702 1092866

920

1 937.45 548.75 14.23 535.54 216.81 5.05 706.40 8.01 0.15 0 0 922 370949
2 927.92 2809.78 13.98 2795.74 216.81 5.06 697.13 7.99 1.03 0.12 2 922 740057
3 927.02 TL 14.26 TL 216.81 5.06 695.94 8.16 0.18 0.94 10 922 1109165
4 928.00 TL 14.01 TL 216.81 5.04 697.18 8.07 0.08 26.68 10 922 1478273
5 932.15 TL 13.64 TL 216.81 5.05 701.70 7.93 0.01 38.09 10 922 1847381

Table 4.2: Performance of the computational experiments for ρ(2) = 0.005

CPUTime (secs.)
Total Solving Prepr. Ctrs. Gen. Callback MIPGAP #Unsolved #Ctrs

n p2 BIPS B&C BIPS B&C BIPS B&C BIPS B&C B&C B&C B&C BIPS B&C

400

1 130.38 11.92 3.05 9.90 24.49 0.89 102.84 1.11 0.02 0 0 402 62344
2 130.23 109.60 2.59 107.50 24.49 0.89 103.14 1.16 0.05 0 0 402 123887
3 129.79 691.50 2.64 689.38 24.49 0.89 102.67 1.10 0.13 0 0 402 185430
4 130.17 2252.92 2.87 2250.76 24.49 0.89 102.80 1.11 0.22 0.01 4 402 246973
5 130.23 3299.38 2.98 3297.28 24.49 0.93 102.76 1.22 0.22 0.45 9 402 308516

500

1 288.18 22.46 9.13 18.71 66.61 1.35 212.44 2.36 0.04 0 0 502 95286
2 289.67 427.25 9.93 423.48 66.61 1.34 213.14 2.34 0.09 0 0 502 189571
3 289.07 1467.77 9.70 1463.84 66.61 1.34 212.76 2.34 0.26 0.01 1 502 283856
4 289.85 2614.43 9.89 2610.61 66.61 1.34 213.36 2.34 0.24 0.42 9 502 378141
5 289.29 TL 9.92 TL 66.61 1.34 212.76 2.36 0.03 28.37 10 502 472426

700

1 1001.96 67.20 40.67 61.42 325.38 2.35 635.91 3.36 0.08 0 0 702 180619
2 1000.09 1519.78 41.36 1513.80 325.38 2.35 633.35 3.36 0.28 0 1 702 359837
3 999.35 3289.82 40.67 3284.10 325.38 2.35 633.30 3.35 0.16 4.14 9 702 539055
4 1000.46 TL 41.06 TL 325.38 2.35 634.02 3.33 0.01 30.58 10 702 718273
5 999.80 TL 42.02 TL 325.38 2.35 632.40 3.35 0.01 36.89 10 702 897491

920

1 3253.39 471.14 141.97 458.74 1401.62 3.84 1709.81 7.94 0.63 0 0 922 292544
2 3270.67 3320.87 141.63 3303.30 1401.62 3.84 1727.42 8.07 0.97 5.50 9 922 583247
3 3267.82 TL 142.66 TL 1401.62 3.83 1723.55 7.95 0.01 22.84 10 922 873950
4 3268.61 TL 145.35 TL 1401.62 3.85 1721.64 8.07 0.01 29.14 10 922 1164653
5 3258.10 TL 147.56 TL 1401.62 3.83 1708.92 7.93 0.01 35.09 10 922 1455356

Table 4.3: Performance of the computational experiments for ρ(2) = 0.01

In Figure 4.5, we show the solutions of four instances of our testbed obtained with
the BIPS approach painted on the Manhattan map. We draw the solutions for the larger
instances (n = 920 demand points), radii ρ(1) = 0.008 and ρ(2) = 0.005 and different
values of p1 and p2. In the figure, red dots represent the covered demand nodes, green
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squares the positions of the discrete facilities, and blue triangles the positions of continuous
facilities; the coverage areas for the discrete facilities are drawn in light green color and
those of the continuous facilities are colored in gray. The percentages of covered demand
for these instances ranges between 29% (Figure 4.5a) and 75% (Figure 4.5d).

(a) p1 = 1 and p2 = 2. (b) p1 = 2 and p2 = 3.

(c) p1 = 3 and p2 = 4. (d) p1 = 5 and p2 = 5.

Figure 4.5: Solutions of some instances of our testbed for n = 920.

4.6 Hybridized maximal covering location problem under un-
certainty

One of the possible future research lines is considering a first-stage set of facilities located in
a discrete setting and a second-stage in a continuous one. Additionally we assume that the
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exact number of second-stage facilities to locate is not known beforehand—it corresponds
to information to be disclosed in future moment in time, for instance, depending on a
budget whose volume is still unknown. We consider both the cases in which uncertainty is
not quantified using probabilities (a finite set of scenarios is assumed for the future) and
that in which the random variable representing the number of future facilities to install is
described by some known probability distribution.

Several authors have investigated uncertainty in the context of maximal covering loca-
tion problems. Drezner and Goldstein (2010) analyze gradual covering location problems
when the coverage radii are random variables. Several authors have also analyzed covering
location models in case the capability of a center to cover a user is uncertain. In this case,
the notion of congestion plays an important role (see Batta et al. 1989; de Assis Corrêa
et al. 2009; Daskin 1983; ReVelle and Hogan 1989, and Vohra and Hall 1993). Possible dis-
ruptions in facilities or link have also been considered in the context of the MCLP (Berman
et al. 2009).

Uncertainty has also been investigated in other covering problems such as the set cov-
ering location problem. This the case in the work by Marín et al. (2018) who consider a
multi-period stochastic set covering location problem. The sources if uncertainty include
(i) the coverage radius of the facilities (translated into the possibility of having some loca-
tion covering some demand node) (ii) the minimum number of facilities required to cover
each demand point, (iii) the marginal benefit for covering each demand point and (iv) the
marginal penalty for a shortage of facilities in the coverage of each demand point.

As mentioned above, in this section we consider the hybridized discrete-continuous
MCLP which it was explained above. For the sake of understanding, the problem will be
designated in this section by the (p1, p2)-Maximal Covering Location Problem ((p1, p2)-
MCLP, for short). Note that the p2 continuous facilities can be seen as a set of servers to
be located in the future and that must accommodate the first p1 discrete positions.

Given that the continuous facilities will be located in the future, it may easily happen
that their exact number is uncertain when a decision is made for p1 initial facilities. For
this reason, in the (p1, p2)-MCLP we assume that p1 is a deterministic parameter known
beforehand whereas p2 is uncertain. A finite set of possibilities (scenarios) is assumed for
it.

This research line can also be looked to a certain extent, a variation of that studied
by Berman and Drezner (2008). These authors investigated a p-median problem under
uncertainty consisting of locating p initial facilities plus an uncertain number of extra
additional ones. They also assume that the extra facilities are located at sites that are
optimal given the location of the original p facilities. In both cases, the potential facilities
to open belong to a finite set with coincides with the demand points. Therefore the problem
is cast as a stochastic discrete p-median problem.

The remainder of the section is organized as follows. In the following Section 4.6.1
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we discuss the hybridized discrete-continuous MCLP under uncertainty— no probability is
assumed for the future scenarios. Different attitudes of the decision maker towards risk are
investigated. Finally, in Section 4.6.2 we assume uncertainty quantified by a probability
law and, again we discuss several ways for hedging against uncertainty depending on the
attitude of the decision maker towards risk.

4.6.1 Robust optimization models capturing uncertainty

Hereafter we assume S(2) = Rd. Furthermore, we focus on a setting in which we do not
know beforehand the number of additional facilities that can be located in the future.
Instead, this number is represented by a parameter, say ω, taking values in a finite set
Ω = {0, 1, . . . , q}. A value ω = 0 indicates that no additional facility can be located in the
future.

Our problem still consists of selecting p1 facilities in the finite set S(1) to open here-
and-now while accounting for the possibility of locating in the future an uncertain number
(ω) of additional facilities in Rd. We still seek to maximize the weighted coverage of the
nodes in N although the weighted coverage induced by a here-and-now solution is now
itself uncertain.

In what follows, we discuss different modeling frameworks for capturing uncertainty in
ω. The variables x and y introduced in the previous section are still useful. However, we
now need to index both the z- and the X-variables in ω since they now depend on the
exact number of future facilities to locate that can vary:

zωik =


1, if node ai is covered by the k-th additional facility when ω additional

facilities can be installed,

0, otherwise,

for

all i ∈ N,ω ∈ Ω \ {0}, and k ∈ {1, . . . , ω}.
Xω
k ∈ S(2): coordinates of the k-th future facility to locate when ω such facilities can

be opened, k ∈ {1, . . . , ω}.
These variables can be looked at as a scenario-indexed representation of the z- and

X-variables.
If we knew the exact occurring scenario ω then the problem to solve would be (p1, p2)-

MCLP with p2 = ω, i.e., we would need to solve (p1, ω)-MCLP. Let us denote by V(p1, ω)

the optimal value of this problem.
The following result holds which is a direct consequence of the maximal covering ob-

jective and the fact that by increasing the number of the future facilities we can open, the
optimal value cannot deteriorate.

Proposition 4. The following sorting holds: V(p1, 0) ≤ V(p1, 1) ≤ · · · ≤ V(p1, q).

Proof. The result follows directly from the fact that for every ω′, ω′′ ∈ Ω and ω′ < ω′′,
an optimal solution to (p1, ω

′)-MCLP is also feasible to (p1, ω
′′)-MCLP with the same
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objective function value in both cases.

The sorting stated in the previous result is illustrated in example 5.

Example 5. We take the same set A introduced in Example 3. This set contains 50
nodes that were randomly generated in [0, 1] × [0, 1]. We take S(1) = A, S(2) = R2, and
‖ · ‖(1) = ‖ · ‖(2) = `2, i.e., the Euclidean norm. For the coverage radii we take ρ(1) = 0.2

and ρ(2) = ρ(3) = 0.1. The number of facilities to open in S(1) is fixed to 2. The weights
ci are all equal to one. Finally, we assume Ω = {0, 1, 2, 3}.

In Figure 4.6 we represent the optimal solution to models ((p1 = 2, ω)-MCLP), ω ∈ Ω.

(a) ((2, 0)-MCLP). (b) ((2, 1)-MCLP). (c) ((2, 2)-MCLP). (d) ((2, 3)-MCLP).

Figure 4.6: Optimal solution for different scenarios.

In Figures 4.6a and 4.6c we find the same initial facilities being selected. Nevertheless,
in the former, we observe a 30% coverage whereas this number raises to 50% in the latter.
In Figures 4.6b and 4.6d we observe again the same initial facilities being chosen but the
coverage percentage is 58% for the first and 68% for the second.

Robust worst-case model

Since the number of future facilities to locate in uncertain, one possibility for making a
here-and-now decision is to plan for the worst-case scenario. Given Proposition 4.6.1 such
scenario corresponds to setting ω = 0 and thus the problem resorts to solving (p1, p2)-
MCLP with p2 = 0. In turn, this is a classical discrete maximal covering location that can
be formulated as:

max
∑
i∈N

cixi, (UMCLPWC
1 )

s.t. (HMCLPIP2 ), (HMCLPIP3 ),

xi ∈ {0, 1}, ∀i ∈ N, (UMCLPWC
2 )

yj ∈ {0, 1}, ∀j ∈M. (UMCLPWC
3 )
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Once this problem is solved the p facilities to install here-and-now are found. When
the number of additional facilities to locate becomes eventually known, their locations
are accommodated to the above initial p1 facilities. This is a conservative approach that
may be quite unfavorable from a covering perspective since the initial p1 facilities may
not provide room for adequately (i.e., in an advantageous way) locating the additional
facilities. Example 6 illustrates this perspective.

Example 6. We consider the instance from the previous example assuming again p1 = 2.
We start by solving the problem for the worst-case scenario. This leads to the location of
the two discrete facilities represented by black squares in Figure 4.7a. In this case, a 42%
coverage level is achieved by the discrete facilities (to locate here-and-now).

Suppose that later we are informed about the possibility of locating three additional
continuous facilities. In this case, we must condition the selection of these new facilities to
the previously located discrete ones. The resulting solution can be seen in Figure 4.7a and
includes the facilities represented by the black triangles. In this case a global 72% coverage
level is attained.

However, if we knew beforehand that three additional facilities could be located in the
future, then the best solution is the one depicted in Figure 4.7b. In this case, a global
coverage level of 74% is achieved with the discrete facilities being responsible by 38%.

(a) (UMCLPWC) (b) ((p1, 3)-MCLP)

Figure 4.7: The conservatism of the solution for the worst-case scenario.

Planning for the worst-case scenario means to adopt a complete risk aversion attitude
towards risk ad thus, somehow ignore how the future outcomes may positively influence a
here-and-now solution.

Min-Max regret model

An alternative to the above extreme perspective consists of finding a here-and-now solution
(the discrete facilities to locate) minimizing the maximum regret across all scenarios.
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For any scenario ω ∈ Ω we define a Regret function of the sets of initial and future
facilities located, X (1) ⊆ S(1) with |X (1)| = p1 and X (2)

ω with |X (2)
ω | = ω:

Regretω(X (1);X (2)
ω ) = V(p1, ω)−

∑
i∈C(X (1))∪C(X (2)

ω )

ci.

The min-max regret problem can now be formulated as follows:

min
X (1)⊆S(1):|X (1)|=p1
X (2)
ω ⊂Rd:|X (2)

ω |=ω, ω∈Ω

max
ω∈Ω

Regretω(X (1);X (2)
ω ).

Making use of the sets of variables already introduced this problem can be formulated as
follows:

min max
ω∈Ω

(
V(p1, ω)−

∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

])
(UMCLPR

1 )

s.t. (HMCLPIP2 ), (HMCLPIP3 ),

xi +

ω∑
k=1

zωik, ∀i ∈ N, ω ∈ Ω \ {0}, (UMCLPR
2 )

||ai −Xω
k || ≤ ρ(2) +M(1− zωik), ∀i ∈ N, ω ∈ Ω \ {0}, ∀k ∈ {1, . . . , ω}, (UMCLPR

3 )

xi ∈ {0, 1}, ∀i ∈ N, (UMCLPR
4 )

yj ∈ {0, 1}, ∀j ∈M, (UMCLPR
5 )

zωik ∈ {0, 1}, ∀i ∈ N, ∀ω ∈ Ω \ {0}, ∀k ∈ {1, . . . , ω}, (UMCLPR
6 )

Xω
k ∈ Rd, ∀ω ∈ Ω \ {0}, ∀k ∈ {1, . . . , ω}. (UMCLPR

7 )

We can easily linearize this function by means of an auxiliary variable ν ≥ 0 representing
the maximum regret to be minimized and imposing

V(p, ω)−
∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

]
≤ ν, ∀ω ∈ Ω. (UMCLPR

1′)

For each scenario ω ∈ Ω, the left-hand-side of the corresponding above constraint represents
the regret of the solution in the scenario, i.e., the difference between the best weighted
coverage we can achieve in that scenario and the actual weighted coverage (under this
scenario) of the solution we are seeking.

Note that constraints (UMCLPR
3 ) can be rewritten as explained in Section 4.3.2 leading

to an alternative model.

Remark 6. The above model allows finding a solution minimizing the maximum regret.
This means that for the scenarios whose regret is not the maximum, every solution in
the z-variables that leads to a different regret bellow the maximum provides an alternative
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optimal. To ensure the best coverage for each scenario (apart from the one corresponding
to the maximum regret) we must fix the solution X (1) found by the overall model and then
solve the induced (continuous) MCLP maximizing the coverage of the nodes still uncovered
by X (1).

Proposition 5. Consider an optimal solution, say {x̂, X̂, ŷ, ẑ}, to model (UMCLPR). For

each ω ∈ Ω \ {0} denote γ(ω) =
∑
i∈N

ci

[
x̂i +

ω∑
k=1

ẑωik

]
i.e., γ(ω) the weighted coverage of

our solution in case scenario ω occurs. Then, we have that γ(1) ≤ γ(2) · · · ≤ γ(q).

Proof. If for some 1 < ω < q we have γ(ω) > γ(ω − 1) then we can replace the values of
variables zωik (i ∈ I, k = 1, . . . , ω− 1) by those of zω−1

ik (i ∈ I, k = 1, . . . , ω− 1) and setting
zωiω = 0, i ∈ I. This change sets γ(ω) equal to γ(ω − 1), i.e., recovers the sorting stated in
the proposition without deteriorating the total weighted coverage in scenario ω.

4.6.2 Stochastic optimization models

Expected coverage model

Assume now that the number of facilities we can install in the future is a discrete random
variable, ξ. We directly assume that ξ has finite support, Ω = {0, 1, . . . , q}, since other
case would not make sense in our problem. Furthermore we denote πω = P[ξ = ω],
∀ω ∈ Ω. Considering this probability distribution, other possibilities emerge for modeling
the problem. To start with, we can consider a risk-neutral decision maker and plan for
maximizing the expected weighted coverage of the nodes in A, i.e., solving:

max
X (1)⊆S(1) : |X (1)|=p1

Eξ

 max
X (2)
ξ ⊂Rd:|X (2)

ξ |=ξ

∑
i∈C(X (1))∪C(X (2)

ξ )

ci

 .
The extensive form of the deterministic equivalent can also be derived as the follow model
that we call (UMCLPEC):

max π0

∑
i∈N

cixi +
∑

ω∈Ω\{0}

πω
∑
i∈N

ci

ω∑
k=1

zωik, (UMCLPEC
1 )

s.t. (HMCLPIP2 ), (HMCLPIP3 ),

(UMCLPR
2 )− (UMCLPR

7 ).

Expected coverage models with regret thresholds

The expected coverage model described above seeks to find a compromise (using the un-
derlying probability distribution) for the coverage across the different scenarios. To enforce
finding solutions that do not deviate too much from the ideal coverage for each scenario,
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the model can be enriched by imposing a constraint on the maximum regret across all
scenarios (Snyder and Daskin 2006). Given a threshold, η ∈ [0, 1], this condition can be
written as follows:

V(p1, ω)−
∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

]
≤ ηV(p1, ω), ω ∈ Ω, (UMCLPηT)

where η indicates the maximum percentage deviation of the solution for each scenario ω,
with respect to the ideal value V(p1, ω).

The best outcome would be to have all regrets as close to zero as possible. Unfortu-
nately, due to the different future observations it is not possible to ensure that. Hence, the
choice of η must result from a trade-off between the desire of the decision maker and what
is actually feasible in each specific case. In fact, we expect that for every instance, there
will be a lower threshold for η below which the no feasible solution can be found.

α-reliable Min-Max regret and regret thresholds

In some cases, both the min-max regret approach and the expected coverage with regret
thresholds might be very restrictive since they measure the regret (either in the objective
function or as threshold-type constraints) with respect to all the scenarios in Ω. Such
requirement can be relaxed using the notion of α-reliability sets introduced by Daskin
et al. (1997).

Definition 1 (α-reliability set). Given α ∈ [0, 1], an α-reliability set, Ωα ⊆ Ω, is a subset
of scenarios with joint probability at least α, i.e.,

P[ξ ∈ Ωα] ≥ α.

Using this concept, we can now seek to minimize the maximum regret only across
the scenarios in some reliability set Ωα. This ensures achieving a maximum regret with
probability at least α. Note that all subsets of Ω define a 0-reliability sets.

An adequate model in this case is obtained from the min-max regret model above
presented replacing (UMCLPR

1′) with

V(p1, ω)−
∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

]
≤ ν, ω ∈ Ωα. (UMCLPαR)

Considering a particular instance of the problem and assuming some value for α, several
α-reliability sets may be available. This raises a query about which one to consider. In such
a case we can plan for finding the best solution across all α-reliability sets. To accomplish
this, the set of scenarios selected to take part of the reliability set Ωα should be part of
the decision to make. It can be determined by incorporating to the model the following
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binary variables indicating whether some scenario ω belongs or not to the selected Ωα:

vω =

1, if ω ∈ Ωα,

0, otherwise,

for all ω ∈ Ω. The following sets of constraints ensure that (UMCLPαR) holds:∑
ω∈Ω

πωvω ≥ α, (UMCLPαR
1 )

V(p, ω)−
∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

]
≤ ν +Mω(1− vω), ω ∈ Ω, , (UMCLPαR

2 )

vω ∈ {0, 1},∀ω ∈ Ω. (UMCLPαR
3 )

For ω ∈ Ω, Mω is a large enough constant. The interested reader can refer to Daskin et al.
(1997) for tighter choices concerning these bounds. Constraint(UMCLPαR

1 ) ensures that
the constructed set Ωα = {ω ∈ Ω : vω = 1} is an α-reliability set. Constraint (UMCLPαR

2 )
allows to activate constraint (UMCLPαR) when ω ∈ Ωα.

The expected coverage model with regret thresholds can also be adapted to α-reliability
sets by replacing constraints (UMCLPηT) by:

V(p1, ω)−
∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

]
≤ ηV(p1, ω), ω ∈ Ωα. (UMCLPαR−ηT)

α-CVaR models

A risk-averse decision maker tends to focus the attention on less favorable scenarios since
these are the most worrisome. The extreme case consists of planning for the worst scenario.
Nevertheless, this may be too much conservative even because the worst scenario may hold
with a negligible probability to justify having it influencing too much the adopted solution.
Between the extreme perspective and a risk-neutral attitude towards risk, there is a good
range of alternatives.

One possibility is to minimize a weighted sum of (i) the maximum regret across the
reliability sets for some confidence and (ii) the regret for the other scenarios—optimization
of the α-reliable mean-excess regret (see Chen et al. 2006). In fact, this corresponds to
considering a risk-averse decision maker and optimizing the α conditional value at risk (α-
CVaR) considering the regret of a solution as the loss function. This can be accomplished
by minimizing a convex combination of the maximum regret with respect to the scenarios
in an α-reliability set Ωα and the expected regret with respect to the scenarios in Ω\Ωα.
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Denote λΩα = P[ξ∈Ωα]−α
1−α . The problem can be stated as follows:

min
X (1)⊆S(1):|X (1)|=p1
X (2)
ω ⊂Rd:|X (2)

ω |=ω,∀ω∈Ω
Ωα⊆Ω

λΩα max
ω∈Ωα

Regretω(X (1),X (2)
ω )+(1−λΩα)

∑
ω∈Ω\Ωα

πωRegretω(X (1),X (2)
ω )

∑
ω∈Ω\Ωα

πω
.

Following Chen et al. (2006) and Rockafellar and Uryasev (2000, 2002), the problem
can be equivalently rewritten as

min
X (1)⊆S(1):|X (1)|=p1
X (2)
ω ⊂Rd:|X (2)

ω |=ω,∀ω∈Ω
Ωα⊆Ω

ζ +
1

1− α
∑
ω∈Ω

πω

[
Regretω(X (1),X (2)

ω )− ζ
]+
,

s.t. ζ ≥ 0,

where [∆]+ = max{0,∆}, and ζ is the Value-at-Risk (VaR) of confidence α, i.e., the α-
quantile of the regret distribution. The second term of the objective function aims at
minimizing the expected regret over the (1−α)× 100% worst scenarios, i.e., the (1−α)×
100% with a regret larger than or equal to the α-VaR.

In terms of our decision variables it is equivalent to:

min ζ +
1

1− α
∑
ω∈Ω

πω

[(
V(p1, ω)−

∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

])
− ζ

]+

,

s.t. (HMCLPIP2 ), (HMCLPIP3 ),

(UMCLPR
2 )− (UMCLPR

7 ).

The model can be linearized leading to

min ζ +
1

1− α
∑
ω∈Ω

πω%ω, (UMCLPα−CVaR
1 )

s.t. %ω ≥

(
V(p1, ω)−

∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

])
− ζ, ω ∈ Ω, (UMCLPα−CVaR

2 )

%ω ≥ 0, ω ∈ Ω, (UMCLPα−CVaR
3 )

(HMCLPIP2 ), (HMCLPIP3 ),

(UMCLPR
2 )− (UMCLPR

7 ).

If we set α = 0 then all scenarios have a regret above the VaR and thus we obtain a
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model seeking to minimize the overall mean regret:

min
∑
ω∈Ω

πω

(
V(p, ω)−

∑
i∈N

ci

[
xi +

ω∑
k=1

zωik

])
, (4.12)

s.t. (HMCLPIP2 ), (HMCLPIP3 ),

(UMCLPR
2 )− (UMCLPR

7 ).

Given that for every problem instance,
∑

ω∈Ω πωV(p1, ω) is a constant, it is trivial
to conclude that minimizing the mean expected coverage regret (4.12) is equivalent to
maximizing the expected weighted coverage (UMCLPEC

1 ).

4.7 Conclusions

In this chapter we investigated the multitype maximal covering facility location problem.
A general modeling framework was discussed, which was adapted to an hybridized discrete-
continuous facility location problem. In this case we could go deeper in our analysis. For
the particular case in which the space underlying the continuous location problem is the
Euclidean space and when the euclidean norm is used a third model could be proposed.
The results highlighted the viability of a branch-and-cut algorithm for dealing with the
problem in its general form. In particular, instances with up to 920 demand nodes and
two types of facilities (discrete and continuous) could be solved rather efficiently. This
defines a new state-of-the-art in terms of maximal covering location problems with a large
potential number of locations for the discrete facilities.

The work done encourages some other research lines. These include more work on the
development of valid inequalities for the general integer linear programming model thus
leading to an even better polyhedral description of the feasibility set, the inclusion of time
as a decision dimension, and the inclusion of uncertainty either in the demand or in the
number of facilities that can be open. This last one was presented in Section 4.6 where
models to capture uncertainty were shown depending of the risk aversion by the decision
maker.
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This chapter provides a general mathematical programming based framework to in-
corporate fairness measures from the facilities’ perspective to Discrete and Continuous
Maximal Covering Location Problems. The main ingredients to construct a function mea-
suring fairness in this problem are the use of: (1) ordered weighted averaging operators, a
family of aggregation criteria very popular to solve multiobjective combinatorial optimiza-
tion problems, and (2) α-fairness operators which allow to generalize most of the equity
measures. A general mathematical programming model is derived which captures the no-
tion of fairness in maximal covering location problems. The models are firstly formulated
as Mixed Integer Non-Linear programming problems for both the discrete and the contin-
uous frameworks. Suitable Mixed Integer Second Order Cone programming reformulations
are derived using geometric properties of the problem. Finally, the chapter concludes with
the results obtained on an extensive battery of computational experiments. The obtained
results support the convenience of the proposed approach.

5.1 Introduction

Section 1.4 introduces the notion of fairness, shows the vast literature on this term and
tons of applications in different fields. We recall that this term is defined as “the quality
of treating people equally or in a way that is right or reasonable”. It is an abstract but
widely studied concept in Decision Sciences in which some type of indivisible resources are
to be shared among different agents.

Fair allocations should imply impartiality, justice and equity in the allocation patterns,
which are usually quantified by means of inequality measures that are minimized. In
Section 1.4 we show several proposed measures such as the max-min, the minimum envy,
the Jain’s index, α-fairness schemes, or certain families of ordered weighted averaging
criteria.

In this chapter, we analyze a novel version of one of the core family of problems in
Facility Location, Covering Location (CL) problems which we introduced them in Section
1.2. The location of the facilities in CL is characterized by the fact that the facilities
are allowed to give service to the users at a limited distance from them. In particular,
we answer the question of how to incorporate fairness in the Maximal Covering Location
problem (MCLP). The MCLP was introduced in Section 1.2.2. We recall that in this
problem, it is assumed the existence of a budget for opening facilities and the goal is to
accommodate it to satisfy as much demand as possible. As usual in location problems,
one can consider different frameworks based on the nature of the solution space for the
facilities: in a discrete or continuous spaces. While the discrete setting is more adequate
when locating physical services, (as ATMs, stores, hospitals, etc), the continuous framework
is known to be more adequate to determine the positions of routers, alarms or sensors, that
can be more flexibly positioned. The continuous framework is also useful to determine the
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set of potential facilities that serves as input for a discrete version of the problem. One
of the main difference between these two families of problems (from the mathematical
optimization viewpoint) is that in the discrete one the distances between the facilities and
the users are given as input data (or can be preprocessed before solving the problem), while
in the continuous case, the distances are part of the decision and they must incorporated
to the optimization problem.

As far as we know, the incorporation of fairness measures into CL problems has been
studied in Drezner and Drezner (2014), in which the max-min approach has been applied to
the gradual maximal covering location problem. There, the authors incorporate the worst-
case fairness criteria from the user’s perspective, i.e. in order to enforce equity between
the partial coverage of all users. In networks, Rahmattalabi et al. (2020) consider the
selection of a subset of nodes to cover their adjacent nodes with fairness constraints with
applications to social networks. Asudeh et al. (2020) analyze a covering location problem
with fairness constraints minimizing the pairwise deviations between the different covered
sets. Korani and Sahraeian (2013) study a hub covering problem with equity allocation
constraints.

Despite of these applications, the efficiency measure used in the MCLP is the overall
covered demand, that is, as much covered demand the better. However, when one looks
at the individual utilities of each of the constructed facilities, one may obtain solutions
with highly saturated facilities in contrast to others that only cover a small amount of
demand, which results in unfair systems from the facilities’ perspective. Moreover, in many
situations this type of unfair solutions are also undesirable from the users’ viewpoint which
may see reduced the quality of the required service, as in the location of telecommunication
servers which have a higher probability to fail in case of being saturated (being other
capable to give service to these users) or in the student assignment process to schools,
in which a higher number of alumni allocated to a school may deteriorate the education
system. As far as we know, this problem has not been previously investigated in the
literature in the context of Covering Location.

In this chapter, we provide a flexible mathematical programming based framework to
incorporate fairness measures from the facilities’ perspective to Discrete and Continuous
MCLPs. This generalization of the fairness measure for the MCLP is based on adequately
combining the two main tools mentioned : Ordered Weighted Averaging (OWA) operators
in Section 1.3, and (α-fairness) operators in Section 1.4.

Our specific contributions in this chapter are:

1. To define a novel fairness measure combining OWA and (α-fairness) operators that
can be incorporated to the objective function of the MCLP.

2. To describe a general mathematical programming model which captures the notion
of fairness in MCLPs.
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3. To provide a Mixed Integer Non-Linear programming formulation for the two main
frameworks in the facility location: discrete and continuous spaces.

4. To derive MISOCO reformulations for the problem, suitable to be solved with off-
the-shelf optimization softwares.

5. To test on a battery of computational experiments the performance of the formula-
tions and their managerial insights.

The remainder of the chapter is organized as follows. In Section 5.2 we introduce
the generalized fair maximal covering problem. In Section 5.3 we present a mathematical
programming formulation for the problem, both in the discrete and the continuous frame-
work. The results of our computational experience are reported in Section 5.4. Finally,
the chapter ends with some conclusions and future research lines.

5.2 The generalized Fair Maximal Covering Location Prob-
lem

As already mentioned, the Maximal Covering Location Problem (MCLP), in its different
versions, can be seen as a resource allocation problem, in which the overall demand of the
covered users is shared among the different services that are located. Thus, a high coverage
of the total demand (no matter which service is providing the coverage) is appropriate from
a global perspective, but from an individual viewpoint, one can easily get unfair allocation
patterns. Furthermore, the MCLP usually exhibits multiple optimal solutions, that is,
different subsets of p services covering the maximum possible covered demand, and then,
optimization solvers output an arbitrary one, possibly not the fairest.

In the following example we illustrate this situation in a toy instance.

Example 7. We consider a randomly generated set of 200 demand points with coordinates
in [0, 20] × [0, 20]. We assign to each of them a random integer weight in [0, 100]. We
assume that three services are to be located chosen from the set of demand points. The
coverage areas for all the potential location of the services are disks of radius 5. The solution
obtained by Gurobi for the classical MCLP is shown in Figure 5.1a. In such a solution,
65.7% of the demand is covered, and the distribution of (weighted) users among the services
is (1723, 2365, 2804), that is, there are two services covering close to one thousand more
clients than the other one. Other feasible (non optimal for the MCLP) solution for the
problem is also show in Figure 5.1b, in which 62.58% of the demand is covered and whose
distribution of covered demand is (2126, 2162, 2278). This solution, although covers 3% less
demand than the classical MCLP, is clearly much more equitable than the MCLP solution,
since all the users cover approximately the same demand, but still efficient.
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(1)[1723.00]

(2)[2365.00]

(3)[2804.00]

(a) Classical MCLP

(1)[2126.00]

(2)[2162.00]

(3)[2278.00]

(b) Fairer solution for MCLP

Figure 5.1: Optimal solutions obtained with the MCLP

In what follows we introduce a new fairness measure that we incorporate into the MCLP
in order to provide fair coverage of the demands. This new measure is a generalization of
the fairness measure based on adequately combining two main tools mentioned in Sections
1.3 and 1.4: OWA operators and (α-fairness) operators.

Definition 2. Let α ≥ 0 and λ ∈ Rp+ with
∑p

j=1 λj = 1 and λ1 ≥ · · · ≥ λp. The (α, λ)-fair
operator is a function Fα,λ : Rp+ → R+ defined as:

Fα,λ(W1, . . . ,Wp) :=


1

1−α

p∑
j=1

λjW
1−α
(j) if α 6= 1,

p∑
j=1

λj log(W(j)) if α = 1.

((α, λ)-Fair)

Theorem 12. Fα,λ is concave.

Proof. LetW1, . . . ,Wp ∈ R+. Assume thatW1 ≤ · · · ≤Wp. If α = 1, since the log function
is monotone, we get that Z1 := log(W1) ≤ · · · ≤ Zp := log(Wp). Thus, F1,λ(W1, . . . ,Wp) =

Φλ(Z1, . . . , Zp) which is concave. In case α < 1, defining λ̂j = 1
1−αλj and Zj = W 1−α

j for
all j = 1, . . . , p, we get that Z1 ≤ · · · ≤ Zp and Fα,λ(W1, . . . ,Wp) = Φ

λ̂
(Z1, . . . , Zp), being

then Fα,λ concave. Finally, in case α > 1, we define λ̂j = − 1
1−αλj and Zj = −Wα−1

j for
all j = 1, . . . , p, we get that Z1 ≤ · · · ≤ Zp and Fα,λ(W1, . . . ,Wp) = Φ

λ̂
(Z1, . . . , Zp). Thus,

Fα,λ is concave.

Proposition 6. Let W = (W1, . . . ,Wp) ∈ Rd. Fα,λ verifies the following properties:

1. Continuity: Fα,λ is a continuous function. This axiom assures that, locally, small
changes in the allocation do not significantly affect the measure.

2. Population size independence: Equal resource allocations are, eventually, inde-
pendent of the number of users, i.e., limp→∞

Fα,λ(1p+1)
Fα,λ(1p) = 1.
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3. Pareto optimality: If Wj ≤ W̄j , ∀j ∈ {1, . . . , p}, and Wj < W̄j for at least some
j, then Fα,λ(W) ≤ Fα,λ(W̄).

4. Symmetry: Fα,λ(W1, . . . ,Wp) = Fα,λ(Wσ(1), . . . ,Wσ(p)), where σ is an arbitrary
permutation of the indices.

5. Bounded: The value of allocation given by the scheme is bounded.

6. Scale and metric independence: The measure is independent of scale, i.e, the
unit of measurement does not matter.

Proof. Some of this properties are stated by Lan et al. (2010) as axioms and others are
from the literature (Jain et al., 1984; Barbati and Piccolo, 2016), and its proof for Fα,λ is
straightforward.

The ((α, λ)-Fair) operator depends of p+1 parameters (α and the λ-weights). Observe
that this operator is a combination of the (α-fairness) measure introduced by Atkinson
(1970) and the fair OWA operators introduced in Yager (1988). Actually, in case α = 0,
our operator turns into the λ-OWA operator. In case λ = (1

p , . . . ,
1
p) it becomes the 1

p -
weighted (α-fairness) function 1

pΨα. This combination of these two operators allows us to
derive a unified framework to deal with fairness in maximal covering location problems,
that we detail below.

We are given a set of demand points in a d-dimensional space, A = {a1, . . . , an} ⊆ Rd,
indexed by the set N = {1, . . . , n}, and each of the points endowed with a demand weight
ωi ≥ 0 for all i ∈ N . We are also given a metric space S ⊆ Rd endowed with a distance
measure ‖ · ‖, and a radius R ∈ R for each X ∈ S, which is assumed to be the same for all
the facilities to be located (although it is not a limitation of the results provided in this
chapter). The goal of the Fair MCLP is to find the position of the p facilities to locate,
X1, . . . , Xp ∈ S, maximizing the ((α, λ)-Fair) operator of the demands covered by these
services. We denote by P the index set for the facilities, i.e., P = {1, . . . , p}.

Formally, given λ and α, the (α, λ)-Fair Maximal Covering Location Problem ((α, λ)-
FMCLP, for short) can be model as the following optimization problem:

F ∗α,λ = max
X1,...,Xp∈S

Fα,λ(W (X1), . . . ,W (Xp)) (FMCLPα,λ)

where W (Xj) is the covered demand of facility Xj , assumed that each demand point is
accounted as covered by at most one of the facilities. We denote by Wα;λ = (W (X∗1 ),
. . . , W (X∗p )) ∈ Rp+ a coverage vector of each of the facilities in the problem above. We
also denote by Wsum

α;λ =
∑p

j=1W (X∗p ) the total covered demand in the solution and by
Wmin
α;λ = min

j=1,...,p
W (X∗p ) the demand covered by the service with smallest coverage in the

solution.
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The problem that we introduce above allows one to determine the position of the
facilities that are fair from the individual viewpoint, but, how much is one willing to lose
when imposing fairness to the MCLP? The price of fairness in any allocation rule is a
notion studied in Bertsimas et al. (2011) in order to measure the efficiency loss under a
fair allocation compared to the one that maximizes the overall sum of the users utilities.
In our case, the solution of (FMCLPα,λ) is compared against the solution of the classical
MCLP in order to know how far is a fair solution to the best coverage of the give demand.

Definition 3. The price of fairness measure for (FMCLPα,λ) is defined as the index:

PoF(FMCLPα,λ) =
Wsum

0;( 1
p
,..., 1

p
)
−Wsum

α;λ

Wsum
0;( 1

p
,..., 1

p
)

, (PoF)

The price of fairness indicates the relative deviation of the covered demand when solving
the maximal (α, λ)-FMCLP with respect to the solution of the classical MCLP which
attains the maximal possible coverage. Thus, the price of fairness is a value between 0 and
1 measuring how close is the effectiveness of the obtained fair solution with respect to the
most effective covering solution. A price of fairness equal to 0 indicates that (FMCLPα,λ)
is able to construct a fair allocation without loss of efficiency (at the maximum possible
coverage). In contrast, a price of fairness with value 1 means that (FMCLPα,λ) obtains the
worst global coverage. Thus, as closer this measure to 0 the better. In general it provides
the percent loss of coverage with respect to the maximal possible coverage of an instance,
allowing one to quantify the price one has to pay when imposing (α, λ)-fairness.

On the other hand, one can also measure how far is a fair solution from the fairest share,
which is obtained when solving the max-min covering location problem, i.e., comparing the
demand covered (in our fair MCLP) by the service covering the smallest demand in the
solution with respect to the solution in which the coverage of the service covering the least
demand is maximized. This measure was called in Bertsimas et al. (2012) as the price of
efficiency.

Definition 4. The price of efficiency measure for (FMCLPα,λ) is defined as:

PoE(FMCLPα,λ) =
Wmin

0;(1,0,...,0) −W
min
α;λ

Wmin
0;(1,0,...,0)

, (PoE)

The Price of Efficiency is interpreted as the percent loss in the minimum demand
coverage guarantee compared to the maximum minimum covered demand guarantee. This
index also takes value in [0, 1], in which a value of 0 means that the (α, λ)-FMCLP obtains
the fairest solution, while a value of 1 indicates the least fair solution in which there is a
service not covering any demand.

Other widely used measure of fairness is the envy. In the MCLP the envy of facility
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positioned in Xj ∈ S, whose covered demand is W (Xj), for a facility located at Xk ∈ S,
whose covered demand is W (Xk), is defined as:

envy(Xj , Xk) = max{0,W (Xk)−W (Xj)}

that is, facility j suffers envy of value W (Xk) −W (Xj) from facility k in case k covers
more demand than j. The overall envy of a set of p facilities X1, . . . , Xp ∈ S is the overall
sum of all the pairwise envies. From this, the Gini index is defined as the ratio of this
total envy and the all the covered demand by the facilities multiplied by 2p (the overall
number of pairwise comparisons):

Definition 5. The Gini index is defined as:

Gini(X1, . . . , Xp) =

∑
j,k∈P

envy(Xj , Xk)

2p
∑
j∈P

W (Xj)
(Gini)

We will see in our computational experience that the family of (α, λ)-FMCLP exhibits
differences when varying the values of α and λ with respect to the three measures that we
described above (PoF, PoE and Gini). A trade-off solution between these measures will be
desirable from the point of view of efficiency and also of fairness.

5.3 Mathematical Programming Formulations for α-FOWA
MCLP

In this section we derive a suitable mathematical programming-based framework to model
the (α, λ)-FMCLP. We will present different formulations for the problem for both the
discrete case (S being a finite pre-specified set) and the continuous case (S = Rd). The
nature of the domain of this problem directly affect the development of resolution strategies
for it.

A general formulation for the problem considers the following decision variables:

zik =

1, if node ai is covered by the k-th selected facility in S,

0, otherwise,
for all i ∈ N, k ∈ P,

and Xk ∈ Rd : coordinates of the k-th selected facility in S.
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(FMCLPα,λ) can be formulated as follows:

max Fα,λ

(∑
i∈N

ωizi1, . . . ,
∑
i∈N

ωizip

)
s.t.

∑
k∈P

zik ≤ 1, ∀i ∈ N, (FMCLP1)

ai ∈ BR(Xk) if zik = 1, ∀i ∈ N, k ∈ P, (FMCLP2)

zik ∈ {0, 1}, ∀i ∈ N, k ∈ P,

Xk ∈ S, ∀k ∈ P.

The objective function aims to maximize the (α, λ)-fairness of the demand coverage by each
of the facilities. Constraint (FMCLP1) assures that each covered demand point is counted
at most once as covered. (FMCLP2) ensures the adequate definition of the x-variables.

The feasible set of the problem above will described then by a set of linear and second-
order cone representable inequalities on binary and continuous variables. One of the main
difficulties of the model above stems on the representation of the objective function Fα,λ
which consists of the following two ingredients:

Sorting: Representing the order given by the OWA operator into an optimization problem
is a difficult challenge. In Section 1.3 we describe the two most popular formulations
for this operator on the values W 1−α

k for k ∈ P . A third representation is based
on the x-variables that we consider in our problem, by sorting the selected facilities
in S in non-increasing order of the demand coverage, i.e, enforcing the following
constraints: ∑

i∈N
ωizik ≤

∑
i∈N

ωizik+1, ∀k ∈ P. (Sorting)

(1− α)-powers: Observe that the (1−α) powers of the coverage of each facility appear in
the objective function. Denoting by Wk =

∑
i∈N

ωizik and by Zk = W 1−α
k , for k ∈ P ,

assuming that W1 ≤ . . . ≤ Wp, the objective function above can be written as the
linear function:

Fα,λ(W1, . . . ,Wp) =
1

1− α
∑
k∈P

λkZk,

as long as it is fulfilled that Zk ≤ W 1−α
k (for α < 1) or Zk ≥ W 1−α

k (for α > 1)
for all k ∈ P . Assuming that α is rational, we get that there exists p, q ∈ Z+ with
p ≥ q ≥ 1 and gcd(p, q) = 1 such that:

1

1− α
=


p
q if α < 1,

− q
p if α > 1.
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Thus, the power-constraints can be rewritten as:

Zpk ≤W
q
k , for all k ∈ P . (Powers)

These constraints can be conveniently rewritten as a set of quadratic second-order
cone constraints following a simplification of the results in Blanco et al. (2014).

In the rest of the section we describe how to represent constraints (FMCLP2) in a
suitable mathematical programming formulation. This representation highly depends on
the nature of the set of potential coordinates for the facilities S. We analyze the cases in
which S is a finite set and the one where S = Rd.

5.3.1 Continuous framework

We analyze here the case where the potential set from which the coordinates of the services
are chosen is the entire space, i.e., S = Rd. In this case, the norm-based covering constraints
(FMCLP2) can be rewritten as

‖Xk − ai‖ ≤ R+ Ui(1− zik),∀i ∈ N, k ∈ P. (Norms)

where Ui is a big enough constant (Ui > ‖ai − ai′‖ for all i′ ∈ N). It ensures that in case
i is allocated to the kth selected facility (Xk), then ai must belong to BR(Xk).

These constraints have been rewritten in 1.1.1 as set of linear and second-order cone
inequalities by (`τ -norm) for `τ -norms or by (Pol-norm) for polyhedral norms inducing
mixed-integer second-order cone optimization problems.

As already observed in Chapters 3 and 4 the norm-based constraints (Norms) can
also be rewritten as linear constraints using Lemma 1 defined in Chapter 1.2.3. This
linearization is based on projecting out the X-variables by ensuring that these can be
constructed from the x-variables. See Section 4.3.2 for more details.

5.3.2 Discrete framework

Let us assume that the potential set of facilities if finite, that is, S = {b1, . . . , bm} ⊆ Rd.
We denote by M = {1, . . . ,m} its index set. The model in this case can be simplified
taking into account that the subset of potential facilities that are able to cover each single
demand point can be pre-computed. It allows also to avoid the use of the X-variables,
replacing them by the following decision variables to decide which of the potential facilities
from {b1, . . . , bm} are open and and which is the position of the demand covered by each
facility in the ordered vector.

yjk =

1, if the covered demand of facility j is the k-th largest,

0, otherwise,
for all j ∈M, k ∈ P.
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Then, (FMCLP) can be alternatively formulated as:

max
1

1− α
∑
k∈P

λkZk

s.t. (FMCLP1), (Sorting), (Powers)

zik ≤
∑
j∈C(i)

yjk, ∀i ∈ N, k ∈ P, (FMCLPD
1 )∑

j∈M
yjk = 1, ∀k ∈ P, (FMCLPD

2 )∑
k∈P

yjk ≤ 1, ∀j ∈M, (FMCLPD
3 )

zik ∈ {0, 1}, ∀i ∈ N, ∀k ∈ P,

yjk ∈ {0, 1}, ∀j ∈M,k ∈ P.

Apart from (FMCLP1), (Sorting), (Powers), the covering constraints (FMCLP2) are
rewritten using the y-variables using (FMCLPD

1 )–(FMCLPD
3 ). Constraints (FMCLPD

1 )
assure that the demand points can be assigned to a facility if it is sorted in any position
(equivalently, if it is open). Constraints (FMCLPD

2 ) enforces that a single facility is assigned
to a position and (FMCLPD

3 ) that at most one position is assigned to a facility (those
facilities not assigned to a positions will be not open). Both constraints together with
(Sorting) assure that exactly p facilities are open, each of them in a different order in the
coverage sequence.

The classical formulations for the MCLP use one-index binary variables to determine
the open facilities as the presented in Section 1.2.2. Note that in our case it is not enough,
since the positions of the activated services in the sorting coverage sequence are needed to
allow the allocation of the demand points to a facility only in case it is open.

5.4 Computational study

In this section, we report on the results of our computational experience of the presented
models in this chapter. We consider the data set given by Orlandini (2019) with size 181
which contains the locations (latitude and longitude) of Residential Schools and student
hostels operated by the federal government in Canada. The coordinates in this data set
have been normalized in the unit square. From the whole dataset we construct different
instances with sizes, n, ranging in {45, 90, 120} (the first n demand nodes in the complete
instance). The users’ demands have been randomly generated by a uniform distribution in
(0, 1). The number of facilities to be located, p, ranges in {5, 10, 15, 20}, and we use the
same radius for all facilities and for all instances, R = 1.

We run our models by choosing the λ-parameters of the OWA operator in {W, C, K, D, G, H}
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(see Table 1.3, where C - Minimum, D - α−Min-Average, G - Gini, H - Harmonic, K -
k−Average, and W - Average). The α-parameter was chosen in {0, 0.5, 1, 2}.

As already mentioned the fairest solution is obtained for the max-min approach (C).
Therefore, since a single facility (the most damaged) is accounted in such an objective
function, the α-parameter does not affect the solution. Thus, for C we only solved the
α = 0 case. With that, a total of 252 instances for each framework (a total of 504) have
been solved in our computational study.

The models were coded in Python 3.7 in an iMac with 3.3GHz with an Intel Core i7
with 4 cores and 16GB 1867 MHz DDR3 RAM. We use Gurobi 9.1.2 as optimization solver.
A time limit of 2 hour was fixed for all the instances.

The set of generated instances and the complete results obtained in our computational
experiments are available in the github repository github.com/vblancoOR/fowa.

In the following tables of this section we show the computational performance of each
model for each frameworks that we consider: discrete and continuous. The tables show the
average computational times for those solved instances within the time limit (Time), MIP
GAP (GAP) when the time limit is reached, the total of instances which have reached the
time limit (#TL), and the total of instances that flagged “Out of Memory” when trying to
solve the problem (#OoM).

In Table 5.1 we show the results for the discrete framework this information for aggre-
gated instances by the values of λ (Table 5.1a) and α (Table 5.1b). We observe that the
model is not able to solve within the time limit of two hours 78 out of the 252 instances,
and 12 of them can not be solved because of Out of Memory. Besides, we observe that
the most difficult λ vector to solve was K with higher computational times and number
of unsolved instances. Concerning the α-parameter, the computationally hardest one was
α = 1, that is, when the model uses the log to solve the problem.

λ Time GAP #TL #OoM
C 2223.46 10.96% 5 0
D 2586.8 6.83% 15 2
G 3265.55 9.27% 19 2
H 2930.06 11.24% 22 2
K 3071.63 10.04% 18 4
W 1865.88 3.85% 7 2

(a) Aggregated by λ

α Time GAP #TL #OoM
0 2019.45 9.09% 21 0
0.5 3472.56 7.26% 19 0
1 1795.86 11.05% 26 6
2 3228.64 8.60% 20 6

(b) Aggregated by α

Table 5.1: Averaged time and GAP, and total non-solved instances aggregating by param-
eters λ and α for the discrete framework

Table 5.2 shows the results disaggregated by size of the demand set (n) and by the
number of facilities to locate (p). The reader can observe that for p = 5 we were able to
optimally solve all the instances and for p = 10 most of the instances were also optimally
solved within the time limit. In contrast, for the largest values of p, the model were no
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longer capable of certifying optimallity, but it provides very small MIPGAPs.

n p Time GAP #TL #NS

45

5 3.41 0.00% 0 0
10 359.71 3.14% 4 0
15 5471.43 11.50% 17 0
20 3302.87 8.22% 7 10

90

5 164.53 0.00% 0 0
10 5264.63 3.42% 1 0
15 4366.36 3.49% 16 0
20 3607.89 16.39% 5 2

120

5 406.44 0.00% 8 0
10 5465.62 4.61% 20 0
15 225.87 4.72% 20 0
20 3617.06 8.41% 20 0

Table 5.2: Averaged time and GAP, and total non-solved instances disaggregated by size
n and number of centers p for the discrete framework

For the continuous MCLP, we observed that the nonlinear formulation (Norms) have a
worse performance than the linear formulations proposed in Chapter 3 and 4, as expected.
Thus, we provide the results of using formulation (4.3) in our experiments.

In Table 5.3 we show the results for the continuous framework. As usual in Location
problems, this framework was more challenging to solve than its discrete counterpart. A
total of 124 instances were not able to be solved within the time limit and 6 instances
output with an Out of Memory flag. However, when the time limit is reached, the average
gap for these instances is not very high. In this framework, we obtain similar results for all
the λ-values, not being clear which problem more time consuming. However, we observe
that the Average (W) and the minimum (C) are slightly easier to solve having more solved
instances within the time limit. On the other hand, when the model tries to solve the
logarithm for the value of α = 1, there is a greater number of unsolved instances and the
averaged MIPGAP is greater.

λ Time GAP #TL #OoM
C 1778.93 1.81% 2 0
D 1566.85 7.84% 26 1
G 1447.96 9.97% 28 1
H 1080.51 11.04% 29 1
K 1985.79 8.63% 25 2
W 1861.95 3.59% 14 1

(a) Aggregated by λ

α Time GAP #TL #OoM
0 1199.21 9.98% 29 0
0.5 2174.11 5.27% 32 0
1 941.67 12.67% 34 5
2 2286.11 6.36% 29 1

(b) Aggregated by α

Table 5.3: Averaged time and GAP, and total non-solved instances aggregating by param-
eters λ and α for the continuous framework
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We show in Table 5.4 the computation times by disaggregating the values of the size
of the demand set, n, and the number of centers to locate, p, for those instances for which
optimality was certified within time limit. In this table we can see that both the size of
n and the size of p have an impact in the difficulty of solving the instances. One can
observe that for the largest values of n, the model is only capable to certify optimality in
two instances for each p within the time limit.

n p Time GAP #TL #OoM

45

5 3.41 0.00% 0 0
10 359.71 1.38% 1 0
15 5471.43 7.98% 9 0
20 3302.87 6.07% 13 5

90

5 164.53 0.00% 0 0
10 5264.63 10.60% 12 0
15 4366.36 6.80% 19 0
20 3607.89 9.20% 16 0

120

5 406.44 0.00% 19 0
10 5465.62 8.05% 19 1
15 225.87 10.45% 19 0
20 3617.06 9.61% 19 0

Table 5.4: Averaged time and GAP, and total non-solved instances disaggregated by size
n and number of centers p for the continuous framework

In what follows we analyze the solutions obtained with our models in terms of fairness
and efficiency. As noted above, the MIPGAPs for the instances unsolved within the time
limit is small, being most of the instances assumed to be optimally solved (with certain
degree of accuracy). In order to show the quality of the solutions, we consider those
instances with a MIPGAP smaller than 5%.

In Figures 5.2 and 5.3 we draw values of the price of fairness (PoF) and the price
of efficiency (PoE) disaggregated by the values of the parameter α and n. Clearly, the
fairest solution is the one that provides the minimum (C). However, when the parameter α
increases, we obtain a range of fair solutions between the classical MCLP (α = 0, λ = W)
and the minimum. This shows that the inclusion of both measures provides different
solutions in terms of fairness. On the other hand, Figure 5.3 shows the averaged values
of PoE. One can note that the highest PoE is obtained, as expected, when solving the
classical version of the MCLP and the smallest, with the max-min approach. However, if
we look at both figures, we can conclude that the trade-off between fairness and efficiency
is promising when considering α−Min-Average (D) and Gini (G), obtaining fairer solutions
by increasing the value of α. If one is willing to lose more efficiency to gain fairness the
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better operator seems to be the Harmonic (H).

0 0.5 1 2 0 0.5 1 2 0 0.5 1 2

0
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0.2

n = 45 n = 90 n = 120

PoF – discrete framework by n

C D G H K W

Figure 5.2: Price of fairness disaggregated by α ∈ {0, 0.5, 1, 2} and n ∈ {45, 90, 120}
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Figure 5.3: Price of efficiency disaggregated by α ∈ {0, 0.5, 1, 2} and n ∈ {45, 90, 120}

Disaggregating by p one can see, again, that the operator that gives good solutions of
fairness and efficiency is the α−Min-Average (D), and if we are willing to lose more efficiency
to obtain better solutions in terms of fairness, a good choice is to use the Harmonic (H)
OWA operator.
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Figure 5.4: Price of fairness disaggregated by α ∈ {0, 0.5, 1, 2} and p ∈ {5, 10, 15, 20}
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Figure 5.5: Price of efficiency disaggregated by α ∈ {0, 0.5, 1, 2} and n ∈ {5, 10, 15, 20}

Finally, if we observe the PoF and PoE values for the different values of the considered
parameters, we can conclude that the harmonic operator returns the fairest solutions, that
even not reaching the max-min fairness get balanced results in terms of efficiency and
fairness. Other best choices to find a good trade off between fairness and efficiency are
those provided by α−Min-Average (D) and Gini (G).
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(a) Price of fairness

0 0.5 1 2

0

0.2

0.4

0.6

0.8

α

(b) Price of efficiency

Figure 5.6: Measures disaggregated by α ∈ {0, 0.5, 1, 2} and p ∈ {5, 10, 15, 20}

In the continuous counterpart, we obtained similar results. In figures 5.7 and 5.9 we
observed that the level of fairness does not increase in some instances when α increase due
to the average of the results with a 5% of GAP (not all the instances were solved up to
optimallity).

When we disaggregate by n in figures 5.7 and 5.8, we see that the operators can be
classified into three levels of fairness: on the one hand, the fairest, the minimum (C); on the
other the least fair, the average (W); and lastly, a trade-off between fairness and efficiency
for the rest of the operators in which we cannot conclude that one returns fairer results
than another. Again, we observe that for the continuous case, the combination of both
measures provides the decision maker with a range of fairness solutions different from those
that the operators and α-fairness scheme would provide separately.
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Figure 5.7: Price of fairness disaggregated by α ∈ {0, 0.5, 1, 2} and n ∈ {45, 90, 120}
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Figure 5.8: Price of efficiency disaggregated by α ∈ {0, 0.5, 1, 2} and n ∈ {45, 90, 120}

On the other hand, if we disaggregate by p, in the figures 5.9 and 5.10, we noted that
the operators K and H give a good trade-off between fairness and efficiency.
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Figure 5.9: Price of fairness disaggregated by α ∈ {0, 0.5, 1, 2} and p ∈ {5, 10, 15, 20}
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Figure 5.10: Price of efficiency disaggregated by α ∈ {0, 0.5, 1, 2} and n ∈ {5, 10, 15, 20}

Disaggregating by the values of α we obtain a similar conclusion. The continuous case
would return the three differentiated levels of fairness solutions discussed above. Being
again as in the discrete case, the harmonic operator (H) the one that would gives us a
fairest solution without reaching the one provided by the max-min approach.
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Figure 5.11: Measures disaggregated by α ∈ {0, 0.5, 1, 2}

Finally, in Figure 5.12 we draw the different solution obtained for a selected instance for
different values of (λ, α) of our operator. From left top to right bottom we draw: (C, any
α), (H, 0), (D, 0.5), (G, 0), (W, 0.5) and (W, 0). The reader can observe that, geometrically, a
greater concentration of facilities is obtained for fairer solutions, being not only the position
of the facilities the factor that affect the fairness of a solution, but also the allocation of
the users to them, which can be more easily when different facilities are able to cover the
same demand points.
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(a) C (b) H and α = 0 (c) D and α = 0.5

(d) G and α = 0 (e) W and α = 0.5 (f) W and α = 0

Figure 5.12: Example of fairness distribution for some results when n = 90 and p = 10

5.5 Conclusions and further research

We present in this chapter a novel fairness measure for Maximal Covering Location Prob-
lems, that combines the OWA operators, early introduced by Yager (1988), and the α-
fairness scheme introduced by Atkinson (1970).

We develop suitable mathematical programming models that allow to capture the no-
tion of fairness in the MCLP for the two main frameworks that are studied in the literature:
the discrete and continuous. The models are then reformulated as MISOCO problem, using
the geometrical insights of the problem, and then, the programs that we propose are able
to be solved with the available off-the-shelf sofwares.

We have tested our models using a real data set containing the locations of residential
schools and student hostels in Canada. Applying our new scheme to this dataset, we
empirically observes that our models provide different solutions in terms of fairness than
using the OWA operators and the α-fairness scheme separately. Therefore, we conclude
that the inclusion of both in the same allocation scheme provides the decision maker with
a wide range of options to find a trade-off between fairness and efficiency.

Further research lines on fairness topic include the using of this combination of schemes
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into different location problems, as the set covering problem, location problems with ca-
pacities and also its incorporation to queue problems where the facilities has to deal with
the management of waiting users when the facility is saturated, and fair solutions of the
problem could be a successfully too to deal with this problematic.
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In this dissertation we present new contributions in different Continuous Location prob-
lems. We study novel extensions on maximal covering location problems and develope new
approaches to solve large instances of a wide family of multifacility location problems. All
the results reported in chapters 2,3, 4, and 5 are new and their contents are based on the
published paper Blanco and Gázquez (2021) and the preprints Blanco et al. (2021a,b), that
are, at present, under revision in different high-impact OR scientific journals.

Mathematical Optimization plays the most important role in this thesis, both to analyze
and solve the proposed models. In particular, Mixed-Integer Non-Linear Programming
(MINLP) formulations have been first developed as ’natural’ formulations to describe all
problems. However, the intrinsic properties of each of the problems under analysis allow
us to derive suitable (Mixed) Integer Linear Programming formulations (MILP), for which
more efficient resolution strategies are implemented in the available commercial off-the-
shelf solvers. Furthermore, all the Mathematical Programming formulations have been
carefully analyzed in order to strengthen them with valid inequalities, strategies for fixing
variables and generating initial solutions. Finally, all the proposed approaches have been
empirically tested on extensive batteries of experiments on classical and new instances.
Specifically, in Chapter 2 we provide a new dataset for continuous covering location which
may serve as a benchmark to test further developments on this problem and its extensions.

As already mentioned, this thesis provides a step forward on analyzing Continuous
Location problems. Although there is a wide literature on this family of problems since the
Weber problem (Weber, 1909) and its extensions, the existence of efficient exact algorithms
to solve medium to large size instances is still a challenge for most of the variants of
the classical problem because their, in general, NP-hardness complexity. In Chapter 2
we address a difficult well-known family of continuous location problems which combines
three ingredients that considerably increase the complexity (but at the same time, the
applicability) of the problems: (a) multiple facilities are to be located instead on one,
being each demand point allocated to its closest facility; (b) the measure that we consider
of the closeness of a demand point in a d-dimensional space from a facility is a `τ -norm or
a block-norm based distance in Rd; and (c) in order to determine the goodness of a set of
facilities with respect a set of given demand points we aggregate the distances by means
of ordered median function. This family of problems was firstly analyzed in Blanco et al.
(2016), in which the authors provided a Mixed Integer Second Order Cone Optimization
(MISOCO) reformulation of the problem able to solve, for the first time, problems of small
to medium size (up to 50 demand points), using off-the-shell solvers. In this chapter,
we propose two exact methods, namely a compact formulation and a branch-and-price
procedure, based on a set partitioning formulation of the problem. Moreover, we derive
theoretical lower bounds for the problem, which also allow us to develop three three novel
matheuristics. We perform an extensive computational battery of experiment that proved,
empirically, the usefulness of the branch-and-price approach for medium- to large-sized
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instances.
On the other hand, in chapters 3, 4, and 5 we analyze practical extensions of the

classical Continuous Maximal Covering Location Problem (MCLP). In Chapter 3 we study
MCLP in which the facilities are required to be linked through a given graph structure
provided that the distance between the linked facilities does not exceed a given limit. We
propose a MINLP formulation and derive a MILP formulation based on the geometry of the
problem, we also derive two branch-and-cut solution strategies for solving more efficiently
the problem based on different relaxations of the problem. Furthermore, we develop a
matheuristic algorithm which is capable to obtain good quality solutions for larger-size
instances in reasonable CPU times. In total, 5 resolution methods have been proposed and
tested in an extensive battery of computational experiments.

In Chapter 4 we analyze a multitype-version of the MCLP in which the position of
facilities in different metric spaces are simultaneously decided. A general modeling frame-
work is provided for any type and number of facilities. This model has been also adapted
to an hybridized discrete-continuous facility location problem which is further analyzed.
Specifically, we derive a novel pure binary linear programming formulation for the hybrid
problem. In the Euclidean planar case, a third model is also proposed. The empirical
results prove the validity of a branch-and-cut algorithm for dealing with the problem in
its general form. In particular, instances with up to 920 demand nodes and two types of
facilities (discrete and continuous) could be solved rather efficiently.

In Chapter 5 we present a novel fairness measure for allocation problems that combines
the Ordered Weighted Averaging (OWA) operators, introduced by Yager (1988), and the
α-fairness scheme introduced by Atkinson (1970). We apply this novel measure to capture
fairness allocations for MCLP in both discrete and continuous frameworks. We develop
suitable mathematical programming models and they are reformulated as MISOCO prob-
lem, using the geometrical insights of the problem. We have tested our models using a
real data set containing the locations of residential schools and student hostels in Canada.
Applying our new scheme to this dataset, we empirically observes that our models provide
different solutions in terms of fairness than using the OWA operators and the α-fairness
scheme separately.

This thesis serves also as a starting point to analyze both other Continuous Location
Problems with similar tools to the proposed here or to develop new methodologies to solve
the extensions that we introduce. Concretely, the branch-and-price approach presented in
Chapter 2, may be adequately adapted to solve continuous covering location problems, or
even discrete location problems that have been proven to be challenging, as the upgrading-
based problems (see, e.g., Blanco and Marín, 2019). One of the main developments in this
thesis is the ILP formulation (c-MCLPIP) which serves as basis for modeling and solving
different versions of the MCLP. This formulation includes constraints modeling incom-
patibilities of demand points to be covered by the same facility. Although the general
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formulation is valid for any d-dimensional spaces, in practice is difficult to implement for
d ≥ 3 since they simplify to check intersections of (d+ 1) d-dimensional norm-based balls,
which can be cumbersome. This is the reason because we develop different branch-and-cut
approaches that incorporates this type constraints as needed in the solution procedure.
Future lines of research include the development of efficient algorithms to handle these
constraints with clique-based inequalities. Another practical extension of the models pre-
sented in this dissertation is the consideration of λ-connected graphs in the MCLPIF or
the incorporation of interconnection between facilities to other continuous problems. Also,
as a topic of forthcoming papers we are analyzing the viability of considering uncertainty
and multiperiod settings in multitype maximal covering location problems as well as the
development of fairness measures to other resource allocation problems.
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