Efficient Sensor Fusion of LiDAR and
Radar for autonomous vehicles

infineon

DOCTORAL THESIS

Javier Mendez Gomez

Doctoral Programme in Information and Communication
Technologies
Department of Electronic and Computer Tecnology
University of Granada

March 2022

Editor: Universidad de Granada. Tesis Doctorales
Autor: Javier Méndez Gomez

ISBN: 978-84-1117-350-6

URI: http://hdlLhandle.net/10481/75425

http://hdl.handle.net/10481/75425
http://hdl.handle.net/10481/75425

Este documento esté preparado para ser impreso a doble cara.

Efficient Sensor Fusion of LiDAR

and Radar for autonomous vehicles

Directed by:

Prof. Diego Pedro Morales Santos
Prof. Manuel Pegalajar Cuellar

Developed at:

Infineon Technologies AG
BEX RDE RDF EET

Munich, Germany

Doctoral Programme in Information and Communication
Technologies
Department of Electronic and Computer Tecnology
University of Granada

March 2022

Acknowledgements

We know what we are, but know not
what we may be

William Shakespeare

When starting a PhD it seems you will be following a research indivi-
dually but during the years of the PhD you get i touch with a lot of people
who help to smooth the path as well as make it more entertaining, which
is also important since it takes 3 years of your life. Because of this, it is
important to thank all those people who were there.

First, I want to thank Diego P. Morales and Manuel Pegalajar, my thesis
directors, for all the help during these years. You both helped me not only to
learn about how to plan a research (from researching the state of the art to
evaluate the results correctly) and writing (maybe this was even harder than
the research itself) but also supporting me in those moments when I really
thought I would not be able to finish this path. I am extremely thankful
for all those moments, talks and messages to encourage me to keep trying.
Thanks to that I learnt that things can be hard but the key point is never
giving up.

I also want to thank the IFAG RDE RDF team for giving me this op-
portunity when I was a fresh graduate without much experience, specially
to my supervisor Kay Bierzynski, who also taught me not only about Al but
also about project management and, maybe even more important for the
future, investments. Thanks to the PhD position at Infineon I got to know
not only some experts from who to learn but also some close friends who
not only helped me with technical stuff but also made me enjoy the days
in Munich organizing cool plans like "merienda y juegos de mesa.°r just a
simple conversation. All of you made me feel I have a family here who can
always support me be there when I need you. Specially I want to thank some
close friends (that doesn’t mean the rest were not important) who taught me
a lot and were always there: Miguel Molina, Antonio Cabrera, Juan Cruz y
Borja Saez.

I also want to thank my family (this time biological family) because they
always were much sure than me about the fact that I would be able to finish

VII

VIII

CHAPTER 0. Acknowledgements

this path and, even when for some of them it was specially hard that I wasn’t
in Spain (not pointing at anyone mom) they always supported me and gave
me strength to continue. Even with the distance, through calls and a lot of
visits I never felt I was left out. Thanks for always calling me, telling me
about daily things, pictures, videos, etc. and always being able to meet me
when I went to Spain even when sometimes it was just a weekend and now
with covid the situation was hard.

Lastly, I specially want to thank my partner, Uyen, you are the one who
helped me the most. You spent a lot of hours correcting my papers (and also
scolding me) because I keep making stupid mistakes or trying to translate
directly from Spanish. Apart from that, you helped me by supporting me in
those moments when I got really down thinking I was not able to finish my
tasks on time. You gave me the strength and motivation to be better. All I
can say is thank you, without you I would have not been able to do it.

For sure I would like to thank a lot of other people who also helped
me during these years but in that case the acknowledgement would be even
longer than the main thesis so, to everyone else who was also there helping
me, thank you.

Resumen

La conduccién auténoma cada vez es mas relevante gracias a los avances
conseguidos por companias como Tesla o Google. Esto se debe al avance en
el campo de la inteligencia artificial al mismo tiempo que se desarrollan y/u
optimizan sensores como el LIDAR, especialmente relevante para esta tarea.
Sin embargo, ya que se estima que cada vez habra mas vehiculos auténomos,
se debe asegurar su correcto funcionamiento en todos los escenarios comunes
y no solo en condiciones de laboratorio. Esto implica la necesidad de intro-
ducir técnicas de fusion sensorial para la deteccion de objetos relevates para
la conduccion en condiciones adversas.

Esta tesis doctoral es el resultado de la investigacion de tecnologias para
la percepcién basadas en técnicas de fusién sensorial asi como deep lear-
ning para la detecciéon de objetos relevantes en aplicaciones para vehiculos
auténomos. Dichos resultados se presentan en forma de compendio de publi-
caciones, recopilando los articulos cientificos publicados durante el periodo
doctoral.

La investigaciéon se ha realizado teniendo en cuenta las limitaciones im-
puestas en el network edge respecto a memoria de los dispositivos y latencia
esperada para aplicaciones en tiempo real. El objetivo ha sido la implemen-
tacién en un edge device el proceso completo requerido para la deteccidon
de objetos, incluyendo el preprocesamiento de los datos antes de su eva-
luacion con técnicas de inteligencia artificial. Para ello, se han investigado
los distintos sensores que pueden ser relevantes para la conduccién auténoma
(camara, LiDAR y radar) asi como técnicas para preprocesar estos datos con
el objetivo de mantener la informacion mientras que se reduce su tamaifo.
Posteriormente se han investigado algoritmos de deep learning que puedan
usarse para la deteccion de objetos siguiendo un esquema de fusion sensorial.
Por ultimo, estos algoritmos se han optimizado para poder ejecutarse en un
edge device, como el Google Coral TPU usado en esta investigacion.

La investigacién se ha realizado bajo un contrato doctoral en las ins-
talaciones de Infineon Technologies AG, en su sede principal de Munich,
Alemania.

IX

Abstract

Autonomous driving is more relevant recently thanks to the advances
achieved by companies such as Tesla or Google. This is a result of the tech-
nological advances in the field of artificial intelligence at the same time as new
automotive sensors are been developed or further optimized, such as LIDAR
sensors, which are highly relevant for autonomous driving tasks. However,
since it is assumed in the future there will be a large number of autonomous
vehicles in the streets, it must be ensured that these vehicles can perform
as expected in all normal scenarios present in the real world and not only
in laboratory conditions. Therefore, it is required to integrate sensor fusion
techniques in the target detection pipeline for autonomous vehicles.

This doctoral thesis is the result of a research about technologies for com-
puter perception based on sensor fusion techniques as well as deep learning
algorithms for target detection for autonomous vehicle applications. These
results are presented in the form of a compendium of publications, compiling
the scientific articles published during the doctoral period.

The research has been planned taking into consideration the constrains
related to the network edge regarding device memory and latency expected
for real time applications. The general objective has been the implementa-
tion of the full target detection pipeline in an edge device, including the data
preprocessing as well as the evaluation of the data using artificial intelligence
techniques. For this purpose, relevant automotive sensors for perception that
can be used for autonomous driving have been researched (such as camera,
LiDAR and radar sensors) as well as techniques to preprocess the data pro-
vided by these sensors in order to maintain relevant features while reducing
their memory size and complexity. After this, deep learning algorithms that
can be used for target detection following a sensor fusion paradigm have also
been researched. Lastly, these algorithms have been optimized to fit in edge
devices, such as the Google Coral TPU used in this research.

The research has been carried out under a doctoral contract at the faci-
lities of Infineon Technologies AG, at its headquarters in Munich, Germany.

XI

Contents

Acknowledgements VII
Resumen IX
Abstract X1
I PhD Dissertation 1
1. Introduction 3
1.1. Motivation. 4
1.2. Objectives 6
1.3. Outline 7
2. Methodology 9
2.1. Research on Edge Devices, 9
2.2. Study on data labeling techniques 9
2.3. Research on preprocessing techniques for sensor data 10
2.4. Research on Sensor Fusion techniques 11
2.5. Research on Al models deployment frameworks 11
2.6. Research on Al models deployment 11
3. Achievements 13
3.1. Research on architectures and applications of Edge Intelligence 13
3.2. Research on data preprocessing and data labeling 15
3.3. Research on Sensor Fusion to improve camera detections . . . 17
3.4. Research on LiDAR and radar Sensor Fusion for Target De-
tection 20
4. Conclusions 23
4.1. Futuretrendso 25
References 26

XIII

INDEX

II Publications 33
5. Edge Intelligence: Concepts, architectures, applications and
future directions 35
5.1. Imtroduction 36
5.2. Related Works 40
5.3. Background on Edge Computing 42
5.3.1. Application scenarios of Edge Computing 43
5.3.2. Edge Computing Architectures and software 46
5.4. Edge Intelligenceo 52
5.4.1. Machine Learning algorithms at the Edge 53
5.4.2. Deep Learning at the Network Edge 55
5.4.3. Application scenarios of Edge Intelligence 58
5.4.4. Analysis and discussion 61
5.5. Hardware and Software Architectures for Edge Intelligence . . 63
5.5.1. Hardware for Edge Intelligence development 64
5.5.2. Software for Edge Intelligence development 69
5.6. Challenges and Future directions 75
5.7. Conclusion 79
Bibliography 79
6. Automatic Label Creation Framework for FMCW Radar
Images Using Camera data 99
6.1. Introduction 100
6.2. Related Works 102
6.3. Sensor Fusion pipeline 106
6.3.1. Radar data preprocessing 107
6.3.2. Camera data preprocessing 108
6.3.3. DataFusion 111
6.4. Experiment Lo 112
6.4.1. Dataset 113
6.4.2. Hardware architecture 114
6.4.3. Deep Learning model 114
6.4.4. Evaluation. 115
6.5. Conclusions e 119
Bibliographyo 119
7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detec-
tion at the Network Edge 123
7.1. Introduction 124
7.2. Related Workso 126

7.3. Proposed Multi-Level Sensor Fusion Network 128

INDEX

7.3.1. LiDAR Depth Map Representation 128
7.3.2. Overall System Description 130
7.4. Experiment 133
7.4.1. Dataseto 133
7.4.2. Hardware Architecture 134
7.4.3. Experimental Settings 134
75. Results. 136
7.6. Conclusions 139
Bibliography 140
8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target
Detection at the Network Edge 145
8.1. Imtroduction 146
8.2. Proposed LiDAR-Radar Multi-Level Sensor Fusion Network . 149
8.2.1. Depth Map data representation 149
8.2.2. Overall system description 150
8.3. Experiments 153
8.3.1. Datasets 154
8.3.2. Hardware architecture 155
8.3.3. Experimental settings 155
83.4. Results 157
8.4. Conclusions 162
Bibliography 162

References 165

List of Figures

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

5.7.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

6.8.

7.1.

7.2.

7.3.
7.4.
7.9.

Example of Cloudlet architecture 37
Example of a general Fog Computing architecture 38
Example of a general Edge Computing architecture 39
Edge Computing device architecture proposed by (71) 46
Levels for the Edge Intelligence application developed by (32). 53

Different approaches for training and inference. (a) Traditio-
nal training and inference in Cloud servers, (b) training on
Cloud server and inference at the Edge and (c) training and
inference at the Edge. 56

Example structure of DNN model using Federated Learning. . 57

Sensor Fusion pipeline. 0oL 106
Radar data processing pipeline. 107
RDM frame example., 108
Camera data processing pipeline. 109
Dataset creation. Lo oL 110
Samples of pairs of images used to label the RDM images. . . 113
(a) Image extracted from the Object detector using the came-

ra data. (b) Result of the sensor fusion approach proposed in

thispaper. 115
Camera and radar range Doppler map image from the second
dataset. 117

Camera images (left image in (a-d)) and LiDAR depth maps

generated from LiDAR raw data (right image in (a-d)). . . . 129
Proposed Multi-Level Sensor Fusion network structure for tar-

get detection.o 130
Proposed fusion layer. 130
Full pipeline for target detection using our proposed model. . 132

Input data on the left side of the figure and output on the
right side. oo 133

XVII

XVIII

FIGURES INDEX

7.6.

7.7.

7.8.

8.1.

8.2.
8.3.
8.4.

8.5.
8.6.
8.7.

8.8.

Google Coral TPU Development Board image from https:

//coral.ai/ (accessed on 31-05-2021) (31). 134
Synthetic night frames (top row) and original images (bottom
TOW). © v v oo e e 138
Target detection in night frame with (a) sensor fusion algo-
rithm and (b) only camera. 139
From left to right: original environment camera image, LiIDAR
depth map and radar depth map. 151
Full pipeline of the proposed target detection model. 151

LiDAR-Radar Multi-Level Sensor Fusion network structure. . 152
Camera ground truth, LiDAR depth map and radar depth

map frame samples. L. 154
Google Coral TPU Development Board. 156
Confusion matrix result in custom dataset. 157

Sample of (a) original and (b) synthetic fog condition depth
MAPS. e 158
Confusion matrix result in NuScenes dataset. 159

List of Tables

5.1.
5.2.

5.3.

5.4.
5.5.

6.1.
6.2.
6.3.
6.4.

6.5.

7.1.
7.2.

7.3.

8.1.

8.2.

8.3.

Comparison of Edge Computing frameworks 51
Comparison of techniques to adapt Deep Learning models to

Edge Intelligence devices 62
Comparison of Edge Intelligence proposals described in this

section 63
Comparison of Edge Intelligence devices 69
Comparison of Edge Intelligence Frameworks 74
Features extracted from each sensor data. 111
Results and specifications of the Object Detector. 114
Results of the automatic label creation process. 116
Results of the automatic label creation process in each of the

SCENATIOS. © v v v v v e e e 116
Comparison of results achieves with other techniques. 117
Parameters for the model training. 135

Comparison of LiDAR-Camera fusion networks for target de-
tection. 136
Comparison of of our model with no-sensor fusion algorithms. 138

Parameters for the model training in custom and NuScenes

datasets. 156
Comparison of accuracy results with initial custom dataset
and synthetic fog dataset. 158
Comparison of LiDAR-Camera fusion networks for target de-
tection on NuScenes dataset. 161

XIX

Part 1

PhD Dissertation

Chapter 1

Introduction

The best way to predict the future is to
mvent it

Alan Kay

The society has always have the goal of reducing the workload in people
and make the technology advances more accessible to the general public
in order to improve the people’s life conditions. Consequently, since the
beginning of the human history, we have tried to develop tools or systems to
help us with our tasks, for example the invention of the wheel to transport
materials and people, or to directly execute the tasks in our place by using
automatic systems such as the printing machine to replace people having to
copy each book manually. This tendency is a characteristic of our society
and because of that there are always new tasks to automatize.

In recent years, following this tendency to develop autonomous systems,
artificial intelligent (AI) algorithms have increased their relevance in the mar-
ket due to their promising results in all industry fields, from computer vision
tasks (1; 2; 3) to prediction (4; 5) or data classification (6; 7). These results
has has led numerous authors as well as companies to work on developing
autonomous vehicles using Al techniques (8; 9). These vehicles may be clas-
sified due to their level of capabilities to be autonomous. This classification,
according to the Society of Automotive Engineers (SAE International) (10),
divides the autonomous driving paradigm in 5 levels where the lowest ones
the vehicle may assists sometimes the driver with longitudinal and lateral
driving tasks and this help increases until level 5, where the vehicle can run
autonomously under any circumstances. However, this topic can be divided
in multiple subtasks due to the complexity of the autonomous driving. These
subtasks include topics such as environment detection (11), route planning
(12) and adversarial attack detection (13).

CHAPTER 1. Introduction

1.1. Motivation

Most of the current algorithm for target detection in the autonomous
driving paradigm are based on a single sensor, i.e. camera or LiDAR sensors
(14; 15; 16; 17). However, nowadays there are numerous sensors in the market
that could support in this task rather than always depending on the same
sensor. An example of these sensors are ultrasound sensors, radar sensors
and LiDAR sensors apart from the traditional camera sensor. These sensors
are used with different purposes and, at the same time, they have different
limitations.

= Camera sensor: this sensor has been used since long time ago due to its
capabilities to not only return information about shapes but also colors.
This may be highly relevant for autonomous vehicles since some of the
most common traffic signals are color based, i.e. traffic lights. As a
result, this sensor provide a wide range of features that can be relevant
for the environment study (target detection, scenarios conditions study,
etc.) (16). However, the main problem of this sensor is the fact it may
gather private information due to the large volume of data acquired,
such as pedestrian faces. At the same time, the data gathered by this
sensor can be highly affected by hazard situations such as rain, fog and
low light among others. As a result of this, a number of companies and
researchers are studying the possibility of achieving similar results in
autonomous vehicle tasks without including this sensor.

» Ultrasound sensor: this sensor transmits a pulse/signal to later calcu-
late the time until the echo is received. By repeating this with multiple
receiver sensors it is possible to locate targets in 3D positions (18).
However, even when the precision of the detection may be high, the
effective range of this sensor is highly reduced in contrast to the pre-
vious sensor (in the range of centimeters or a meter). Nevertheless, this
sensor is still relevant for the discussed topic, specifically in scenarios
where accurate maneuvers are required, such as when parking.

= Radar sensor: this sensor follows a similar approach to the ultrasound
sensor since it also transmits a signal (in this case a variable frequency
signal) and measures the frequency difference between the echo and
the current signal. This provides information regarding the distance,
angle of arrival and speed of the detected target respect the sensor.
As a result of this, this is one of the most popular sensors integrated
in vehicles to detect other vehicles in the scenario (19). However, this
sensor also has limitations such as the maximum range, which is highly
shorter than LiDAR sensor data. This can lead to a late detection when
a target is not located until the last moment when it can be dangerous
for the ego vehicle.

1.1. Motivation

= LiDAR sensor: this sensor transmits laser pulses and calculate the time
to receive the reflection of each of these pulses at the same time it knows
the horizontal and vertical angle used when transmitting each pulse.
Knowing the angles, time to receive the echo and the speed of the
light in the air it generates a 3D map of shapes in the scenario. These
sensors usually have a range of hundreds of meters in autonomous
vehicle applications. As a result, they can gather information from
all relevant targets, such as vehicles, walls, signals, etc from a large
enough distance to take them into consideration when planning the
route (20). However, the transmitted laser pulses may be absorbed by
some materials such as water. This may generate problems in hazard
weather conditions such as rain or fog, where the number of reflections
may be highly reduced in comparison with a sunny scenario. At the
same time, due to the hardware limitations of this sensors, they have
a blind area in the near field, being this area usually of 1-1.5 meters
around the sensor, which may be a highly relevant problem for accurate
maneuvers.

Not only these sensors but also the algorithms to study their output
data have been improved in recent years to extract more information from
the data as well as improve the efficiency of these processes (21; 22; 23; 24).
Some of the most relevant algorithms for this topic are the target detection
models.

These models focus on detecting targets belonging to one or multiple
relevant classes decided by the user who trained the model. These models
return the location in the frame of these targets as well as their predicted
classification (21; 22). Depending on the input data, this target detection
algorithms may be adapted to 2D (23) or 3D targets (25). These target
detection models can be divided into two classes:

= Two-stage detectors: these algorithms execute two processed for the
target detection. The first process is the localization of areas in the
2D-3D data that can contain relevant targets. In a second step, the
algorithm evaluates all the proposed regions to determine in a relevant
target is present in each region and, in case there is a target, what
class it is apart from refining the coordinates of the target. As a result,
these models usually achieve high accuracy results due to their deep
search of regions of interest at the cost of a larger latency, such as the
Region Convolutional Neural Network (RCNN) (26), Fast RCNN (27)
or Faster RCNN (22) models.

= One-stage detectors: differently from the previous algorithms, it per-
forms the detection and classification without having to extract a first
set of regions of interest. Consequently, a reduction in the latency is

CHAPTER 1. Introduction

achieved due to the reduction of operations in the pipeline but usually
the final accuracy performance doesn’t achieve two-stage models ac-
cuarcy results. An example of one-stage detectors are the You Only
Look Once (YOLO) (24) and Single Shot Detector (SSD) (21).

However, as previously observed when explaining the sensors, these sen-
sors have limitations and strengths that may complement each other. The-
refore, they may benefit from using Sensor Fusion techniques to merge their
data in order to improve the overall performance of the system (28). An
example of this collaboration may be the combination of LiDAR and radar
sensors to integrate the high range of the LiDAR data while radar may pro-
vide data of the near area that LiDAR may not detect. At the same time
radar may support in hazard weather conditions since radio signals are af-
fected in a lesser degree by water in contrast to laser pulses. As a result, the
final system would have the strengths of both sensors and it would improve
their limitations.

Nevertheless, the platform where these algorithms will be deployed must
be taken into consideration when designing the overall pipeline. Since the in-
formation gathered for autonomous vehicles applications may include private
data of the vehicle, such as speed and destination, a Cloud approach whe-
re the information is transmitted to an external server may not be suitable
due to the information leak risk. A different approach, Edge Computing, is
taking the lead in these applications (29). Edge Computing is referred when
the data is processed near the data source/sensor. Consequently, since data
is not transmitted to any external device, the possibility of data leak and
problems during the data transmission are reduced. At the same time, the
overall latency may be reduced since the time to transmit and receive the
data is removed from the pipeline. However, this approach has limitation
regarding the resources at the network edge, which are highly reduced in
comparison to Cloud servers.

Consequently, different preprocessing techniques for automotive sensor
data must be researched as well as Sensor Fusion pipelines to fit low-resource
edge devices and hardware accelerators while maintaining high performance
results.

For all of this, the research on Efficient Sensor Fusion techniques based
on Deep Learning algorithms at the Network Edge appears as an attractive
innovation and relevant topic in the current autonomous vehicle paradigm.

1.2. Objectives

The objectives of this doctoral thesis are the ones derives from the de-
velopment of all the steps to design and deploy a Target Detection model
based on Sensor Fusion techniques at the Network Edge. The intended con-

1.3. Outline

tribution to the state of the art includes the study of the emerging Edge
Devices as well as frameworks to deploy Al capabilities at the network edge,
the data preprocessing and labeling techniques and techniques to fuse the
information from multiple sensors at the Network Edge. These contributions
are summarized as follows:

1. Edge Devices research

= Research about emerging Edge Devices where the Sensor Fusion
pipeline can be implemented.

= Research about frameworks to deploy and adapt state-of-the-art
Target Detection models as well as Sensor Fusion techniques for
Edge Devices.

2. Data preprocessing and labeling research

= Research techniques to efficiently label gathered data in order to
use it in a later step to train Al models.

= Research techniques to preprocess sensor data to reduce their me-
mory consumption while maintaining their relevant features.

3. Sensor Fusion research

= Research new Sensor Fusion algorithms that may be suitable for
the Network Edge while still achieving state-of-the-art accuracy
results.

= Implementation of the complete solution in Edge Devices.

1.3. Outline

The presented document constitutes a thesis by compendium of publi-
cations. This means, this thesis is formed by the most relevant publications
achieves as result of the research carried out during the doctoral program.
The work includes three indexed articles in multiple scientific journal and one
article currently under review by a scientific journal. We list them following;:

= J. Mendez, K. Bierzynski, M. P. Cuellar and D. P. Morales, Edge Inte-
lligence: Concepts, architectures, applications and future directions, in
ACM Transactions on Embedded Computing Systems, 2021. (Q4)

= J. Mendez, S. Schoenfeldt, X. Tang, J. Valtl, M. P. Cuellar and D.
P. Morales, Automatic Label Creation Framework for FMCW Radar
Images Using Camera Data, in IEEE Access, vol. 9, pp. 83329-83339,
2021, doi: 10.1109/ACCESS.2021.3087207, 2021. (Q2)

CHAPTER 1. Introduction

= J. Mendez, M. Molina, N. Rodriguez, M.P. Cuellar and D. P. Morales,
Camera-LiDAR Multi- Level Sensor Fusion for Target Detection at the
Network Edge in Sensors, 21(12), 3992, doi: 10.3390/s21123992, 2021.

Q1)

s J. Mendez, M.P. Cuellar and D. P. Morales, Lidar-Radar Robust Multi-
Level Sensor Fusion for Target Detection at the Network Edge UNDER
REVIEW by Elsevier Measurements, 2021 (Q1).

This thesis is divided in two main parts:

= PhD Dissertation: is devoted to describe the problems we have ad-
dressed and discuss the research we have performed. In particular,
Section 2 presents the research and the main results, and Section 3
summarizes them.

= Publications: collects the journal papers related with the doctoral
research shown in this thesis. These papers are devoted to the research
the objectives previously mentioned.

Chapter 2

Methodology

In this section, the methodologies carried out in pursuance of the objec-
tives we present in Section 1.2. Since these methodologies may highly differ
from each other, a specific subsection focus on each one.

2.1. Research on Edge Devices

A research about emerging Edge Devices has been carried out thanks to
numerous surveys such as (30; 31) among others that can be consulted in
Chapter 2 of this thesis. In these works, it is possible to compare the technical
characteristics of the most relevant edge devices (including, internal memory
and hardware acceleration among others). At the same time, some of these
emerging devices, such as the Google Coral TPU board and the Jetson nano
board were evaluated in our dependencies to evaluate the same parameters
as previously commented.

This evaluation led to the identification of the approach to deploy Al
models in each of these devices as well as their capabilities. Ultimately, the
viability of these devices was measured by the capabilities of each device as
well as the performance results of common Al models in these devices.

Further information as well as results gathered from this research are
included in the publication Edge Intelligence: Concepts, architectures, appli-
cations and future directions (32).

2.2. Study on data labeling techniques

In our research, large quantities of data were used to train the Al models
to improve their performance in a large set of scenarios while including at
the same time a large number of target classes. The labeling process, when
executed manually may consume long times while it can result in human
errors during the labeling do to the repetition of this task. Consequently, a

10

CHAPTER 2. Methodology

more efficient way to label the data was research.

As a result of this, an automatic labeling tool was developed focused
on camera and radar sensors. The performance of this tool was evaluated in
multiple datasets from different locations that include scenarios in Singapore
and Munich. The metrics used to evaluate the performance of the proposed
system was the detection accuracy and the latency since these parameters
show if the proposed system is better and faster than a traditional manually
labelling approach. The sensors used in these scenarios were different to also
evaluate the suitability of this tool for different radar and camera configura-
tions.

Results are gathered in the publication Automatic Label Creation Frame-
work for FMCW Radar Images Using Camera data (33).

2.3. Research on preprocessing techniques for sen-
sor data

We investigate different techniques to preprocess sensor data in order
to reduce the data size and dimensionality while maintaining their relevant
features. To do this, different preprocessing techniques were applied to radar
and LiDAR data.

For radar data, numerous representations were evaluated, including range-
Doppler maps, range-angle maps, occupancy grids and depth maps. These
representations proved to provide some of the features but none of them
included all the possible features that can be extracted from radar data.
Consequently, the preprocessing technique applied to radar data was selec-
ted depending on each specific application to extract the desired features.
The results from these preprocessing techniques are gathered in the publica-
tions Automatic Label Creation Framework for FMCW Radar Images Using
Camera data (33) and Lidar-Radar Robust Multi-Level Sensor Fusion for
Target Detection at the Network Edge (34).

Similarly, LIDAR data preprocessing techniques were also evaluated. The
most relevant preprocessing techniques, voxel approach and depth maps, we-
re evaluated. Results are gathered in the publication Camera-LiDAR Multi-
Level Sensor Fusion for Target Detection at the Network FEdge (35) and
Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection at the
Network Edge (34).

The metrics used for the evaluation of the preprocessing techniques are
the reduction of the data size achieved with each preprocessing technique as
well as the accuracy of the maintained features.

2.4. Research on Sensor Fusion techniques

11

2.4. Research on Sensor Fusion techniques

In order to improve the performance of the Target Detection algorithms,
multiple Sensor Fusion approaches were researched based on the state-of-
the-art techniques. As a result, a novel layer and network structure for ANN
was developed.

This Sensor Fusion technique was evaluated with camera and LiDAR da-
ta from multiple scenarios to prove its accuracy performance in normal and
hazard environments where camera data may not be reliable. Results from
this technique are gathered in publications Camera-LiDAR Multi-Level Sen-
sor Fusion for Target Detection at the Network Edge (35) and Lidar-Radar
Robust Multi-Level Sensor Fusion for Target Detection at the Network Edge
(34). In these publications, the metrics used to evaluate the performance of
the proposed sensor fusion techniques in comparison with single-sensor mo-
dels were the latency (to evaluate in increasing the number of sensors leads
to a higher latency) as well as the detection accuracy in normal and hazard
scenarios.

Other Sensor Fusion techniques were applied for the automatic labeling
process based on radar and camera data. Results from this technique are
gathered in the publication Automatic Label Creation Framework for FMCW
Radar Images Using Camera data (33).

2.5. Research on AI models deployment frameworks

We realized an analysis of the state-of-the-art frameworks for AI models
at the Network Edge such as TensorFlow Lite and MXNet among others. The
comparison of these frameworks was based on their capabilities to deploy
generic ANN models in generic Edge devices while ensuring the memory and
latency optimization.

We identified the most relevant frameworks that fit the Edge devices that
would be used during the doctoral program at the same time the ensure the
optimization of the ANN models.

Results from this research are gathered in the publication Fdge Intelli-
gence: Concepts, architectures, applications and future directions (32).

2.6. Research on AI models deployment

In order to reduce the memory size of AI models, multiple techniques, in-
cluding pruning and quantization, were evaluated. The performance of these
techniques to adapt Al models for the Network Edge was evaluated based on
the memory size reduction achieved, latency reduction achieved and decrease
of the accuracy of the models.

12

CHAPTER 2. Methodology

At the same time, due to constrains of the used frameworks and Edge
devices, some specific limitations were established for the Al models deploy-
ment at the Network Edge. These limitations are the quantization required
for the data and models to fit in the Google Coral TPU board as well as
the ANN layers supported by this device. Further information as well as
results are gathered in the publication Camera-LiDAR Multi-Level Sensor
Fusion for Target Detection at the Network Edge (35) and Lidar-Radar Ro-
bust Multi-Level Sensor Fusion for Target Detection at the Network Edge
(34).

Chapter 3

Achievements

If there is no struggle, there is no
progress

Frederick Douglass

In this chapter, we describe the conclusive results accomplished in several
areas during the doctoral program that led to the publications attached to
this doctoral thesis. We have organized this section in several subsections
corresponding each one to one of the publications included in this doctoral
thesis. Consequently, the results from each publication will be presented as
well as how these publications are related with the previously commented
research objectives.

3.1. Research on architectures and applications of
Edge Intelligence

As described in Section 1.3, there are numerous objectives in this doctoral
research. However, the first step in a research should always be the research
of the state of the art in order to understand recent improvements of the
technology. Because of this, the first step when we started this research was
the evaluation of the current edge computing techniques as well as edge
devices.

This field includes numerous topics, since when studying the edge com-
puting, or the edge intelligence specifically in this PhD research, not only
algorithms but also the devices must be researched. It is important to un-
derstand the constrains imposed by the edge computing paradigm, where
data is meant to be preprocessed near the data origin. As a result, the devi-
ces where data must be preprocessed do not have large resources in contrast
to cloud servers. However, since data is not transmitted to external or far
servers, the risk of data leakage is reduce. This is an important point sin-

13

14

CHAPTER 3. Achievements

ce numerous emerging applications use private data (such as autonomous
vehicles where information of destination, origin, etc. must not be share for
security reasons) or traditional applications where personal information is
used (such as medical applications where patient data is required).

However, due to these constrains, not all Al algorithms are suitable for
the network edge. Therefore, algorithms that will be deployed at the net-
work edge must be optimized to ensure a low memory consumption as well
as reducing the complexity of operations required when possible. These op-
timizations also aim to reduce the power required by the device, since these
devices are often not connected to the electricity network but working with
battery (29).

At the same time, some new algorithms and techniques have been propo-
sed for the network edge in order to face those constrains while maintaining
a state-of-the-art performance. An example of these techniques is the distri-
buted learning, where the learning and inference phases are not performed
by an individual node but partially executed in each of the nodes of an edge
computing network. Consequently, the workload is distributed, enabling the
implementation of complex techniques that a single node would not have
capabilities to execute (36; 37).

This approach, apart from the previously described advantages, can also
be used as an abstraction layer between the sensor data and the final appli-
cation since edge computing nodes can also be used to preprocess the data to
filter only relevant features/information while sharing a common final data
structure. Therefore, output data from these nodes would share the structure
no matter the initial sensor model or manufactures (37).

At the same time, not only the algorithms but also the frameworks and
devices for edge intelligence must be researched since they may add cons-
trains specific from each device/framework. An example of this problem is
the Google Coral TPU, which requires the TensorFlow Lite framework and
it has limitations regarding supported neural network layers (38).

All these key points are evaluated in our survey (32), where a comprehen-
sive analysis of edge computing and edge devices is presented. In this survey,
we focus not only on general application edge computing but also on artificial
intelligence algorithms at the network edge, often referred as edge Al. At the
same time, we also discussed the emerging frameworks that can be used to
deploy Al algorithms at the network edge, since it is not only important the
algorithm but also how it can be integrated in the edge device.

Therefore, recent advances in edge computing have been explained in
this publication, such as the new hardware and software that have emerged
during the last few years to face the problems of cloud computing in the
current situation. The relevance of this technology has been demonstrated
with diverse examples of applications including autonomous driving, security
solutions, IoT applications, location awareness applications, and network

3.2. Research on data preprocessing and data labeling

15

management. The hardware advances follow the line of incorporating new
modules/layers which enable the parallelization of the processes. Meanwhile,
the software research lines focus on improving the data processing speed
as well as improving the security of the systems. These features have been
compared in diverse tables for a deeper understanding.

Later, new Edge Al devices have been commented to explain what advan-
tages they can bring to the current state of the art in diverse research lines
such as Natural Language Processing (NLP), Computer Vision, Internet of
Things (IoT) and Virtual Reality (VR). Following the line of the research
made about Edge Computing, the current Edge Al devices and frameworks
have been explained based on their relevant features for a posterior compa-
rison.

As a conclusion from this publication, we could observe how numerous
companies are developing their own frameworks and devices, such as Google
that developed TensorFlow Lite and the Google Coral TPU. This will lead
in the future to a large variety of devices in the market, giving the user
the possibility to select the most suitable one for each application regarding
required memory, programming language and/or Al framework used and
application purpose among others. This is a result of the relevance of IoT,
where people want to include each time more sensors in daily life applications
to ease them or to improve their efficiency.

3.2. Research on data preprocessing and data labe-
ling

After the previously explained research regarding the Al frameworks and
devices suitable for the network edge, we started researching about relevant
algorithms that could be use for target detection using radar and/or LiDAR
data (23; 21; 22). The first step for this was to understand these two sensors
in order to understand what features we can extract from each one and when
their data may be relevant.

At this point, in order to fully understand the sensors, data was required
in order to evaluate the different data preprocessing techniques.

In the case of radar data, usually a double Fourier transformation is
performed in the initial time domain raw data in order to generate a range
Doppler image. This image provide information regarding the range and
speed of moving targets, represented as clusters in these images. Similarly,
these images can be further preprocessed to extract the angle of arrival from
each of these clusters using techniques such as MUSIC (39) or beamforming
(40). Once the angle of arrival information is extracted, range angle maps
can be generated, where similar to an occupancy grid, the image represents
in what distance and angle a possible moving target may be located.

16

CHAPTER 3. Achievements

In the case of LIDAR data, since it does not have a fixed structure where
3D points have an specific order, it is usually preprocessed to make it inva-
riant to order. This is a requirement when using LiDAR data as an input for
deep learning models. The most relevant preprocessing techniques are the
voxel approach and the depth maps. The voxel approach generates a three
dimensional matrix where each of the cells represents a cell of the real space
studied with the LiDAR. Therefore, LIDAR data can be organized in these
ordered cells that can be later studied using 3D convolutional layers or fully
connected layers after flattening the matrix. On the other hand, the depth
map approach generated a 2D image where distance of each point is codified
in the color, obtaining a final data similar to a camera image (35).

However, most of the public datasets contain raw camera data and raw
LiDAR data but not so much information regarding raw radar data in au-
tomotive applications. This problem triggered a question, if we don’t have
large quantities of raw radar data, for sure we don’t have a labeled dataset so
how will we train our Al models? Because of this we proposed a automatic
labeling tool for radar data to solve this problem in the publication (33).

In this publication, an efficient Sensor Fusion framework to automatically
generate labels for range Doppler maps has been developed. As a result, large
number of labeled range Doppler maps can be generated efficiently while data
is gathered. Therefore, it is possible to speed up the dataset creation that
can later be used to train Al models.

The proposed technique is based on multiple state-of-the-art sensor fusion
algorithms, extracting the advantages from each of them to further improve
the system. The general pipeline is based on the extraction of labels from
camera data that later can be used to generate labels for radar data. This
pipeline is proposed due to the large number of deep learning models to detect
targets in camera image as well as the fact that usually there is camera data
present when recording sensor data to later use it for manual labeling tasks.
Consequently, we can use the camera data, assuming the relevant targets of
the scenario are in the shared field of view of the camera and radar sensors.
At the same time, since single-camera sensors do not provide depth-range
information, we calibrated the system based on some initial known data to
extrapolate the target distance in the rest of the camera frames. Therefore,
required features for the label creation in radar data (range, angle respect
the sensor and classification) can be efficiently extracted from camera data.

However, this tool also has limitations since in case it is a moving scenario
the camera calibration approach will not be suitable and, therefore, it will
no be possible to match detected targets in camera data with radar clusters
based on distance. Similarly, in conditions where camera data may not be
reliable because of hazard conditions the labelling tool may not achieve the
same accuracy as is standard scenarios. However, it has been presented that
in normal weather and light conditions in an outdoor scenario the proposed

3.3. Research on Sensor Fusion to improve camera detections

17

approach can achieve high accuracy results for the label creation task while
highly reducing the required time to generate these labels in comparison with
manually labeling the radar data.

This approach proposed for this tool could also be used for other automo-
tive sensors, such as LIDAR sensors. LiDAR sensor could be used instead of
camera sensors, or as an addition to camera sensor, to label the data at the
same time LiDAR labels can be generated. This could overcome traditional
camera/vision sensor approach regarding adverse environmental conditions
(i.e. lighting, reflections, etc.) while providing relevant depth information of
the scenario.

At the same time, it has been shown that the fusion of radar and camera
data does not require complex structures to achieve high accuracy results
while maintaining low latency. This lends justification to a variety of new
sensor fusion algorithms where the algorithms are optimized for radar and
camera Sensor.

3.3. Research on Sensor Fusion to improve camera
detections

After the first task related to develop sensor fusion pipelines, to further
learn about sensor fusion techniques for target detection as well as data pre-
processing algorithms, we started researching about a sensor fusion algorithm
for camera and LiDAR data, following the research line of (41).

This idea started due to the fact that LIDAR data can perfectly comple-
ment camera data. Camera data provides information regarding color and
details but it lacks of information regarding surfaces and distance. As a re-
sult, camera data may not be reliable in hazard conditions, i.e. low-light
conditions, where the data from the camera would be completely black. Si-
milar problems will appear when targets are not real but they are images,
since camera does not include depth information it cannot distinguish bet-
ween a real object and a picture of it. However, if we include the data from
LiDAR we can have a more complete understanding of the environment whe-
re we have not only the details but also the shapes and distances. Therefore,
adding the features extracted from LiDAR data to the camera data could
solve the previously commented problems, achieving a more robust system.

Nevertheless, LIDAR data requires large memory volumes to be stored
since each frame may contain thousands of 3D points. Therefore, before star-
ting the research regarding camera and LiDAR sensor fusion, LiDAR data
preprocessing algorithms had to be further evaluated to reduce their me-
mory size while maintaining their key features such as distance and surfaces
information.

Therefore, the previously LiDAR preprocessing techniques commented

18

CHAPTER 3. Achievements

in Section 3.2 (voxel and depth map approaches). The first one (the voxel
approach) is highly used in the literature (42; 43; 44) due to its high accuracy
results for target detection since data regarding possible target detection is
not lost with this technique. At the same time, it is possible to access all
data points gathered by the sensor. However, this technique only solves the
problem of the data structure and order but it does not reduce its memory
size enough for the network edge. At the same time, to efficiently study this
data, neural networks should include 3D convolutional layers to study the
3D occupancy matrix but this layers are not supported by most of the edge
devices. As a result of this, we started the evaluation of the second approach,
the depth map generation. This technique aims to convert the 3D LiDAR
data into a 2D image. By doing this, it is possible to represent LiDAR data
in a 2D plane, similar to a camera image. In this case, to maintain the
information regarding point distance, the distance is codified in the color of
each pixel of the depth map. When using this data there may be occasions
of target overlapping since we are projecting the 3D points into a 2D plane.
Because of this transformation, in case the information of a specific point
is later required the opposite transformations have to be applied to extract
the real X, Y and Z coordinates, which could lead to high latency. However,
this approach generates LiDAR data that can be easily used as an input
for deep learning models and, due to its similarity with camera data, can
be combined with camera data as desired. Therefore, since in the desired
camera-lidar target detection application we dont need the specific X, Y, Z
values of the LiDAR points in the final stage, we decided to follow the depth
map generation approach in the PhD research.

Once the data preprocessing techniques were evaluated, we moved to the
development of an algorithm for target detection. At this moment, due to the
similarities between LiDAR depth maps and camera data, it was possible to
execute the data fusion in an early stage by adding the LiDAR depth map
as an extra channel to the RGB camera images or after the target detection,
as in a voting algorithm. This large number of possibilities led to a question:
what if rather than me I let the neural network decide when it is better to
fuse the data?.

As a result of this question, we started researching neural network struc-
tures where data were fused not only in one layer but at multiple levels, so
the network can set during the training phase the relevance of the fusion
at each of the proposed levels. Consequently, we proposed a neural network
algorithm where data from camera and LiDAR were combine at multiple
levels, creating a new layer we called Fusion Layer (35). This approach of
combining the data was executed at multiple levels, letting the network com-
bine the data after different levels of feature extraction. As a result of this,
the network may combine features from small targets during the initial la-
yers before those features are lost due to the effect of further convolutional

3.3. Research on Sensor Fusion to improve camera detections

19

and pooling layers. Features from larger targets will still be present in later
stages, because of this the network will fuse the data at the relevant stage
depending of each specific target.

The idea for this approach came from the Single Shot Detector (21),
where multiple feature maps of different sizes are used to maintain features
from small targets as well as larger targets rather than using only one feature
map at a time.

Since the goal was still to deploy the developed algorithm in an edge
device, the algorithm had to be later optimized following techniques of pru-
ning and quantization to remove non relevant connections/neurons in the
model as well as reducing the memory required to store its parameters. At
the same time, the proposed model was designed following a one-stage de-
tector approach to reduce the latency imposed by the model structure in
contrast with two-stage approaches where two different models are required
(one for the region proposal and one for the classification and refinement).
As a result of this, the proposed model was compressed to fit the network
edge constrains.

To evaluate this algorithm, we selected a popular public dataset that
contains LiDAR and camera data, the KITTI dataset (45). The accuracy
results on this dataset do not surpass the state-of-the-art accuracy shown
by other sensor fusion models evaluated on this dataset such as Deep Gated
Information Fusion Network (DGFN) (46). Nevertheless, the proposed mo-
del still achieves a 90.92 %, 87.81% and 79.63 % accuracy results for easy,
medium and hard to detect targets in the challenging KITTI dataset while
requiring a 92.1 % less memory than the DGFN model. And, as a result of
the optimization applied to the proposed model, the latency of the model
has also been reduced to 0.057 seconds.

At the same time, the advantages of using a Sensor Fusion approach
in contrast to a single-sensor model were discussed in this publication by
comparing our proposed algorithm with other single-sensor target detection
algorithms. It was possible to observe in the comparison how some of the
single-sensor models achieve better accuracy than our proposed algorithm.
However, we studied the effect of using only camera data for the target detec-
tion task and we showed how the accuracy drops to 73.81 %-65.41 %-39.63 %
(easy, medium and hard to detect targets) in hazard environments such as
cases where the light is not good. Since the LiDAR data does not depend
on the light of the scenario, using a camera-LiDAR Sensor Fusion approach
helps to maintain the initial accuracy or reduce the accuracy drop to 83.18 %—
80.02 %-47.83 %. This proves that even if high accuracy can be achieved by
a single sensor model, these algorithms are not robust when facing changes
in the environment in comparison with a sensor fusion algorithm.

This lends justification to further research the sensor fusion of automotive
sensors for autonomous vehicle applications, even without including sensors

20

CHAPTER 3. Achievements

that may not be suitable for all scenarios, such as camera. Camera may
not be suitable sometimes due to the fact that it gathers private data such
as vehicle plate numbers or faces in public scenarios. Consequently, after
the good results of the camera-LiDAR sensor fusion, we moved to designing
a sensor fusion algorithm based on the two main sensors of this doctoral
research, radar and LiDAR sensors.

3.4. Research on LIDAR and radar Sensor Fusion
for Target Detection

As previously commented, after the good results achieved with the camera-
LiDAR sensor fusion for target detection, we moved to design a similar tech-
nique but this time based on radar and LiDAR sensors. These sensor were
selected due to the fact that they do not gather private information so they
can be used in all scenarios, in contrast to camera data, while still gather
relevant data for the target detection that can complement each other. At
the same time, these sensors are not affected by light conditions, making a
sensor fusion system based on them more robust in hazard situations.

Regarding the information gathered by each of the selected sensors, radar
sensor gathers relevant data regarding moving targets from a short range (in
the order of centimeters) to medium ranges (in the order of tens of meters)
with a high resolution that can be usually configured at the cost of less
range. Therefore, a trade-off between maximum range and resolution must
be selected depending on each specific application. In the case of this doctoral
research, main relevant targets are vehicles and pedestrians so we do not need
a resolution under 5-10 centimeters with the radar data but we would prefer a
higher maximum range. At the same time, radar data is not highly affected by
weather conditions or light as previously commented in this thesis. However,
it is not possible to detect specific static targets in radar data in normal
conditions due to the fact that all static targets will be aggregated in the
same pixel of the range Doppler map.

On the other hand, LiDAR data can provide information regarding further
targets (in the order of hundreds of meters as maximum range) as well as
detailed information about their shapes, which can be relevant for the target
classification, and distances. Nevertheless, LIDAR sensor also has constrains
regarding distance, since it has a blind area in the area of approximately
2 meters around the sensor due to the fact that the receiver sensor in the
LiDAR is not active during the light pulse transmission phase, so if there is a
target closer than 2 meters to the LiDAR sensor, the pulse reflection will be
received before the sensor receiver is enable, resulting in a blind area in short
field of the sensor. At the same time that LIDAR data can be highly affected
by rain and fog weather conditions among others since translucent materials
such as water do no reflect a high intensity signal. Similar problems appear

3.4. Research on LiDAR and radar Sensor Fusion for Target Detection

21

with other translucent materials such as glass. Therefore, LiDAR data can
provide accurate data regarding shape of targets but it has a blind area and
the quality of the data may drop in hazard situations.

However, the combination of these two sensor may provide reliable data
since radar data can be used as an attention mechanism for the LiDAR data
in hazard situations where the quality of the 3D LiDAR data drops. At the
same time, radar may provide information regarding near moving targets
that LiDAR sensor cannot detect, even when information regarding their
shapes would not be gathered.

Once the suitability of these two sensors and how they can complement
each other was researched, we started to design a sensor fusion algorithm for
target detection based on radar and LiDAR sensors. The first challenge when
using these sensors is the high difference in their data features and structures.
To face this problem, we decided LiDAR data should be preprocessed to
generated depth maps due to the hgh performance results achieved in the
camera-lidar sensor fusion when using this preprocessing technique as well as
the fact that, as previously discussed, raw LiDAR data cannot be easily used
an input for deep learning models. Consequently, the question was how to
preprocess radar data to reduce the structure differences with LiDAR depth
maps. Therefore, raw radar data was preprocessed to generate range Doppler
maps and range angle maps following the techniques described in Section 3.2.
However, this time we didnt use these maps directly but we used them to
create a 2D occupancy grip (in the horizontal plane) based on radar data. At
this point, radar data could also be understood as 3D points similar to LIDAR
points where the Z component was always the same for all targets. Because
of this, it was possible to generate depth maps from the radar occupancy
grids by assuming all radar targets had a fixed height from the ground (0
meters) to 1.5 meters. This height was selected as a representative height of
the relevant targets in this doctoral thesis (pedestrian, motorbike, bicycle,
car, etc.).

Once both sensor data were represented in a shared structure (depth
maps), we followed the same approach we followed when implementing the
camera-lidar sensor fusion. Consequently, we designed a deep learning mo-
del based on the previously commented Layer Fusions to fuse the data at
multiple levels to maintain information regarding small and big targets.

This algorithm, since it required radar and LiDAR data, was evaluated
not only in the NuScenes dataset (which provide information of 3D LiDAR
detections and 2D detections from radar that can be used to generated the
previously explained occupancy grid) but also in a custom dataset where
all raw data was available. The accuracy results achieved with this model
do not surpass the state-of-the-art accuracy results in the NuScenes dataset
shown by other models such as CenterPoint v2 (47) and FusionPainting (48).
However, as a result of the optimization applied to our model, it achieved a

22

CHAPTER 3. Achievements

reduced latency and memory requirements in contrast to the rest of compared
models in (34).

At the same time, the advantages of using a sensor fusion approach rather
than a single-sensor approach were studied by comparing the proposed algo-
rithm, an state-of-the-art LIDAR model (MEGVII (49)) and a single LIiDAR
sensor SSD model (50). These models were evaluated on a custom dataset
and a synthetic dataset that emulates hazard weather conditions such as rain
or fog. In this test it was possible to observe the robustness of the proposed
model to data corruption in comparison with single-sensor techniques.

Similarly to the camera-lidar sensor fusion model, the goal with this
application was also its deployment at the network edge, specifically in the
Google Coral TPU board, so compression techniques such as quantization
and pruning were applied.

Chapter 4

Conclusions

This doctoral research has focused on the design and optimization of
sensor fusion algorithms for target detection at the network edge based on
deep learning models. Due to the focus to deploy these algorithms at the
network edge, an edge computing approach has been followed during the
whole research. The main conclusions and contributions obtained on this
research are listed below:

= We have researched the current state of the art regarding edge com-
puting techniques to deploy Al algorithms at the network edge in our
publication (32). To do so, techniques to compress deep learning mo-
dels have been discussed, such as quantization and pruning. The goal
of this compression is the reduction of the memory size of the models as
well as the computational complexity so they can be executed in edge
devices, which have limitations regarding memory and computational
capabilities to reduce the energy consumption. Apart from these com-
pression techniques, new emerging techniques such as model distillation
or distributed learning have been discussed to achieve state-of-the-art
performance results at the network edge. At the same time, emerging
edge computing devices have been compared to understand their main
features and what capabilities they do not include at the moment but
would be desirable for the future. Consequently, we have achieved the
objectives 1-a and 1-b commented in Section 1.2.

» There are not large raw-data dataset for automotive applications with
a large number of sensors. Therefore, it is not easy to have access to
resources to evaluate and design new techniques/algorithms for autono-
mous vehicles. Because of this, we proposed an automatic label creation
tool for radar data to speed up the dataset creation while reducing the
human errors during the data labeling (33). As a result, by having rage
Doppler map data, other preprocessing techniques to further preprocess
the data such as occupancy grid or range angle maps can be evaluated

23

24

CHAPTER 4. Conclusions

in contrast with public datasets such as NuScenes where radar data is
provided as 3D points so no further preprocessing techniques can be
applied. As a result of this publication, we can observe objective 2-a
was achieved.

There are numerous techniques to preprocess sensor data. The aim of
all these techniques is to maintain some relevant features from the data
while reducing its complexity or/and memory size. However, depending
on the specific sensor data, for example LIDAR data or radar data,
different techniques can be applied. These techniques fit the specific
features and structure of the sensor data. In the case of LiDAR data,
the main preprocessing techniques to reduce the data complexity whi-
le adding an ordered structure (required for deep learning models) are
the voxel approach and the depth map generation. Each of these tech-
niques have different advantages and limitations but due to the final
3D matrix structure achieved with the voxel approach, this technique
may not be suitable for most of the current edge devices. Regarding
radar data preprocessing, we have observe how some of the techniques
build upon previous ones, such as range angle map and range Doppler
map, where you need the range Doppler information to generate the
range angle map. At the same time, we have been able to extract the
knowledge from these preprocessing techniques to extrapolate them to
other sensors, such is the case of depth maps fro radar data. Conse-
quently, we have achieved objective 2-b regarding data preprocessing
techniques described in Section 1.2. Examples where these techniques
have been applied have been published in the publications attached to
this doctoral thesis (33; 35; 34).

Sensor fusion approaches may not improve the target detection per-
formance of the state-of-the-art deep learning models but these ap-
proaches are highly beneficial in hazard conditions where single-sensor
systems may run into data corruption or quality drop. Some examples
of this have been included in this thesis, in publications (35; 34) whe-
re we discussed the accuracy drop when using only camera sensors in
low light conditions or only LiDAR sensors in hazard weather condi-
tions. Consequently, sensor fusion approached have been proven to be
robust to scenery and conditions change, which is highly relevant in
autonomous vehicle applications since they must perform well under
all conditions to ensure the safety of passengers. After the research
regarding sensor fusion techniques, we can conclude we have achieved
objective 3-a presented in Section 1.2.

We have evaluated our algorithms using edge devices to prove how
state-of-the-art performance results for target detection can be achie-
ved at the network edge. To do so, we have applied multiple techniques

4.1. Future trends

25

to compress the deep learning models at the same time we have consi-
dered the limitations of the network edge while designing the network
structure (i.e., using a one-stage detector rather than a two-stage de-
tector) and the data preprocessing techniques. Further details about
the deployment of the developed models on edge devices can be found
in the publications attached to this thesis (35; 34). Because of the
deployment of our models at the network edge, we can conclude we
have achieved the objective 3-b regarding the deployment of the target
detection system at the network edge.

= Along the doctorate duration, we have contributed to the state-of-the-
art edge intelligence, achieving remarkable results that were published
in scientific journals. Among these journals, the most relevant ones
are IEEE Access and MDPI Sensors journals apart from the ACM
Transaction of Embedded Comouting Systems and the publication that
is still currently under review by the journal Elsevier Measurement.

To conclude, based on our research we forecast a clear improve in the near
future of the Edge Intelligence due to its relevance in emerging topics such
as autonomous vehicles. This is a result of the improvement regarding Edge
Devices, which keep improving to integrate more capabilities like Tensor
Processing Units, and specific frameworks for Deep Learning at the network
edge.

4.1. Future trends

After the presented research, based on the experience gather through the
doctoral period, we can foresee some main trends in the field of autonomous
vehicles that could be further researched:

= Emerging deep learning algorithms: during the last year, new
algorithms that highly improved the state of the art were presented
such as the transformer networks that study the relationship of the
data. These networks have been already applied to computer vision
tasks (51; 52) so in the future it could be researched how to apply
them to study camera or LiDAR data in order to further improve the
accuracy and efficiency of the models. These networks, since they study
the internal relationship of the data could be used to study LiDAR
data efficiently by studying the relationship among the 3D points. It
should also be researched the viability of deploying these networks at
the network edge to ensure even if their performance overpower the
presented ones in this thesis, they should still respect the network edge
constrains. Similarly, new algorithms for edge Al will appear due to the
high relevance of the IoT and edge computing during last years, and

26

CHAPTER 4. Conclusions

example of these algorithms is the distributed learning. As a result of
designing the algorithms for the network edge rather than compressing
standard models, they will fit better the network edge constrains and
take advantage of its capabilities, such as the communication between
nodes.

Integration of other relevant sensors: the sensors selected for this
research have been selected due to their relevance in the automotive
industry but other sensors that provide similar data, such as the Time
of Flight (ToF) cameras could be research as a substitute of LIDAR
data since LiDAR sensors are costly and require large computational
power due to the quantity of data produced. However, current ToF
cameras have a maximum range of few meters. Once these sensors are
further optimized to increase their maximum range, they will be able
to provide data similar to LIDAR (since it include depth information)
but at a much reduced price.

Data labeling : in this thesis, an automatic labeling tool for radar da-
ta is proposed in one of the articles. However, due to the integration of
multiple sensors apart from radar and camera sensors in autonomous
vehicles, a research about a flexible and general automatic labeling
tool for automotive sensors would be highly useful to reduce the time
required to create autonomous vehicle labeled datasets. An example
would be the integration of LiDAR data to use LiDAR depth informa-
tion rather than a static camera calibration to estimate the distance.
As a result of this, this tool could achieve high performance results in
general scenarios. Tools like this one will become more relevant in the
near future, specially for autonomous vehicles where large quantity of
data is required but since they use emerging sensors there are no public
datasets to use.

References

1]

2]

3]

Thomas M Ward, Pietro Mascagni, Yutong Ban, Guy Rosman, Nicolas
Padoy, Ozanan Meireles, and Daniel A Hashimoto. Computer vision in
surgery. Surgery, 169(5):1253-1256, 2021.

Vijay Kakani, Van Huan Nguyen, Basivi Praveen Kumar, Hakil Kim,
and Visweswara Rao Pasupuleti. A critical review on computer vision
and artificial intelligence in food industry. Journal of Agriculture and
Food Research, 2:100033, 2020.

Moran Ju, Jiangning Luo, Panpan Zhang, Miao He, and Haibo Luo. A
simple and efficient network for small target detection. IEEE Access,
7:85771-85781, 2019.

REFERENCES

27

4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

Mahdi Panahi, Nitheshnirmal Sadhasivam, Hamid Reza Pourghasemi,
Fatemeh Rezaie, and Saro Lee. Spatial prediction of groundwater poten-
tial mapping based on convolutional neural network (cnn) and support
vector regression (svr). Journal of Hydrology, 588:125033, 2020.

AKRMLPJ Khosravi, RNN Koury, L Machado, and JJG Pabon. Predic-
tion of wind speed and wind direction using artificial neural network,
support vector regression and adaptive neuro-fuzzy inference system.
Sustainable Energy Technologies and Assessments, 25:146-160, 2018.

Wei Wang, Yujing Yang, Xin Wang, Weizheng Wang, and Ji Li. De-
velopment of convolutional neural network and its application in image
classification: a survey. Optical Engineering, 58(4):040901, 2019.

Samir S Yadav and Shivajirao M Jadhav. Deep convolutional neural
network based medical image classification for disease diagnosis. Journal
of Big Data, 6(1):1-18, 2019.

Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber
Fallah. A survey of deep learning applications to autonomous vehi-

cle control. IEEE Transactions on Intelligent Transportation Systems,
22(2):712-733, 2020.

Jamil Fayyad, Mohammad A Jaradat, Dominique Gruyer, and Homa-
youn Najjaran. Deep learning sensor fusion for autonomous vehicle
perception and localization: A review. Sensors, 20(15):4220, 2020.

SAE On-Road Automated Vehicle Standards Committee et al. Taxo-
nomy and definitions for terms related to on-road motor vehicle auto-
mated driving systems. SAE Standard J, 3016:1-16, 2014.

Zhangjing Wang, Yu Wu, and Qingqing Niu. Multi-sensor fusion in
automated driving: A survey. leece Access, 8:2847-2868, 2019.

Ben Beklisi Kwame Ayawli, Ryad Chellali, Albert Yaw Appiah, and
Frimpong Kyeremeh. An overview of nature-inspired, conventional, and
hybrid methods of autonomous vehicle path planning. Journal of Ad-
vanced Transportation, 2018, 2018.

Yao Deng, Xi Zheng, Tianyi Zhang, Chen Chen, Guannan Lou, and
Miryung Kim. An analysis of adversarial attacks and defenses on au-
tonomous driving models. In 2020 IEEE international conference on
pervasive computing and communications (PerCom), pages 1-10. IEEE,
2020.

Ziyu Li, Yuncong Yao, Zhibin Quan, Wankou Yang, and Jin Xie. Sienet:
spatial information enhancement network for 3d object detection from
point cloud. arXiv preprint arXiv:2105.15396, 2021.

28

CHAPTER 4. Conclusions

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, Xiao-
dan Liang, Hang Xu, and Chunjing Xu. Voxel transformer for 3d object
detection. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3164-3173, 2021.

Tai Wang, ZHU Xinge, Jiangmiao Pang, and Dahua Lin. Probabilistic
and geometric depth: Detecting objects in perspective. In Conference
on Robot Learning, pages 1475-1485. PMLR, 2022.

Chenhang He, Hui Zeng, Jiangiang Huang, Xian-Sheng Hua, and Lei
Zhang. Structure aware single-stage 3d object detection from point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11873-11882, 2020.

Borja Saez-Mingorance, Antonio Escobar-Molero, Javier Mendez-
Gomez, Encarnacion Castillo-Morales, and Diego P Morales-Santos. Ob-
ject positioning algorithm based on multidimensional scaling and opti-
mization for synthetic gesture data generation. Sensors, 21(17):5923,
2021.

Igal Bilik, Oren Longman, Shahar Villeval, and Joseph Tabrikian. The
rise of radar for autonomous vehicles: Signal processing solutions and
future research directions. IEEE signal processing Magazine, 36(5):20—
31, 2019.

Radl Dominguez, Enrique Onieva, Javier Alonso, Jorge Villagra, and
Carlos Gonzalez. Lidar based perception solution for autonomous vehi-
cles. In 2011 11th International Conference on Intelligent Systems De-
sign and Applications, pages 790-795. IEEE, 2011.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multi-
box detector. In Furopean conference on computer vision, pages 21-37.
Springer, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems, 28:91-99, 2015.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang,
and Qi Tian. Centernet: Keypoint triplets for object detection. In Pro-
ceedings of the IEEE/CVF international conference on computer vision,
pages 6569-6578, 2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages

779-788, 2016.

REFERENCES

29

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Yunxiang Liu and Jinpeng Ren. Laser point cloud road 3d target detec-
tion based on deep learning. In 2021 2nd International Conference on
Big Data and Informatization Education (ICBDIE), pages 78-81. IEEE,
2021.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580-587, 2014.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440-1448, 2015.

Jelena Kocié¢, Nenad Jovicié, and Vujo Drndarevi¢. Sensors and sensor
fusion in autonomous vehicles. In 2018 26th Telecommunications Forum
(TELFOR), pages 420-425. IEEE, 2018.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Wei-
song Shi. Edge computing for autonomous driving: Opportunities and
challenges. Proceedings of the IEEE, 107(8):1697-1716, 2019.

Wazir Zada Khan, Ejaz Ahmed, Sagib Hakak, Ibrar Yaqoob, and Arif
Ahmed. Edge computing: A survey. Future Generation Computer Sys-
tems, 97:219 — 235, 2019.

Wenbin Li and Matthieu Liewig. A survey of ai accelerators for edge
environment. In World Conference on Information Systems and Tech-
nologies, pages 35-44. Springer, 2020.

Javier Mendez, Kay Bierzynski, Manuel Cuéllar, and Diego Morales.
Edge intelligence: Concepts, architectures, applications and future di-
rections. ACM Transactions on Embedded Computing Systems, 01 2022.

Javier Mendez, Stephan Schoenfeldt, Xinyi Tang, Jakob Valtl, MP Cue-
llar, and Diego P Morales. Automatic label creation framework for fmcw
radar images using camera data. IEEE Access, 2021.

Javier Mendez, Manuel Cuéllar, and Diego Morales. Lidar-radar ro-
bust multi-level sensor fusion for target detection at the network edge.
FElsevier Measurements - Under review, 012 2021.

Javier Mendez, Miguel Molina, Noel Rodriguez, Manuel P Cuellar, and
Diego P Morales. Camera-lidar multi-level sensor fusion for target de-
tection at the network edge. Sensors, 21(12):3992, 2021.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
Deepthings: Distributed adaptive deep learning inference on resource-
constrained iot edge clusters. IFEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2348-2359, 2018.

30

CHAPTER 4. Conclusions

[37]

[38]
[39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

Diego Peteiro-Barral and Bertha Guijarro-Berdinias. A survey of
methods for distributed machine learning. Progress in Artificial In-
telligence, 2(1):1-11, 2013.

Google 1/0. Google tpu. Accessed: 2022-02-07.

R. Schmidt. Multiple emitter location and signal parameter estimation.
IEEFE Transactions on Antennas and Propagation, 34(3):276-280, 1986.

Simon Haykin, John Litva, Terence J Shepherd, et al. Radar array
processing. Springer, 1993.

Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz, and
Markus Lienkamp. A deep learning-based radar and camera sensor
fusion architecture for object detection. In 2019 Sensor Data Fusion:
Trends, Solutions, Applications (SDF), pages 1-7. IEEE, 2019.

Sorin C Popescu and Kaiguang Zhao. A voxel-based lidar method for
estimating crown base height for deciduous and pine trees. Remote
sensing of environment, 112(3):767-781, 2008.

Miao Wang and Yi-Hsing Tseng. Incremental segmentation of lidar point
clouds with an octree-structured voxel space. The Photogrammetric
Record, 26(133):32-57, 2011.

Maosheng Ye, Shuangjie Xu, and Tongyi Cao. Hvnet: Hybrid voxel
network for lidar based 3d object detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pa-
ges 1631-1640, 2020.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013.

J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, and J. W. Choi. Robust
camera lidar sensor fusion via deep gated information fusion network.
In 2018 IEEFE Intelligent Vehicles Symposium (IV), pages 1620-1625,
2018.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d
object detection and tracking. In CVPR, 2021.

Shaoqing Xu, Dingfu Zhou, Jin Fang, Junbo Yin, Bin Zhou, and Liang-
jun Zhang. Fusionpainting: Multimodal fusion with adaptive attention
for 3d object detection. ArXiv, abs/2106.12449, 2021.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu.
Class-balanced grouping and sampling for point cloud 3d object detec-
tion. arXiv preprint arXiv:1908.09492, 2019.

REFERENCES

31

[50] Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and Dahua
Lin. Ssn: Shape signature networks for multi-class object detection
from point clouds. In Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXV
16, pages 581-597. Springer, 2020.

[51] Mathieu De Coster, Mieke Van Herreweghe, and Joni Dambre. Sign
language recognition with transformer networks. In 12th International
Conference on Language Resources and Fvaluation, pages 6018-6024.
European Language Resources Association (ELRA), 2020.

[52] Yehao Li, Ting Yao, Yingwei Pan, and Tao Mei. Contextual transformer
networks for visual recognition. arXiv preprint arXiv:2107.12292, 2021.

Part 11

Publications

Chapter 5

Edge Intelligence: Concepts,
architectures, applications and
future directions

Javier Mendez',?, Kay Bierzynski!, M.P. Cuellar?, Diego P.
Morales?.

1. Infineon Technologies AG, Am Campeon 1-15, 85579 Neu-
biberg, Germany

2. Department of Computer Science and Artificial Intelligence,
University of Granada, 18071 Granada, Spain

3. Department of Electronics and Computer Technology, Univer-
sity of Granada, 18071 Granada, Spain

ACM Transactions on Embedded Computing Systems

= Received April 2021, Accepted September 2021, Published January
2022

= DOI: 10.1145/3486674
= Impact factor: 1.193

» JCR Rank: 83/108 in category Computer science and software engi-
neering (Q4)

35

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

36

directions

ABSTRACT: The name Edge Intelligence, also known as Edge Al is a
recent term used in the last few years to refer to the confluence of Ma-
chine Learning, or broadly speaking Artificial Intelligence, with Edge
Computing. In this manuscript, we revise the concepts regarding Edge
Intelligence, such as Cloud, Edge and Fog Computing, the motivation
to use Edge Intelligence, and compare current approaches and analyze
application scenarios. To provide a complete review of this technology,
previous frameworks and platforms for Edge Computing have been
discusses in this manuscript in order to provide the general view of
the basis for Edge AI. Similarly, the emerging techniques to deploy
Deep Learning (DL) models at the network edge, as well as speciali-
zed platforms and frameworks to do so, are review in this manuscript.
These devices, techniques and frameworks are analyzed based on rele-
vant criteria at the network edge such as latency, energy consumption
and accuracy of the models to determine the current state of the art
as well as current limitations of the proposed technologies. Because of
this, it is possible to understand what are the current possibilities to
efficiently deploy state-of-the-art DL models at the network edge ba-
sed on technologies such as Al accelerators, Tensor Processing Units
and techniques that include Federated Learning and Gossip Training.
Finally, the challenges of Edge Al are discusses in the manuscript as
well as the Future directions that can be extracted from the evolution
of the Edge Computing and Internet of Things (IoT) approaches.

keywords: Edge Intelligence, Edge AI, Edge Computing, Machine
Learning, Deep Learning, Artificial Intelligence.

5.1. Introduction

During the first decade of the XXI century, Cloud Computing arose as a
service-based, large scale, and distributed computing paradigm (1). A Cloud
platform uses a service model that can offer different services to the end user,
such as: Hardware infrastructure, software, platforms (hardware+software),
workspaces, data, and security solutions. With the increase in the number
of devices connected to a Cloud system, the volume of data to be processed,
and the growing of Internet of Things (IoT), Cloud Computing has limita-
tions regarding the high bandwidth requirements to transmit data to the
centralized Cloud architecture, high computational power to process the da-
ta, and therefore high latency of data processing (2). Different solutions have
been devised to solve these problems. The main approaches are Cloudlets,
Fog Computing, and Edge Computing:

» Cloudlets (3; 4) are computers, servers or clusters located in the net-
work nodes near the end devices, that connect the devices to the Cloud.
A Cloudlet is equipped with services from the Cloud in order to reduce

5.1. Introduction

37

Cloud

v I N
Cloudlet % é
e 8 .
°

22

S)
End D D
devices

Figure 5.1: Example of Cloudlet architecture

the latency in the access to each service. As a result of this, Cloudlets
may be understood as a Cloud service at the network edge. The basic
structure of a Cloudlet is organized in three layers: Cloud, Cloudlet
and Edge, as shown in Figure 5.1. Cloudlet has been used with two
different objectives: Reducing the data transfer between end devices
and Cloud, and reducing the computing workload in the end device.
Examples of solutions pursuing the first objective are data caching of
useful information for end devices from the Cloud in the Cloudlet, as
for instance video data (5), or to improve data storage (6). On the other
hand, examples of applications to reduce the computing workload of
end devices are Computer Vision (image recognition, pose identifica-
tion, etc.), Speech Processing (text-to-speech, speech recognition, etc.)
(3), virtualization (7), healthcare (8; 9; 10) or smart grids (11).

Cloud-Fog Computing systems (12; 13) are similar to Cloudlets in the
sense that both approaches attempt to reduce the latency problems
of Cloud Computing by integrating in the network some devices to
process the information closer to the network edge. However, Fog com-
puting is targeted at scenarios where multiple things are interconnec-
ted (such as IoT), while Cloudlets are more specific for network or
service-oriented systems. Fog computing include capabilities to com-
pute, store and manage data apart from networking on network nodes
within the close vicinity of the Edge Device or End Device. Conse-
quently, the main difference between Cloudlets and Fog Computing is
not the difference in their network structure, since they are similar, but
the final goal or task to perform as well as the computing power avai-
lable. Therefore, Cloudlets should be understood as a sub-category of
Fog Computing. Thus, hardware and software technologies, and spe-
cific architectures, are designed to develop systems over Cloudlet or
Fog paradigms. The basic components of a Fog Architecture are Fog

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
38 directions

devices, Fog servers, Cloud platform, and gateways, as it is shown in
Figure 5.2. A Fog computing architecture is organized in layers (12)
(Application, security, resource management, storage, data preproces-
sing, monitoring, gateways, and physical layer), and the main feature
of Fog computing systems is the virtualization of the complete plat-
form to enable different and heterogeneous devices (mainly sensors and
[oT devices) to connect to the platform. Thus, Fog devices and servers
(which are in changer of the networking among the End or Edge Devi-
ces) enable communication between devices, and cooperate to perform
computing and storage tasks. Example applications of Fog computing
are mainly related to Industry 4.0 and IoT, such as transportation sys-
tems (14), enhanced virtual reality and human-computer interaction
systems (15), healthcare (10), or Smart cities (16), among others.

Cloud

Core IP

|t
network @ @ i’

A — ZE
devices

+
B ey N S @m D
devices & = & =

Figure 5.2: Example of a general Fog Computing architecture

» Edge Computing (17) is aimed at reducing Cloud workload to process
device data, by means of performing some preprocessing and/or com-
puting tasks at the network edge. Thus, Edge Computing is suitable to
support Big Data analytics and scenarios where a real-time response is
required for the user, or where the end device application has time criti-
cality constraints. According to Figure 5.3, the general idea of an Edge
Computing architecture, in the broad sense, is not much different from
Fog and Cloudlet architectures. In fact, some authors classify Cloud-
lets and Fog computing as types of Edge Computing (18), or also as
necessary technologies to enable Edge Computing (19) at different le-
vels. However, one difference relies on the fact that Edge servers need a
closer proximity to edge devices in Edge Computing, to fultill the real-
time or time criticality constraints required by users and applications.
Also, some of the required preprocessing can be performed at the end

5.1. Introduction

39

device. A deeper analyze of this technology is presented in Section 5.3.

Glous C)
N

/4

SN
Edge f‘
nodes t

-

-

;
9 - 5

/

2

End N
d2vices &
Figure 5.3: Example of a general Edge Computing architecture

= Ad Hoc Cloud computing clouds is another approach to execute pro-
cess that require high computational capabilities at the network edge.
This technique is based on harvesting resources from existing spora-
dically available, non-exclusive and unreliable infrastructures at the
network edge (20; 21). However, this tasks executed in Ad Hoc clouds
does not interfere with executing host processes, making it suitable
for applications where large quantity of data needs to be preprocessed
while the host supervise the task or execute the data gathering pro-
cess. Consequently, it is possible to observe the similarities with the
Fog Computing technique but in this case the nodes are specific nodes
planned for the task and it is unpredictable when they will be available.

» Device-enhanced Multi-access edge computing (MEC) which is based
on improving the capabilities of the MEC devices based on increasing
computation and storage capacities of mobile edge devices. This tech-
nique emerged as a consequence of the increasing demand of compu-
tationally demand applications in mobile edge devices while taking into
account the constrains of these devices regarding battery and compu-
tational capabilities (22). The device-enhanced MEC mechanisms can
be classified into different categories based on the aim of the devi-
ce (computation offloading and caching), as proposed in (23), while
maintaining low energy consumption and latency results.

In this paper, we focus first on the Edge Computing paradigm, since it
provides the necessary background technologies that enable Edge Intelligen-
ce. Edge Intelligence is a new term that has been used in the last few years
to refer to the confluence of Edge Computing with Machine Learning (ML)
(24), or Artificial Intelligence in the broad sense. Different names in the lite-
rature refer to the same concept, such as Edge Al (25), Artificial Intelligence

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
40 directions

at the Network Edge (26), or Intelligent Edge Computing (27), and we use
these names in the remaining of the article indistinguishably. In Edge Al,
we assume that end devices are also data producers, and ML algorithms are
used to process, acquire, summarize or transform this data, in the network
edge nodes, and sometimes in the end devices themselves.

In addition to the benefits of Edge Computing, including ML capabilities
at the network edge provides several advantages: (a) Executing the raw data
preprocessing at the network edge can reduce data dimensionality to extract
contextual knowledge that can be transferred to the Cloud for higher-level
analyses (28) to reduce bandwidth requirements; (b) it also enables the pos-
sibility to perform sensor data fusion at the network edge, as in surveillance
scenarios (29), reducing the workload in Cloud platforms; and (c) using the
computing capabilities of devices and edge nodes helps to accelerate the res-
ponse of distributed ML algorithms as in Big Data scenarios (30). However,
some limitations arise under the Edge Intelligence ecosystem. To mention
a few (31): (a) The need to adapt ML algorithms for distributed compu-
ting and distributed storage systems; (b) the management of computing and
memory resources to train ML models, and to perform inferences of data
using the trained models; (c¢) the adaptation of ML algorithms to be used
at multiple time scales or data with different granularity; and (d) the design
of structured solutions and standards to integrate ML in Edge Computing.
Although Edge Intelligence is still an emergent paradigm, different solutions
have been proposed in the literature to address these problems, and we des-
cribe the existing approaches in the following sections of this manuscript.

This article is structured as follows: Section 5.3 introduces the state of
the art in Edge Computing, as a ground set of technologies to support Edge
Intelligence. Section 5.4 summarizes ML approaches that have been used in
Edge Computing, leading to Edge Artificial Intelligence and its applications.
Section 5.5 describes Edge Al architectures and frameworks. Finally, section
5.6 focuses on challenges, future directions and conclusions of this survey.

5.2. Related Works

Multiple authors have researched this topic with the goal of summarizing
the most relevant trends of the Edge Intelligence to ease the understanding
of the reader such as (32), who focus on the software frameworks for the Edge
Intelligence explaining at what level each of the techniques and frameworks
should be applied. By doing so, the reader can get a deep understanding
on what software should be used in each case as well as the reasons why.
However, this author does not include in his research the edge devices where
the system will be implemented. As a result, the reader can understand what
technique to use but not where. Therefore, the paper does not explain the
limitations of these tools that fall on the hardware, as presented in our paper.

5.2. Related Works

41

Following this research line, (33) also research this topic focused on the
algorithms as well as the software frameworks, as the previous author. Ne-
vertheless, (33) gives some details about the hardware developed for this
topic. However, the information provided in this paper is not enough to fully
understand the current trends and future directions of the hardware for Edge
Intelligence. This is due to the fact that, even when some specific hardware
for Edge Al is discussed in the paper, most of the emerging technologies
and techniques are not included. An example of this are the edge devices
compared in our survey.

In contrast with this software-algorithm level survey, other works, such

s (34), focus on the hardware platform to enable Edge AI. However, this
approach is too specific and does not provide information regarding relevant
emerging frameworks and algorithms that as highly relevant to optimize the
ATl models at the network edge.

On the other hand, (35) researched the overview of this technique by
adding information of the hardware architecture, frameworks as well as algo-
rithms in his paper. The current algorithms for Edge Intelligence are explai-
ned in depth with numerous examples to distinguish details between similar
techniques in order to make the reader aware of when each of them should be
used. (35) also researches in detail the current edge devices that can be used
for the Edge Intelligence separating them according to the architecture. Ho-
wever, the limitations of these devices regards to the frameworks that must
be used to deploy the Al models on the device are not researched. Therefore,
the result is the opposite as the achieved with the previous authors, a deep
understanding of the hardware without taking into account the limitations
of the devices regarding the software.

Other authors have focused on some of the specific Edge Computing tech-
niques, such as Quoc-Viet P. et al. (36) who gathered the information regar-
ding Multi-Access Edge Computing in 5G. However, this does not provide a
general overview since the manuscript aims to provide a deep understanding
on Multi-Access Edge Computing rather than general Edge Computing. At
the same time, this work does not include all the possible frameworks and
platforms that could be used to deploy AI model at the network edge but
provide general information about what requirements would need to be sa-
tisfied in order to execute efficiently ML tasks at the network edge.

Since the literature is extensive for this topic, our article aims to enve-
lope the goals of the previously commented papers among others in order
to give a deep and general overview of the current status of the Edge Inte-
lligence. As a result, the connection between the software and hardware for
this technique can be understood as well as its advantages and limitations.
The current techniques to adapt the DL models to the network edge are also
researched in order to understand the differences between the frameworks,
since this is one of the key points to fully understand the research lines and

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
42 directions

future trends. At the same time, the techniques that originated the Edge
Intelligence are explained due to the fact they can provide information re-
gards the future challenges/trends as well as a good background for the Edge
Intelligence. Lastly, emerging techniques as well as frameworks for the Edge
AT are included in this survey to give an updated overall view to the readers.

5.3. Background on Edge Computing

Edge Computing attempts to perform some data preprocessing and/or
computing tasks at the network edge, instead of relying on external service
providers as in Cloud computing. As a result, it enables the possibility of
real-time service response at the same time the integrity and confidentiality
of the information are ensured (37). This technique also reduces the energy
consumption and the time required to process the information since the
moment the data is generated (38; 39; 40). An example of this is studied in
(40) where the energy-consumption was reduced a 40 % approximately due to
the reduction on the communications. At the same time, the insecure channel
to transmit the information (WiFi, Bluetooth, etc.) can be removed from the
hierarchical structure of the data processing (38) in a Cloud system. During
the preprocessing of the raw data, the confidential information which is not
relevant for the final task can be masked/deleted before being shared with an
external device. This reduces the risk of confidential or sensible information
leakages.

An indirect benefit of the Edge Computing approach is the abstraction
of the end device. When heterogeneous end devices are used to gather in-
formation that complements each other, an adaptation layer is required to
transform all the data into a common structure. In Edge Computing, this
abstraction layer is included inside each end device where relevant informa-
tion is shared exclusively for the fusing process (41). This strategy alleviates
the computational power required to fuse the raw data in Cloud servers.

The limitations of this technology fall on the hardware and computing
capabilities of the end devices at the network edge. Usually, these devices do
not have high computational power as well as large battery due to their size
restrictions, making it difficult to integrate advanced algorithms to process
the data. A trade off between processing speed and energy consumption must
be achieved (42), and this is a current challenge of Edge Computing.

Using Edge Computing does not imply excluding the Cloud Computing
or other similar technologies like Fog Computing. The Edge computing could
be a layer in a hierarchical processing structure where the data is prepro-
cessed or/and processed at a closer level to the network edge which has
capabilities to execute the task (43; 30; 44; 45).

Due to its relevance, it is worth mentioning a special case of Edge Com-
puting applied for telecommunications, i.e. Mobile Edge Computing (MEC)

5.3. Background on Edge Computing

43

(46; 47; 48), since a large amount of literature can be found specifically for
this application area. While traditional telecommunication operators per-
form control of the traffic flow in Cloud, MEC deploys edge servers in base
stations following the Edge Computing structure. The first MEC system was
developed by Nokia Networks in 2012 (49). In Nokia’s concept, MEC servers
are standard telecommunication equipment where storage and processing ca-
pabilities are integrated to collect real-time network data. This technology
reduces the latency by using the same principle as the Edge Computing and
Fog Computing, moving the processing center near the network edge. At
the same time, due to its location awareness, like Fog Computing, it enables
developers content providers and users to perform tasks where the location
data is a key factor.

5.3.1. Application scenarios of Edge Computing

The Edge Computing, as well as Fog Computing and Mobile Edge Com-
puting, could be applied where latency is an essential factor and the Cloud
Computing is not adequate. Some examples of these applications are:

» Autonomous driving. In autonomous driving (50; 51), time is cru-
cial to decide the actions made by the car for safe driving following the
correct route. The system needs to execute the task with a short time
constraint. It is not efficient for the raw data to be sent to another de-
vice where it will be processed to execute a task. Instead, the raw data
should be processed in the vehicle to reduce the latency, for example,
latency of 0.1 seconds at 100km /h implies that the vehicle would roam
for, approximately, 3 meters before executing the computed result. In
the survey (50), this restriction is studied to prove the relevance on the
fast data processing for autonomous driving since otherwise it could
lead to problems such as the previously commented. At the same time,
this survey presents the requirements for the Central Processing Unit
(CPU) and Graphic Processing Unit (GPU) devices that would be re-
quired for the Edge Computing in autonomous vehicles as well as V2X
applications in order to enable the information sharing between vehi-
cles and computation offloading. Following these restrictions, the paper
of (52) proposes an Edge Computing based framework (F-Cooper) to
fuse the information. In this case, the data collected by each vehicle is
preprocessed to obtain point cloud features, which are later fused to
achieve a better object detection performance. Another example is the
pedestrian detection method developed by (53) where data collected
by a LiDAR sensor is propsed to obtain relevant features such as the
movement and the dimensions/shape of the objects. The paper (54)
provides a complete survey of techniques used in this field.

= Security solutions. Another application for this technology is secu-

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
44 directions

rity solutions, such as surveillance systems where the cameras or a
device at the edge of the network could process the raw data to infer
a result or fuse the information (55; 29). It could be used to recogni-
ze specific users, for example, known criminals, before any dangerous
action could be started. In the paper of (56), this technique is used to
control vehicle speed on highways by cameras, which obtains success-
ful results on its implementation. Following the security line of work,
(57) review some security measures (Edge-based Authentication and
Authorization Mechanisms and Edge-ISP collaborative architecture to
detect and isolate IoT security attacks among other techniques) which
can be implemented in distributed networks such as [oT to ensure the
privacy of the data while maintaining the functionality of the system.
In the vehicle context, Edge Computing in collaboration with security
techniques such as Blockchain can be implemented to ensure data pri-
vacy as well as efficient energy interactions as proposed by (58). This
paper proposes a framework for efficient implementation of these tech-
nologies while maintaining low energy consumption and real-time data
transmission.

s IoT applications. In the [oT scenario, where there are numerous sen-
sors, this technology can be beneficial (59; 60; 61; 62). In this case, it
would be more efficient to preprocess the data before sending it to the
cloud servers. In case the devices have enough computational power for
the task, the process could be executed in the devices themselves or
within a distributed end devices network. In the paper (59), an Edge
Computing framework is developed, called WuKong, to fuse the infor-
mation collected by heterogeneous sensors. The authors applied this
framework for online activity recognition, where the results obtained
support the smart home paradigm. Following the same line of work,
in the paper (60) the concept of smart city is studied in collaboration
with Edge Computing as a technique to process the data generated by
distributed and numerous sensors of the smart city concept.

When all the data from the IoT sensors have been gathered, security
is a key factor due to the nature of the data. Therefore, in the paper
of (57) some security solutions for IoT based on Edge Computing are
reviewed. These solutions include User-centric edge-based IoT security
architecture, to establish a trusted domain at the edge layer, Device-
centric edge-based design for IoT security, which is based on security
frameworks integrated in the Edge Devices to increase their security
using advanced security algorithms, and End-to-end security for IoT,
which is the most challenging due to the heterogeneity of the Edge
Devices and frameworks.

= Location services. Edge Computing can be applied to location servi-

5.3. Background on Edge Computing

45

ces such as smart-parking explained in the paper (63) where a network
based on Fog Computing in collaboration with the network edge and
the cloud is used to determine the location of available parking slots.
This not only helps users look for a parking slot but also distributes
vehicles parking slots efficiently, avoiding unused resources in the city.
In this context, the location of the end device is relevant for the task
it is executing. The edge device can fuse the data with the location to
provide information of the context before transmitting this informa-
tion. (64) also researched a similar application where Edge Computing
was used for license plate number detection, smart parking meter and
vision-based parking spot detection based on a distributed camera sys-
tem and Deep Learning algorithms with low latency. Other services
which can be carried out at the network edge taking into account the
location by the implementation of Edge Computing are indoor localiza-
tion and navigation system as proposed by (65) which can be used for
patient tracking in hospitals based on Bluetooth Low Energy (BLE)
and IEEE 802.15.4a compliant Ultra-wideband (UWB) RF' time-of-
flight based positioning at the network edge.

= Network functions. Although network solutions have been traditio-
nally implemented in hardware, it is possible to turn these devices into
software that can be integrated into edge devices by using Network
Function Virtualization (46). Moving this service to the network edge
enables the privacy of the systems to be improved, at the same time,
it is possible to reduce the latency to achieve real-time responses. An
example of this application is the paper (46), where some techniques
to implement communication protocols at the network edge are explai-
ned in depth. Following this line of work, (66) proposed using Edge
Computing techniques for tasks such as performance monitoring, phy-
sical impairment evaluation, and alarm message filter among others.
The alarm prediction scenario was implemented and tested, reaching a
99 % accuracy. As well as before, (67) proposed using Edge Computing
technologies as a gateway to support efficient deployment of ML mo-
dels based on containers to reduce bandwidth consumption, increase
the security of the systems, ensure efficient resource usage, and conduct
life-cycle management among other applications.

Although Edge Computing provides the capabilities required for hete-
rogeneous applications, specific software and hardware are needed maintain
the pace in order to incorporate all these advantages. In the next section,
current hardware architectures and software platform for Edge Computing
will be explained for a deeper understanding of the main relevant features.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
46 directions

5.3.2. Edge Computing Architectures and software

Edge Computing attempts to perform the data processing at the source
device, whenever it is possible. However, CPUs do not have enough compu-
tational power to execute most of complex tasks under real-time constraints,
so specific process units are required in Edge Computing end devices. For
instance, Facebook’s researchers have already explained how most of the in-
ference process of their applications are carried out by the end device where
it is used, like smartphones or tablets (68). There are other options to impro-
ve edge computational capabilities, such as adding more CPUs to the device
to parallelize the process, or integrating other co-processors such as Graphic
Processing Units (GPU) (69; 70), among the most popular approaches.

Core Node

Figure 5.4: Edge Computing device architecture proposed by (71)

Some researches propose a modular architecture for Edge Computing
devices (71; 72) where real-time is ensured at the same time non-real-time
and real-time control units perform a control of communication protocols as
well as memory allowance, as shown in the figure 5.4. A central core would
run an operating system and track the resources of the device to decide
where to execute each task of the global process. Besides this, the device
should be accessible for updating purposes in order to enable new functio-
nalities and improve current ones. Scalability is also a key factor in Edge
Computing. Therefore, devices should be aware of neighbor devices as well
as their functionalities to establish efficient network resource management.
The communication protocols of the device must enable communications not
only with other edge devices but also with other devices at the network edge
such as Fog nodes or MEC nodes in order to transfer information between
them efficiently (72; 73).

Another proposed architecture is the Lambda-CoAP Architecture (74),
which starts from the Lambda Architecture (75) deployed in the cloud to
abstract heterogeneous devices at the network edge while working on real
time. This architecture is composed of different modules that provide the
edge devices with functionalities for processing, analyzing and consuming
data. It splits the input data into three different layers in order to reduce
the latency:

5.3. Background on Edge Computing

47

= Real time layer. This layer processes data that needs to be computed
on real-time.

= Batch layer. This layer preprocesses data to generate batches using
the processing of historical data.

= Serving layer. This layer displays and communicate the computed
results. At the same time, by using this layer it is also possible to
access all generated data.

This architecture must be complemented with an adequate communica-
tion protocol or gateway to connect the devices of the network as in the
previous architecture.

As we can see, both architectures follow the same general structure with
different implementations. This common idea is the processing pipeline which
is shared among multiple architectures for Edge Computing (76; 77). Thus,
the processing pipeline consists of the following elements: data gathering,
data preprocessing (homogenization, filtering, masking private information,
etc.), result computation, result storage, and system interface.

After establishing the hardware architecture, an adequate software fra-
mework is necessary in order to establish efficient communication protocols
at the network edge, as well as configuring each node. Therefore, current
existing software frameworks for Edge Computing are:

= Apache Kafka. This framework was developed by Apache to be a
distributed streaming platform on real time. It is based on the idea
of multiple devices checking the same information simultaneously. By
establishing which nodes can consume and/or produce data, this fra-
mework enables a multi-tenancy approach to control the information
distribution. Due to its characteristics, it can be used as a communi-
cation protocol for a distributed network as well as data storage for
end devices and applications where historical data is required. The
combination of these functionalities is not common but it enables this
platform to work as a streaming platform (78).

= FAR-Edge RA. It is another Edge Computing framework developed
for the H2020 FAR-Edge project (79) to adopt decentralized automa-
tion architectures. It allows the collaboration with external frameworks
or systems such as the Cloud. This framework is notable for guaran-
teeing the security of the data through techniques such as Blockchain.
By including the functionalities of the Blockchain, this framework can
be used as a reference for automation cases, analysis, and simulations
in industrial environments (80).

s F-Cooper. This framework was developed with special capabilities
for vehicles in the paper (52). It proposes an edge computing-based

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
48 directions

approach to fuse the information from point cloud features to achieve a
better object detection performance.The data was collected by different
LiDAR sensors (Velodyne HDL-64E LIDAR) integrated in the vehicles

in a collaborative smart vehicle scenario.

= Macchina.io. It is a new IoT platform for the network edge that in-
tegrates a software tool for developing purposes as well as tools for re-
source managing of the system (81; 82). It hosts the application server,
based on java-script, to manage the communication protocols. When
using this software, edge devices can be managed through the Mac-
china platform, which can be accessed through common web browsers
and SSH among other communication protocols.

» OGEMA. It is an Edge Computing platform developed by (83). This
framework is meant to work in a heterogeneous context where there are
multiple end devices connected together, such as IoT or industry 4.0. It
allows cloud connection to transmit the information as well as relying
on the cloud for some computation when required. In order to ensu-
re the interoperability between end devices at the network edge, this
framework maps the collected data to standardized data types. This
framework integrates a variety of security levels to fit the application.

s CRESCO. It is a free and open-source distributed-agent framework
(84). This framework implementation is designed for large quantities of
heterogeneous end devices geographically distributed. It supports real-
time processing at the network edge for loT applications among others.
In order to ease the implementation and development, an application
description language was developed by the same company.

» Edge-computing-embedded-platform (ECE platform). This fra-
mework was proposed by (85) as an edge computing-oriented platform
to remotely control geographically distributed IoT end devices, inde-
pendently of their network configuration. It reduces the bandwidth
consumption by using asynchronous communications, which enables
faster communications and real-time capabilities. A lightweight vir-
tual space is obtained in this framework as result of integrating the
Docker technology, which reduces the memory footprint relevant for
low-resource devices at the network edge.

s SA Framework. The purpose of this framework is to detect the cu-
rrent situation of the environment where it is implemented (60). By an
efficient understanding of the context, it is possible to perform actions
efficiently. This framework is designed for IoT applications specifically
due to the fact it takes into account the information propagation in
[oT networks.

5.3. Background on Edge Computing

= Cisco Fog Director. This framework integrates capabilities which are
beneficial in situations such as smart cities to manage large quantities
of nodes. It integrates APIs for an easy human-machine interface (HMI)
when it comes to developing applications and debugging support. This
framework provides improvement over operational effectiveness over
business agility (86).

» Crosser. This framework enables the collaboration between heteroge-
neous systems through its built-in orchestration capabilities, including
edge-cloud collaborations. This lightweight IoT-edge platform can co-
llect data on real time from the sensor of the network as well as prepro-
cessing them. It is good at obtaining low cost Machine-to-Machine com-
munication, lowering bandwidth and establishing cloud-independent
networks (87).

= EdgeX Foundry. It is a linux-based open-source framework for IoT-
edge applications. It includes an operative system-agnostic plug-and-
play-based software for easy development of systems based on it. This
framework is deployed for controlling the evolution of key values by
data orchestration and edge system management (88).

= Edgent. It is an Apache open-source framework to develop edge ap-
plications. The edge devices allowed in this framework are those based
on java7/8, Android or Raspberry Pi B. It works as a back-end system
for edge devices and applications. Due to the limited devices which can
be implemented with this framework, Edgent is used as an interface
media among similar devices (89).

» Edge Computing RA 2.0 (EC RA). This software architecture
was proposed by the collaboration of Edge Computing Consortium and
the Industrial Internet Alliance, based on international standards such
as ISO/IEC/IEEE 42010:2011. This framework includes the following
services: management of the end devices, data life cycle, and security.
It can be implemented in collaboration with other systems due to its
horizontal structure as well as provide real-time response (90).

» Industrial Internet Consortium RA (IIC RA). The IIC develo-
ped its reference architecture using some international IoT standards
(ISO/IEC/IEEE 42010:2011). This structure is based on three layers:
(a) Edge, where the data from the end devices is collected, (b) Plat-
form, where the data is processed and sent to the third layer (c) Enter-
prise, where specific applications are hosted such as support systems
or user interfaces among others. This layer is also responsible for con-
trolling the execution of the previous layers (91).

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
50 directions

= PiCasso. It is a platform for lightweight service orchestration at the
network edge (92). The key factor for an efficient performance of this
framework is the discovery of the critical parameters of the use-case
for specific applications. This framework includes strategies such as
local replication and remote replication to fit the application after the
critical parameters are known.

In order to compare the previously commented frameworks, some relevant
features for the Edge Computing have been selected based on their relevance
in this field. These selected features are:

= Real-time processing. This feature describes if the framework is able
to be executed on real-time or with time constraints.

= Heterogeneous devices. Edge Computing paradigm includes heteroge-
neous devices due to the diversity on information that can be extracted
at the network edge, leading to numerous sensors that may not sha-
re the output data format or communication protocols. This is a key
factor in numerous scenarios so the capability of the framework to be
implemented in diverse and heterogeneous devices is a key feature to
be compared.

= Cloud connection. This connection can expand the resource capabilities
of the system when the application requires it due to computational or
storage requirements.

= Device management capabilities. This feature must be understood as
the capability to manage the connections among multiple edge devices
as well as the network.

= Scalability. This feature must be understood as the capability to incre-
ment the size of the edge network easily.

s Security. This is a key feature as well as one of the main reasons which
led to the creation of Edge Computing. This feature will be used to
describe if the framework includes any security technique by default in
order to ensure the reliability of the data and its privacy.

= Resource Optimization. The capability of the framework to optimize
the resources of the system such as bandwidth and energy.

s Open Source. If the framework is Open Source, the scientific com-
munity can work on new capabilities for the system as well as fixing
problems leading to an improvement in the efficiency and performance
of the framework.

5.3. Background on Edge Computing

51

Devices

Apache Kafka (78)
FAR-Edge RA (79)
F-Cooper RA (52)
Macchina.io RA (81; 82)
OGEMA RA (83)
CRESCO RA (84)
ECE (85)
SA (60)

Fog Director (86)
Crosser (87)
EdgeX (88)
Edgent (89)
EC RA (90)
TIC RA (91)
PiCasso (92)

SIH SR RIS ® R STS ST S S A A Real-time

SIAA H SIS A S18 &A% | S| Heterogeneous nodes
M RN R SIS R R R SIS = | SIS Cloud connection
SIAASANASAAAA RS S]] Device management
AN ENENENENANENENENENENENENENIESIEIETi Y
Al s xS xS s]S] < Security

SIS SIS]S] M M| S = S] % | % | ||| Resource optimization
WSS RS RS S % || Opensource

Table 5.1: Comparison of Edge Computing frameworks

Table 5.1 compares all the described frameworks according to these fun-
ctionalities.

As it is shown in Table 5.1, all these frameworks include capabilities for
scalability due to its importance for Edge Computing where the number of
nodes is not pre-defined in some applications. On the other hand, features
such as Cloud connection or Opensource are present only in half of the
frameworks. Real-time capabilities are included in the majority of the studied
frameworks because of the relevance of this feature for Edge Computing.
Security techniques are also present in all the frameworks except for the
SA and Crosser, where programmers must include the security in case it is
necessary, leading to a more complex implementation.

As concluded from this table, scalability, heterogeneous nodes, security
and device management are considered to be the most popular features for
Edge Computing frameworks while Opensource, resource optimization and
Cloud connection are not so frequently included in the frameworks.

Recently, the increasing demand for Al oriented services leads to an in-

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
52 directions

crease in the global bandwidth. As a result, new lines of work are emerging to
study the movement of the computation of the Al algorithms from the Cloud
to the Edge, consequently providing a confluence of Al algorithms with the
Edge Computing techniques under the term Edge Intelligence which will be
discussed in the following section.

5.4. Edge Intelligence

Edge Artificial Intelligence (Edge AI) or Edge Intelligence can be unders-
tood as the confluence of Artificial Intelligence and Edge Computing (93).
The goal of this technology is to bring Al capabilities to the network edge.
Therefore, Edge Al end devices must have enough computational power to
run Al inference algorithms that process data with time constraints, and, in
specific applications, learning algorithms as well. Hence, Edge Al performan-
ce indicators differ from AI systems running in high computational resource
systems (94). Besides accuracy, there are more key factors which must be
studied such as (59):

= Energy consumption requirements, since edge devices use to work as
individual nodes of a distributed network without connection to the
electrical network.

= Real-time, or soft real-time constraints to give a response to the requi-
red Al service.

s Frequency of communication with other nodes, to establish the depen-
dency of the nodes with the central network to process the data.

Taking into consideration the resource limitations of the Edge Al devices,
the AI algorithms need to be adapted for optimal execution in a distributed
environment with low-power devices. To accelerate the Al algorithms, the
memory access must also be carried out in an efficient way to avoid redundant
accesses, which decreases the memory access bottleneck at the same time that
the energy of the device is not used for redundant tasks (95; 93).

In the paper of (32), different levels of the implementation of Edge Inte-
lligence were proposed, as shown in Figure 5.5, understanding these levels as
the level of migration of the ML algorithms from the Cloud to the network
edge. The levels are summarized as follows:

1. Cloud Intelligence: where all the processes of the ML rely on Cloud
Computing.

2. Cloud-Edge Co-inference and Cloud training: the training of the ML
algorithms rely on the Cloud Computing due to its high computing
capabilities, while the inference process is executed as a collaboration
between the cloud and the edge by data offloading.

5.4. Edge Intelligence

53

3. In-Edge Co-inference and Cloud training: as in the previous level, the
training relies on the cloud but this time the inference process is carried
out within the network edge, by fully or partially offloading of the data.

4. On-Device Inference and Cloud-Edge co-training: training process in
the cloud and edge while inferring the result in a fully local on-device
approach.

5. Cloud-Edge co-training and on-device inference: both processes are ca-
rried out in a collaborative approach between the Cloud and the Edge.

6. All In-Edge: the training and inference processes are carried out at
the network edge, understanding the network edge as a collaborative
network of edge devices.

7. All On-Device: training and inference processes are carried out within
the edge device.

Level 6
All on-device
Level 2 \

In-edge co-inference process

Level 1
Could-Edge co-inference process

Level 0
Training and Inference on the Cloud

Figure 5.5: Levels for the Edge Intelligence application developed by (32).

Although Edge Intelligence has been devised to run Artificial Intelligence
algorithms in general at the network edge, current trends and applications
focus on Machine Learning, and more specifically Deep Learning. For this
reason, Subsections 5.4.1 and 5.4.2 analyze emerging and relevant Al tech-
niques to reduce the workload in the edge devices in depth. Subsection 5.4.1
focus on general Machine Learning techniques to provide a general overview
while Subsection 5.4.2 focus on emerging Deep Learning techniques.

5.4.1. Machine Learning algorithms at the Edge

ML algorithms have been already adapted and deployed at the network
edge using the classic Al concept of Intelligent Agent (96). An Intelligent
Agent can be understood as an autonomous, rational agent that perceives
the environment, and selects an action or sequence of actions to perform a

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
54 directions

task according to its internal representation, current (and sometimes past)
observations, and a set of rules or Al model inference engine.

The execution of Al algorithms at the network edge requires reducing the
size of current AI models while maintaining their performance in low-resource
devices. Decision Jungle (97) is an example of this approach to implement
decision trees. Decision Jungle is the term to define ensembles of rooted de-
cision directed acyclic graphs that are trained level by level while optimizing
an objective function taking into account for this process the structure of the
graphs. Following this technique, successful compressing results have been
obtained with different datasets like Kinect (98), where the final Decision
Jungle size was of 9 MB from the initial 80 MB, or Faces dataset (99), where
the initial size of 7.17 MB was reduced to 1.72 MB, obtaining state-of-the-
art accuracy (97). Similar proposals have been devised with Random Forests
(RF) (100). The compression process starts with the training phase of the RF
using followed by a pruning phase where each decision tree is pruned while
attempting to meet a global resource constrain and performance (101). As
a result, a global optimal pruning of the RF to minimize the error is lear-
ned. Empirically, the results of this pruned RF outperforms state-of-the-art
compressed algorithms (100). In the paper of (59), the RF technique was
implemented for human activity recognition at the network edge after a first
feature extraction from the data. The paper obtains successful results, with
an accuracy between 94 % and 98 % depending on the volume of the data
studied. This technique, as well as the Jungle Decision, is scalable to large
datasets and obtains high accuracy.

Another popular algorithm used in Edge Al is the k-Nearest Neighbours
(kNN) classifier (102). There are multiple variations of its adaptation to Ed-
ge Intelligence, such as ProtoNN (103) where the clusters are compressed in
order to fit the limitations of low-resource devices. This technique makes a
projection of the entire dataset into lower dimensional data, by means of di-
mensionality reduction and feature selection. This approach can be deployed
in devices with small memory capability in the order of approximately 16KB,
while producing start-of-the-art accurate results in numerous benchmarks.

Some application-specific ML techniques such as computer vision have
been implemented at the network edge, for example, feature extraction from
images with techniques including eins-gradient and histogram of gradient
orientation followed by a classification method. This technique was used in
the paper of (104) for human detection in collaboration with SVM for clas-
sification on the MIT pedestrian database (105), where it achieves state-of-
the-art results. Following this line of work, (106) proposed using HOC and
linear SVM classification for preceding vehicle detection in the context of
smart vehicles based on monocular vision. In the paper (106), this techni-
que was tested under different scenarios such as simply structured highways,
complex urban environments, and local occlusion conditions, where it provi-

5.4. Edge Intelligence

55

ded good results. ML algorithms can also be implemented for Natural Speech
Recognition such as Dragon Naturally Speaking developed by Nuance (107).

Apart from the previously commented techniques, other ML algorithms
for tasks such as prediction or regression have been implemented at the net-
work edge. (108) introduced a technique to train ML models at the network
edge based on gradient descends (i.e. SVM, K-means and linear regressions)
without relying on external devices such as cloud servers. The approach con-
sists in using multiple edge devices to execute the ML task, thus solving the
problem of the restricted computational capabilities by using a distributed
network, followed by a final edge device, which aggregates the results ge-
nerated by the other edge devices. This final edge device must also process
or preprocess the collected data for adaptation purposes and transmit the
final data for further processing. To test this technique, (108) used three
Raspberry Pi 3 and a laptop as the edge devices of their system and another
laptop as the aggregator edge device obtaining close to the state-of-the-art
results when evaluating SVM, K-means and linear regressions.

The aforementioned algorithms share the same limitation: the time com-
plexity increases with the quantity of data. When facing this problem, there
are other algorithms/techniques that can be more suitable when large volu-
mes of data must be processed, such as Deep Learning (DL) models.

5.4.2. Deep Learning at the Network Edge

Deep Learning is based on artificial neural networks (ANN) and consists
of a number of layers with artificial neurons in those layers to compute a
result. The data is computed in each layer, where matrix multiplications
are applied to compute the input of the subsequent layer until the final
layer, where a final classification or feature is obtained. When the structure
includes a large number of layers, it is known as Deep Neural Network (70; 94;
109). This technique includes different DNN structures developed for specific
applications like the case of Convolutional Neural Networks (CNN), designed
to fit image and video processing, where convolutional filters operations are
applied apart from matrix multiplications. For time-series processing, there
are DNNs called Recurrent Neuronal Networks (RNN), which include loops
in the internal connections of the neurons by means of memory to store past
inputs (109).

As a consequence of the high computational power required for the trai-
ning phase in DL, Cloud Computing was the default approach for the training
and inference phases before the current constraints of time and security in
applications such as autonomous cars or health care, based on Edge Compu-
ting (95; 110). To fit these constraints, new approaches for DL at the network
edge are emerging (82; 94): (a) training the DNN using a traditional approach
(Cloud Computing) and moving the inference process to the network edge,
shown in Figure 5.6(b), or (b) perform the training and inference in the Edge

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

56

directions

device, as shown in Figure 5.6(c).

3
Training .
& inference Training 2
O
Data Computed .. Trained
result model
& = £ & Y Training & & Y o
ﬂ Inference { inference Q) B
(a) (b) (©

Figure 5.6: Different approaches for training and inference. (a) Traditional
training and inference in Cloud servers, (b) training on Cloud server and
inference at the Edge and (c) training and inference at the Edge.

Depending on the approach, the resources for the end device must fit
different requirements (82). When the training process is carried out at the
network edge, the device must include a computing unit that enables this
process by integrating high computational capabilities as well as a sufficiently
large memory to store the data necessary for this task. When only the in-
ference is carried out on the device, the memory necessity becomes more
relaxed, since it only needs to store the trained model.

Besides specific hardware for the training process of the DL models at
the network edge, researchers have developed new techniques for the training
process which reduce the memory footprint in the edge device as well as
increase the training speed in low-resource devices. These techniques are
listed below:

= Pruning. Based on the synaptic pruning of biological brains and their
connections during the life cycle, this process consists in removing con-
nections between neurons that are not relevant for the application,
reducing the number of operations computed when studying new da-
ta. As well as removing connections, it can also remove neurons that
are classified as no relevant when most of its weights have low values
in comparison with the global context of the DNN. This technique
enables faster, smaller and more memory efficient DNN which can be
implemented in low-resources devices like Edge devices (111; 112).

= Weights quantization. Besides removing unnecessary connections
and/or neurons, all the weights are stored as individual values. This
configuration is not memory efficient due to redundant values. The
weights quantization technique intends to cluster similar weight values
in a single value and reduce these values to integers or numbers which

5.4. Edge Intelligence

)
9

4]

.’\‘dr.

<%
Q

3

——
——
—
—
—
————

£

)
.
9,

Dataset Train in end Global DNN
devices

Figure 5.7: Example structure of DNN model using Federated Learning.

occupy the least bits as possible. Therefore, the weights will be re-
adjusted, which implies the accuracy will be modified as well. This
leads to a recursive implementation where, after each training, the
weights are quantified (113).

= Federated Learning and Model Partition. When facing complex
tasks or a training phase with a large volume of data, the approach
for the training could be a distributed learning or Federated Learning
(114). The data would be split into smaller groups which would be
distributed amongst the nodes of the edge network, as it is shown
in Figure 5.7. Each node would train based on the data it received,
training this way part of the final DNN to achieve active learning ca-
pabilities at the network edge. The same approach can be followed for
the inferring phase, where the technique is known as Model Partition.
In the Model Partition each layer of the DNN would be computed by
a different node to distribute the workload (94). This approach would
also allow easy scalability.

= Transfer Learning. This technique is based on the existence of simi-
lar already trained models and the possibility to transfer the knowledge
between DNN (115). It consists on maintaining the weights of the first
layers of a trained DNN on a source domain similar to the target do-
main. These layers are trained to extract the main features so it is
possible to extrapolate its application to extract the features of the
new data. These features will be used for a later classification based
on the last layers of the DNN which will be specifically trained for the
application. By doing this, it is possible to obtain a well trained DNN
on a large dataset with a structure that has been proven to provide
good results. This technique is recommended when there is not enough

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
58 directions

information in the dataset for adequate training at the same time as
the complexity of the training phase is reduced, leading to a faster and
less resource consuming process.

= Knowledge Distillation. Knowledge Distillation emerges as a novel
form of Transfer Learning (116; 117). This technique can extract know-
ledge from a large and well-trained DNN, called teacher in this context,
into a reduce DNN, called student. By doing this, the student network
can learn to obtain the same results as the teacher network but increa-
sing the computing speed by reducing the size (using techniques like
pruning previously commented).

= Gossip Training. This technique aims to reduce the time required
to train a model at the network edge based on randomized gossip al-
gorithms. This algorithm has the advantage of full asynchronization
and total decentralization. Each of the nodes of the network executes
the training of a fraction of the whole data and during these random
communications, the different nodes compare their results until a con-
sensus is achieved (118; 119). By using this technique, it is possible to
implement active learning at the network edge since the workload du-
ring the training would be distributed among multiple devices rather
than computing the whole task in a single device.

5.4.3. Application scenarios of Edge Intelligence

As new emerging technologies like IoT or Big Data become mature, more
systems start integrating sensors for gathering data in real time, which also
require to be processed on real time or with time criticality to detect emer-
gencies or relevant events. The quantity of sensors for data gathering will
keep increasing to improve the vision of the context, which means a larger
volume of data (69). Processing the data with the traditional technique of
Cloud Computing will not catch up with the speed the data is generated due
to the bottleneck to upload and download the information from all the sen-
sors. This situation is when Edge Computing provides an efficient solution
by computing the data at the edge of the network (59; 43; 30).

The common theme across the applications where Edge Al can be imple-
mented is that they are complex tasks where ML has been shown to provide
good results, and these tasks need to run in real time at the same time the
privacy and security of the data are ensured.

s Computer vision. Deep Learning is considered the state-of-the-art
technique for image processing (classification and detection) which is
a fundamental task for computer vision. The data for these tasks is
generated at the network edge by surveillance cameras, time-of-flight

5.4. Edge Intelligence

59

cameras and motion detectors among other sensors that already in-
tegrate DL capabilities in some occasions. Uploading the data from
these sensors to the cloud to be processed implies reducing the frames
per second the system computes. At the same time, it may incur pri-
vacy concerns, especially if the data contains sensitive information. The
bottleneck due to the large quantity of data being uploaded from all
these sensors is another reason to implement Edge Computing for this
task. There are some examples of Edge Al implemented for computer
vision like "Vigil"(120). This system consists of a network of wireless
cameras that process the information at the edge of the network. The-
se edge nodes provide information about relevant frames to be studied
further. By preprocessing the images at the edge, Vigil reduces the
bandwidth consumption in comparison with the traditional approach
of uploading the raw data to be studied. Another example is Video-
Edge (121), where a hierarchical structure is deployed, enabling Edge
and Cloud to work in collaboration in order to balance the workload
while maintaining the low bandwidth requirement.

Natural language processing. ML, specifically DL, has become
one of the most popular approaches for Natural Language Processing
(NLP) tasks (122) such as speech recognition (123), machine transla-
tion (124) and entity recognition (125). Using ML enables the reduction
of latency down to hundreds of milliseconds, following the constraints of
Edge Computing. Voice assistants of different companies are examples
of this application, such as Echo Dot from Amazon, .°k Google"from
Google and Siri from Apple. While part of the processing of the data
collected by these devices is carried out in the cloud, some significant
tasks have to be executed at the network edge. An example of this is
the keyword detection for the activation of the system. The rest of the
message is sent to the cloud to be computed and the result is retur-
ned only if this keyword is detected. In the case of Siri, the keyword
detection is carried out by two ANNs (126). The first one, a reduced
size DNN with low-power mode, studies all the data the system is co-
llecting to determine if the second one must be initialized. Once the
second DNN, a deeper DNN than the previous one, is triggered, the
main processor determines the keyword has been detected. Keyword
detection techniques need to be further improved in order to be adap-
ted to low-resource devices at the network edge. Some techniques like
pruning or quantization can be integrated into these DNNs to compact
them for the edge devices. In order to detect keywords, researchers from
Microsoft developed a reduced size RNN which fits in 1 kB of memory
following these ideas among others (127). For other NLP tasks, latency
remains a significant issue because of its complexity to be reduced.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
60 directions

» Internet of Things (IoT). Data collected by some IoT sensors re-
quires an automatic understanding in real time for use cases such as
smart grids, smart cities, smart cars or healthcare. DL has been proven
to obtain successful results in some researches about these topics like
activity recognition (128; 59) and pedestrian detection (129). Someti-
mes in these tasks it is necessary to fuse the information collected by
different sensors which may need to be preprocessed before being fu-
sed in order to obtain accurate results. There are different frameworks
such as DeepSense (128), WuKong edge framework (59) or NeuroPilot
(130) which support this by leveraging the spatio-temporal relationship
of the data from different sensors. Compressing the DL models to fit
into IoT devices, which have limited resources for computation and
battery, is another approach that must be researched. Some examples
of techniques to compress DL models have been discussed in section
5.4.2.

At the same time, by using Edge Computing for loT applications, it is
possible to solve the problem of data privacy concerns due to the fact
that it can contain sensitive information or public information from
street, cities, etc. where the owner of the device does not hold the right
to share the information (131). Therefore, Edge Al may solve the pro-
blem of privacy while reducing the bandwidth consumption (which is
high when cameras or complex sensors are involved). An example of
this application is the system proposed by (132), where Edge Intelli-
gence was used in the context of smart homes, obtaining successful
results that open new lines of work about its application in other sce-
narios like smart industries or smart cities.

» Virtual Reality (VR) and Augmented reality (AR). Resear-
chers have proposed DL as a successful technique to predict the field
of view of the user when using virtual reality (VR) (133; 134). The
goal of the DL in this application is to determine the region of the
360° video or images that must be fetched on real time to minimize the
frame drops, maximizing that way the user experience. DL can also be
used in Augmented Reality (AR) to detect objects in the field of view
which can be key objects to apply virtual overlay on top of them or
to start an activity (135; 136). Since depending on the cloud for the
processing of these tasks can incur into high latency, Edge Al is studied
as a solution due to its low latency. This reduced latency is needed to
provide a successful performance, as proved in the Gabriel system of
Google for Google Glass (137)

5.4. Edge Intelligence

61

5.4.4. Analysis and discussion

Different algorithms have been implemented at the network edge follo-
wing this approach such as Intelligent Agents, Decision Jungles, Computer
Vision or Speech recognition algorithms to match different applications. Due
to a large amount of data generated at the network edge and the necessity of
fast processing, these techniques have been devalued in favor of Deep Lear-
ning models. Deep Learning is a technique specialized in working with a large
quantity of data for regression and classification among other tasks. However,
Deep Learning was traditionally implemented in the Cloud due to its higher
computational power than the network edge. This approach was suitable for
the training and inference in the past but due to the low latency required
for emerging applications, Edge Computing (specifically Edge Intelligence)
has become the most efficient approach.

Current DL algorithms are developed to be executed in high-resource de-
vices but not in Edge devices, therefore, new techniques to adapt these DL
models to the network edge have been researched. This has led to emerging
techniques such as quantization, federated learning, knowledge distillation,
and pruning. These techniques reduce considerably the size of the DL mo-
dels and enable their implementation at the network edge. They may not
be suitable for all applications, for instance when the accuracy is fundamen-
tal, pruning and quantization should not be used alone due to the accuracy
reduction they may imply. As the iterative method to design a DNN, the-
se techniques must be tested to establish which one matches the specific
application under test.

Table 5.2 compares the previously explained techniques to be able to
understand their main differences, which can be an initial step to decide
which one to use. The features to compare are: (1) whether this technique
reduces the memory footprint of the DL model, (2) whether the technique
can maintain the original accuracy, (3) whether a pretrained DL model is
necessary for the technique and (4) whether multiple devices are required to
implement the technique.

As shown in Table 5.2, most of these techniques enable memory reduc-
tion of DL models to fit in low-resource devices at the network edge. These
techniques lead to smaller memory requirements but simultaneously, the ac-
curacy may fall due to this connection/parameter being modified. On the
other hand, Federated Learning bases its performance on distributing the
DL model across different devices while maintaining the initial features of
the DL model in the general vision. The key parameter all of them share is
the requirement of a pretrained DL model which fits for the application like
a role model for the reduced DL model. Lastly, techniques such as Transfer
Learning enable the device to re-train a model to adapt it to the specific
scenario using a reduced dataset and re-training only some of the layers,
leading to a less resource-demanding process.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

62

directions

Technique

Pruning

Quantization

Federated Learning

Transfer Learning
Knowledge Distillation
Gossip Learning

N ™| %K% | = || Multiple devices needed

| N| N & &| 4| Original DNN needed

<& H NS S| Memory reduction

<SS &% | % || Maintain accuracy
WSS % | %= || Reduced datasets

Table 5.2: Comparison of techniques to adapt Deep Learning models to Edge
Intelligence devices

Most of the cited papers who implement an Edge Intelligence approach
focus on the middle levels of Figure 5.5, where the training is still carried
out at the Cloud and the inference starts to move to the network edge or
uses an edge-cloud collaborative approach. This fact is the result of numerous
researches to migrate the training and inference processes to the network edge
but this process/research has not been completed yet due to the restrictions
at the network edge such as low power consumption and reduced computing
capabilities.

Table 5.3 compares the papers that have been cited in section 5.4 of this
survey using the following comparing features: (1) the ML task, (2) the Edge
AT level, (3) whether the inference is carried out at the network edge, (4)
whether the training is carried out at the network edge and (5) whether the
inference is executed using a collaborative approach between the Cloud and
the Edge.

Table 5.3 shows the relation between the approaches described in this
section and the level of Al implementation at the network edge, according to
the categorization of Figure 5.5. As it can be observed, most of the current
researches can be classified as level 3 of the Edge Al categorization, since
they perform Al inference at the network edge while the training is performed
at the Cloud level. However, it is noteworthy that recent research lines are
emerging in attempt to increase the Edge Al level by trying to optimize the
hardware and software for the network edge which enables more complex DL
models to be executed or even trained at the network edge. The next section
focuses on the current hardware and software architectures for Edge Al that

5.5. Hardware and Software Architectures for Edge Intelligence

8

5| g £

] N

s |[S]E]¢

% . AR

o = B |5 |8 |0
Shotton, J. (97) Classification 3 | v | x| x
Li, L. (100) Prediction 3 | v | x| x
Huang, Z. (59) Classification 3 | v | x| x
Gupta, C. (103) Prediction 3 | v | x| x
Mao, L. (106) Object Detection 3 V| -] -
Yu, Q. (108) Classification 5 |V |V |x
Chang, M. (95) General ML tasks 35|V |V |x
CHen, J. (94) General ML tasks 35| v | v | x
Lin, J. (112) Classification 4 |V | x|V
Chiliang, Z. (111) Classification 3 | v | x| x
Pan, S.J. (115) General ML tasks 3 | v | x| x
Chen, G. (116) Object Detection 3 | v | x| x
Zhang, T. (120) Computer Vision 3 | v | x| x
Hung, C.C. (121) Computer Vision 3| v | x| x
Lample, G. (125) Natural Language Processing 1 | x| x|V
Apple (123) Speech recognition 1 | x| x|V
Yao, S. (128) Classification-Regression-Feature extraction | 3 | v/ | x | x
Chen, T.C. (130) Classification - Authentication 13 -] x| -
Hou, X. (133) Object Detection 3 | v | x| x
Liu, L. (136) Object Detection 1 | x| x|V
Ha, K.(137) Object Detection 1 | x| x|V

Table 5.3: Comparison of Edge Intelligence proposals described in this section

cover these research lines.

5.5. Hardware and Software Architectures for Edge

Intelligence

In order to adequate Al models to be executed at the network edge, the
user has multiple options. One of these options is to adapt the algorithms
to the new paradigm of the network edge, explained in the previous section,
however there are also other options: Hardware and Software Architectures

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
64 directions

for Edge Intelligence.

These options can be implemented in a collaborative approach or indivi-
dually. An example of this is the implementation of DL models in the Google
Coral TPU, which will be further commented in Subsection 5.5.1.

Next subsections will study in depth the current hardware and software
architectures currently in the market or under research in order to help the
reader to understand the current research lines in this topic.

5.5.1. Hardware for Edge Intelligence development

New research lines about architectures to perform efficiently Edge Al
have been carried out recently. The goal of these researches is to develop
new architectures where it is possible to implement ML algorithms without
relying on the Cloud, or at least, to perform the maximum number of pro-
cesses at the network edge. These devices are referred by the term Edge Al
Processors (95; 110).

Using these architectures, some studies have proved the success of taking
into account the initialization process for the DNN weights as well as new
activation functions to ease and accelerate the training process at the network
edge (138). Speeding up this process enables the implementation of edge
devices based on the levels 5 and 6 of Figure 5.5, where the training and the
inference are carried out at the network edge. In case the devices are unable
to perform the training at the network edge, the devices would be at levels 3
to 4, where the training is executed under collaboration between the Cloud
and the Edge but the inference is carried out at the network edge.

A different approach for the same problem is trying to implement DNNs
in hardware, Neuromorphical Hardware (NH) (139; 95), instead of relying on
software tools for this task. This approach is possible due to recent advances
of CMOS and memristor technologies (140; 138), which enable the integra-
tion of fire neurons in a reduced size while maintaining a power efficient
consumption.

About the processing unit for these devices, there are numerous papers
comparing architectures for Edge Al Processors. Although some researchers
support the idea of using GPU, TPU, NPU or GPGPU to follow the archi-
tecture implemented in the current servers to run ML algorithms (141; 142),
others support the CPU as the main processing unit (69).

As (69) defends: "...the CPU will remain the workhorse for ML workloads
because it benefits from common software and programming frameworks that
have been built up over many years during the mobile compute revolution.
Additionally, it plays a vital role as mission control in more complex sys-
tems that leverage various accelerators via common and open software in-
terfaces...”. When it comes to the diversity of programming languages, the
flexibility of the CPU can not be easily achieved by other architectures.

5.5. Hardware and Software Architectures for Edge Intelligence

65

Contrarily, GPUs are more complex processor units specialized in proces-
ses where high parallelization helps to reduce training and/or inference time
significantly, which are relevant features in DL algorithms. This architecture
splits the data in reduced batches that are processed in parallel, which can
only be done when we have all the data a priori. Otherwise, the data can not
be split in the necessary partitions to improve the performance of the system
based on a parallelization approach (141). However, this structure also im-
prove the performance of the devices when executing traditional algorithms
and processes where a single stream of operation is repeated on data due to
its Single Instruction Multiple Data (SIMD) architecture.

Another approach is the use of neural processing units (NPU). These
processors are specialized and hyper-efficient designed for specific DL tasks
(142). These specialized capabilities help to improve the performance of the
devices but come at the cost of losing flexibility, and obstructing the com-
munication among the nodes at the network edge.

Other architectures highly relevant for Edge Al are the Systolic Arrays
(SAs), which are used to accelerate the computation of matrix multiplica-
tions that are required in most ML algorithms. As a result of their improve-
ment regarding the performance of Al models at the network edge, numerous
authors research their integration in Edge Devices such as (143; 144; 145).

Tensor Processing Units (TPU), developed by Google I/O in 2016 (146),
are other processing units designed to work with Tensorflow and TensorFlow
Lite frameworks. They are Al accelerators for automatic learning tasks, such
as DL, which are tailored for larger volumes of calculations of reduced preci-
sion based on the previously commented SAs. These devices can run state-of-
the-art DNNs such as MobileNet V2 at almost 400 FPS while maintaining
a reduced power consumption. Other Al accelerators are emerging in the
market as a response to this device (147).

Following these lines of work, there are some Edge Al devices currently
in the market which accelerate the DL processed by hardware.

» Neuroshield (148). This device is a platform/shield to add DL capa-
bilities to low-resource devices such as Arduino or Raspberry Pi. This
shield provides a software tool to configure the training and inferring
processes at the network edge by using its 576 neurons based on a radial
basic function for classification. As explained before, the limitations of
this device fall on flexibility.

» Google Coral Edge TPU (149). This device is based on the integra-
tion of a TPU co-processor to execute the computations with tensors.
Apart from this TPU specific to process tensor-based operations, the
device include a CPU and GPU to execute operations that are not
supported by the TPU. Thanks to the programming language used for
this device, TensorFlow Lite, it is possible to configure the structure

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
66 directions

of the network as well as its parameters. This enables high flexibility
while maintaining a successful performance.

» Nvidia Jetson Nano (147). This device, as the Google TPU, is based
on the integration of a co-processor, in this case, a GPU that enables
fast computation for ML algorithms due to its parallelization capabi-
lities.

» Intel Movidius (150). It is a hardware accelerator for DNN inference
at the network edge to achieve real-time responses without relying
on external devices or services like Cloud Computing. This device is
based on a very long instruction words (VLIW) architecture that uses
multiple register files in order to operate on a relatively big set of values
at once. As a result of this, the latency of the system may be highly
reduced.

» SparkFun Edge (151). This device, developed by Google, is designed
for real-time audio processing. Its goal is to detect keywords in the
speech by inference processes. It includes two built-in microphones, an
accelerometer and a camera connector among other connectors. The
software tool Apollo3 can be used in collaboration with this device to
ease the Al application building.

= BeagleBone Al It is a board to develop ML and computer vision
applications powered by an SoC - TT AM5729 dual-core Cortex-A15
processor. It integrates four embedded vision engine cores supported
by a Texas Instrument ML module (152). It can used for segmentation,
classification and detection tasks.

» SmartEdge Agile and Branium. The SmartEdge Agile (153) in
collaboration with the Branium (154) software enables the deployment
of AI models in low-resource devices at the network edge.

» ECM3531 (155). It is a high-efficiency ASIC based on ARM Cortex-
M3 and NXP Coolflux DSP processors designed for ML applications.
The processor of this ASIC is called Tensai and it can execute Tensor-
FLow and Caffe frameworks.

= Smart-Edge-CoCaCo. This new algorithm, CoCaCo algorithm, in
collaboration with the edge device proposed by (45) can be used as a
system for the optimization of the computation, data gathering and
communication processes at the network edge. It is based on the colla-
boration of the Cloud and the Edge using a collaborative filter catching
model which obtains low latency. In the paper (45), this technique is
also tested and obtains lower latency than relying on the traditional
Cloud Computing approach with increasing computations and concu-
rrent users.

5.5. Hardware and Software Architectures for Edge Intelligence

67

» MediaTek Solution. This architecture, proposed by (156), is based
on an Al processing unit (APU), which is 55 times more power-efficient
than average CPU and GPU. It includes a global buffer to share data
among the different processors integrated into this architecture while a
direct link is implemented to connect the peripherals with the system.
This architecture has been proven to reduce the DRAM bandwidth as
well as the energy consumption while improving the performance.

In contrast with the previously studied devices, a different approach
is a software-defined chip. These devices, which can be based on Field-
programmable gate array (FPGA) (157) or System on Chip (PSOC) (95;
158), can modify their internal connections to reconfigure themselves in or-
der to fit the code.

Therefore, these devices can provide more flexibility than hardware defi-
ned static structures, allowing them to switch among different tasks during
the execution process of ML algorithms. Apart from flexibility, these devices
include low-power consumption and high performance capabilities to fit the
network edge (157; 158). Multiple authors are researching the integration of
these devices at the network edge by codifying the Al algorithms structure
in the hardware (159; 160), leading to a fast execution of the algorithms that
can achieve a latency of 390-433 giga operations per second, as the Mutilayer
Perceptron (MLP) model proposed by Michaela B. e al. (159). At the same
time, these devices efficiently manage the energy consumption by removing
non relevant processes. Consequently, low energy is required to executed a
model, as shown in (159) where the required energy per frame was 2.5 - 11 W
to achieve an accuracy between 75% and 99 % depending on the platform.
The complexity of this hardware approach falls on the difficulty to codify in
hardware all the emerging Al algorithms.

An example of this technology is the Thinker AI chip of Tsinghua Univer-
sity’s Microelectronics Institute (157; 158). This chip can support numerous
AT algorithms by its reconfigurable architecture via software. It has been tes-
ted with algorithms like CNNs and RNNs algorithms, obtaining successful
results.

The techniques this device uses for being reconfigurable are (157; 158):

= Memory bandwidth reconfigurable: the distribution of the me-
mory will be done according to the bandwidth to improve the energy
efficiency and latency.

= Bit-width reconfigurable: it supports 16 and 8 bit-width, where
computing accuracy is improved in 16 bit-width and speed is improved
in 8 bit-width. Switching between these working methods, it can adapt
to the problem it has in each moment.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
68 directions

= Computing array reconfiguration: depending on the function or
basic operators needed in each moment, its interconnected parallel
computing units can adapt their functions to highly performance the
executed task.

FPGA can also be used for this purpose as shown by (161). They use
an FPGA which has high performance, low-power consumption and small
size for the implementation of a DL predictor. Data access was optimized
as well as the pipeline structure. After the development of the system, they
compared it with a Core 2 CPU 2.3 GHz and the results proved that the
FPGA could achieve 30 times its speed (on average). FPGAs are an alterna-
tive to GPUs due to their capabilities for pipeline parallelism and reduced
energy consumption, giving them a unique advantage over other processing
units for DL (162). In the paper (163), another DL system based on FPGA
is presented for CNN acceleration for Image-Net large-scale image classifi-
cation. Some of the previously commented techniques, such as quantization,
were used in this system and only 0.4% accuracy loss was introduced for
the very deep neural network models when using 8/4-bit quantization at
the same time the results of this DNN significantly outperformed previous
approaches.

In Table 5.4, there is a comparison of the previous Edge Intelligence
devices where the parameters to compare are (1) the RAM memory, (2) the
processing unit integrated, (3) whether there is a specific software for DNN
development, (4) whether the system is for general purpose and (5) whether
the device includes hardware programmability capabilities.

As shown in Table 5.4, there are heterogeneous devices for Edge Al and
some of the emerging ones do not provide all the data to fulfill this table.
Nevertheless, it is possible to compare their most relevant features.

There are two main groups among the previous Edge Al devices, the
devices with large RAM memory, such as Coral Edge TPU and Jetson nano,
and the devices which use techniques to optimize the memory consumption
based on specific software that has been designed for the devices, as the
SmartEdge Agile and Branium. Another architectures, such as FPGAs, try
to optimize the memory consumption by sharing parameters to reduce the
quantity of values to store in the memory of the device. Therefore, they do
not require a large amount of memory. The goal of both approaches is the
same, fit the DNN to the resources of the devices, however one approach
is based on increasing the resources while the other reduces the required
resources.

The majority of these devices are for general purpose tasks and inclu-
des specific software constraints for DL. The software constraints must be
understood as a limitation of DL libraries that can be implemented in the
system, such as TensorFlow Lite for Coral Edge TPU. This is understan-
dable since each provider develops a specific framework to optimized the

5.5. Hardware and Software Architectures for Edge Intelligence 69
<
Q
S
g
= g 2
S o | B g
: ; AR
£ = 8 = | & | ©
2 o = =] =
) <C =) 5] <
A oo A wn | O an
Neuroshield (148) - NM500 Yes | No | No
Coral Edge TPU (149) 1 GB | NXP iMXM+GC7000 GPU+TPU | Yes | Yes | No
Jetson Nano (147) 4 GB Quad core Cortex-A57+GPU Yes | Yes | No
Intel Movidius (150) 1GB Myriad 2 VPU Yes | No | No
SparkFun Edge (151) 384KB ARM Cortex-M4F Yes | Yes | No
BeagleBone (152) 1 GB Cortex-A15+Sitara AM5729 Yes | Yes | No
Agile-Branium (153; 154) - Smartedge Agile Yes | Yes | No
ECM3531 B ARM Cortex-M3 Yos | Yes | No
(155) NXP Coolflux DSP
SE-CoCaCo Hao et al. (45)
(45) N architecture Yes | Yes | No
MediaTek (156) - APu+CPU+GPU Yes | Yes | No
Thinker Al 2x16x16 reconfigurable
(157; 158) heterogeneous PE arrays No | Yes) Yes
FPGA (161) - FPGA No | Yes | Yes
CNN-FPGA (163) - FPGA No | No | Yes

Table 5.4: Comparison of Edge Intelligence devices

implementation of ML, models on their platforms. However, this is only pos-
sible when a company /research center works on both, hardware and software
frameworks for ML. As a result, it is also possible to find hardware frame-
works that accept multiple software frames, such as the platform developed
by (161) and the CNN-FPGA by (163).

The processing units used in the Edge Al platforms are heterogeneous as
well as the existence of a co-processor unit in the device. A relevant feature
only a few of them incorporate is the capability to reconfigure the hardware
to adapt to new applications, such as Thinker Al or the FPGA developed
by (161).

5.5.2. Software for Edge Intelligence development

While the selection of the processing unit architecture is one of the key
factors, the software tools for developing Edge AI must also be taken into
account to control the resource accesses as well as the optimization of the

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
70 directions

ML algorithms. Following this line of work, some ML frameworks have been
adapted to the limitations at the network edge to create new versions of
those frameworks and/or develop completely new frameworks (35):

s CMSIS-NN kernels. ARM Cortex-M microcontrollers are being re-
searched to integrate them in edge devices by being used in colla-
boration with the CMSIS-NN kernels, which are efficient neural net-
work kernels designed for these microcontrollers to minimize the me-
mory footprint (164). Therefore, it is possible to implement ML in
low-resource devices at the network edge while maintaining a state-of-
the-art performance with low-energy consumption (82).

= DeepMon. It is a software tool that optimizes the processing of CNN
layers by studying the similarity among consecutive frames in the data
to reduce the inferring time. This approach inspires the idea of storing
the results of the CNN layers to optimize future computations which
accelerates the inferring process (165).

s TensorFlow Lite. TensorFlow Lite is a lightweight implementation
of the Google’s framework for DL, TensorFlow (166; 167). This fra-
mework is designed to be implemented at the network edge in devices
with low resources without having to rely on Cloud computing. This
framework includes neural networks APIs to support hardware accele-
ration in order to improve its performance. Due to its configurations,
it enables parallel processes that fit in the context of a distributed net-
work at the network edge. Some researches have been carried out to
test its performance, obtaining successful results in edge devices like
smartphones (168)

» MXNet. This framework for DNN was developed by Apache (169).
It is a scalable, lean, resource-efficient and open-source framework for
edge devices, which supports a distributed network implementation
and Cloud collaboration.

s Caffe2Go. Caffe2Go is a variation of the Caffe framework developed
by Facebook to improve its flexibility and speed (170). A modular
approach was used in this framework to enable its use in collaboration
with the Caffe2 framework. It provides a direct way to implement DNN
in mobile devices at the network edge in order to compute data in real
time. It can run on Android as well as iOS without having to modify
the code depending on the OS. This framework has been integrated
into the Python IDLE PyTorch.

s CoreML3. This framework was developed by Apple, thus can only
be implemented in iOS. It enables the addition of ML capabilities to
iOS applications and makes the use of ML algorithms possible in end

5.5. Hardware and Software Architectures for Edge Intelligence

71

devices without dedicated resources for these tasks such as dedicated
GPU for DL (171).

DeepCham.This framework was developed to deploy DL models on
mobile devices to recognize objects captured by the cameras of these
devices. It is designed to work in collaboration with edge devices in the
same network (172).

DeepThings. It is a framework to adapt existing DL models, specifi-
cally CNN models, for inference process. This framework implements
Fused Tile Partitioning in order to reduce the memory footprint of
the DL models, enabling its execution on edge devices. The develo-
pers of this framework tested it by deploying the DL model Yolov2 on
a low-resource device such as Raspberry Pi. In this experiment, the
DeepThings software in collaboration with a Raspberry Pi 3 Model B
devices provided scalable CNN inference speedups of 1.7x—3.5x on 2—6
edge devices with less than 23 MB memory each (173) .

DeeploT. This framework, developed by (174), reduces DNN into
smaller dense matrices while maintaining the performance almost the
same. It reduces the redundant elements by finding the minimum num-
ber of filters and dimensions required for the application. In the paper
(174), it was proven this framework could reduce a DNN by a factor of
90 % leading to a time response decrease of 70 % as well as an energy
consumption decrease by a factor of 72.2% to 95.7 %.

SparseSep. This framework, developed by (175), optimizes large DL
models for low-resource devices with reduced impact in the accuracy. In
the paper (175), it was tested on different devices such as ARM Cortex,
NVidia Tegra K1, and Qualcomm Snapdragon processors, reporting
an inference speed 13.3 times faster than the original DL models and
consuming 11.3 times less memory.

ML Kit. It is a mobile SDK framework developed by Google. It uses
Google’s APIs such as TensorFlow Lite to accomplish different ML
tasks (text recognition, image studying, etc.) (176). This framework
was tested on an iPhone smartphone, as a representation of an edge
device, for classification tasks among other DL common tasks, where
the inception v3 model achieved an accuracy of 78 % while occupying
95 MB with a latency of 90 ms and the mobilenet model achieved a
accuracy of 71 % with a memory consumption of 17 MB and latency
of 32 ms among other models (177).

ATI2GO. This framework tunes DL models to be implemented on ed-
ge devices with low-resource specifications (178). Custom DL models

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
72 directions

generated with this framework for inference maintain state-of-the-art
performance obtained via traditional approaches (179).

» AWS Greengrass. This framework (180), developed by Amazon, for
Edge Computing focuses on three key points: (a) using lambda fun-
ctions to response as fast as possible to 0T device requests, (b) using
ML models trained in Amazon cloud sites for machine learning infe-
rence and (c¢) using [oT core authentication engines to control the data
flow among nodes of the network.

= Foghorn. The high performance, near real-time response and hete-
rogeneous applications of this framework fit better for a small range
edge environment. It reduces the memory consumption, enabling its
implementation in Edge Al devices with low-resource limitations. It
can store and process data to apply ML algorithms to current or his-
torical data collected by the sensors of the network. Simultaneously, it
includes managing capabilities to configure and control the end devices
of the network (181).

s Azure IoT Edge. It is a platform of Microsoft that can be used to
offload large amounts of work from the cloud to the network edge. This
migration reduces the latency and adds reliability to work in offline
systems (182).

» OpenkEl This framework, developed by (183), is an open-source light-
weight software platform to add intelligent processing and data sharing
capabilities to the network edge. This framework enables low-resource
devices from raspberry Pi to advanced Al devices to become an Edge
AT device while maintaining the accuracy of the state-of-the-art ML
models. This framework takes into account the restrictions of edge de-
vices such as energy consumption and reduced memory among others.

» VideoEdge.This framework was developed to study video data (121).
This framework is design to enable to collaboration of multiple levels,
such as cloud and edge, during the inference process of the execution
of an Al model. The limitation of this framework falls in the fact it
does not include training capabilities at the same time it requires a
collaborative approach of the cloud and the edge for the inference.

s AdaDeep. This framework combines multiple techniques in order to
optimize the DL models with the goal adapt them to the network edge
while maintaining their accuracy results as well as low latency (184).
To do this, this framework using Deep Reinforcement Learning to find
how to combine multiple optimization techniques for each specific DL
model taking into account the latency, energy consumption, accuracy
and memory consumption as parameters to optimize.

5.5. Hardware and Software Architectures for Edge Intelligence

= Minerva. Similar to AdaDeep, this framework combines multiple op-
timization techniques in order to optimize a DL model based on the
final accuracy of the model, latency and energy consumption (185).
The techniques this framework uses are quantization and pruning.

= Neurosurgeon. This framework is based on one the the previously
commented techniques to implement DNN at the network edge, the
Model Partition (186). This framework divides the DL model between
the edge device and a server. By doing this, the resource-requiring
layers of the model can be executed in a server with high resources.
This leads to an increase of the speed to calculate a result from a
model. At the same time, the energy consumption is taken into account
in this framework as a parameter to optimize. However, because of the
partition and its goal to implement part of the model on a server, this
technique cannot be used for all-on-device approaches.

» JALAD. This framework optimized the DL models using the same
technique as Neurosurgeon, the model partition (187). However, this
framework study this optimization as an integer linear programming
(ILP) problem where it tries to minimize the latency during the infe-
rence process taking the accuracy of the model as a constrain during
the optimization. As in Neurosurgeon, because of the partition, this
framework is not suitable for all-on-device solutions since it requires to
distribute the model across multiple devices to speed up the inference
process.

s FedAvg. This framework was designed to implement Federated Lear-
ning in order to train DL models at the network edge (188). It is based
on a model averaging, meaning each of the nodes of the network up-
dates their results for the weights to a server where these weights are
averaged and implemented as the final weight for the DL model. The
training carried out by each node is based on Stochastic Gradient Des-

cent (SGD).

= GossipGrad. To solve the problem of the scalability of the GoSGD
(119), (189) developed GossipGraD . This technique reduces the com-
plexity of the communications between the nodes of the network and
execute the communications between nodes after a fixed number of ite-
rations to update the calculated weights. It also takes into account the
rotation of the nodes to communicate with to ease the communication
process. By applying these techniques, these framework prevent the
over-fitting during the training of the models.

= PipeDream. This framework is based on the partition of the DL mo-
del during the training phase to distribute the process across multiple
nodes taking into account the resource of each node. By using this

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
74 directions

framework, the communication among nodes is reduced as well as the
resource are use efficiently (190).

These frameworks are compared in Table 5.5 based on the relevant featu-
res that are required or desirable in an Edge Al framework. The criteria used
for the comparison regarding technical aspects from the developer’s point of
view are: (1) whether it is possible to develop general purpose DNN with
the framework or if it only supports specific applications such as computer
vision or natural language processing, (2) whether they require a specific
edge device to be implemented in, (3) whether they are able to train a DNN
or they are meant exclusively for DNN deployment and (4) whether the fra-
mework optimizes the DNN to be implemented in low-resource devices at
the network edge.

Optimization
of DNN

General | Specific edge

Framework .
purpose device

Training

CMSIS-NN kernels (164) v v

Deep Mon (165)

TensorFlow Lite (166)

MXNet (169)

N NN R

Caffee2Go (170)

CoreML3 (171)

DeepCharm (172)

DeepThings (173)

DeeploT (174)

Mo |

SparseSep (175)

ML Kit (176)

AI2GO (178)

AWS Greengrass (180)

(
Foghorn (181)

Azure IoT Edge (182)

(
OpenkEI (183)

VideoEdge (121)

AdaDeep (184)

Minerva (185)

Neurosurgeon (186)

JALAD (187)

FedAvg (188)

GossipGrad (119)

R R B I B e e e e B e e R I B B N B

IR R A AN RN ENENENEN AN ENENENENENENENENENENEN

AN ENEN N AN NN AN RN ENEN AN ENENEN P P ENENENEN

NENASN IR ERE A RN AN ERES

PipeDream (190)

Table 5.5: Comparison of Edge Intelligence Frameworks

Table 5.5 shows how most of the current Edge Al frameworks are de-

5.6. Challenges and Future directions

75

veloped for inference at the network edge but only a few can execute the
training process (there was no information regarding this capability for ML
Kit and CoreML3 so a "symbol was included in the table to represent the
lack of information), such as MXNet and TensorFlow Lite. This reveals the
current status of Edge Al technology where the migration of the complete
DL process is still being researched. Therefore, most of the available frame-
works have not integrated training capabilities for the network edge yet due
to the complexity of execute this process with low resources in a time-critial
environment. At the same time, most of the frameworks can be implemen-
ted for heterogeneous applications as well as devices to fit the heterogeneous
environment found at the network edge, only two of the studied frameworks
require a specific hardware decive to be implemented in, such as CMISIS-NN
Kernels, where due to its development for an specific device lead to its low
compatibility with other architectures.

Therefore, even when numerous frameworks, as well as hardware archi-
tectures, for Edge Intelligence are being researched, this study shows how
most of them are designed for the low levels of the pyramid of the figure
5.5. As a result, the training process of the Al models at the network edge
is still a research line that needs to mature in order to lead to devices that
would be able to be implemented autonomously at the network edge without
depending on another system to carry out the training of the models.

Nevertheless, the abundance of ML frameworks for edge devices shows
how this is a relevant topic being research for numerous companies and re-
search centers. As a result, these frameworks are more completed each time,
adding new capabilities to fit the emerging techniques for ML models at the
network edge as it can be the distributed learning.

5.6. Challenges and Future directions

As stated in the previous sections of this survey, Edge-based ML is an
emerging research line that plays a relevant role in applications where low la-
tency as well as data privacy is required in collaboration with Al capabilities
for tasks such as classification or regression. This technique has proven to im-
prove current limitations of the Cloud Computing approach while providing
the benefits of the Edge Computing.

Besides the advances in Edge Al, there are a number of challenges that
must be attended in order to fully merge ML algorithms with the Edge
paradigm:

= Heterogeneous data. As a result of integrating heterogeneous devi-
ces at the network edge (due to the increasing number of IoT sensors
and distributors), Edge Al works in a heterogeneous environment since
numerous architectures, type of sensors and companies are deploying

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
76 directions

their sensors at the network edge. This leads to a situation where the
data at the network edge, as well as the preprocessing techniques re-
quired for each sensor, may highly vary from application to application
(191; 94). In order to work with the data provided by these devices, ML
algorithms need to learn to fuse data with different features/structures
such as image, sound, and text among others. Multimodal deep learning
is an emerging research line used to extract relevant features from he-
terogeneous data (192; 193). This technique is one of the approaches to
face this limitation based on adapting the DL model to the problem.
Another approach to solve this problem may be preprocessing the da-
ta at the data source when possible to follow a standard structure. If
this challenge is not faced, even when the devices can execute accurate
AT models at the network edge, a specific device would be required to
study each data type. This would lead to new problems such as the
fast increase of devices required for a single task, which would not be
as efficient as studying all the possible data in a single device. At the
same time, this would lead to having to communicate the outputs of
all these models for a later fusion, increasing the overall latency of the
system and moving part of the process far away from the network edge.

s Distributed ML algorithms is a current research line to accelerate
the training process of ML algorithms as well as to reduce the memory
required for this process. This challenge is originated in the increa-
sing complexity of the ML models developed for new applications as
well as the trend of designing models that will be retrained at the
user end during the life cycle of the system in order to improve the
system accuracy even after modifying the scenario/conditions. Resear-
chers are studying and testing some distributed learning algorithms for
edge applications to face this challenge. An example of these research
lines is the Federated Learning (114) where multiple DL models are
deployed at the network edge for the same task. However, the impact
of the heterogeneity of the data on the accuracy is still an open re-
search field (191; 94; 114). The impact of the model distribution on
the security-privacy of the data is also a topic that lead to new secure
communication protocols to ensure that even with this communication
between devices the data is still reliable and has not been access by
third parties during its transmission. Some protocols to achieve this
have been proposed in (194) or in (195) by using BlockChain.

s Training DL models. Due to the resource requirements for the trai-
ning process, the cloud approach is used for this phase in most of the
cases as it has been indicated in Table 5.3, where only the two top level
execute the training at the network edge. Some attempts to migrate
both processes, the training and the inference processes, to the network

5.6. Challenges and Future directions

edge have been made by using techniques such as pruning and quantiza-
tion to reduce the DL model size. These approaches, consequently, ac-
celerate the training and inference processes by reducing the number of
required calculations. However, the results often provide lower accuracy
than cloud training DL models. Training at the network edge is a com-
plex task due to the memory and computational constraints of the edge
but the interest to achieve this goal leads to emerging research lines
such as Edge Al frameworks (178; 176; 173; 172; 171; 170; 169; 166; 164)
and algorithms to accelerate the training. At the same time, this cha-
llenge is leading to new AI model structures such as Spiking Neural
Network (196), which promises a reduction of the energy consumed du-
ring the training and inference processes as well as an increase in the
speed. However, as other DL model architectures, this DNN cannot
be generalized for all applications so this research line is not the only
one that must be contemplated in the Edge Al paradigm. Another ap-
proach to face this challenge is the neuromorphic hardware, where the
connections between the neurons of the DL models are implemented in
hardware reduces the latency in, at least, one order of magnitude and
three orders of magnitude more energy-efficient (139). This leads to a
low latency during the training and inference processed at the network
edge.

= Models accuracy. High accuracy is a requirement in most of the ML
applications, specially in some edge applications such as autonomous
driving or health care. Consequently, emerging research lines are wor-
king on this problem by developing new algorithms following the path
set by DL model pruning and quantization to implement state-of-the-
art models at the network edge maintaining their accurated results.
Another research line for this problem is the development of new DL
algorithms or structures which fit better the network edge. At the same
time, to achieve high accuracy, large specific datasets for new appli-
cations are required when using supervised learning techniques. Some
research lines are proposing solutions for this topic such as synthetic da-
taset creation (197; 198). On the other hand, to fit the low-labeled-data
edge applications, new approaches for the training of the ML models
are emerging. One of these approaches to achieve high accuracy in ap-
plications where the quantity of labeled data is highly reduced is using
Meta-learning approaches (199), where the model is trained in a large
dataset that shares the metadata or, at least, on a set of really similar
applications, defined as tasks. This technique enables a fast retraining
in a later step for the specific application while still maintaining its
accuracy.

= Hierarchical structure. Some researchers are studying the possibi-

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
78 directions

lity of splitting ML processes into sub-processes which could be execu-
ted by different devices or even using varied approaches. A hierarchical
structure combining Edge, Fog and Cloud could be used to design a
structure with different levels where the computing power would in-
crease as the distance to the cloud decreases. Therefore, the structure
would include different computing power layers to process the data as
the closest level to the network edge. This paradigm, which is a current
open research line, maintains the advantages of Cloud Computing while
adding the benefits of the Edge Computing (43; 30; 44; 45).

s Higher-level abstract decision making. Due to the fast changing
environment at the network edge due to emerging platforms, frame-
works and techniques, an approach where assemble itself given high
level instructions would be a stunning advance for the Edge Intelligen-
ce. This approach would follow the researches presented in (200; 201;
202; 203). As a result of applying this technique, the Edge Devices for
Al could be more flexible regarding data structure as well as applica-
tion since the user could configure the device based on some high-level
instructions without the need of specialized knowledge to design the Al
model. However, this technique creates challenges to achieving a robust
and trustworthy designs. Previous attempts to achieve this have face
numerous problems but (200) states that one possible reason is that
previous projects have not been able to find the correct high-level abs-
tractions, therefore more researches are required to achieve the desired
abstraction level.

After all the information gathered in this survey, it is highly appreciable
that emerging research lines are working to deploy ML models at the network
edge using multiple approaches from reducing the size of the state-of-the-art
models to create new models based of emerging techniques. However, most
of the current edge Al systems have not achieved the high levels of Edge Al,
as shown in Table 5.3, where most of the current researchers are working on
the level 3 of the Edge AI according to Figure 5.5. Nevertheless, emerging
techniques such as Spiking Neural Networks or neuromorphic hardware pro-
mise to change this as explained previously. As a result, numerous authors
are working on these research lines as well as processes to transfer the know-
ledge from complex DNN into simpler ones rather than using techniques such
as pruning or quantization. This may be due to the fact that removing low-
relevance parameters has reached its limit to reduce the size of the model
without incurring into high accuracy decreases.

As a result, it is possible to observe how the future trends for the Edge
AT are the deployment on hardware of complex systems, where the hardwa-
re implementation is the fact that improve the performance of the system,
and using emerging techniques to transfer the knowledge between DNN effi-

5.7. Conclusion

79

ciently. These trends need to be further researched in order to keep climbing
the levels of the Edge Al

5.7. Conclusion

This survey provides a comprehensive overview of enabling technologies
for the Edge Al, focusing on new significant Edge Al frameworks and devices.

Recent advances in Edge Computing have been explained such as the new
hardware and software which have emerged during the last few years to face
the problems of Cloud Computing in the current situation. The relevance of
this technology has been demonstrated with diverse examples of applications
including autonomous driving, security solutions, IoT applications, location
awareness applications, and network management. The hardware advances
follow the line of incorporating new modules/layers which enable the para-
llelization of the processes. Meanwhile, the software research lines focus on
improving the data processing speed as well as improving the security of the
systems. These features have been compared in diverse tables for a deeper
understanding.

Later, new Edge Al devices have been commented to explain what advan-
tages they can bring to the current situation in diverse research lines such as
NLP, Computer Vision, IoT and VR. Following the line of the research made
about Edge Computing, the current Edge Al devices and frameworks have
been explained based on their relevant features for a posterior comparison.

References

[1] Kusumlata Jain and Smaranika Mohapatra. Taxonomy of Edge Com-
puting: Challenges, Opportunities, and Data Reduction Methods, pages
51-69. Springer International Publishing, Cham, 2019.

[2] Edoardo Cavalieri d’Oro, Simone Colombo, Marco Gribaudo, Mauro
Iacono, Davide Manca, and Pietro Piazzolla. Modeling and evaluating
a complex edge computing based systems: An emergency management
support system case study. Internet of Things, 6:100054, 2019.

[3] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang. A survey of cloudlet
based mobile computing. In 2015 International Conference on Cloud
Computing and Big Data (CCBD), pages 268-275, Nov 2015.

[4] Julien Gedeon, Jeff Krisztinkovics, Christian Meurisch, Michael Stein,
Lin Wang, and Max Miihlhduser. A multi-cloudlet infrastructure for
future smart cities: An empirical study. In Proceedings of the 1st Inter-

national Workshop on Edge Systems, Analytics and Networking, Ed-
geSys’18, pages 19-24, New York, NY, USA, 2018. ACM.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

80

directions

[5]

6]

7]

18]

19]

[10]

[11]

[12]

[13]

Shogo Ando and Akihiro Nakao. In-network cache simulations based
on a youtube traffic analysis at the edge network. In Proceedings of
The Ninth International Conference on Future Internet Technologies,
CFI 14, pages 10:1-10:6, New York, NY, USA, 2014. ACM.

Zhi Yang, Ben Y. Zhao, Yuanjian Xing, Song Ding, Feng Xiao, and
Yafei Dai. Amazingstore: Available, low-cost online storage service
using cloudlets. In Proceedings of the 9th International Conference on
Peer-to-peer Systems, IPTPS’10, pages 2-2, Berkeley, CA, USA, 2010.
USENIX Association.

Kiryong Ha, Padmanabhan Pillai, Wolfgang Richter, Yoshihisa Abe,
and Mahadev Satyanarayanan. Just-in-time provisioning for cyber fo-
raging. In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys 13, pages 153—
166, New York, NY, USA, 2013. ACM.

Vladimir Stantchev, Ahmed Barnawi, Sarfaraz Ghulam, Johannes
Schubert, and Gerrit Tamm. Smart items, fog and cloud compu-
ting as enablers of servitization in healthcare. Sensors & Transducers,
185(2):121, 2015.

Yu Cao, Songqing Chen, Peng Hou, and Donald Brown. Fast: A fog
computing assisted distributed analytics system to monitor fall for stro-
ke mitigation. 2015 IEEE International Conference on Networking,
Architecture and Storage (NAS), pages 2-11, 2015.

Amir M. Rahmani, Tuan Nguyen Gia, Behailu Negash, Arman An-
zanpour, Iman Azimi, Mingzhe Jiang, and Pasi Liljeberg. Exploiting
smart e-health gateways at the edge of healthcare internet-of-things: A
fog computing approach. Future Generation Computer Systems, 78:641
— 658, 2018.

Rasel Mahmud, Ranganath Vallakati, Anupam Mukherjee, Prakash
Ranganathan, and Arash Nejadpak. A survey on smart grid metering
infrastructures: Threats and solutions. In 2015 IEEE International
Conference on Electro/Information Technology (EIT), pages 386-391.
IEEE, 2015.

R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao,
Y. Xiang, and R. Ranjan. Fog computing: Survey of trends, architec-
tures, requirements, and research directions. IEEE Access, 6:47980—
48009, 2018.

C. Shi, Z. Ren, K. Yang, C. Chen, H. Zhang, Y. Xiao, and X. Hou.
Ultra-low latency cloud-fog computing for industrial internet of things.

REFERENCES

81

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

[22]

In 2018 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1-6, April 2018.

Nam Ky Giang, Victor C.M. Leung, and Rodger Lea. On developing
smart transportation applications in fog computing paradigm. In Pro-
ceedings of the 6th ACM Symposium on Development and Analysis of
Intelligent Vehicular Networks and Applications, DIVANet '16, pages
91-98, New York, NY, USA, 2016. ACM.

J. K. Zao, T. T. Gan, C. K. You, S. J. R. Méndez, C. E. Chung, Y. T.
Wang, T. Mullen, and T. P. Jung. Augmented brain computer inter-
action based on fog computing and linked data. In 201/ International
Conference on Intelligent Environments, pages 374-377, June 2014.

Andrea Giordano, Giandomenico Spezzano, and Andrea Vinci. Smart
agents and fog computing for smart city applications. In Proceedings
of the First International Conference on Smart Cities - Volume 9704,
Smart-CT 2016, pages 137-146, Berlin, Heidelberg, 2016. Springer-
Verlag.

Partha Pratim Ray, Dinesh Dash, and Debashis De. Edge computing
for internet of things: A survey, e-healthcare case study and future
direction. Journal of Network and Computer Applications, 140:1 — 22,
2019.

Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif
Ahmed. FEdge computing: A survey. Future Generation Computer
Systems, 97:219 — 235, 2019.

Jitender Grover and Ram Murthy Garimella. Optimization in Edge
Computing and Small-Cell Networks, pages 17-31. Springer Interna-
tional Publishing, Cham, 2019.

Gary A McGilvary, Adam Barker, and Malcolm Atkinson. Ad hoc
cloud computing. In 2015 IEEFE 8th International Conference on Cloud
Computing, pages 1063-1068. IEEE, 2015.

Ana Juan Ferrer, Joan Manuel Marqués, and Josep Jorba. Towards the
decentralised cloud: Survey on approaches and challenges for mobile, ad
hoc, and edge computing. ACM Computing Surveys (CSUR), 51(6):1-
36, 2019.

Syed Danial Ali Shah, Mark A Gregory, and Shuo Li. Cloud-native
network slicing using software defined networking based multi-access
edge computing: a survey. IEEE Access, 9:10903-10924, 2021.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

82

directions

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

Mahshid Mehrabi, Dongho You, Vincent Latzko, Hani Salah, Martin
Reisslein, and Frank HP Fitzek. Device-enhanced mec: Multi-access
edge computing (mec) aided by end device computation and caching:
A survey. IEEE Access, 7:166079-166108, 2019.

G. Plastiras, M. Terzi, C. Kyrkou, and T. Theocharidcs. Edge in-
telligence: Challenges and opportunities of near-sensor machine lear-
ning applications. In 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
pages 1-7, July 2018.

E. Li, L. Zeng, Z. Zhou, and X. Chen. Edge ai: On-demand accelerating
deep neural network inference via edge computing. IFEFE Transactions
on Wireless Communications, pages 1-1, 2019.

A. H. Sodhro, S. Pirbhulal, and V. H. C. de Albuquerque. Artificial
intelligence-driven mechanism for edge computing-based industrial ap-
plications. IEEE Transactions on Industrial Informatics, 15(7):4235~
4243, July 2019.

Yi Liu, Chao Yang, Li Jiang, Shengli Xie, and Yan Zhang. Intelligent
edge computing for iot-based energy management in smart cities. IEFEFE
Network, 33, 03 2019.

E. Aleksandrova, C. Anagnostopoulos, and K. Kolomvatsos. Machi-
ne learning model updates in edge computing: An optimal stopping
theory approach. In 2019 18th International Symposium on Parallel
and Distributed Computing (ISPDC), pages 1-8, June 2019.

Khan Muhammad, Salman Khan, Vasile Palade, Irfan Mehmood, and
Victor Hugo C De Albuquerque. Edge intelligence-assisted smoke de-
tection in foggy surveillance environments. IFEE Transactions on In-
dustrial Informatics, 16(2):1067-1075, 2019.

Seraphin B Calo, Maroun Touna, Dinesh C Verma, and Alan Cullen.
Edge computing architecture for applying ai to iot. In 2017 IEEFE
International Conference on Big Data (Big Data), pages 3012-3016.
IEEE, 2017.

M. Wolf. Machine learning + distributed iot = edge intelligence. In
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS), pages 1715-1719, July 2019.

7. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. Edge intelligen-
ce: Paving the last mile of artificial intelligence with edge computing.
Proceedings of the IEEE, 107(8):1738-1762, Aug 2019.

REFERENCES

83

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

M. Mohammadi, A. Al-Fugaha, S. Sorour, and M. Guizani. Deep lear-
ning for iot big data and streaming analytics: A survey. IEEE Com-
munications Surveys Tutorials, 20(4):2923-2960, 2018.

Wenbin Li and Matthieu Liewig. A survey of ai accelerators for ed-
ge environment. In World Conference on Information Systems and
Technologies, pages 35-44. Springer, 2020.

M. G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar
Khan, Ganesh Ananthanarayanan, and Faraz Hussain. Machine lear-
ning at the network edge: A survey. ArXiv, July 2019.

Quoc-Viet Pham, Fang Fang, Vu Nguyen Ha, Md Jalil Piran, Mai Le,
Long Bao Le, Won-Joo Hwang, and Zhiguo Ding. A survey of multi-

access edge computing in 5g and beyond: Fundamentals, technology
integration, and state-of-the-art. IEFE Access, 8:116974-117017, 2020.

Inés Sitton-Candanedo, Ricardo S Alonso, Juan M Corchado, Sara
Rodriguez-Gonzalez, and Roberto Casado-Vara. A review of edge com-

puting reference architectures and a new global edge proposal. Future
Generation Computer Systems, 99:278-294, 2019.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IFEEE internet of things journal,
3(5):637-646, 2016.

Tseng Mitch, Edmunds Todd, and Canaran Lalit. Introduction to edge
computing in iiot. 2018.

Inés Sitton-Candanedo, Ricardo S Alonso, Oscar Garcia, Lilia Muiloz,
and Sara Rodriguez-Gonzalez. Edge computing, iot and social compu-
ting in smart energy scenarios. Sensors, 19(15):3353, 2019.

Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie
Lin, and Xinyu Yang. A survey on the edge computing for the internet
of things. IEEFE access, 6:6900-6919, 2017.

Yen-Lin Lee, Pei-Kuei Tsung, and Max Wu. Techology trend of edge
ai. In 2018 International Symposium on VLSI Design, Automation and
Test (VLSI-DAT), pages 1-2. IEEE, 2018.

Hasibur Rahman, Rahim Rahmani, and Theo Kanter. The role of mo-
bile edge computing towards assisting iot with distributed intelligence:
a smartliving perspective. In Mobile Solutions and Their Usefulness
in Bveryday Life, pages 33-45. Springer, 2019.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

84

directions

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

Mabrook Al-Rakhami, Mohammed Alsahli, Mohammad Mehedi Has-
san, Atif Alamri, Antonio Guerrieri, and Giancarlo Fortino. Cost ef-
ficient edge intelligence framework using docker containers. In 2018
IEEE 16th Intl Conf on Dependable, Autonomic and Secure Compu-
ting, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl
Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pages
800-807. IEEE, 2018.

Y. Hao, Y. Miao, L. Hu, M. S. Hossain, G. Muhammad, and S. U.
Amin. Smart-edge-cocaco: Ai-enabled smart edge with joint compu-
tation, caching, and communication in heterogeneous iot. IFEFE Net-
work, 33(2):58-64, 2019.

A. Ahmed and E. Ahmed. A survey on mobile edge computing. In
2016 10th International Conference on Intelligent Systems and Control
(ISCO), pages 1-8, Jan 2016.

Hongxing Li, Guochu Shou, Yihong Hu, and Zhigang Guo. Mobile
edge computing: Progress and challenges. In 2016 4th IEEFE interna-
tional conference on mobile cloud computing, services, and engineering
(MobileCloud), pages 83-84. IEEE, 2016.

D. Sabella, Alessandro Vaillant, Pekka Kuure, U. Rauschenbach, and
F. Giust. Mobile-edge computing architecture: The role of mec in the
internet of things. IEFEE Consumer Electronics Magazine, 5:84-91,
2016.

Intel and Nokia Siemens Networks. Increasing mobile operators’ value
proposition with edge computing. 2013.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Wei-
song Shi. Edge computing for autonomous driving: Opportunities and
challenges. Proceedings of the IEEE, 107(8):1697-1716, 2019.

Mingyue Cui, Shipeng Zhong, Boyang Li, Xu Chen, and Kai Huang.
Offloading autonomous driving services via edge computing. I[EEE
Internet of Things Journal, 7(10):10535-10547, 2020.

Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. F-
cooper: Feature based cooperative perception for autonomous vehicle
edge computing system using 3d point clouds. In Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, pages 88-100, 2019.

Pedro J Navarro, Carlos Fernandez, Raul Borraz, and Diego Alonso.
A machine learning approach to pedestrian detection for autonomous
vehicles using high-definition 3d range data. Sensors, 17(1):18, 2017.

REFERENCES

85

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang.
Vehicular edge computing and networking: A survey. Mobile Networks
and Applications, pages 1-24, 2020.

Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodik, Krishna
Chintalapudi, Matthai Philipose, Lenin Ravindranath, and Sudipta
Sinha. Real-time video analytics: The killer app for edge computing.
computer, 50(10):58-67, 2017.

Ning Chen, Yu Chen, Sejun Song, Chin-Tser Huang, and Xinyue Ye.
Smart urban surveillance using fog computing. In 2016 IEEE/ACM
Symposium on Edge Computing (SEC), pages 95-96. IEEE, 2016.

Kewei Sha, T Andrew Yang, Wei Wei, and Sadegh Davari. A survey of
edge computing-based designs for iot security. Digital Communications
and Networks, 6(2):195-202, 2020.

Hong Liu, Yan Zhang, and Tao Yang. Blockchain-enabled security in
electric vehicles cloud and edge computing. IEEE Network, 32(3):78—
83, 2018.

Zhenqiu Huang, Kwei-Jay Lin, Bo-Lung Tsai, Surong Yan, and Chi-
Sheng Shih. Building edge intelligence for online activity recognition
in service-oriented iot systems. Future Generation Computer Systems,
87:557-567, 2018.

SK Alamgir Hossain, Md Anisur Rahman, and M Anwar Hossain. Edge
computing framework for enabling situation awareness in iot based
smart city. Journal of Parallel and Distributed Computing, 122:226—
237, 2018.

Kay Bierzynski, Antonio Escobar, and Matthias Eberl. Cloud, fog
and edge: Cooperation for the future? In 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC), pages 62-67.
IEEE, 2017.

Thavavel Vaiyapuri, Velmurugan Subbiah Parvathy, V Manikandan,
N Krishnaraj, Deepak Gupta, and K Shankar. A novel hybrid optimi-
zation for cluster-based routing protocol in information-centric wireless
sensor networks for iot based mobile edge computing. Wireless Perso-
nal Communications, pages 1-24, 2021.

Oanh Tran Thi Kim, Nguyen Dang Tri, Nguyen H Tran, Choong Seon
Hong, et al. A shared parking model in vehicular network using fog
and cloud environment. In 2015 17th Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 321-326. IEEE, 2015.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

86

directions

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

73]

Harshitha Bura, Nathan Lin, Naveen Kumar, Sangram Malekar, Sush-
ma Nagaraj, and Kaikai Liu. An edge based smart parking solution
using camera networks and deep learning. In 2018 IEEFE Internatio-
nal Conference on Cognitive Computing (ICCC), pages 17-24. IEEE,
2018.

Shweta Prabhat Khare, Janos Sallai, Abhishek Dubey, and Aniruddha
Gokhale. Short paper: Towards low-cost indoor localization using edge
computing resources. In 2017 IEEE 20th International Symposium on
Real-Time Distributed Computing (ISORC), pages 28-31. IEEE, 2017.

Yongli Zhao, Boyuan Yan, Wei Wang, Yi Lin, and Jie Zhang. On-
board artificial intelligence based on edge computing in optical trans-
port networks. In 2019 Optical Fiber Communications Conference and
Ezhibition (OFC), pages 1-3. IEEE, 2019.

David Sarabia-Jécome, Ignacio Lacalle, Carlos E Palau, and Manuel
Esteve. Efficient deployment of predictive analytics in edge gateways:
Fall detection scenario. In 2019 IEEFE 5th World Forum on Internet of
Things (WF-1oT), pages 41-46. IEEE, 2019.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen,
Sy Choudhury, Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yang-
qing Jia, Bill Jia, et al. Machine learning at facebook: Understanding
inference at the edge. In 2019 IEEFE International Symposium on High
Performance Computer Architecture (HPCA), pages 331-344. IEEE,
2019.

Rene Hass et al. What’s powering artificial intelligence? ARM, 2019.

Gaurav Batra, Zach Jacobson, Siddarth Madhav, Andrea Queirolo, and
Nick Santhanam. Artificial-intelligence hardware: New opportunities

for semiconductor companies. McKinsey & Company, New York, NY,
USA, Tech. Rep, 2018.

Volkan Gezer, Jumyung Um, and Martin Ruskowski. An extensible
edge computing architecture: Definition, requirements and enablers.
Proceedings of the UBICOMM, 2017.

Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge:
A scalable iot architecture based on transparent computing. IEEE
Network, 31(5):96-105, 2017.

Partha Pratim Ray, Dinesh Dash, and Debashis De. Edge computing
for internet of things: A survey, e-healthcare case study and future
direction. Journal of Network and Computer Applications, 140:1-22,
2019.

REFERENCES

87

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[33]

[84]

[85]

Cristian Martin Fernandez, Manuel Diaz Rodriguez, and Bartolo-
mé Rubio Munoz. An edge computing architecture in the internet
of things. In 2018 IEEE 21st International Symposium on Real-Time
Distributed Computing (ISORC), pages 99-102. IEEE, 2018.

James Warren and Nathan Marz. Big Data: Principles and best prac-
tices of scalable realtime data systems. Simon and Schuster, 2015.

Semir Salkic, Baris Can Ustundag, Tarik Uzunovic, and Edin Golu-
bovic. Edge computing framework for wearable sensor-based human
activity recognition. In International Symposium on Innovative and In-
terdisciplinary Applications of Advanced Technologies, pages 376-387.
Springer, 2019.

Chetan Sharma Consulting. Edge computing framework: Understan-
ding the opportunity roadmap. 2019.

Apache. Apache kafka. Accessed: 2020-12-11.

P. FAR-EDGE. Far-edge project h2020. Available online:
http://faredge.eu//., 2017.

Mauro Isaja, John Soldatos, and Volkan Gezer. Combining edge com-
puting and blockchains for flexibility and performance in industrial
automation. In International Conference on Mobile Ubiquitous Com-
puting, Systems, Services and Technologies (UBICOMM), 2017.

Macchina. Macchina platform for the network edge. Accessed: 2020-
11-21.

Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqgiang
Yan, and Xu Chen. Convergence of edge computing and deep learning;:
A comprehensive survey. IEEE Communications Surveys € Tutorials,
22(2):869-904, 2020.

Fraunhofer Institute for Integrated Circuit IIS. Ogema. Accessed:
2020-12-03.

Cresco. Cresco. Accessed: 2020-12-15.

Kaikai Liu, Abhishek Gurudutt, Tejeshwar Kamaal, Chinmayi Divaka-
ra, and Praveen Prabhakaran. Edge computing framework for distri-
buted smart applications. In 2017 IEEE SmartWorld, Ubiquitous Inte-
lligence & Computing, Advanced € Trusted Computed, Scalable Com-
puting & Communications, Cloud & Big Data Computing, Internet
of People and Smart City Innovation (SmartWorld/SCALCOM/UI-
C/ATC/CBDCom/IOP/SCI), pages 1-8. IEEE, 2017.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

88

directions

[36]
[87]
[38]
[39]
[90]

[91]

[92]

93]

[94]

[95]
[96]

[97]

[98]
[99]
[100]

[101]

Cisco. Cisco fog director. Accessed: 2020-12-17.

Crosser. Crosser. Accessed: 2020-12-17.

The linux foundation projects. Edgex. Accessed: 2020-12-15.
Apache. Edgent. Accessed: 2020-12-17.

Edge Computing Consortium and the Industrial Internet Alliance. Ed-
ge computing reference architecture 2.0.

Tseng Mitch, Edmunds Todd, and Canaran Lalit. Introduction to edge
computing in iiot, 2018.

Adisorn Lertsinsrubtavee, Anwaar Ali, Carlos Molina-Jimenez, Arjuna
Sathiaseelan, and Jon Crowcroft. Picasso: A lightweight edge compu-
ting platform. In 2017 IEEE 6th International Conference on Cloud
Networking (CloudNet), pages 1-7. IEEE, 2017.

Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram
Dustdar, and Albert Y Zomaya. Edge intelligence: The confluence of
edge computing and artificial intelligence. IFEE Internet of Things
Journal, 7(8):7457-7469, 2020.

J. Chen and X. Ran. Deep learning with edge computing: A review.
Proceedings of the IEEE, 107(8):1655-1674, August 2019.

Meng-Fan Chang et al. White paper on ai chip technologies. 2018.

Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen,
and Min Chen. In-edge ai: Intelligentizing mobile edge computing,
caching and communication by federated learning. IEEE Network,
33(5):156-165, 2019.

Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John
Winn, and Antonio Criminisi. Decision jungles: Compact and rich
models for classification. 2016.

ONR MURI Intel and NSF. Kinect dataset. Accessed: 2020-11-21.
Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Feng Nan, Joseph Wang, and Venkatesh Saligrama. Pruning random
forests for prediction on a budget. In Advances in neural information
processing systems, pages 2334-2342, 2016.

Li-Jia Li, Hao Su, Fei-Fei Li, and Eric P Xing. Object bank: A high-
level image representation for scene classification & semantic feature
sparsification. 2010.

REFERENCES

89

[102]

[103]

[104]

[105]
[106]

[107]
[108]

[109]

[110]

[111]

[112]

113]

[114]

Thomas Cover and Peter Hart. Nearest neighbor pattern classification.
IEEFE transactions on information theory, 13(1):21-27, 1967.

Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simha-
dri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra
Udupa, Manik Varma, and Prateek Jain. Protonn: Compressed and

accurate knn for resource-scarce devices. In International Conference
on Machine Learning, pages 1331-1340. PMLR, 2017.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection, 2005.

MIT. Mit pedestrian database. Accessed: 2020-12-22.

Ling Mao, Mei Xie, Yi Huang, and Yuefei Zhang. Preceding vehicle
detection using histograms of oriented gradients. In 2010 Internatio-
nal Conference on Communications, Circuits and Systems (ICCCAS),
pages 354-358. IEEE, 2010.

Nuance. Dragon naturallyspeaking. Accessed: 2021-01-24.

Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin Leung, Chris-
tian Makaya, Ting He, and Kevin Chan. When edge meets learning;:
Adaptive control for resource-constrained distributed machine lear-
ning. In Proceedings of the Conference IEEE INFOCOM 2018, April
2018.

Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and
Gulshan Kumar. A survey of deep learning and its applications: a new
paradigm to machine learning. Archives of Computational Methods in
Engineering, pages 1-22, 2019.

Byron Reese. Ai at the edge: A gigaom research byte. 2019.

Zhang Chiliang, Hu Tao, Guan Yingda, and Ye Zuochang. Accelerating
convolutional neural networks with dynamic channel pruning. In 2019
Data Compression Conference (DCC), pages 563-563. IEEE, 2019.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pru-
ning. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 2178-2188, 2017.

Taylor Simons and Dah-Jye Lee. A review of binarized neural networks.
FElectronics, 8(661), June 2019.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Hu-
ba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konec¢ny,
Stefano Mazzocchi, H Brendan McMahan, et al. Towards federated

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

90

directions

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

learning at scale: System design. arXw preprint arXiv:1902.01046,
2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345-1359,
20009.

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan
Chandraker. Learning efficient object detection models with knowledge
distillation. Advances in neural information processing systems, 30,
2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1505.02531, March 2015.

Michael Blot, David Picard, Nicolas Thome, and Matthieu Cord. Dis-
tributed optimization for deep learning with gossip exchange. Neuro-
computing, 330:287-296, 2019.

Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome. Gos-
sip training for deep learning. arXiv preprint arXiv:1611.09726, 2016.

Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle Jamieson,
and Suman Banerjee. The design and implementation of a wireless vi-
deo surveillance system. In Proceedings of the 21st Annual Internatio-
nal Conference on Mobile Computing and Networking, pages 426—438,
2015.

Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana
Golubchik, Minlan Yu, Paramvir Bahl, and Matthai Philipose. Video-
edge: Processing camera streams using hierarchical clusters. In 2018
IEEE/ACM Symposium on Edge Computing (SEC), pages 115-131.
IEEE, 2018.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
Recent trends in deep learning based natural language processing. ieee
Computational intelligenCe magazine, 13(3):55-75, 2018.

Apple. Deep learning for siri’s voice: On-device deep mixture den-
sity networks for hybrid unit selection synthesis. [Online]. Available:
hitps://machinelearning.apple.com/2017/08,/06 /sirivoices.html, 2017.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:

Bridging the gap between human and machine translation. arXiv pre-
print arXw:1609.08144, 2016.

REFERENCES

91

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity
recognition. arXiv preprint arXiv:1603.01360, 2016.

Apple. Hey siri: An on-device dnn-powered voice trig-
ger for apple’s personal assistant. [Online]. Awvailable:
https://machinelearning.apple.com/2017/10/01 /heysiri.html, 2017.

Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Pra-
teek Jain, and Manik Varma. Fastgrnn: A fast, accurate, stable and

tiny kilobyte sized gated recurrent neural network. arXiv preprint ar-
Xiv:1901.02358, 2019.

Y. Zhao A. Zhang S. Yao, S. Hu and T. Abdelzaher. Deepsense: A
unified deep learning framework for time-series mobile sensing data
processing. Proc. 26th Int. Conf. World Wide Web, pages 351-360,
2017.

W. Ouyang and X. Wang. Joint deep learning for pedestrian detection.
Proc. IEEFE Int. Conf. Comput. Vis., pages 2056—2063, December 2013.

Tung-Chien Chen, Wei-Ting Wang, Kloze Kao, Chia-Lin Yu, Code Lin,
Shu-Hsin Chang, and Pei-Kuei Tsung. Neuropilot: A cross-platform
framework for edge-ai. In 2019 IEEE International Conference on
Artificial Intelligence Clircuits and Systems (AICAS), pages 167-170.
IEEE, 2019.

David Jeans. Related’s hudson yards: Smart city or surveillance city?
Online/. Available: https://therealdeal.com/2019/03/15/hudsonyards-
smart-city-or-surveillance-city/, March 2019.

Muhammad Sharjeel Zareen, Shahzaib Tahir, Monis Akhlaq, and Ba-
ber Aslam. Artificial intelligence/ machine learning in iot for authenti-
cation and authorization of edge devices. In 2019 International Confe-
rence on Applied and Engineering Mathematics (ICAEM), pages 220—
224, 2019.

Xueshi Hou, Sujit Dey, Jianzhong Zhang, and Madhukar Budagavi.
Predictive view generation to enable mobile 360-degree and vr ex-
periences. In Proceedings of the 2018 Morning Workshop on Virtual
Reality and Augmented Reality Network, pages 20-26, 2018.

Shahryar Afzal, Jiasi Chen, and KK Ramakrishnan. Characterization
of 360-degree videos. In Proceedings of the Workshop on Virtual Reality
and Augmented Reality Network, pages 1-6, 2017.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

92

directions

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]

[143]

Amit Jindal, Andrew Tulloch, Ben Sharma, Bram Wasti, Fei Yang,
Georgia Gkioxari, Jaeyoun Kim, Jason Harrison, Jerry Zhang, Kaiming
He, et al. Enabling full body ar with mask r-cnn2go, 2018.

Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual
International Conference on Mobile Computing and Networking, pages
1-16, 2019.

Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Towards wearable cognitive as-
sistance. In Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, pages 68-81, 2014.

Hyongsuk Kim, Maheshwar Pd Sah, Changju Yang, Tamas Roska, and
Leon O Chua. Neural synaptic weighting with a pulse-based memristor
circuit. IEFE Transactions on Circuits and Systems I: Regular Papers,
59(1):148-158, 2011.

Timo Wunderlich, Akos F Kungl, Eric Miiller, Andreas Hartel, Yannik
Stradmann, Syed Ahmed Aamir, Andreas Griibl, Arthur Heimbrecht,
Korbinian Schreiber, David Stockel, et al. Demonstrating advantages
of neuromorphic computation: a pilot study. Frontiers in neuroscience,
13:260, 2019.

Myonglae Chu, Byoungho Kim, Sangsu Park, Hyunsang Hwang, Moon-
gu Jeon, Byoung Hun Lee, and Byung-Geun Lee. Neuromorphic
hardware system for visual pattern recognition with memristor array
and cmos neuron. I[EEFE Transactions on Industrial FElectronics,
62(4):2410-2419, 2014.

Firas Al-Ali, Thilina Doremure Gamage, Hewa WTS Nanayakkara,
Farhad Mehdipour, and Sayan Kumar Ray. Novel casestudy and bench-
marking of alexnet for edge ai: From cpu and gpu to fpga. In 2020
IEEE Canadian Conference on FElectrical and Computer Engineering

(CCECE), pages 1-4. IEEE, 2020.

Yujeong Choi and Minsoo Rhu. Prema: A predictive multi-task schedu-
ling algorithm for preemptible neural processing units. In 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 220-233. IEEE, 2020.

Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin
Wang, Han Hu, Yun Liang, and Jason Cong. Automated systolic array
architecture synthesis for high throughput cnn inference on fpgas. In
Proceedings of the 54th Annual Design Automation Conference 2017,
pages 1-6, 2017.

REFERENCES

93

[144]

[145]

[146]
[147]
148
[149]
[150]
[151]

[152]

[153]

[154]

[155]

[156]

157]

Zhijie Yang, Lei Wang, Dong Ding, Xiangyu Zhang, Yu Deng, Shiming
Li, and Qiang Dou. Systolic array based accelerator and algorithm
mapping for deep learning algorithms. In IFIP International Confe-
rence on Network and Parallel Computing, pages 153-158. Springer,
2018.

Shamik Kundu, Kanad Basu, Mehdi Sadi, Twisha Titirsha, Shihao
Song, Anup Das, and Ujjwal Guin. Special session: Reliability analysis
for ml/ai hardware. arXiv preprint arXiv:2103.12166, 2021.

Google 1/0. Google tpu. Accessed: 2021-01-24.
Nvidia. Nvidia jetson nano. Accessed: 2020-11-21.
General Vision. Neuroshield. Accessed: 2020-11-21.
Google. Google coral. Accessed: 2020-11-21.

Intel. ntel movidius. Accessed: 2020-12-03.

Google. Sparkfun edge. Accessed: 2020-12-03.

Christine Long. Beaglebone ai makes a sneak preview, 2019. Accessed:
2020-12-17.

Gopinath Sridhar, Ghanathe Nikhil, Seshadri Vivek, and Rahul Shar-
ma. Machine learning models to tiny iot devices. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 79-95, 2019.

Alasdair Allan. Hands-on with the smart-edge agile. Accessed: 2020-
12-17.

Ahmed Ghoneim, Ghulam Muhammad, Syed Umar Amin, and Brij
Gupta. Medical image forgery detection for smart healthcare. IEEE
Communications Magazine, 56(4):33-37, 2018.

Pei-Kuei Tsung, Tung-Chien Chen, Chien-Hung Lin, Chih-Yu Chang,
and Jih-Ming Hsu. Heterogeneous computing for edge ai. In 2019 In-

ternational Symposium on VLSI Design, Automation and Test (VLSI-
DAT), pages 1-2. IEEE, 2019.

Shouyi Yin, Peng Ouyang, Shibin Tang, Fengbin Tu, Xiudong Li, Leibo
Liu, and Shaojun Wei. A 1.06-to-5.09 tops/w reconfigurable hybrid-
neural-network processor for deep learning applications. In 2017 Sym-
posium on VLSI Circuits, pages C26-C27. IEEE, 2017.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

94

directions

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Shouyi Yin, Peng Ouyang, Shibin Tang, Fengbin Tu, Xiudong Li, Shi-
xuan Zheng, Tianyi Lu, Jiangyuan Gu, Leibo Liu, and Shaojun Wei.
A high energy efficient reconfigurable hybrid neural network processor
for deep learning applications. IEEE Journal of Solid-State Clircuits,
53(4):968-982, 2017.

Michaela Blott, Thomas B Preufser, Nicholas J Fraser, Giulio Gambar-
della, Kenneth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees
Vissers. Finn-r: An end-to-end deep-learning framework for fast explo-
ration of quantized neural networks. ACM Transactions on Reconfigu-
rable Technology and Systems (TRETS), 11(3):1-23, 2018.

Quentin Ducasse, Pascal Cotret, Loic Lagadec, and Robert Stewart.
Benchmarking quantized neural networks on fpgas with finn. arXiv
preprint arXiw:2102.01341, 2021.

Qi Yu, Chao Wang, Xiang Ma, Xi Li, and Xuehai Zhou. A deep learning
prediction process accelerator based fpga. In 2015 15th IEEE/ACM In-

ternational Symposium on Cluster, Cloud and Grid Computing, pages
1159-1162. IEEE, 2015.

Griffin Lacey, Graham W Taylor, and Shawki Areibi. Deep learning
on fpgas: Past, present, and future. arXiv preprint arXiv:1602.04283,
2016.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqgi Tang, Ningyi Xu, Sen Song, and et al. Going dee-
per with embedded fpga platform for convolutional neural network.
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 26-35, 2016.

Li Du, Yuan Du, Yilei Li, Junjie Su, Yen-Cheng Kuan, Chun-Chen
Liu, and Mau-Chung Frank Chang. A reconfigurable streaming deep
convolutional neural network accelerator for internet of things. IFEE

Transactions on Circuits and Systems I: Regular Papers, 65(1):198—
208, 2017.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon:
Mobile gpu-based deep learning framework for continuous vision ap-
plications. In Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, pages 82-95, 2017.

Google. Tensorflow lite. Accessed: 2020-11-21.

Google. Tensorflow lite performance. Accessed: 2020-11-21.

REFERENCES

95

[168]

[169]
[170]
[171]
[172]

[173]

[174]

[175]

[176]
[177]
[178]
[179]

[180]
[181]
[182]
[183]

Xingzhou Zhang, Yifan Wang, and Weisong Shi. pcamp: Performance
comparison of machine learning packages on the edges. In { USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

Apache. Apache mxnet. Accessed: 2020-12-03.
Facebook. Caffe2go. Accessed: 2020-12-03.
Apple. Coreml3 from apple. Accessed: 2020-12-03.

Dawei Li, Theodoros Salonidis, N. Desai, and M. Chuah. Deepcham:
Collaborative edge-mediated adaptive deep learning for mobile object
recognition. 2016 IEEE/ACM Symposium on Edge Computing (SEC),
pages 64-76, 2016.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
Deepthings: Distributed adaptive deep learning inference on resource-
constrained iot edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2348-2359, 2018.

Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdel-
zaher. Deepiot: Compressing deep neural network structures for sen-
sing systems with a compressor-critic framework. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Systems, pages
1-14, 2017.

Sourav Bhattacharya and Nicholas Lane. Sparsification and separation
of deep learning layers for constrained resource inference on wearables.
In Proceedings of the 14th ACM Conference on Embedded Network
Sensor Systems CD-ROM, SenSys, pages 176—189, November 2016.

Google. M1 kit. Accessed: 2020-12-03.
Yunbin Deng. Deep learning on mobile devices - a review. arXiv, 2019.
Xnor. Ai2go. Accessed: 2020-12-03.

Alasdair Allan. Benchmarking the xnor ai2go platform on the rasp-
berry pi. Accessed: 2021-01-17.

Amazon. Aws greengrass. Accessed: 2020-12-17.
Foghorn. Foghorn framework. Accessed: 2020-12-17.
Microsoft. Azure iot edge. Accessed: 2020-12-17.

Xingzhou Zhang, Yifan Wang, Sidi Lu, Liangkai Liu, Weisong Shi, et al.
Openei: An open framework for edge intelligence. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS),
pages 1840-1851. IEEE, 2019.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future

96

directions

[184]

[185]

[186]

187]

[188]

[189]

[190]

[191]

[192]

Sicong Liu, Junzhao Du, Kaiming Nan, Zimu Zhou, Hui Liu, Zhang-
yang Wang, and Yingyan Lin. Adadeep: a usage-driven, automated
deep model compression framework for enabling ubiquitous intelligent
mobiles. IEEE Transactions on Mobile Computing, 2020.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, José Miguel Hernandez-Lobato, Gu-
Yeon Wei, and David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA),
pages 267-278. IEEE, 2016.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborati-
ve intelligence between the cloud and mobile edge. ACM SIGARCH
Computer Architecture News, 45(1):615-629, 2017.

Hongshan Li, Chenghao Hu, Jingyan Jiang, Zhi Wang, Yonggang Wen,
and Wenwu Zhu. Jalad: Joint accuracy-and latency-aware deep struc-
ture decoupling for edge-cloud execution. In 2018 IEEE 24th Inter-
national Conference on Parallel and Distributed Systems (ICPADS),
pages 671-678. IEEE, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics,
pages 1273-1282. PMLR, 2017.

Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, and Vi-
nay Amatya. Gossipgrad: Scalable deep learning using gossip com-
munication based asynchronous gradient descent. arXiv preprint ar-
Xiv:1803.05880, 2018.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Sesha-
dri, Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and
Matei Zaharia. Pipedream: generalized pipeline parallelism for dnn
training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1-15, 2019.

Diego Peteiro-Barral and Bertha Guijarro-Berdifias. A survey of
methods for distributed machine learning. Progress in Artificial In-
telligence, 2(1):1-11, 2013.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee,
and Andrew Y Ng. Multimodal deep learning. In ICML, 2011.

REFERENCES

97

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Garrett B Goh, Khushmeen Sakloth, Charles Siegel, Abhinav Vishnu,
and Jim Pfaendtner. Multimodal deep neural networks using both
engineered and learned representations for biodegradability prediction.
arXiv preprint arXiv:1808.04456, 2018.

Bakkiam David Deebak and Fadi Al-Turjman. A hybrid secure routing
and monitoring mechanism in iot-based wireless sensor networks. Ad
Hoc Networks, 97:102022, 2020.

Rekha Goyat, Gulshan Kumar, Mritunjay Kumar Rai, Rahul Saha,
Reji Thomas, and Tai Hoon Kim. Blockchain powered secure range-free

localization in wireless sensor networks. Arabian Journal for Science
and Engineering, 45(8):6139-6155, 2020.

Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois
Rummens, Marina Reyboz, Elisa Vianello, and Edith Beigne. Spiking
neural networks hardware implementations and challenges. ACM Jour-
nal on Emerging Technologies in Computing Systems, 15(2):1-35, July
2019.

Jorg Drechsler and Jerome P.Reiter. An empirical evaluation of easily
implemented, non parametric methods for generating synthetic data-
sets. Computational Statistics and Data Analysis, 55(12):3232-3243,
December 2011.

Georgia Albuquerque, Thomas Lowe, and Marcus Magnor. Synthetic
generation of high-dimensional datasets. IEEE transactions on visua-
lization and computer graphics, 17(12):2317-2324, 2011.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Stor-
key. Meta-learning in neural networks: A survey. arXiv, pages 1-23,
2020.

David D Clark, Craig Partridge, J Christopher Ramming, and John T
Wroclawski. A knowledge plane for the internet. In Proceedings of
the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 3—10, 2003.

Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-
Ros, Eduard Alarcon, Marc Solé, Victor Muntés-Mulero, David Meyer,
Sharon Barkai, Mike J Hibbett, et al. Knowledge-defined networking.
ACM SIGCOMM Computer Commaunication Review, 47(3):2-10, 2017.

Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta,
Martin Reisslein, and Stefan Schmid. Adaptable and data-driven soft-

warized networks: Review, opportunities, and challenges. Proceedings
of the IEEE, 107(4):711-731, 2019.

CHAPTER 5. Edge Intelligence: Concepts, architectures, applications and future
98 directions

[203] Yupin Huang, Liping Qian, Angi Feng, Ningning Yu, and Yuan Wu.
Short-term traffic prediction by two-level data driven model in 5g-
enabled edge computing networks. [EEE Access, 7:123981-123991,
2019.

Chapter 6

Automatic Label Creation
Framework for FMCW Radar
Images Using Camera data

Javier Mendez?, Stephan Schoenfeldt!, Xinyi Tang!, Jakob
Valtl', M.P. Cuellar?, Diego P. Morales?.

1. Infineon Technologies AG, Am Campeon 1-15, 85579 Neu-
biberg, Germany

2. Department of Computer Science and Artificial Intelligence,
University of Granada, 18071 Granada, Spain

3. Department of Electronics and Computer Technology, Univer-
sity of Granada, 18071 Granada, Spain

IEEE Access
= Received April 2021, Accepted June 2021, Published June 2021
= 10.1109/ACCESS.2021.3087207
= Impact factor: 3.367

» JCR Rank: 94/273 in category Engineering, Electrical Electronic (Q2)

99

100

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images

Using Camera data

ABSTRACT: Data acquisition and treatment are key issues for any
Deep Learning (DL) technique, especially in computer vision tasks. A
big effort must be done for the creation of labeled datasets, due to
the time this task requires and its complexity in cases where different
sensors must be used. This is the case of radar imaging applications,
where radar data are difficult to analyze and must be labeled manually.
In this paper, a semi-automatic framework to generate labels for range
Doppler maps (radar images) is proposed. This technique is based on
a sensor fusion approach with radar and camera sensors. The proposed
scheme operates in two steps: The first step is the environment featu-
res extraction, in which the radar data is preprocessed and filtered to
remove ghost targets and detect clusters, and camera data are used to
extract the information of the targets. In the second step, a rule-based
system that considers the extracted features fuses the information to
generate labels for the radar data. By using the proposed framework,
the experimentation performed suggests that the time required to la-
bel the data is reduced as well as the possibility of human error during
the labeling task. Our results show that the proposed technique can
improve the final model accuracy with regards the traditional labeling
method, carried out by human experts.

Keywords: Sensor Fusion, Machine Learning algorithms, Deep Lear-

ning, radar, auto-labeling system.

6.1. Introduction

In recent years, radar imaging techniques have been proven to provide
high performance results when used for classification tasks in autonomous
driving (1)(2), object detection (3)(4) and activity recognition (5)(6). Re-
searchers have also studied the integration of Machine Learning (ML) tech-
niques for the radar signal preprocessing (5) as well as the previously com-
mented tasks (3)(2)(6) to achieve high performance results. However, large
application-specific datasets are required when training Deep Learning (DL)
models for these purposes using a supervised approach.

The creation of new datasets is a current problem due to the required
time to gather the data and, especially, to correctly label the data. In order to
solve this problem, new training approaches are been researched to avoid the
labeling step of the dataset. An example of this is the use of Reinforcement
Learning (7)(8), where the DL model is trained without a dataset itself but in
a simulated environment. Even when these techniques are being researched,
a large set of applications still use supervised training (9)(10). Therefore,
labeled datasets are still required for new applications.

In recent approaches, some authors have studied the implementation of
ML techniques to label the datasets automatically. These techniques aim

6.1. Introduction

101

to reduce the human errors in the labeling process as well as the time re-
quired for this task. Some examples of these techniques are proposed in
(11)(12)(13)(14)(15), which are deeply analyzed in Section 2. Some of the-
se techniques are based on a Sensor Fusion approach such as (1). These
Sensor Fusion techniques can be divided into Early Fusion and Late Fusion
pipelines. The Early Fusion approach combines the data with a low level of
preprocessing to generate new raw data that can be later studied as a single
input. The Early Fusion can also be used to extract the final information
from the initial raw data from multiple sensors. This technique is beneficial
when the data can be merged easily due to similarities in the format or the
features. The issues of this technique fall into the restriction of using data
with similar formats or implementing complex algorithms to overcome these
differences as in (1). On the other hand, the Late Fusion combines the data
at a later step after a deeper preprocessing of the data. This approach can
be used to efficiently study each data separately to determine what features
can be useful before the merging step. This leads to a further preprocessing
that can be optimized for each data type. At the same time, the complexity
of the fusing algorithm can be reduced.

Conventionally, manually labeling radar data is performed frame by fra-
me. The efficiency of this process is limited due to the fact that a ground
truth must be provided for each radar image. At the same time, it is possible
to incur in human errors during the execution of this task, mainly as misin-
terpretation of the data. This is a result of the complexity and non-intuitive
visualization of the radar data.

The developed framework in this paper aims to help during the dataset
creation using a Late Sensor Fusion pipeline. This pipeline, based on DL mo-
dels as well as traditional approaches, merges relevant features from input
data after an individual preprocessing. These specific preprocessing techni-
ques are optimized to extract accurate and relevant information from the
camera and radar sensors. The developed framework aims to generate labels
for the studied dataset. By applying this pipeline, the possibility of incurring
in human error is reduced, and also the required time to study new data, as
shown in the experiments in Section 4.

As a secondary objective, we study the implementation of the resulting
DL models in edge devices with low hardware resources. For this reason,
different Deep Learning frameworks have been researched as well as the me-
mory allocation of the data. The experimental section discusses performance
both in accuracy and time, respectively.

The remaining of the manuscript is organized as follows: Section 2 focuses
on related works to the addressed problem. In Section 3, the Sensor Fusion
pipeline is described for a deep understanding of the label creation process.
After that, Section 4 will focus on the experiment where this framework has
been applied, and finally Section 5 concludes.

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
102 Using Camera data

6.2. Related Works

The use of radar sensors for classification tasks is increasing its popula-
rity. This enables a system to recognize its environment (1)(3)(4)(2) without
having to deal with privacy concerns as it happens when using camera da-
ta. However, this leads to a requirement of large specific labeled datasets for
each application (when using Al models that required a supervised training).
The creation of labeled datasets is a bottleneck in the ML model creation
due to the time required for its creation as well as the possibility to incur
human errors during the labeling process. As a result, numerous researchers
are working on this field.

An example of this approach is the object detection based on the fusion
of these sensors researched by F. Nobis et al. (1). This Early Fusion approach
is based on the data fusion using an Artificial Neural Network (ANN). The
raw data from the camera sensor and the low-preprocessed radar data are
used as inputs of the ANN that execute the fusion and classification pro-
cess. At the same time the system studies at what point the fusing process
should be executed to obtain the best classification results. In this technique,
the radar data is used as reinforcement, as 2D points, for the camera image
in the ANN. This technique proved its utility in environments where the
camera data are corrupted or they do not provide enough information, for
example in dark environments or with extreme weather conditions such as
rain. The accuracy provided with this approach exceeds the state-of-the-art
results obtained only with camera data in the NuScenes dataset as well as
the Technical University of Munich (TUM) dataset. The limitation of this
technique relies in the complex structure of the Deep Neural Network (DNN)
designed for the fusion tasks. However, due to the study of multiple frames,
this technique can achieve state-of-the-art results. The accuracy of this algo-
rithm is further compared with the proposed framework in Subsection 4.4.
where it is presented how our tool achieves a 24.556 % higher accuracy when
studying single frames.

Teck-Yian Lim et al. (16) proposed a similar pipeline of (1)to the pre-
viously commented. Their proposed pipeline of Early Fusion to combine ra-
dar and camera information for target detection is based on an ANN. This
ANN has an input for the radar data and another one for the camera data.
Therefore, the data can be studied independently in a first step to extract
high level features before merging them. The main difference of this techni-
que respect (1) is the data type used. They use range-azimuth radar images
instead of 2D points. This approach allows the system to employ feature
pyramid network structures. Since there are no public datasets with this ra-
dar data, they built their own dataset to evaluate their technique, achieving
a 73.5%. Their low accuracy in comparison with other techniques may be
due to the Early Fusion approach followed. This limits the evaluation of the

6.2. Related Works

103

preprocessing of the data before the fusion step, what can lead to efficiency
problems when extracting the features. At the same time, the proposed pi-
peline contains 2 Single Shot Detectors. As a result, the complexity of the
algorithm is higher than our proposed pipeline.

Z. Jiet al. (17) proposed a method to locate and classify objects based on
radar and camera sensors. This method can be divided in two steps: In the
first step, the data are preprocessed to extract the possible target location
from the radar data using a Kalman filter and, in the second step, these
possible points are projected into the camera plane to locate the relevant
areas of the camera image to study. Later, these areas of the camera images
are analyzed using a Multilayer In-place Learning Network to classify the
objects into a set of known categories. The overall accuracy obtained with
this method is 96.8 % in the dataset studied in the paper which contains
400 images. Because of the pipeline of this method, the time required to
classify all the objects depends on the number of objects due to the fact
that each target is fed into the DNN individually in a loop approach. This
loop approach may lead to high latency in environments with high density
of targets in contrast with other techniques such as Single Shoot Detection
(SSD) or Faster R-CNN where the whole image is studied at the same time
by the DNN.

J. Kocic et al. (18) shows a pipeline for sensor fusion in the field of
autonomous driving. The presented pipeline has three steps. In the first step,
the data collected by multiple sensors is preprocessed to represent the same
environment: LiDAR and radar generate 3D point clouds and the camera
provides RGB images. These two types of data are fed into two different
DNNs, one for the 3D points and one for the RGB image to generate labels
for the objects in the environment separately. These labels are later fed
into another DNN to execute a high-level fusion. Apart from localization,
the results from the high-level fusion can be used to generate an occupancy
grid surround the ego vehicle. The benefits of this structure lie on the fact
it avoids lossy input predictions while using simple DNNs already used in
other applications. At the same time, these factors are also the limitations
for this method. Because of integrating multiple DNN in the same system,
the resource requirements of this approach are higher than other techniques
developed in previously commented papers as well as the technique explain
in our paper. These multiple DNNs may also lead to high latency even when
the paper does not research the output frame rate this pipeline can generate.

X. Zhang et al. (19) follows a similar approach to the previous authors.
They propose a Late Sensor Fusion pipeline where a millimeter-wave radar is
used to extract the position and the speed of the obstacles. The data of the
location of the obstacles is used to generate a region of interest for a deeper
study in the data collected by a camera sensor, where Machine Learning
techniques are applied to extract reliable 3D bounding boxes for the objects

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
104 Using Camera data

and track them. The results obtained with this technique are the 91.6 % of
accuracy on dataset used for their experiment. Because of its similarities, the
limitations of this technique lie in the same facts as the techniques presented
by J. Kocic et al. (18) and Z. Ji et al. (17).

The system proposed in (2) also uses radar data to classify and locate
objects. The technique applied to study the data in this paper is based on the
intensity and decayed spectrum. The approach used in that paper is based
on a DNN following a traditional approach to create an Object Detector
where first the clusters, based on range-azimuth intensity map, are located
before been fed into a Convolutional Neural Network (CNN) to classify them.
The paper proves how this approach can achieve state-of-the-art accuracy
for the object classification without depending on any other sensor due to
the fact that they achieve an accuracy of 65.30% at an initial frame, being
later further improved with accumulated frames. Our technique can provide
results on real time with higher accuracy due to the use of Range Doppler
Maps (RDM) images instead of the range-azimuth intensity map followed by
the authors of this paper.

Focus on the autolabeling process, as in our paper, T. Winterling et al.
(11) proposed a technique based on a CNN to automatically generate labels
for occupancy grid maps generated from radar data. In (11), the initial data
is preprocessed to obtain an occupancy grid where each cell contains the
information of the probability of an object being at that position. These
maps are fed into a CNN where the author had to manually label a set of
data in each iteration to improve the accuracy achieved. Therefore, this is
an iterative process that still requires human interaction during the labeling
process to manually label the unsure data of the dataset, in contrast with
the proposed framework in our paper.

The problem presented in the previous paper was also researched by M.
Di Cicco et al. (13). In their manuscript, the authors explained how the
creation of labeled datasets for Deep Learning is extremely time consuming
due to the volume of data require as well as the complexity to label correctly
each frame. As a result, they proposed a technique to create datasets for new
applications in the agriculture field based on synthetic data creation. The
dataset created with this technique proved its quality by training a DNN
using this dataset and studying its final accuracy over a manually labeled
dataset. This technique, even when it reduces the human effort and time to
create the dataset, does not target the problem researched in our paper due
to the fact that it use synthetic data instead of automatizing the labeling
process as we have researched in our paper.

M. Suchi et al. (14) also proposed a technique to create a semi-automatic
labeled datasets of RGB images at pixel level. During the dataset creation,
their tool requires data from a depth sensor apart from the RGB images.
The followed approach is based on comparing the distance of each 3D point

6.2. Related Works

105

with the neighbors points by exploiting spatial shifts in the depth data to
determine if it belong to an object. To overcome the problems due to the
variation of the distance of the objects respect the recording system, they
include a preprocessing to adapt the system to the range of the target. This
approach is similar to our technique in the sense it is based on a sensor fusion
paradigm for the label creation. However, since we are targeting radar data,
this technique cannot be used due to the fact that we are missing the data
that a depth sensor could provide to accurately differentiate targets that are
near each other.

Following the idea of combining data from multiple sources as in the
previous technique, Gabriel M. et al. (15) developed an approach to auto-
matically create datasets of audio, lyrics and notes. Their technique is based
on karaoke user data that contains annotations of time-aligned lyrics and
notes. In a later step, this data is compared with audio candidates from the
web to select the best candidate using a CNN. In the last step, a teacher-
student paradigm is applied to improve the results obtained with this DL
model.

Pursuing an implementation without using Deep Learning techniques,
J. Tang et al. (12) researched the auto-labeling of images for image clas-
sification. They compared different algorithms for the labeling process on
multiple datasets in order to establish the benefits from each technique. The
techniques researched include techniques such as CSD-Prop, SvdCos, and
CSD-SVM. Among the researched techniques, the CSD-SVM provided the
best results taking into account the quantity of prior information required
by the system. This technique labeled correctly 767 images out of the 4500
images in the Corel dataset (20) while the CSD-Prop and SvdCos labeled 577
and 349 images respectively. However, the number of correct labels does not
achieve a large enough volume to be implemented as an automatic labeling
system for the creation of labeled datasets.

After showing the most relevant research papers that justify our research,
we can see that some of these papers explain how the use of radar in collabo-
ration with ML techniques for object detection is an emerging research line.
The accuracy as well as latency results of these techniques can still be further
improved. This has led us to develop the semi-automatic labeling framework.
In order to improve the previously explained techniques, some of the stages
of the pipeline of our framework have been optimized to improve the latency
as well as the memory consumption. At the same time, it is possible to see
how previous automatic labeling techniques have not being able to create
an accurate and efficient process in contrast with our proposed framework
since their accuracy is not high enough (12) or they do not directly face the
problem of labeling the data (13).

The approach proposed in our paper is based in an DNN to extract
relevant features for the camera data. The later data fusion, at object level,

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
106 Using Camera data

is based on rule-based system approach using the cluster Angle of Arrival
(AoA) and distance of the targets from each sensor to match the targets
from both sensors. As a result, high accuracy is achieved in our dataset
while maintaining low latency.

The proposed preprocessing method, as well as the Sensor Fusion ap-
proach, will be explained in detail in the following section.

6.3. Sensor Fusion pipeline

This section describes the preprocessing techniques applied in the propo-
sed framework to reduce the noise and reconstruct missing data. At the same
time, this preprocessing extract high-level features to be fused in a later step.
We remark that our final target application is self-autonomous driving and,
more specifically, object recognition and localization.

The Sensor Fusion pipeline for the proposed autolabeling framework in
this paper consists of two main modules: data preprocessing and data fusion.
These modules can be subdivided depending on the source data sensor, as
shown in the Figure 6.1.

Data pre-processing Data Fusion
Camera
sesor
Radar
sesor

Match data

based on AocA
and distance

Figure 6.1: Sensor Fusion pipeline.

This pipeline follows a natural information flow from raw data to feature
extraction and a final step where these high-level features are fused to obtain
the final data. The final data, extracted using this pipeline, is the information
about the classification of the clusters from the RDM image, a bounding box
estimation, the AoA and the presence of multiple objects in the cluster.

In order to extract relevant features, the data from both sensors is pre-
processed separately due to the differences in their features/structures. As
a result of this, a specific preprocessing pipeline is designed for each data
type. The preprocessing of the radar data is based on a traditional signal
preprocessing pipeline. The raw radar data is converted into a new format,
RDM, where the relevant features can be extracted more efficiently. This
is followed by a filtering step to reduce the noise. On the other hand, the
camera data preprocessing is based on computer vision techniques, specifi-
cally DNN. DNN were chosen due to their high accuracy results achieved for
computer vision in the literature. These preprocessing techniques are further

6.3. Sensor Fusion pipeline 107

explained in the next two subsections for a deeper understanding.

6.3.1. Radar data preprocessing

A Multiple-input-multiple-output (MIMO) frequency modulated conti-
nuous wave (FMCW) radar with four channels is used. The number of chan-
nels can be further increased by applying virtual array concept with a cost
of lower frame rate. Calibration was applied to correct the AoA estimation
errors after adding a radar random. The sampling rate, frame size, chirp
bandwidth and chirp time are properly selected to ensure a good resolution
within our region of interest.

In order to fuse the information from the radar data and the camera data,
the object is first detected and located in the radar RDM data to reduce the
data dimension. This technique transforms the time domain ADC signals to
RDM images, where the information about the distance and speed of the
targets is maintained. A Constant False Alarm Rate (CFAR) filter is then
applied to the RDM image for target detection (21)(22). This pipeline is
presented in Figure 6.2.

+
3 e :
Radar Double | % DmEmis oc= Removing |1 Gl
—> Threshold . Threshold
Sensor FFT . Noise X
Selection Clustering

CFAR Filter

Raw Data
Filtered
RDM
Proposed
Clusters

|
l

Figure 6.2: Radar data processing pipeline.

The CFAR technique compares each bin of the RDM with its surroun-
ding ones, setting a maximum range called training cells without including
a subset of this set called guard cells. This filter is used to estimate the pre-
sence of a real target within the bin under test. There are training bins near
the bin under test to compute the noise floor. Immediately adjacent bins
to the bin under test are considered as guard bins and are ignored so that
the possible leaked signals do not contribute to the noise floor computation.
A bin is declared to contain an object when its value is greater than the
scaled noise floor. With CFAR, the computed noise floor acts as a dynamic
threshold instead of a fixed threshold value.

In Figure 6.2, the CFAR filtering has been divided into the two sub-
processed required for its implementation: dynamic threshold selection and
filtering the points whose value is under the threshold. This dynamic th-
reshold is calculated using (6.1), where m and n are the horizontal and
vertical number of training cells and m and fi are the guard cells range
horizontally and vertically.

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
108 Using Camera data

T = (2D e/ (Almn — 1))
v (6.1)

i € [-m, —1] U [m,m]

j € [-n,—n]U[n,n]

At this point, it is possible to extract clusters of real targets from the
RDM images with high accuracy. An adaptive threshold technique has been
used to determine the limits of the clusters. For each of the proposed clusters,
a proportional threshold to its maximum value is generated. This threshold
can be divided into speed threshold and range threshold to study the vertical
and horizontal bins respectively. A later algorithm will use these thresholds
to study the surrounding points of each cluster to determine the associated
bounding box of each object. Therefore, the detection of a target is indepen-
dent of target size (due to the precision of the radar sensor, real target size
or distance to the object) in the RDM image.

It is important to understand that the white horizontal central line in the
RDM images, as shown in Figure 6.3, represents the static objects captured
by the radar sensor. In this representation, when multiple targets are static,
they generate a line in the no speed area (the center line) that must be
ignored since they cannot be separated for a proper classification.

Figure 6.3: RDM frame example.

These detected clusters will be later used in the fusing process with the
targets located in the camera data to extract the label data expected from
this framework.

6.3.2. Camera data preprocessing

The data recorded from the camera will be fed into a DL object detector
to extract the classification, AoA and location of the targets in each frame
as it is presented in Figure 6.4.

6.3. Sensor Fusion pipeline

109

— +
0 %] =) 0
b3S = @ < = 0
=) 5 S
E SsD < 28 i s 8
Camera |— % ; = Relevant | <+ |Distanceand | = o
Object — . Angle —
Sensor Targets Filter L
Detector Estimation

Figure 6.4: Camera data processing pipeline.

The SSD structure (23) has been chosen due to its capabilities to enable
real-time detection in comparison with other state-of-the-art structures such
as Faster R-CNN (24). SSD structure speeds up the processing of the data by
removing the region proposal network present in other structures. To recover
from the accuracy drop due to this, SSD applies techniques such as multi-
scale features and default boxes. These improvements increase its accuracy to
match the Faster R-CNN’s accuracy while using lower resolution images. As
a result, the size of this model as well as the resource requirements to execute
it are reduced in comparison with other DL models for object detection.

The loss function of the model consists of two terms, the localization loss
and the confidence loss. The first loss is the loss related to the position of
the bounding box of the detected targets, penalizing only predictions from
positive matches. The equations of this loss metric are (6.2), (6.3), (6.4),
(6.5) and (6.6). Localization loss is the loss during the prediction of the
target classification, which is calculated using (6.7) and (6.8). These two loss
functions are later combined in a general one by (6.9) to communicate the
loss of the DNN in a single parameter.

Lioe(,1, 9) = Z Z xfjsmoothm(lgn — 37" (6.2)
1€ Pos me(cx,cy,w,h)
g;* = (g5" —di")/df (6.3)
3Y = (g5 — di*)/d} (6.4)
0 9i
9f = log(d%,,) (6.5)
h
g .
g; = log(5f) (6.6)

(2

Leong(z,c) Z z log((e — Z log(&) (6.7)
1€Pos i€Neg
exp(c})
tY ern(d))

A

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
110 Using Camera data

Lzl g) = %(me(x, &)+ alioe(,1, 9)) (6.9)

Where N indicates the number of matches default boxes, 1 represents the
predicted boxes, g the ground truth boxes, x the coordinates of the bounding
boxes and ¢ the classes confidences. These parameters also include the offset
for the center points (cx, cy), the width of the box (w) and its height (h).

The object detector was built based on public pre-trained models avai-
lable in multiple DL libraries such as MXNet (25) or TensorFlow Lite (26).
These DL framework were designed by different companies but they share
the same goal, to reduce the resource requirements during the training and
inference phases. In this paper we will not aim to train the DL, model at the
network edge. Nevertheless, these frameworks increase the efficiency of the
inference process and reduce the model size.

The pre-trained DL model was used to extract a first iteration of the
labels from a reduced number of frames from the camera data. These labels
needed to be filtered in order to remove not relevant classes as well as adding
new classes. After this step, the new labels are used to train a new DL model
for object detection using transfer learning. This technique was used due to
the reduced dimension of the new dataset. This new model will be used
to generate labels from more frames, increasing the number of samples in
our specific dataset as shown in Figure 6.5. This iterative process can lead
to exponential errors if the labels are not correct. Therefore, an inspection
of the new data will be executed after the first re-training phases, which
are the most critical. This ensures the correct application of this approach.
The iterative process will finish once the dimensions of the dataset are large
enough to ensure an accuracy of the model over 90 % in the data of our
experiment.

Retrain DL
model

frames Object Detector dataset

Extract new

Tt s <:| labels from
data

new frames

Figure 6.5: Dataset creation.

After training our object detector, labels from the camera data can be
generated automatically. These labels may not be relevant for the sensor
fusion, due to the fact that the camera may see objects which are not in the
range of the radar or they are not relevant for the sensor fusion. As a result,
these labels need to be preprocessed to remove non relevant targets before
the data fusion stage.

6.3. Sensor Fusion pipeline

111

Once the localization of the targets is extracted, it is possible to estimate
the angle of arrival of those objects based on their coordinates. The resolution
of the camera images plays a key role in this process since it is directly
proportional to the precision of the AoA estimation in the camera data.
This process is based on assuming an AoA of 0° for targets located in the
center of the image and it increases as the targets moves to the right side of
the camera frame, as the AoA extracted from the radar data.

In order to ensure the correct measurement of this parameter, these values
have been calibrated with the AoA from the radar data. At the same time,
the distance of the targets to the camera sensor can be extracted after a
calibration based on the specific scenario. As a result of this, the X and
Y coordinates of the targets in the camera data can be transformed into
distance and AoA measurements. These features will be used for the data
fusion process further explained in the next subsection.

6.3.3. Data Fusion

The previous preprocessing techniques provide relevant features from the
raw camera and radar data. These features are shown in Table 6.1.

Features

Radar sensor Cluster AoA in radar Speed Distance

Camera sensor | Classification | AoA in camera | Localization | Target groups

Table 6.1: Features extracted from each sensor data.

Before fusing the data, a correct synchronization of the data from both
sensors is crucial. To enable this, timestamps have being added to the data
during the recording phase. However, the frame rate of both sensors may not
be the same. Therefore, the sensor with the highest latency will be used as
the standard latency of the system during the synchronization. A possible
delay in the timestamps between the sensors has been taking into account
during the synchronization step. Therefore, the data will be matched with
the nearest data in the time domain.

The labeling process is triggered when a target is detected in the camera
data. Therefore targets that are not detected by this sensor, such as highly
covered targets or partially visible targets may not be labeled. At this point,
the targets localized in the camera are compared with the clusters from
the RDM image based on the distance of the targets respect the recording
system. The distance between the camera and radar sensors of the system is
reduced enough to be able to be ignored in comparison with the distance of
the studied targets.

One more limitation of the framework is the difference in the of View
(FoV) of both sensors. Since our approach is based on comparing the targets

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
112 Using Camera data

found in each sensor’s FoV, if the overlapping of the FoV of the studied
sensors is not total, there may be targets that are not found by all the
sensors. In order to overcome this, only the intersection FoV of these sensors
has been studied for the label creation. Another implemented approach to
reduce the impact of this limitation is the use of labels from previous frames.
By knowing where a target was in a previous frame as well as its speed
(extracted from the RDM), it is possible to estimate where it will be located
in the current frame. The estimation of the location of the known targets is
used to locate relevant areas in the RDM image as well as clusters what may
have not being detected initially or when the reflection power of the radar
signal was not powerful enough in that frame.

At the same time, to distinguish targets at the same distance, the mea-
sured AoA from both sensors is used as auxiliary parameter to ensure the
correct labeling. Because of the difference in the resolution of both sensors,
an error range of 5° has been included in the algorithm. As a result, the
AoA from both sensors does not have to be exactly the same. This approach
solves multiple problems due to angle offset between the sensors as well as
noise in the data.

There are multiple algorithms to extract the AoA from the radar data
in the literature. Among all the methods, the beamforming method (27)
was chosen for the experiment. In this technique, the angle is calculated by
coherently summing the signals from different receiving channels.

Since this tool should be understood as a first approach for the dataset
labeling process, it also generates a text file with relevant information after
its execution. This file contains information such as the path for the data
and the number of the frames that need to be reviewed. The revision may
be necessary because of targets in the camera data that did not match with
any cluster of the RDM. This will only be reported when these targets are
located in an area where the radar should be able to detect them. Similarly,
it will also report cases where there are unmatched clusters in the RDM. As
a result of this, the reviewing process can be executed efficiently rather than
having to study all the labeled frames.

In order to evaluate the performance of the proposed framework, an ex-
periment has been executed and explained in the next section.

6.4. Experiment

In this section, we evaluate the designed framework on a custom proprie-
tary dataset created by Infineon specifically for this application. Our goal
is to compare the accuracy of the labeling process and its latency with a
traditional approach of labeling the data manually as well as some state-of-
the-art techniques. The techniques used for the comparison are described in
(1)(2)(28)(11). These baseline techniques were selected due to the state-of-

6.4. Experiment 113

the-art results obtained in similar fields as the one research in our paper.
Next, we describe the dataset and how it was built.

6.4.1. Dataset

The previously explained framework was tested to label data from radar
sensors in a vehicle context where all the studied frames include relevant
targets for the application. This main dataset was generated with data from
two different locations: Singapore Polytechnic Campus, shown in Figure 6,
and Infineon Singapore Campus, shown in Figure 7. The height of the sensors
in these locations was different to fit the location as well as gather data from
different conditions to create a general dataset. The height of the sensors
was 5 and 2.3 meters for the chosen locations respectively.

The relevant categories that have been used for the classification of the
labels are: pedestrian, car, truck, bicycle, motorbike and personal mobility
device (PMD). The last category was not included in any public-pretrained
object detector leading to the test of the addition of new categories in the
pipeline. The distribution of the classes has been studied to ensure there are
no imbalanced classes during the training phase of the DL model.

Figure 6.6: Samples of pairs of images used to label the RDM images.

The Figure 6.6 shows some examples of the pair of images from both
sensors included in the mentioned dataset. The initial labels for our dataset
have been created manually including target classification and 2D bounding
boxes.

An additional dataset was generated using different radar and camera
sensors as well as a different scenario to test the tool developed with the
previous dataset. This reduced dataset contains 50 frames with 2 target
classes (vehicle and obstacle). In this case, the sensors were integrated in a
reduced scale vehicle where the height of the sensors was 30 centimeters to
the floor. An example of camera and radar RDM input data from the second
dataset is shown in Figure 6.8.

114

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images

Using Camera data

Size of the model | TP | FP | FN | Accuracy
132.18 KB 961 | 27 | 12 92.1%

Table 6.2: Results and specifications of the Object Detector.

6.4.2. Hardware architecture

Both sensors researched in our paper, in the main dataset, for the Sensor
Fusion were controlled by a Rasberry Pi 3 device. This device was used to
ensure the synchronization of the data during the data gathering.

As previously explained, the radar sensor used in the main dataset is
a Multiple-input-multiple-output (MIMO) frequency modulated continuous
wave (FMCW) radar with four channels developed by Infineon Technologies
AG. This radar sensor can detect targets until a distance of 40 meters with a
resolution of 1.25 meters because of its configuration, what make suitable for
this application. Depending on the manufacturer, the initial parameters of
the radar sensor may variate from the one used in this experiment. However,
RDM images can be generated with other configurations resulting in the
RDM format studied in this paper. In our case, the configuration of the
radar sensor used in the main dataset is 24 GHz for the center frequency,
200 MHz for the bandwidth, 64 samples per chirp and 256 chirps per frame.

The camera sensor used in the main dataset is an optical camera for
Raspberry Pi model IMX219PQ. This camera sensor can record data at a
maximum frame rate of 60 frame/second. However, the frame rate used in
this project is 6 frames/sec in order to reduce the memory consumption of
the data. Multiple recording sessions in two different scenarios were executed
to collect enough data for the training and evaluation of the algorithms.

6.4.3. Deep Learning model

An iterative process has been executed in order to train an object detector
for the camera data as explained in Subsection 3.2. This approach has been
followed due to the fact that new classes, which were not present in previous
object detectors, have been included for this experiment. The pre-trained
model used was a SSD structure based on ResNet50 backbone.

This pre-trained model was used to extract 774 labels from 100 camera
images. These labels were filtered to correct labels corresponding to new
classes, in this case PMD, as well as removing wrong labels. These labels were
used to re-train the model in order to fit our specific application achieving an
accuracy of 46.72 % in the first iteration (measured as the correct predictions
over the wrong predictions and false negative results). The iterative process
was executed 10 times adding 100 new camera pictures in each iteration. The
information about the last iteration of the re-training phase of the model is
shown in Table 6.2.

6.4. Experiment

115

The DL library used for the training of this model was MXNet because
of its focus on low-resource devices. This leads to optimize the DNN during
the design phase, leading to a faster inference process.

6.4.4. Evaluation

Once the labels for the camera data are generated with this new DL
model, the distance of the targets has been estimated based on some came-
ra calibrations. These calibrations consists on the comparison of manually
labeled targets in the RDM as well as the camera frames to determine the
relationship between the coordinates in the camera image and the real dis-
tance. At the same time, the synchronization of the data was ensure by the
comparison of the timestamps of the data.

The Intersection over Union (IOU) technique has been used to compare
the predicted bounding box labels of the proposed framework and the ground
truth labels. IOU is an evaluation metric commonly used to measure the
accuracy of object detector DNNs. This technique can be applied to any
system that predicts bounding boxes in scenarios where the ground truth is
known. An IOU result above 0.5 is normally considered as a good prediction.
The algorithm itself is explained in (6.10) where A means the ground truth
bounding box and B the predicted bounding box.

ANB
AUB

Using the features previously explained as well as the rule system explai-
ned in Subsection 3.3, the data from both sensors was fused to generate labels
for the RDM data, as shown in Figure 6.7. The accuracy results obtained
using the proposed framework are shown in Table 6.3. The mean average
precision (mAP) is also shown in this table. The global system works as
an object detector for the RDM images, locating relevant targets as well as
classifying them. Therefore, in Table 6.3 only the true positive, false positive
and false negative are studied due to the fact that there is no true negative
results in this approach.

10U =

(6.10)

@) (b)

Figure 6.7: (a) Image extracted from the Object detector using the camera
data. (b) Result of the sensor fusion approach proposed in this paper.

CPU and GPU time gain cannot be accurately compared with objective

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
116 Using Camera data

measures since a CPU and a GPU have a very different hardware architec-
ture. However, these times can be used as an orientation of the time the tool
requires for the labeling process. The CPU and GPU used are the E5-2643
v3 and a NVIDIA Tesla P4 GPU respectively. The speed of the tool in these
platforms, including all the required preprocessing of the data before the
labeling process, has been shown in Table 6.3. These times can also be used
to test the possibility of using small Edge Al devices equipped with GPU
capability to achieve a good performance in time complexity being compared
even with a desktop CPU.

Average speed of process | TP | FP | FN mAP
3 frames/sec (GPU) 2474 | 541 | 2079 | 82.056 %
0.667 frames/sec (CPU) | 2474 | 541 | 2079 | 82.056 %

Table 6.3: Results of the automatic label creation process.

These results can be further analyzed by studying the accuracy achieved
by the proposed tool in each of the scenarios of the dataset, as shown in
Table 6.4. This table shows how the accuracy in both scenarios is similar
but the results in the Singapore Polytechnic Campus are higher. This might
be due to the fact this scenario has less objects near the sensors that could
difficult the target location as well as provide a more general view of the
scenario.

Location mAP
Singapore Polytechnic Campus | 85.260 %
Infineon Singapore Campus | 80.730 %

Table 6.4: Results of the automatic label creation process in each of the
scenarios.

The second dataset was used to test the developed approach. Conse-
quently, the tool was also evaluated in the 50 frames of the second dataset
which was recorded using a different radar sensor from the main dataset.
This second dataset s radar is the Infineon’s BGT60TR13C 60 GHz radar
sensor (29). The configuration of this sensor was 60.7 GHz for the center
frequency, 1 GHz for the studied bandwidth, 128 samples per chirp and 64
chirps per frame. The camera sensor used for the data gathering of this da-
taset was a 5 MP Raspberry Pi camera, with a viewing angle of 160°. An
example of the data contained in this dataset is shown in Figure 6.8.

The final accuracy achieved in this dataset was 87.61 %. This result
should be understood as a proof of the suitability of the proposed frame-
work for multiple sensors and scenarios.

In order to compare the time reduction achieved by using this automatic
labeling tool, the same dataset has been labeled manually and using the

6.4. Experiment

117

Figure 6.8: Camera and radar range Doppler map image from the second
dataset.

Technique initial mAP | Average speed
Our approach 82.056 % 3 frames/sec
K. Patel et al. (2) 65.30 % 2 frames/sec
F. Nobis et al. (1) 57.50 % -
T.Y. Lim et al. (16) 73.5% 40 frames/sec
T. Winterling et al. (11) 94.93 % -

Table 6.5: Comparison of results achieves with other techniques.

proposed tool. The required time to label 400 frames manually was 5 hours.
On the other hand, when using the proposed autolabeling framework, the
required time for the same task was reduced to 6 minutes (using a GPU
platform). Therefore, the time reduction achieve in this dataset was 96.76 %
respect to the manual labeling process. When using a CPU platform, the
time required to use the tool increased, leading to an inferior time reduction
of 85.01 % respect to the manual labeling process.

Other emerging techniques for object detection based on radar and ca-
mera, such as the technique proposed in (2), were able to achieve higher
accuracy than our technique. However, these results are based on the study
of multiple frames for the target tracking to enable high accuracy results.
If the results are compared only when the system study a single frame, the
initial accuracy of (2) is reduced considerably to the point where the accu-
racy of our technique outperforms it. The time required to process the data
has also been improved in our technique in comparison with the K. Patel et
al. technique (2).

As shown in Table 6.5, multiple authors do not include the speed of their
proposed algorithms in their papers. Therefore, the latency of our system
can only be compared with the technique proposed in (2) and (16).

The results obtained in (11), as well as the results from (2) (if we include
the tracking system to study multiple frames), achieved a higher accuracy
than our proposed framework. However, (11) is able to achieve these results
through an iterative approach where human interaction is still required to
manually label part of the dataset in each iteration. At the same time, the

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images
118 Using Camera data

technique was not tested with multi-class data, in contrast with our technique
which is able to detect multiple targets in the same frame. Due to the fact
that our goal is to create a fully automatic process, the human interaction
in our technique is minimal but this is a trade off with the final accuracy
achieved.

On the other hand, in (2), the high performance results were obtained
after applying a tracking technique to correct wrong classification as well
as unclassified objects. This tracking system also increases the complexity
as well as the memory consumption of this technique. In a first stage, the
average accuracy results obtained are 62.95 %, where our technique outper-
forms achieving an 82.06 % accuracy. It is important to remark the techni-
ques compared with our approach were tested under a different dataset since
NuScenes dataset does not provide range Doppler maps, which are required
for our framework.

The proposed pipeline by F. Nobis in (1) is based on extracting 2D points
from the radar data before the fusing process, what enable its direct compa-
tibility with other sensors such as LiDAR sensors. This generalization of the
input data format as well as their Early Fusion approach may be some of
the reasons of its low accuracy results (57.50 %) in comparison with out tool
(82.056 %) and the rest of algorithms compared. However, it is important to
mention this approach may not provide high accuracy as other techniques
but enables its implementation in a wider sensor scenario.

The same conclusion can be extracted from the proposed algorithm by
T.Y Lim et al. (16). Since this author also designed an Early Fusion tech-
nique based on DNNs, the limitations of their technique is the same as (1).
However, this author achieves a higher accuracy than (1) because of the
different data format enabling a pyramid network structure. Nevertheless,
this approach still achieves lower accuracy than the rest of the compared
algorithms due to the lack of control over the preprocessing of the data and
the evaluation of these preprocessing techniques. On the other hand, due to
the fact that this algorithm does not execute a previous deep preprocessing,
the system “s speed is higher than other techniques, achieving 40 frames /sec.
Therefore it is possible to see this as a trade-off between accuracy and fra-
me rate. Nevertheless, we focus on achieving high accuracy results (8.556 %
higher than the T.Y Lim et al. technique (16)) since accurate labels are
required, otherwise the usefulness of the framework would be decreased.

It is also important to remark all the previously commented approaches
predict bounding boxes for targets in camera data. Therefore the radar data
is used as support/reinforcement data. On our framework, the goal is to
generate bounding boxes for the RDM images using the camera data to
extract relevant features for this task. As a consequence of this, the previous
comparisons are used as an orientation of the accuracy in comparison with
the state of the art.

6.5. Conclusions

119

6.5. Conclusions

An efficient Sensor Fusion framework to automatically generate labels for
range Doppler maps has been described in this paper. An experiment where
this framework has been evaluated has been explained as an use-case of this
framework for the industry. The tool provided high accuracy results while
maintaining low-resource requirement and low latency in this experiment.

The proposed technique is based on multiple state-of-the-art sensor fusion
algorithms, extracting the advantages from each of them to further improve
the system. Difficulties and solutions to process the required data in our
algorithm have been discussed in this paper. We show that the fusion of
radar and camera data does not require complex structures to achieve high
accuracy results while maintaining low latency. This lends justification to a
variety of new sensor fusion algorithms where the algorithms are optimized
for radar and camera sensor.

The proposed pipeline approach in our paper is flexible enough to be ap-
plied with other sensors and environment conditions. As an example, LiDAR
sensors could be used instead of camera sensors to label the data to train
the stand-alone radar-based target detection system. This could overcome
traditional camera/vision sensor approach regarding adverse environmental
conditions (i.e. lighting, reflections, etc.). In future works, we will attempt
to fuse data coming from different heterogeneous sensors, such as LiDAR,
radar and camera, to overcome the sensor limitations in environment data
gathering.

All the experiments to test the proposed labeling tool were executed in
multiple computer platforms as previously described in Section 4. However,
the final goal of this tool is to be implemented at the network edge. For
this reason, the Al model integrated in the proposed pipeline was developed
taking into account the restrictions of memory available in Edge devices.
Therefore, it would be possible to move its execution to the network edge
where it could execute the data gathering and labeling simultaneously if the
Edge device where it is implemented has enough resources.

References

[1] F. Nobis, M. Geisslinger, M. Weber, J. Betz, and J. Lienkamp. A Deep
Learning-based Radar and Camera Sensor Fusion Architecture for Ob-
ject Detection. 2019 Sensor Data Fusion: Trends, Solutions, Applica-
tions (SDF), Bonn, Germany, pages 1-7, 2019.

[2] Kanil Patel, Kilian Rambach, Tristan Visentin, Daniel Rusev, Michael
Pfeiffer, and Bin Yang. Deep Learning-based Object Classification on

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images

120

Using Camera data

3]

4]

15]

(6]

17l

8]

19]

[10]

[11]

[12]

Automotive Radar Spectra. 2019 IEEE Radar Conference (RadarConf),
Boston, MA, USA, pages 1-6, 2019.

H. Han, J. Kim, J. Park, Y. Lee, H. Jo, Y. Park, E. T. Matson, and
S. Park. Object classification on raw radar data using convolutional
neural networks. 2019 IEEE Sensors Applications Symposium (SAS),
Sophia Antipolis, France, pages 1-6, 2019.

J. Lombacher, M. Hahn, J. Dickmann, and C. Wéhler. Object classifica-
tion in radar using ensemble methods. 2017 IEEE MTT-S International
Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya,
pages 87-90, 2017.

N. del-Rey-Maestre, M. Jarabo-Amores, D. Mata-Moya, J. Béarcena-
Humanes, and P. G. del Hoyo. Machine learning techniques for coherent
cfar detection based on statistical modeling of uhf passive ground clut-
ter. IEEE Journal of Selected Topics in Signal Processing, 12(1):104—
118, 2018.

S. Zhu, J. Xu, H. Guo, Q. Liu, S. Wu, and H. Wang. Indoor Human Ac-
tivity Recognition Based on Ambient Radar with Signal Processing and
Machine Learning. IEEFE International Conference on Communications
(1CC), Kansas City, MO, pages 1-6, 2018.

L. Li, Y. Lv, and F. Wang. Traffic signal timing via deep reinforcement
learning. IEEE/CAA Journal of Automatica Sinica, 3(3):247-254, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Gra-
ves, loannis Antonoglou, Daan Wierstra, and Martin Riedmiller.
Playing Atari with Deep Reinforcement Learning. [Online/ in
https://arziv.org/abs/1312.5602, 2013.

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, Da-
vid Fouhey, Ivan Laptev, and Josef Sivic. Cross-Task Weakly Supervised
Learning From Instructional Videos. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

V. Havli¢ek, A.D. Corcoles, and K. et al Temme. Supervised learning
with quantum-enhanced feature spaces. Nature, 567:209-212, 2019.

T. Winterling, J. Lombacher, M. Hahn, J. Dickmann, and C. Wahler.
Optimizing labelling on radar-based grid maps using active learning. In
2017 18th International Radar Symposium (IRS), pages 1-6, 2017.

J. Tang and P. H. Lewis. A study of quality issues for image auto-
annotation with the corel dataset. IEEE Transactions on Chircuits and
Systems for Video Technology, 17(3):384-389, 2007.

REFERENCES

121

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Maurilio Di Cicco, Ciro Potena, Giorgio Grisetti, and Alberto Pretto.
Automatic model based dataset generation for fast and accurate crop
and weeds detection. 12 2016.

Markus Suchi, Timothy Patten, David Fischinger, and Markus Vincze.
Easylabel: A semi-automatic pixel-wise object annotation tool for crea-
ting robotic rgb-d datasets. 05 2019.

Gabriel Meseguer-Brocal, Alice Cohen-Hadria, and Geoffroy Peeters.
Dali: a large dataset of synchronized audio, lyrics and notes, automa-
tically created using teacher-student machine learning paradigm. 06
2019.

Teck-Yian Lim, Amin Ansari, Bence Major, Daniel Fontijne, Michael
Hamilton, Radhika Gowaikar, and Sundar Subramanian. Radar and
camera early fusion for vehicle detection in advanced driver assistance
systems. pages 1-11, 2019.

Z. Ji and D.V. Prokhorove. Radar-vision fusion for object classification.
11th International Conference on Information Fusion, 2008.

J. Kocic, N. Jovicic, and V. Drndarevic. Sensors and sensor fusion in
autonomous vehicles. in TELFOR 2018. Belgrade: Telecommunications
Society and Academic Mind, pages 420-425, 2018.

X. Zhang, M. Zhou, P. Qiu, Y. Huang, and J. Li. Radar and vision
fusion for the real-time obstacle detection and identification. Industrial
Robot: the international journal of robotics research and application,

46(3):391-395, 2019.

Pinar Duygulu, Kobus Barnard, Joao Freitas, and David Forsyth. Ob-
ject recognition as machine translation: Learning a lexicon for a fixed
image vocabulary. volume 2353, pages 349-354, 03 2002.

H. Rohling. Radar CFAR Thresholding in Clutter and Multiple Target
Situations. IFEE Transactions on Aerospace and Electronic Systems,
AES-19(4):608-621, 1983.

F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg. A CFAR
adaptive matched filter detector. IEEE Transactions on Aerospace and
Electronic Systems, 28(1):208-216, 1992.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot Mul-
tiBox Detector. Lecture Notes in Computer Science, pages 21-37, 2016.

CHAPTER 6. Automatic Label Creation Framework for FMCW Radar Images

122

Using Camera data

[24]

[25]
[26]

[27]

28]

[29]

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal Net-
works. Advances in Neural Information Processing Systems, 28:91-99,
2015.

Apache. Mxnet deep learning framework. Accessed: 20 of April 2020.

Google. Tensorflow lite deep learning framework. Accessed: 20 of April
2020.

S. Chandran. Smart antennas for wireless communications (with
matlab) (gross, f.; 2005) [reviews and abstracts|. IEEE Antennas and
Propagation Magazine, 51(3):134-134, 20009.

K. Kim, C. Lee, D. Pae, and M. Lim. Sensor fusion for vehicle tracking
with camera and radar sensor. 17th International Conference on Con-
trol, Automation and Systems (ICCAS), Jeju, pages 1075-1077, 2017.

Thomas Stadelmayer, Avik Santra, Robert Weigel, and Fabian Lurz.
Parametric convolutional neural network for radar-based human activity
classification using raw adc data. TechRziv, Sep, 2, 2020.

Chapter 7

Camera-LiDAR Multi-Level
Sensor Fusion for Target
Detection at the Network Edge

It is during our darkest moments that we
must focus to see the light

Aristoteles

Javier Mendez!"2, Miguel Molina'?, Noel Rodriguez?, Manuel P.
Cuellar?, Diego P. Morales?.

1. Infineon Technologies AG, Am Campeon 1-15, 85579 Neu-
biberg, Germany

2. Department of Electronic and Computer Technology, Univer-
sity of Granada, Avenida de Fuente Nueva s/n, Granada, 18071,
Spain

3. Department of Computer science and Al, University of Gra-
nada, Avenida de Fuente Nueva s/n, Granada, 18071, Spain

MDPI Sensors

= Received May 2021, Accepted June 2021, Published June 2021
= 10.3390/s21123992
= Impact factor: 3.367

» JCR Rank: 14/64 in category Instruments and instrumentations (Q1)

123

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at

124

the Network Edge

ABSTRACT: There have been significant advances regarding target
detection in the autonomous vehicle context. To develop more robust
systems that can overcome weather hazards as well as sensor problems,
the sensor fusion approach is taking the lead in this context. Laser Ima-
ging Detection and Ranging (LiDAR) and camera sensors are two of
the most used sensors for this task since they can accurately provide
important features such as target “s depth and shape. However, most
of the current state-of-the-art target detection algorithms for autono-
mous cars do not take into consideration the hardware limitations of
the vehicle such as the reduced computing power in comparison with
Cloud servers as well as the reduced latency. In this work, we propose
Edge Computing Tensor Processing Unit (TPU) devices as hardware
support due to their computing capabilities for machine learning al-
gorithms as well as their reduced power consumption. We developed
an accurate and small target detection model for these devices. Our
proposed Multi-Level Sensor Fusion model has been optimized for the
network edge, specifically for the Google Coral TPU. As a result, high
accuracy results are obtained while reducing the memory consumption
as well as the latency of the system using the challenging KITTI da-
taset.

Keywords: Sensor fusion; Deep Learning; Edge Computing; Came-
ra sensor; LiDAR sensor; Target detection.

7.1. Introduction

The interest in autonomous vehicles has increased in recent years due
to the advances in multiple engineering fields such as machine learning, ro-
botic systems and sensor fusion (1). The progress of these techniques leads
to more robust and trustworthy computer vision algorithms. Using sensors
such as Laser Imaging Detection and Ranging (LiDAR), radar, camera or ul-
trasonic sensors with these techniques enables the system to detect relevant
targets in highly dynamic surrounding scenarios. These targets may include
pedestrians, cyclists, cars or motorbikes among others, as discussed in public
autonomous car datasets (2; 3).

Computer vision algorithms such as You Only Look Once (YOLO) (4),
Region based Convolutional Neural Network (R-CNN) (5), Fast R-CNN (6)
or Single Shot Detector (SSD) (7) have been designed upon the previously
mentioned sensors leading to numerous models for target detection. These
models calculate the score of the bounding box location for each detected
target as well as its classification based on high-level features generated by
using Convolutional Neural Networks (CNN). Nevertheless, these models are
not robust since the use of only one sensor may result in target detection
problems in hazard situations. There are machine learning (ML) attacks
that can affect single sensor models such as models only based on camera

7.1. Introduction

125

data. These attacks slightly modify target data in a scene to get a different
classification result (8; 9; 10). In addition, sensor data information can be
degraded due to weather conditions (11; 12; 13). Other sensors can also be
attacked with similar results, as is the case of the LIDAR (14; 15) or radar
(16; 17).

One viable option to improve the reliability of these systems as well as
to improve the accuracy of the results is the sensor fusion. This technique
implements a system with multiple data sources to complement the inputs.
This approach results in a more complete knowledge of the scenario for a
better computer vision. The sensor fusion approach can be divided into mul-
tiple techniques: Early Fusion, Late Fusion and Intermediate Fusion (18).
In the Farly Fusion the raw data or low-level preprocessed data is combined
to generate a more complete raw data while in Late Fusion high-level featu-
res such as target location are merged for a better final result. Intermediate
Fusion can be understood as a combination of both previous techniques in
which the data is merged at multiple levels to effectively find the merged
representation of multiple input data (19). Recently, some authors have pro-
posed computer vision models based on these approaches (19; 11; 20).

Most of these studies focus on improving the detection algorithms without
taking into account the constraints imposed by the autonomous vehicle in-
dustry of latency and privacy to ensure the safety of the passengers (1). At
the same time, the limitations of the final system in which the models should
be integrated must be studied to ensure the suitability of the models for the
system regarding memory and computing power requirements due to the
specifications of the processing units deployed at the network edge (21; 22).
Because of this, in our paper we focused on researching a sensor fusion algo-
rithm that can be deployed in edge devices. These devices are meant to work
without a high frequency communication with external devices to process
the data at the network edge. One of the advantages of this is the increa-
se of the security of the raw data since it is not broadcast to an external
device. However, they have constraints regarding memory in the device and
computing power due to their size and energy consumption.

Our proposed algorithm is based on the fusion of LiDAR and camera da-
ta. LIDAR data provides reliable information of depth and target presence
which can complement the high-quality camera image data of the surroun-
dings for the target classification. Consequently, the LiDAR provides further
information about the relevant areas of the camera image. The combination
of these sensors can be used to ensure the presence of the targets and to
provide a solution for scenarios where one of the sensors does not provide
data. Our algorithm, called Multi-Level Sensor Fusion (MLSF), executes the
data fusion at multiple levels using the Intermediate Fusion as a bidirec-
tional reinforcement approach for both input data. A new layer structure,
fusion layer, has been integrated in the proposed deep learning model. This

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
126 the Network Edge

layer generates a shared feature map which is later used as a mask for the
feature map of the LiDAR and camera to further extract relevant features
before the final target localization and classification. Because of this, the
target detection results significantly improve. The latency and memory con-
sumption have been used as constraints during the design of the model to
ensure its suitability for the network edge, specifically the Google Coral TPU
edge device.

This model has been evaluated using the challenging KITTI dataset (2),
where it achieves a final latency of 0.057 seconds and accuracy of 90.92 %,
87.81 % and 79.63 % for easy, medium and hard to detect targets.

The manuscript is organized as follows: Section 7.2 focuses on related
works to the addressed problem. In Section 7.3, the proposed Deep Fusion
Network is described for a deep understanding of its structure as well as the
used input data. After that, Section 7.4 will focus on the experiment where
this algorithm has been applied, and finally Section 7.5 is the conclusion.

7.2. Related Works

Since autonomous vehicles are a current trend, numerous authors are
researching the sensor fusion applied to this topic in order to improve the
state-of-the-art accuracy results. As previously mentioned, some of them re-
search single-sensor scenarios for target detection in the autonomous vehicle
paradigm such as Deep Manta (23). This model uses only the data from a
monocular camera to generate 2D and 3D bounding boxes as well as clas-
sification for targets. At the same time, this model provides information
regarding the visibility of each of the targets” parts, making it suitable for
annotation tasks. However, due to its numerous algorithms to extract the lo-
cation information of each part of the target, its visibility and classification,
this model has high execution times in comparison with other techniques
such as our proposed model.

Nevertheless, numerous authors are starting to research the use of LIiDAR
sensors for mapping and detection due to the accuracy of this sensor to ge-
nerate point clouds based on the surfaces in the environment. This sensor
has been applied to other research topics apart from autonomous vehicles; it
is used in the agricultural industry to generate accurate maps. M.P. Chris-
tiansen et al. (24) developed a UAV Mapping System for Agricultural Field
Surveying where LiDAR data was gathered using an Unmanned Aerial Vehi-
cle (UAV) device. Global Navigation Satellite System (GNSS) and Inertial
Measurement Unit (IMU) sensors were also integrated in the device in order
for the point cloud reconstruction based on multiple frames to be later used
for tasks such as estimation of the soil surface and total plant volume. Fo-
llowing the same research line, A. Patil et al. (25) proposed a framework to
align LiDAR and video data using a point cloud registration algorithm. By

7.2. Related Works

127

using this framework in five different experiments, they proved how it can
help to reduce the time to complete retrofitting tasks by 20 % on average.

LiDAR sensors have also been used for other topics such as autonomous
cars. One of the authors who researched this topic is J.Zarzar. This author
proposed a target detection algorithm, Point RGCN, based on a single LIDAR
sensor (26). This algorithm is based on Graph Convolutional Networks inte-
grated in a multiple 3D object detection pipeline. By doing so, the bounding
boxes can be refined multiple times to achieve state-of-the-art accuracy re-
sults. Nevertheless, even if the model provides high accuracy results, it faces
the same problems previously stated with the Deep Manta model regarding
adversarial attacks or lack of information.

Similar to our proposed algorithm, other researchers are studying the
implementation of a sensor fusion technique for target detection. One of the
proposed algorithms following this research line is the Camera-LiDAR, Ob-
ject Candidates Fusion (CLOCs) Deep Neural Network (DNN) architecture
proposed by S. Pang et al. (27). This network combines LiDAR and camera
data to locate and classify targets in 2D and 3D. Depending on the desired
target detection, 2D or 3D, the system uses different perspectives obtained
from the raw LiDAR data. As a result, this technique provides high accuracy
location and classification of the targets in 2D and 3D. However, due to the
complexity of its detectors, its memory consumption may not be suitable for
the current edge devices.

[-15]Following the same research line for target detection using sensor
fusion, J. Kim et al. (19) proposed a DNN to combine LiDAR depth maps
and camera images. Its approach is based on extracting relevant features
from both sensor data independently using the VGG-16 structure (28) before
fusing the output feature maps at multiple levels. This approach is similar
to our proposed network; however, we included the option of ignoring the
result of the previous fusion layers to avoid including not highly relevant data
in the final data fusion step. This leads to a more efficient approach where
only relevant information is further studied. At the same time, this model
presents the same problem regarding the network edge as the CLOCS Deep
Neural Network. Due to the detector implemented as well as the structure
of the layer used for the data fusion, the latency and memory consumption
are larger than that obtained with our model.

LiDAR and camera are not the only sensors researched for target de-
tection in the vehicle context. Other authors research techniques based on
different devices such as camera, radar or ultrasonic sensors due to the high
cost of the LIDAR sensors. Because of this, F. Nobis et al. (11) researched
the fusion of radar and camera data for this task. In this pipeline, the ra-
dar data is preprocessed to generate 2D coordinates in the horizontal plane
which could belong to possible targets. Their approach was based on DNN
where the data is fused on multiple levels. During the training phase of the

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
128 the Network Edge

model, the weight configuration of the DNN establishes at what level the
fusion is more effective to obtain the desired output. The accuracy achieved
with this pipeline in the NuScenes (3) dataset is 55.99 %, requiring 56 ms to
study each frame.

Therefore, it can be observed how multiple approaches for the target
detection are being researched and provide high accuracy results in some
of the most popular datasets such as KITTI or NuScenes. In the case of
single-sensor models, the problem of adversarial attacks or problems during
the data acquisition are not solved, as (11) explains. This is one of the
most relevant reasons to use a sensor fusion approach as other previously
mentioned authors have done (11; 19; 27). However, none of these models take
into account the constraints of the autonomous driving industry regarding
latency and memory consumption. Because of this, our research faces the
problem of the target detection from the Edge Computing perspective. The
model integrates detectors that have been proven to provide state-of-the-
art results at the network edge while also optimizing the model at layer and
network level. Therefore, our proposed model considers the constraints of the
autonomous vehicles paradigm while maintaining state-of-the-art accuracy
results. A deeper comparison of the mentioned techniques, as our model, is
shown in Section 7.4.

7.3. Proposed Multi-Level Sensor Fusion Network

The proposed Multi-Level Sensor Fusion (MLSF) Network aims to de-
tect targets in the camera data by integrating LIDAR data as reinforcement
data. Camera and LiDAR data are fused through this network at multiple
levels, enabling the system to merge the features at the specific level or levels
decided during the training phase of the model. The SSD (7) structure has
been used as a reference for the proposed network due to its reduced memory
consumption while maintaining high-performance accuracy results.

In order to optimize the process as well as the memory consumption, the
LiDAR data preprocessing has been studied to reduce its dimensions while
maintaining most of its relevant features for the object detection before it is
fed into our proposed model.

7.3.1. LiDAR Depth Map Representation

A Laser Imaging Detection and Ranging (LiDAR) sensor has been used
in this project to gather information regarding the environment. Differently
from the camera, the LiDAR sensor transmits laser pulses and measures the
time it takes until a reflection is received. Based on this, it calculates the
distance of the target and its 3D coordinates since the angles used to send the
laser pulse and the distance are known. Consequently, this sensor provides

7.3. Proposed Multi-Level Sensor Fusion Network

129

information regarding surfaces rather than only images as the camera does.

The order of these 3D points, (z, y, z), in datasets such as KITTT (2)
and NuScenes (3) public datasets cannot be ensured since it depends on
the sensor used to gather data as well as the environment. Therefore, it is
usually assumed that the order of the points is unknown, unlike pixel arrays
in images. In consequence, their integration in DNNs is not straightforward
since the network must be invariant to these permutations of the input data
in the feeding order.

To overcome this challenge, the voxel grid approach is applied by nume-
rous authors by using 3D-CNN (29; 20). However, this technique increases
the complexity of the DNN, leading to larger models, and uses layer structu-
res that are not supported by some edge devices such as the 3D convolutional
layer. Therefore, rather than this technique, depth maps from LiDAR data
have been generated as shown in Figure 8.1. This technique ensures the low
memory consumption and latency of the model in comparison with the voxel
approach.

Figure 7.1: Camera images (left image in (a-d)) and LiDAR depth maps
generated from LiDAR raw data (right image in (a-d)).

Depth maps representations reduce the dimensions of the LiDAR data
to generate 2D images. The original 3D points are codified to generate these
images following (1)—(4) procedures for each point. These equations trans-
form the 3D points from Cartesian coordinates to the new representation
system.

T pepthMap = tan” * (ysp/zsp) (7.1)

dsp = \/x§D+y§D+z§D (7.2)

YDepthMap = 05~ (23p/d3p) (7.3)

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
130 the Network Edge

color pepthMap = d3D (7.4)

These new coordinates can be directly used for the representation of the
depth maps by adding the color component. Since the new data type is a
2D image, the SSD structure can be implemented for the feature extraction
from LiDAR depth maps. This preprocessing technique is applied to the raw
LiDAR data before being fed into our proposed MLSF model.

This preprocessing of the LIDAR data enables a memory consumption
reduction of 95.6 % to store the data when the depth maps are saved as 300
x 300 pixel images in comparison with the raw 3D point cloud.

7.3.2. Overall System Description

mobilenet Fusion Layers
. r = 1
LIDAR
Depth +—
map |
h conv_pad_&
___________________ conv_pad_12
— Detections
Camera |
data
cony_pad_6
conv_pad_12

Figure 7.2: Proposed Multi-Level Sensor Fusion network structure for target
detection.

The structure of the proposed Multi-Level Sensor Fusion network is
shown in Figure 8.3. The camera images as well as the LIDAR depth maps are
fed separately to our MLSF model. The two input data are studied using two
separated CNNs following the SSD structure to generate the feature maps
from each data type. These CNNs use the mobilenet network backbone. As
a result of this, the initial number of layers is smaller than other structures
such as VGGNet-16 used by other authors. The fusion of the feature maps
is executed by our fusion layers shown in Figure 7.3.

LIDAR Concat. 2D Conv D
- — Deeper
feature map layer layer LIDAR
feature ma
Concat. 2D Conv P
| — —
layer layer
Deeper
CarrEE Concat. 2D Conv | camera
feature map layer layer feature map

Figure 7.3: Proposed fusion layer.

7.3. Proposed Multi-Level Sensor Fusion Network

131

The fusion layers combine the feature maps from both CNNs by conca-
tenating them (in the channel axis) before applying a 2D convolutional filter
(3 x 3) with ReLU activation function. After this, the new feature map is
concatenated individually to each of the previous initial feature maps from
the LIDAR and camera data to generate deeper feature maps. To maintain
the shape of the initial feature map as well as to further process the data,
another 2D convolutional filter (1 x 1) with ReLU activation function is
applied to each of the new deeper feature maps. These feature maps can be
used in a later step as input for another fusion layer, enabling the system
to execute a multi-level fusion of the data. Because of this structure, the
network learns during the training phase at what level it must execute the
fusion of each feature extracted from the LiDAR and camera sensors.

In our network, four of these fusion layers have been implemented in
order to extract the information of the localization of the targets and another
four independent fusion layers for the classification. The initial feature maps
for the classification are extracted from the conv-pad-6 layer of the mobilenet
networks that process the camera and LiDAR data. For the localization, the
initial feature maps are extracted from the conv-pad-12 layer in each network.

Since our approach is based on the SSD structure, the loss function im-
plemented in the system is ruled by the SSD loss presented in (5)—(14).

N
Lige(w,l,g) = > > @-Sn (7.5)

1€ Pos me(cx,cy,w,h)

SLI = SmOOtthLl(llm — g]m) (7.6)
smoothr1 (I" — gj") (7.7)
g;* = (g5" —di*)/df (7.8)
3’ = (g5 — d*)/d} (7.9)

0 95
97 = log(d%) (7.10)
g"
g = log(d—]h) (7.11)
N

Leong(z,c) = — Z ai;log(&) — Z log(éY) (7.12)

1€Pos i€Neg

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at

132 the Network Edge
o -) 7.13
TS, ean(@) (719)
1
L(.%,l,g) = 7(Lconf(xac)+04Lloc($>l7g)) (7'14>

N

where N indicates the number of matching default boxes, [represents the
predicted boxes, ¢g the ground truth boxes, z the coordinates of the bounding
boxes and ¢ the class confidences. These parameters also include the offset
for the center points (cz, cy), the width of the box (w) and its height (h).

This DNN has later been optimized for the network edge by pruning the
layers. This process removes the connections when the parameters of a layer-
s/neurons do not highly modify the value of the input signal, consequently
reducing the size of the model and the number of operations. At the same
time, due to the constraints of the Google Coral TPU Edge Device where the
model should be integrated, the model parameters have been quantized to
8-bit integer values. After the optimization process, the final model requires
56.4 MB in contrast to the initial model with a size of 185 MB.

Following these techniques, the full pipeline from the data acquisition to
target detection is shown in Figure 8.2. In the first moment, after gathering
the data from the LiDAR and camera sensors, the data need to be aligned
to ensure that the coordinate origin is shared by both sensors. This is also
used to filter out parts of the scene visualized only by the LiDAR that are
not relevant for the target detection. After this step, the LiDAR raw data
is used to generate the LiDAR depth maps previously explained. The input
data also needs to be quantized to 8-bit integers before it is fed into the
model due to the constraints imposed by the Google Coral TPU Development
Board. Finally, our proposed MLSF model studies the input data to provide
information about the targets in the current frame.

Data Data Data Target
acquisition alignment preprocessing detection

Figure 7.4: Full pipeline for target detection using our proposed model.

7.4. Experiment

133

7.4. Experiment

In this section, our proposed MLSF model is evaluated using the KITTI
dataset (2) to compare its accuracy results for the 2D target detection with
state-of-the-art techniques. At the same time, latency and memory size are
also included in the comparison since the goal is to design a target detec-
tion model for the network edge. Furthermore, the influence of the lighting
conditions will also be discussed in this section.

Since targets could be located in both sensor data, the coordinatesorigin
has been set to the ego vehicle for an easier final evaluation of the model
results, as depicted in Figure 7.5.

Z————

Figure 7.5: Input data on the left side of the figure and output on the right
side.

7.4.1. Dataset

The dataset used for this experiment is the KITTI dataset (2) since it is
one of the most popular databases when LiDAR and camera data is required.
Due to this, numerous state-of-the-art results provide accuracy information
of their algorithms with this dataset. The LIDAR sensor used in this dataset
is the Velodyne HDL-64E (30) developed by Velodyne in San Jose, United
States.

This dataset consists of 7481 training samples and 7518 testing samples.
Both subsets include camera and LiDAR data. The labels in this dataset are
provided using the ego vehicle coordinate system that can be used for all
the sensors integrated in the KITTI dataset. Since our goal is the 2D target
detection in the camera images, we have converted the LiDAR and camera
data to this ego vehicle coordinate system in order to match the labels with
the used data. The labeled targets in this dataset are: car, pedestrian, bicycle,
tram, van, truck, misc and sitting down person. These targets’labels also
include information about the difficulty to detect the target (easy, medium
and hard). Therefore, we will also provide the accuracy result achieved on
each of these subsets based on the difficulty of the targets.

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
134 the Network Edge

Since labels are required to measure the final accuracy of the model, the
training dataset has been split into training and evaluation data using 30 %
of the dataset for the evaluation.

7.4.2. Hardware Architecture

As the goal of this paper is to present a sensor fusion pipeline for target
detection at the network edge, the latency results were calculated in an edge
device. The specific device is the Google Coral TPU Dev Board from Google,
manufactured in China, that is shown in Figure 8.5. This platform is based
on the integration of a TPU coprocessor to execute the tensor computations
in a more efficient way than using traditional CPUs or GPUs. However, this
device still integrates an Integrated GC7000 Lite Graphics GPU and an NXP
i.MX 8M SoC CPU to execute nontensor operations. As a result of this, it
is capable of performing 4 trillion operations per second (TOPS) while only
consuming 0.5 W/TOPS.

Figure 7.6: Google Coral TPU Development Board image from https://
coral.ai/ (accessed on 31-05-2021) (31).

Simultaneously, the software framework for the implementation of DNNs
in the device enables the optimization of them. As a result, the latency, as
well as the size of the model, can be reduced in most cases.

In order to provide an accurate comparison of the latency, the compa-
red algorithms have been implemented in the same platform when possible.
In other cases, the results of the algorithms have been extracted from the
original papers and KITTI dataset results table (2).

7.4.3. Experimental Settings

The parameters used during the training of the model can be observed
in Table 8.1. The loss function used for the training of the model is the same
as that used in the SSD structure, which is explained in Section 8.2.2.

7.4. Experiment

135

’ Parameter \ Setting ‘
Epochs 500
Batch size 6
Optimizer SGD

Initial learning rate | 1-e™>
Final learning rate l.e™®
Momentum 0.9

Table 7.1: Parameters for the model training.

The number of labels for each of the classes of the KITTI dataset is
not the same, having large variation between common classes such as car
and uncommon classes such as tram. Therefore, the algorithm for the model
training tries to use the same number of labels from each of the studied
classes to overcome this class imbalance problem while still using all the
training data.

The Intersection Over Union (IOU) algorithm has been implemented to
measure the accuracy of the model. This technique can be applied to any
system that predicts bounding boxes in scenarios where the ground truth is
known. An IOU result above 0.5, as used in this experiment for Pedestrian
and Cyclist classes, is normally considered as a good prediction. For cars,
the IOU threshold selected is 0.7 as generally done when using the KITTI
dataset. The algorithm itself is explained in (15), where A means the ground
truth bounding box and B the predicted bounding box.

ANB
AUB

As well as the configuration of the experiment, it is also important to
comment on the algorithms that have been selected for the comparison with
our model. Due to the fact that the main goal of our research is the target
detection at the network edge using sensor fusion, we have selected some
of the most relevant target detection algorithms which have been tested
using the KIITI dataset. Among those algorithms, we provide a comparison
with the models based on LiDAR and camera sensor fusion. As a result, a
comparison of models which share the dataset as well as the application goal
is shown in the next section. These models are the Deep Gated Information
Fusion Network (DGFN) (19), CLOCs (27), Multi-view 3d object detection
network (MV3D) (32) and Multi-Scale Convolutional Neural Network (MS-
CNN) (33) since they are the most relevant in this topic to the best of our
knowledge.

10U =

(7.15)

At the same time, a comparison with single sensor models is also dis-
cussed in the next section. The goal of this comparison is the discussion of
the advantages of the sensor fusion applied for the target detection rather

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
136 the Network Edge

than using a single sensor. The models used for this comparison are the SSD
(studied separately to detect targets using LiDAR and camera data) (7), the
Deep Manta (23), the Structure Aware SSD (SA-SSD) (34) and the Mono-
Pair (35) algorithms. These models have been chosen because SSD is one of
the most efficient model structures for the network edge. The other models
(based on camera or LIDAR) are some of the state-of-the-art target detec-
tion models based on a single sensor which achieves high accuracy results.
Therefore, these models can provide further information regarding the state
of our proposed model in comparison with the current state-of-the-art target
detection models.

Finally, the influence of the lighting condition in the target detection
task is discussed to prove the relevance of the sensor fusion. For this task,
a reduced synthetic dataset has been created to generate night frames (500
frames) based on the original KITTI camera frames.

7.5. Results

In this section, a comparison of our proposed DNN and the state-of-the-
art models for target detection will be presented for a deeper understanding
of the advantages of our technique. The parameters that are compared in
Table 8.3 are the size of the models in the second column, accuracy (for
easy, medium and hard to detect targets according to the KITTI dataset) in
the third column and latency in the fourth column. These parameters have
been selected since they are the most relevant ones when executing target
detection at the network edge taking into account the memory constraints
of edge devices and latency requirements for autonomous vehicles.

Size of the Accuracy (%
Model model Easy - Medil};n(l -)Hard Latency (s)
MLSF (proposal) | 56.4 MB 90.92 - 87.81 - 79.63 0.057
DGFN (19) 713 MB 98.69 - 90.31 - 82.16 0.73
CLOCs (27) - 88.94 - 80.67 - 77.15 0.1
MV3D (32) - 95.01 - 87.59 - 79.90 0.36
MS-CNN (33) - 93.98 - 89.92 - 79.69 0.5

Table 7.2: Comparison of LiDAR-Camera fusion networks for target detec-
tion.

Table 8.3 shows how the achieved general accuracy results when using our
proposed Deep Fusion Network model for easy, medium and hard to detect
targets (shown in the third column of Table 8.3 respectively for all the classes
in the studied dataset) are lower than the rest of the studied models. In
this comparison, the DGFN algorithm achieves the highest accuracy results

7.5. Results

137

for easy, medium and hard to detect targets. Nevertheless, the targets used
during the training and testing of the DGFN and CLOCs algorithms were
reduced subsets of the KITTI dataset. These subsets only include some of
the classes instead of the whole list of targets. Consequently, this comparison
must be understood as an estimation of the accuracy.

On the other hand, the model size of the proposed model is considerably
smaller than the rest of the compared models. For example, it is 92.1 %
smaller than the DGFN model. The rest of the compared models do not
provide information about their memory size so a direct comparison is not
possible. Therefore, the model size can only be compared with the DFGN
model. Nevertheless, the MV3D model (32), which preprocesses 3 inputs
individually, as well as the CLOCs (27), which executes simultaneously a
3D and 2D detection, and MS-CNN (33), which studies independently each
subset in the LiDAR point cloud of each target, can be assumed to require a
larger memory due to their high complexity in comparison to our proposed
MLSF model.

The memory reduction has been achieved due to the optimization of
the model for the network edge by applying multiple techniques such as
quantization (36) and pruning (37). These techniques are further explained
in Section 8.2.2. At the same time, the mobilenet detector integrated in the
model, as well as the pruning of nonrelevant layers and parameters, leads to
a faster execution as the previous table also shows.

As a conclusion from this table, it is possible to observe the tradeoff
between the accuracy and memory/latency. Therefore, our algorithm has
been designed following the network edge constraints in order to achieve a
reduced latency and memory consumption. However, the accuracy results
are 7.77%, 2.50% and 2.53% (easy, medium and hard to detect targets,
respectively) smaller than the DGFN model. This leads to the conclusion
that this model should be implemented in a collaborative approach with
other networks to ensure high reliability for applications such as autonomous
driving.

From this point on, now our proposed model will be compared with other
algorithms for target detection which are not based on sensor fusion. In this
case, since the goal of the comparison is to discuss the improvement of the
robustness as well as the general accuracy of the models for all the studied
classes, the comparison will be based on the used input data, the latency
and the accuracy achieved by the model, as shown in Table 7.3.

It is possible to observe in Table 7.3 how our proposed model outperforms
the SSD structure using a single data input. This can result from the lack of
information when using a single sensor as previously discussed, which leads
to a lack of robustness during the target detection. Overcoming this problem
is one of the main reasons to apply sensor fusion techniques, as explained
in (19). In real scenarios such as the context of autonomous vehicles, the

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at

138

the Network Edge

Model Data Latency (s) EasyA—CT\ZzZ(i:Zn(l%)Har d
MLSF (proposal) | LiDAR-Camera 0.057 90.92 - 87.81 - 79.63
SSD (7) Camera 0.003 87.14 - 84.37 - 75.74
SSD (7) LiDAR 0.003 85.17 - 71.52 - 67.36
Deep Manta (23) Camera 0.7 97.58 - 90.89 - 82.72
SA-SSD (34) LiDAR 0.04 95.03 - 91.03 - 85.96
MonoPair (35) Camera 0.06 96.61 - 93.55 - 83.55

Table 7.3: Comparison of of our model with no-sensor fusion algorithms.

weather conditions can affect the data acquisition of each individual sensor
(i.e., water on the camera lens after the rain, LIDAR laser absorption in fog
conditions, etc.). When using a sensor fusion approach, this problem can be
mitigated due to the bidirectional reinforcement of the data.

On the other hand, the Deep Manta model (23) outperforms our model
as well as the SA-SSD (34) and MonoPair (35) when it comes to target
detection accuracy. Regarding the latency, except the SSD structure, the
rest of the studied models have a similar execution time to our model even
when they study the data from a single sensor. Therefore, even when they
achieve similar results of latency and accuracy, the robustness of the single
sensor models is reduced in comparison with our MLSF model, following the
criteria of (19).

Finally, the suitability of these models for edge devices must also be
considered, since most of these models integrate complex layers such as 3D
Convolutions which are not supported in edge devices like the Google Coral
TPU. On the other hand, our MLSF has been designed following the layer
restrictions of this device to ensure its correct function.

Figure 7.7: Synthetic night frames (top row) and original images (bottom
row).

The influence of the lighting conditions has been researched using some of

7.6. Conclusions

139

the frames from the KITTI dataset and reducing their luminosity to generate
synthetic night frames as shown in Figure 7.7. Due to the darkness of these
images, the accuracy of the target detection in these frames when using a
SSD mobilenet trained with the original KITTI dataset dropped to 73.81 %-—
65.41 %-39.63 % (easy, medium and hard to detect targets) when using only
the camera data. One possible reason is that in bad light conditions, the
camera sensor may not be able to gather information about all the targets in
the scenario. This problem can be observed in the top images of Figure 7.7
where it is hard to see the targets in comparison with the bottom images.
However, when using our proposed sensor fusion algorithm, the model can
detect targets that have not been located when using only the camera, as
shown in Figure 7.8. LiDAR data is not affected by the poor light conditions
due to the fact that it is based on measuring the time taken to receive the
reflection of a transmitted laser pulse rather than measuring the external
light reflected by the targets. The accuracy achieved with our model in these
dark frames was 83.18 %—80.02 %-47.83 %. Consequently, it is possible to
observe how the LiDAR data reinforce the camera data by generating a map
of relevant areas of the image, leading to a higher accuracy.

Figure 7.8: Target detection in night frame with (a) sensor fusion algorithm
and (b) only camera.

After these comparisons, it can be observed how our proposed model
achieves high accuracy results for the researched task but it does not im-
prove the state of the art. However, when taking into account the latency
and memory constraints, our model achieves edge capabilities that are not
present in the rest of the compared models while improving its robustness in
comparison with single sensor models.

7.6. Conclusions

A Multi-Level Sensor Fusion deep neural network has been developed
and tested in the Google Coral TPU Edge Device in this paper for target
detection using camera and LiDAR sensors. The sensor fusion layers integra-
ted in this model generate feature maps that are combined at multiple levels
to produce a joint data representation that has been tested on the KITTI
dataset.

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
140 the Network Edge

The accuracy results do not surpass the state-of-the-art accuracy shown
by other sensor fusion models such as DGFN (19). Nevertheless, our mo-
del still achieves a 90.92 %, 87.81% and 79.63 % accuracy results for easy,
medium and hard to detect targets in the challenging KITTI dataset while
requiring a 92.1% less memory than the DGFN model (19). As a result of
the optimization applied to the proposed model, the latency of the model
has also been reduced to 0.057 seconds, outperforming the rest of compared
algorithms.

At the same time, the advantages of using a sensor fusion approach rather
than a single sensor model have been studied by comparing our proposed
algorithm with other single sensor target detection algorithms. This compa-
rison is shown in Table 7.3 where it is possible to observe how some of the
single sensor models achieve better accuracy than our proposed algorithm.
However, we studied the effect of using only camera data for the target detec-
tion task and we showed how the accuracy drops to 73.81 %—65.41 %-39.63 %
(easy, medium and hard to detect targets) in cases where the light is not good.
Since the LiDAR data does not depend on the light of the scenario, using
a sensor fusion approach helps to achieve an accuracy of 83.18 %-80.02 %—
47.83 %. This proves that even if high accuracy can be achieved by a single
sensor model, these algorithms are not robust when facing changes in the
environment in comparison with a sensor fusion algorithm.

We can conclude that the proposed model has been designed in order to fit
in edge devices as well as time constraints applications such as autonomous
driving, taking into account a trade-off among the accuracy, latency and
memory size.

References

[1] Claudine Badue, Ranik Guidolini, Raphael Vivacqua Carneiro, Pedro
Azevedo, Vinicius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo
Berriel, Thiago Meireles Paixao, Filipe Mutz, et al. Self-driving cars: A
survey. Fxpert Systems with Applications, page 113816, 2020.

[2] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013.

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Os-
car Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11621-11631, 2020.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You

REFERENCES

141

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages

779-788, 2016.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580-587, 2014.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440-1448, 2015.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single Shot Mul-
tiBox Detector. Lecture Notes in Computer Science, pages 21-37, 2016.

Nir Morgulis, Alexander Kreines, Shachar Mendelowitz, and Yuval
Weisglass. Fooling a real car with adversarial traffic signs. arXiv pre-
print arXiw:1907.00874, 2019.

Yujie Li, Xing Xu, Jinhui Xiao, Siyuan Li, and Heng Tao Shen. Adaptive
square attack: Fooling autonomous cars with adversarial traffic signs.
IEEE Internet of Things Journal, 2020.

Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung
Chiang, and Prateek Mittal. Darts: Deceiving autonomous cars with
toxic signs. arXw preprint arXiw:1802.06450, 2018.

F. Nobis, M. Geisslinger, M. Weber, J. Betz, and J. Lienkamp. A Deep
Learning-based Radar and Camera Sensor Fusion Architecture for Ob-
ject Detection. 2019 Sensor Data Fusion: Trends, Solutions, Applica-
tions (SDF), Bonn, Germany, pages 1-7, 2019.

Andreas Pfeuffer and Klaus Dietmayer. Optimal sensor data fusion
architecture for object detection in adverse weather conditions. In 2018
21st International Conference on Information Fusion (FUSION), pages
1-8. IEEE, 2018.

Andreas Pfeuffer and Klaus Dietmayer. Robust semantic segmentation
in adverse weather conditions by means of sensor data fusion. In 2019
22th International Conference on Information Fusion (FUSION), pages
1-8. IEEE, 2019.

Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park,
Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. Adver-
sarial sensor attack on lidar-based perception in autonomous driving.
In Proceedings of the 2019 ACM SIGSAC conference on computer and
communications security, pages 2267-2281, 2019.

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at

142

the Network Edge

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. Towards
robust lidar-based perception in autonomous driving: General black-
box adversarial sensor attack and countermeasures. In 29th { USENIX}
Security Symposium ({ USENIX} Security 20), pages 877-894, 2020.

Teng Huang, Yongfeng Chen, Bingjian Yao, Bifen Yang, Xianmin Wang,
and Ya Li. Adversarial attacks on deep-learning-based radar range pro-
file target recognition. Information Sciences, 531:159-176, 2020.

Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali
Chakrabarti. Radar: Run-time adversarial weight attack detection and
accuracy recovery. arXiv preprint arXiv:2101.08254, 2021.

Cees GM Snoek, Marcel Worring, and Arnold WM Smeulders. Early
versus late fusion in semantic video analysis. In Proceedings of the 13th
annual ACM international conference on Multimedia, pages 399402,
2005.

J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, and J. W. Choi. Robust
camera lidar sensor fusion via deep gated information fusion network.
In 2018 IEEFE Intelligent Vehicles Symposium (IV), pages 1620-1625,
2018.

Zhizhong Kang, Juntao Yang, Ruofei Zhong, Yongxing Wu, Zhenwei Shi,
and Roderik Lindenbergh. Voxel-based extraction and classification of
3-d pole-like objects from mobile lidar point cloud data. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
11:4287-4298, 11 2018.

Dianlei Xu, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, and Pan Hui.
A survey on edge intelligence. arXiv preprint arXiv:2003.12172, 2020.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738-1762, 2019.

Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Céline Teu-
liere, and Thierry Chateau. Deep manta: A coarse-to-fine many-task
network for joint 2d and 3d vehicle analysis from monocular image.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2040-2049, 2017.

Martin Peter Christiansen, Morten Stigaard Laursen, Rasmus Nyholm
Jorgensen, Sgren Skovsen, and René Gislum. Designing and tes-
ting a uav mapping system for agricultural field surveying. Sensors,
17(12):2703, 2017.

REFERENCES

143

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Ashok Kumar Patil, Young Ho Chai, et al. On-site 4-in-1 alignment:
Visualization and interactive cad model retrofitting using uav, lidar’s
point cloud data, and video. Sensors, 19(18):3908, 2019.

Jesus Zarzar, Silvio Giancola, and Bernard Ghanem. Pointrgen: Graph
convolution networks for 3d vehicles detection refinement. arXiv pre-
print arXw:1911.12236, 2019.

S. Pang, D. Morris, and H Radha. CLOCs: Camera-LiDAR Ob-
ject Candidates Fusion for 3D Object Detection. arXiv preprint ar-
Xiv:2009.00784., pages 1-8, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

Zhongyang Zhao, Yinglei Cheng, Xiaosong Shi, and Xianxiang Qin.
Classification method of lidar point cloud based on threedimensional
convolutional neural network. Journal of Physics: Conference Series,
1168:062013, 02 2019.

Velodyne. Velodyne hdl-64e sensor. https://velodynelidar.com/
products/hdl-64e/. Accessed: 2021-05-31.

Google. Google coral tpu dev board. https://coral.ai/products/
dev-board/. Accessed: 2021-05-31.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d
object detection network for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages
1907-1915, 2017.

Xinxin Du, Marcelo H Ang, Sertac Karaman, and Daniela Rus. A ge-
neral pipeline for 3d detection of vehicles. In 2018 IEEE Internatio-
nal Conference on Robotics and Automation (ICRA), pages 3194-3200.
IEEE, 2018.

Chenhang He, Hui Zeng, Jiangiang Huang, Xian-Sheng Hua, and Lei
Zhang. Structure aware single-stage 3d object detection from point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1187311882, 2020.

Yongjian Chen, Lei Tai, Kai Sun, and Mingyang Li. Monopair: Mono-
cular 3d object detection using pairwise spatial relationships. In Procee-
dings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12093-12102, 2020.

CHAPTER 7. Camera-LiDAR Multi-Level Sensor Fusion for Target Detection at
144 the Network Edge

[36] Taylor Simons and Dah-Jye Lee. A review of binarized neural networks.
FElectronics, 8(6):661, 2019.

[37] JiLin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning.
In Advances in neural information processing systems, pages 2181-2191,
2017.

Chapter 8

Lidar-Radar Robust

Multi-Level Sensor Fusion for
Target Detection at the
Network Edge

Javier Mendez!?, Manuel P. Cuellar?, Diego P. Morales?.

1. Infineon Technologies AG, Am Campeon 1-15, 85579 Neu-
biberg, Germany

2. Department of Electronic and Computer Technology, Univer-
sity of Granada, Avenida de Fuente Nueva s/n, Granada, 18071,
Spain

3. Department of Computer science and Al, University of Gra-
nada, Avenida de Fuente Nueva s/n, Granada, 18071, Spain

Elsevier Measurement
= Received December 2021, Under review
= Impact factor: 3.927

» JCR Rank: 19/90 in category Engineering and Multidisciplinary (Q1)

145

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

146

at the Network Edge

ABSTRACT: Perception subsystems of autonomous vehicles must be
robust against weather hazards as well as sensor problems. Therefore,
sensor fusion approaches are taking the lead in this context. Laser Ima-
ging Detection and Ranging (LiDAR) and radar sensors are two of the
most popular sensors for this task due to the complementary data that
can be extracted from these devices. These features, in contrast with
camera sensors, do not incur privacy concerns since only position and
shape information is gathered. In this work, a multi-level sensor fusion
approach based on LiDAR and radar sensors is proposed to locate and
classify targets at the Network Edge, since resources in these vehicles
are highly reduced in comparison to cloud servers. Consequently, the
data representation and the algorithm have been optimized. As a re-
sult, an accurate, memory reduced and low latency algorithm has been
developed. The proposed algorithm has been evaluated on a custom da-
taset as well as the challenging NuScenes dataset where the achieved
accuracy is 88.3 % and 58.6 % respectively.

Sensor Fusion; Deep Learning; Edge Computing; LiDAR; Radar;
Target Detection.

8.1. Introduction

Autonomous vehicles research has provided great advances in the last
few years thanks to the recent advances in engineering fields such as robo-
tics, communication protocols and computer vision techniques. As a result,
numerous proposal are arising about target detection applied to this topic,
aiming to improve the state of the art by integrating emerging sensors or
computational techniques. The main focus in this manuscript are the com-
puter vision techniques based on LiDAR and radar sensors to detect and
classify relevant targets in the environment of the vehicle. This is a required
to understand the environment before autonomous vehicles can decide the
route to follow. Deep Learning (DL) techniques have been previously used
for this task due to their robustness and trustworthiness in classification and
detection tasks (1).

Some of previous approaches focus on single-sensor models based on high
quality sensors, such as Laser Imaging Detection and Ranging (LiDAR),
radar or camera sensors, that provide enough information to detect and
classify targets. However, some of these sensors, such as camera sensors, may
incur privacy problems when working inn public areas. Therefore, even when
it may provide more information than LiDAR sensors, emerging techniques
are based on LiDAR sensors rather than camera sensors (2; 3; 4).

An example of single LiDAR sensor target detection for autonomous
vehicles is the approach proposed by Tianwei Y. et al. (2). This algorithm
studies the 3D LiDAR point cloud from a top view to convert them into a

8.1. Introduction

147

2D image that is used to detect targets from that perspective. This Deep
Neural Network (DNN), following the CenterNet strategy (5), first locate
the center of the targets and in a later step it provides information regarding
features such as orientation and size of targets. This model was evaluated in
the NuScenes dataset where it achieved a 67.4 % accuracy.

Following the same approach of using a single LiDAR sensor for target
detection, Qian et al. (3) proposed a model, BANet, for 3D object detection
from point clouds. This technique, rather than using a traditional 2 steps
pipeline for the target detection, represents each possible target as a node
for graph construction. As a result, local neighborhood graphs are generated
for the target detection. This technique was evaluated in the KITTI dataset,
where it achieved an accuracy of 95.61%, 98.75% and 90.64 % for easy,
medium and hard to detect targets respectively in KITTI dataset.

Wu Z. et al. (4) also researched the target detection based on LiDAR
data using a DNN following a Single Shot Detector (SSD) structure. They
implement a teacher and a student network to used a distilled knowledge
pipeline. At the same time, a new loss function was designed for this specific
case to to supervise the student with constraints on the predicted box centers
and orientations. This model was also evaluated in the KITTI dataset, where
it achieved an accuracy of 95.60 %, 96.69 % and 90.53 % for easy, medium
and hard to detect targets respectively in KITTI dataset.

Even when previous researchers achieved high performance results using
a single sensor approach, this approach may incur problems in situations such
as hazard weather conditions or because of data corruption. A technique to
face this problem is the sensor fusion, which relies on multiple sensors data
integration. As a result, this approach gathers more general and complete
data that can complement each other or support in adverse situations while
this approach can also increase the performance of the system in normal
conditions. Sensor Fusion can be applied at different levels of data prepro-
cessing, leading to different subcategories such as Early Fusion (fusion of
low-level preprocessed data is used) and Late Fusion (high-level preproces-
sed data is used). Recently, a combination of these two subcategories, known
as Intermediate Fusion, is gaining more relevance since it merges the data at
an intermediate step or steps leading to a more flexible algorithm (6; 7; 8; 9).

An example of sensor fusion for target detection is Hojoon L. et al. (10).
This author proposed a 2D LiDAR-radar based sensor fusion model for vehi-
cle detection. This sensor fusion technique was used to extend the Field of
View (FoV) of the LiDAR sensor before the detection, which is executed
using a Kalman filter. However, since this technique is not based on DNN,
it lacks of flexibility and robustness to changing scenarios/targets. It only
detects targets without considering the target class or features.

Other authors, to ensure a full environment view, do not limit the number
of sensors to 2 like previous author or the model proposed in this manus-

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection
148 at the Network Edge

cript. Following this research line, Babak S.J. et al. (11) designed a sensor
fusion framework based on LiDAR, camera and radar sensors among others
for autonomous vehicles topics such as road segmentation, obstacle detection
and target tracking. This framework uses a Fully Convolutional Neural Net-
work (FCN) based on an encoder-decoder structure as well as a traditional
Extended Kalman Filter (EKF) for the data fusion. Nevertheless, this fra-
mework, due to the large number of sensors, requires a large energy source
to ensure the correct data gathering. At the same time, due to the numerous
preprocessing steps to obtain the final detection and segmentation results,
this model has not being optimized for the network edge in comparison with
our proposed technique.

Therefore, it can be observed how multiple approaches for the target
detection are being researched and provide high accuracy results in some of
the most popular datasets such as KITTI or NuScenes (12; 13). In the case
of single-sensor models, even when high accuracy results are achieved, they
may incur in problems when facing hazard situations such as bad weather
conditions or adversarial attacks, as (6) explains. This is one of the main
reasons to follow a sensor fusion approach for target detection in autonomous
vehicle scenarios. However, to the best of our knowledge, it has not been
discussed yet the suitability of LIDAR and radar fusion for this purpose.

Our proposed LiDAR-Radar Multi-Level (LR-ML) algorithm, faces the
problem of the target detection in autonomous vehicle scenarios using the-
se sensors that can complement each other. LiDAR data provides reliable
information of depth, shape and target presence while radar data is used
as an attention mechanism for the LIDAR data. As a result, it is easier to
locate relevant areas in LiDAR data in contrast to using only LiDAR whe-
re it may be difficult to differentiate targets near each other. At the same
time, this combination provides a solution for scenarios where LiDAR, data
may be corrupted because of weather conditions. Our algorithm executes the
data fusion at multiple levels using the Intermediate Fusion approach as a
bidirectional attention to further improve both input data or feature maps,
and it has been optimized to be executed in low-resource hardware such as
Edge Intelligence devices.

In order to test this algorithm in a scenario close to a real autonomous
vehicle scenario, it has been deployed in an Edge Device similar to the ones
used in automotive industry, the Google Coral TPU (14). Because of this, the
latency and memory consumption of the model have been used as constraints
during the design of the model to ensure its suitability for the network edge.

The proposed model has been evaluated using a custom dataset where it
achieved an accuracy of 88.3% and the challenging NuScenes dataset (13).

The manuscript is organized as follows: Section 2 focuses on the proposed
algorithm is described for a deep understanding of its structure as well as
the required input data preprocessing. After that, Section 3 will focus on the

8.2. Proposed LiDAR-Radar Multi-Level Sensor Fusion Network 149

experiment where this algorithm has been applied, and finally Section 4 is
the conclusion.

8.2. Proposed LiDAR-Radar Multi-Level Sensor Fu-
sion Network

The proposed LiDAR-Radar Multi-Level Sensor Fusion (LRML) Network
aims to detect targets based on the depth information extracted from LiDAR
data. In this technique, radar data is used as an attention mechanism data
since it provides information regarding areas where moving targets may be
located but it does not reflect all target. The data from these sensors is fused
at multiple levels rather than in a single step. As a consequence of this, the
network can decide during training the optimal step or steps to fuse the
information in order to get the desired results.

In order to optimize the process for the network edge, sensor data has
been preprocessed to reduce its dimension while maintaining relevant featu-
res such as shapes in LiDAR data and target location in radar data. At the
same time, during the preprocessing the memory size of the data has been
reduced to fit the memory and latency limitations at the network edge.

8.2.1. Depth Map data representation

A Laser Imaging Detection and Ranging (LiDAR) sensor has been inclu-
ded in this project to gather information regarding shapes and positions of
obstacles in the environment. However, the problem is the lack of order in
the unsorted point cloud data resulting. Consequently, the order of these 3D
points is usually assumed to be unknown, unlike pixel arrays in images. Be-
cause of this, the integration of LIDAR data in DNNs is not straightforward
since the network must be invariant to these permutations of the input data
in the feeding order.

To face this problem, there are multiple techniques to transform LiDAR
3D points into a structured format. The voxel approach is one of the most
commonly used in the literature (15; 16). However, this technique still gene-
rates a complex data since it generates a 3D matrix to represent the studied
space where each cell summarizes the information of that spatial area. This
complexity leads to larger models as well as layer structures that are not
supported usually by edge devices, such as 3D convolutional layers.

To solve this problem, a Depth Map approach has been followed. This
technique converts 3D points into a 2D image which can be studied as a
camera image. Apart from the simplicity of the resulting format, this techni-
que also leads to a reduction of the memory size of the data, as discussed in
(9). The process to convert 3D points to Depth Maps is ruled by equations
(1), (2), (3) and (4) for each point. These equations transform the 3D points

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection
150 at the Network Edge

from Cartesian coordinates to the new representation system.

T DepthMap = arctan(ysp/x3p) (8.1)
d3p = \/ng +yip +73p (8.2)
YDepthMap = a?”CCOS(ZgD/d?,D) (83)
COlorDepthMap =dsp (84)

These new coordinates and colors can be directly used to generate the
new image data. Since the new data type is a 2D image, they can be studied
using traditional approaches of computer vision using Convolutional Neural
Networks.

When converting LiDAR, data into Depth Maps, 3D points of the ground
have been removed for an easier location of targets. This technique has also
been applied to radar as previously studied by other authors (6).

In case of radar, the same Depth Map representation will be used in
order to ease the attention in the Depth Map it provides to LiDAR data.
Therefore, the first step when processing radar data is extracting the location
of the relevant targets. To obtain this information, the radar raw data is
first preprocessed to generate Range Doppler Images using a double Fourier
transformation. This data can later be transformed into a Range Angle Map
using the beamforming technique to generate an image with range and angle
in the axis. Consequently, it is possible to locate the 2D position of clusters-
possible targets in the horizontal plane. At this step, this information is
similar to LiDAR data but without the height component. To overcome this
problem, we have assumed all radar targets to have a height of 1.5 meters.
This height has been selected since it is a representative height of pedestrians,
bicycles and cars. Consequently, each radar detection has been understood
as a continuous vertical detection of 1.5 meters (from the ground). Once the
information from the X, Y and Z axis has been extracted from radar data,
equations (1), (2), (3) and (4) can be used to generate radar Depth Maps as
done with LiDAR data.

Once the data from LiDAR and radar sensors have been transformed to
the same structure (Depth Maps) and coordinates, they can be fed into our
DL model for target detection. A sample of the LiDAR and radar depth map
is shown in Figure 8.1

8.2.2. Overall system description

The full system pipeline from data acquisition to target detection using
the proposed model is shown in Figure 8.2. This figure shows how the first

8.2. Proposed LiDAR-Radar Multi-Level Sensor Fusion Network 151

Figure 8.1: From left to right: original environment camera image, LiDAR
depth map and radar depth map.

step after the data gathering is the alignment of the data to ensure the use of
the same coordinate origin. This process can be executed since the relative
position of a sensor respect the other is known in advance. The following step
is the data preprocessing to generate the previously explained Depth Maps,
which contain the spatial information in an more optimized format than the
raw data, and to fit the desired input format for the proposed algorithm.
Finally, the proposed LR-ML model studies the input data to provide the
classification and localization of the targets in the current frame.

Data Data Data Target
Scenario acquisition alignment preprocessing detection

=y

| Racar |

Figure 8.2: Full pipeline of the proposed target detection model.

As previously commented, the goal of the proposed LR-ML Sensor Fusion
model is to extract relevant information from radar data that can be later
used as reinforcement or attention pointer. In order to achieve this, data
from LiDAR and radar are fed separately to a DNN following the structure
presented in Figure 8.3. This network uses a SSD structure with mobilenet
backbone (17) to preprocess the initial LIDAR depth maps to extract rele-
vant feature maps. This structure has been selected due to its suitability for
latency constrain scenarios as well as its reduced memory consumption while
achieving high performance results (9).

A different branch of the network preprocesses the radar depth map using
a set of 2D Convolutional layers to extract the attention feature maps.

Once both inputs have been preprocessed, they are merged at multiple
levels. This fusion is executed using a Fusion Layer (9). This layer merges

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

152

at the Network Edge

mobilenet Fusion Layers
1 '
LiDAR
_bi
data
: conv_pad_6
conv_pad_12
VS — Detections
Radar
data

2D Convolutional layer

Figure 8.3: LIDAR-Radar Multi-Level Sensor Fusion network structure.

the information from the radar and LiDAR feature maps by concatenating
the data in the last axis. Once the data has been concatenated, it is fed into
a 2D Convolutional layer before concatenating its result with each of the
initial feature maps. As a result, the information from both sensors is shared
to improve the reinforcement feature maps of radar as well as using them to
locate relevant areas in LiDAR feature maps.

Since the proposed model aims to classify and locate targets, it has two
outputs. Consequently, 5 Fusion layers have been integrated into each of the
output branches to ensure the fusion is executed for both outputs. This two
branches approach for the fusion enables the model to use the same technique
and fine tune its structure for the specific task of each branch. The initial
feature maps for the classification are extracted from the conv-pad-6 layer of
the SSD mobilenet networks that preprocess the LiDAR data and the last
2D Convolutional layer that studies the radar data. For the localization, the
initial feature maps are extracted from the conwv-pad-12 layer in the SSD
mobilenet model and the last 2D Convolutional layer of the radar.

Since our approach is based on the SSD structure for target detection, the
SSD loss function has also been implemented for the training of the proposed
model. This loss function is ruled by equations (5)—(14).

N
Lloc(malvg) = Z Z CL‘Z . SLl (85)

1€ Pos me(cx,cy,w,h)

Sp1 = smootthpi (17" — §5") (8.6)
smoothri (" — gj") (8.7)

g;" = (95" — di*)/dyf (8.8)

8.3. Experiments

153

95 = (g5¥ — d3)/d}} (8.9)
log(é) (8.10)
h
g;
log(dih) (8.11)
N
Leong(z,¢) = — Z log Z log (¢! (8.12)
i1€Pos i€Neg
PG 8.13
LTS () (8.13)
L(2,1,) = —(Loonf (@, ¢) + aLioe (2,1, 9)) (8.14)

N

where N is used to represent the number of matching default boxes, [the
predicted boxes, g the ground truth boxes, = the coordinates of the bounding
boxes and ¢ the class confidences. These parameters also include the offset
for the center points (cz, cy), the width of the box (w) and its height (h).

Since the goal is to deploy this model in an Edge Device, it needs to be
optimized to ensure its correct performance at the network edge. To do so,
the model layers have been prunned (18) to remove connections (in the case
of dense layers) or full layers (in the case of convolutional layers) when they
do not highly modify the value of the input signal. As a result, operations
that did not efficiently reduce or extract features are removed to not consume
resources when it is not required. Consequently, the models needs to perform
less operations and store less parameters. Apart from this, since the model
will be deployed in the Google Coral TPU, the constrains of this Edge Device
must also been taken into account. In this case, the constrain that must be
followed is the quantization of the model to 8-bit integer values. This leads
to a reduction in the accuracy in comparison with float point representation
but it decreases the memory size to 101.5 MB in contrast to the initial size
of 350.1 MB.

8.3. Experiments

In this section, our proposed LR-ML model is evaluated using a custom
dataset to study the accuracy drop in hazard weather conditions. The NuS-
cene dataset (13) has also been used during the evaluation of the proposed
model to compare its accuracy results for the 2D target detection with state-
of-the-art techniques based on LiDAR data as well as LiDAR sensor fusion

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection
154 at the Network Edge

techniques. At the same time, latency and memory size are also included in
the comparison since the goal is to design a target detection model for the
network edge. In order to ensure the proposed approach is not limited to this
dataset, it has been evaluated on a new dataset where data has been gathered
using a different system from the proposed by NuScenes. More information
regarding the specific sensors used for this task is provided in Subsection
8.3.2.

8.3.1. Datasets

A new dataset has been created to evaluate the proposed algorithm in
a controlled environment. This dataset has been recorded using the Cubel
LiDAR sensor (19) and the radar sensor 60 GHz BGT60TR13C from Infineon
Technologies (20). This dataset contains 1500 labeled frames (where 450
frames are used for test and 1050 for training). There are 5 possible classes
in this dataset: pedestrian, bicycle, car, wall and tree. These classes have
been selected since they are the most common targets in urban scenarios.
In order to increase the number of frames for training, data augmentation
techniques have been used to rotate, flip, translate and resize the initial
images to generate a final dataset of 7500 frames.

A sample of the camera ground truth (used only during the data labe-
ling), LiDAR depth map and radar depth map frames from this dataset is
shown in Figure 8.4. The last sample remarks how targets are not always
present in radar data since static objects are not not detected.

/ LiDAR data \ / Radar data \

Figure 8.4: Camera ground truth, LiDAR depth map and radar depth map
frame samples.

Apart from this dataset, the proposed algorithm has also been evaluated
in the NuScenes dataset (13) to provide results in a generic dataset. This

8.3. Experiments

155

dataset is one of the most popular databases when LiDAR and radar data
is required due to the large quantity of data as well as their quality. The
LiDAR sensor used in this dataset is the Velodyne HDL-64E (21). It also
provides information of other sensors like cameras. As a result, numerous
state-of-the-art LiDAR and radar DNN models have been evaluated with
this dataset. This eases the comparison of new algorithms with the state
of the art since it ensures models have been evaluated with the same input
data.

This dataset contains information from 1000 scenes in Boston and Singa-
pore. These scenes have been divided into training, validation and test data
to ensure the fair comparison of models evaluated on this dataset. These
subdatasets include 700 scenes (28,130 samples), 150 scenes (6019 samples)
and 150 scenes (6008 samples) respectively. All subsets include LiDAR, and
radar data. Labeled targets include 10 different classes for target detection.
Some of these classes are vehicles, pedestrians, mobility devices and other
objects. The labels in this dataset are provided using the coordinates of the
ego vehicle that can be later transformed to each specific sensor integrated
in the NuScenes dataset.

8.3.2. Hardware architecture

The goal of this paper is to present a sensor fusion pipeline for target
detection at the network edge. Consequently, the latency and accuracy results
were calculated in an Edge Device to evaluate the performance of the model
at the network edge.

The specific device used for the experiments is the Google Coral TPU
Development Board, shown in Figure 8.5. This platform is based on the
integration of a TPU co-processor to execute the tensor computations in
collaboration with a CPU (NXP i.MX 8M SoC) and GPU (GC7000 Lite).
Because of this structure, this device is able to also execute operations that
are not based on tensors or that are not optimized for the TPU. As a result
of this, it is capable of performing 4 trillion operations per second (TOPS)
while only consuming 0.5 W/TOPS.

Simultaneously, the TensorFlow Lite software framework for the imple-
mentation of DNNs in the device enables their optimization. As a result, the
latency, as well as the size of the model, can be reduced in most cases.

The results of the algorithms have been compared with the original pa-
pers and NuScenes dataset results table (13).

8.3.3. Experimental settings

The parameters used during the training of the model, for each dataset,
can be observed in Table 8.1. The SSD loss function has been used for the
training of the model since the general DNN structure follows the same

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

156

at the Network Edge

Figure 8.5: Google Coral TPU Development Board.

structure while only adding the Fusion layers to merge the feature maps
from LiDAR and radar data.

’ Parameter ‘ Setting (custom data) ‘ Setting (NuScenes) ‘
Epochs 600 400
Batch size 10 10
Optimizer SGD 10
Initial learning rate l-e le™?
Final learning rate l-e™® l-e™®
Momentum 0.9 0.9

Table 8.1: Parameters for the model training in custom and NuScenes data-
sets.

The number of labels for each of the classes included in the NuScenes
dataset is not the same. This is normal since some of the classes are highly
common, such as pedestrian, while others are not so common in normal
scenarios, such as bus. Therefore, the algorithm for the model training tries
to use the same number of labels from each of the studied classes to overcome
this class imbalance problem while still using all the training data. When
studying our new dataset the same approach is followed in order to reduce
the effect of the data class imbalance.

The Intersection Over Union (IOU) algorithm has been implemented to
compare the predicted bounding box with the ground truth labels as an
accuracy measurement. This technique can be applied to any system that
predicts bounding boxes in scenarios where the ground truth is known. The
algorithm is explained in (15), where A refers to the ground truth bounding
box and B to the predicted bounding box. A threshold value for the IOU
result must be set to decide if a predicted bounding box matches the initial

8.3. Experiments

157

ground truth label. In this paper, the IOU threshold has been set to 0.5.

ANB
I =— 1
oU 108 (8.15)

8.3.4. Results

In this subsection, the evaluation results of our proposed model in our
custom and NuScenes datasets are provided and discussed for a deeper un-
derstanding of the advantages of our technique.

Our proposed model has first been evaluated in our custom dataset to
study its performance in a controlled scenario where the exact configuration
of sensors is known. The results in this dataset provided a final accuracy
of 88.3% while maintaining a low latency (38 milliseconds) and a reduced
model size (101.5 MB).

Confusion Matrix

1776 62 0 0 7 96.3%
251% 0.9% 0.0% 0.0% 0.1% 3.7%

2 183 703 0 0 6 78.8%
2.6% 10.0% 0.0% 0.0% 0.1% 21.2%
4 0 1696 0 0 99.8%

w

0.1% 0.0% 24.0% 0.0% 0.0% 0.2%

0 0 0 1672 0 100%
0.0% 0.0% 0.0% 23.7% 0.0% 0.0%

IS

Output Class

0 0 0 0 389 100%
0.0% 0.0% 0.0% 0.0% 5.5% 0.0%

@

17 38 104 128 278 0.0%
0.2% 0.5% 1.5% 1.8% 3.9% 100%

89.7% 87.5% 94.2% 92.9% 57.2% 88.3%
10.3% 12.5% 5.8% 1% 42.8% 11.7%

N v > ™)
Target Class

Figure 8.6: Confusion matrix result in custom dataset.

Figure 8.6 shows the exact results of the accuracy evaluation in the cus-
tom dataset. In this confusion matrix the different classes have been codi-
fied into: 1-pedestrian, 2-bicycle, 3-tree, 4-wall and 5-car. Columns represent
ground truth labels and rows the detections of the model. It is possible to
observe how there are 6 possible prediction classes (rows), where the last one
represents false negative results. This confusion matrix shows how most of
the wrong classifications occur between pedestrian and bicycle classes due to
their similarities. In the rest of the cases, the accuracy drop is due to false
negative detections, such as the case of the class car.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection
158 at the Network Edge

Apart from the previous performance results, as discussed in this work,
the integration of the radar as an attention mechanism for LiDAR data
improves the model performance in hazard weather conditions. To test this,
the custom dataset has been used to generate another dataset where a 40 %
of the LIDAR detections have been removed to simulate the effect of fog/rain.
An example frame of this is shown in Figure 8.7

(a) (b)

Figure 8.7: Sample of (a) original and (b) synthetic fog condition depth maps.

The difference in the accuracy results achieved by our proposed model,
the CenterPoint v2 (2) and a single-sensor LIDAR SSD model when using
the custom and synthetic fog datasets in shown in Table 8.2.

Model ‘ Initial custom dataset | Synthetic fog dataset
Single LiDAR SSD 86.7 % 68.4 %
CenterPoint v2 (2) 90.3% 79.1%
LR-ML (proposal) 88.3% 81.2%

Table 8.2: Comparison of accuracy results with initial custom dataset and
synthetic fog dataset.

It is possible to observe in Table 8.2 how the accuracy in the initial
custom dataset only improves a 1.6 % when using our proposed model in
comparison with a SSD structure. However, the CeneterPoint model based
in LiIDAR and camera sensors achieves a better accuracy result due to the
integration of camera data that provides a high quantity of relevant features
as well as the 3D convolutional study of the data.

When incurring in hazard situations such as the previously commented,
this SSD model with a single sensor is highly affected since LiDAR data may
not represent target as expected. The same effect is visible in the CenterPoint
v2 network which also uses information from camera sensors, which would
also be affected by hazard weather conditions such as rain or fog, to recover

8.3. Experiments

159

missing information from the LiDAR data. Consequently, when studying
hazard weather conditions these two approaches suffer an accuracy drop due
to the missing data from the sensors. On the other hand, our sensor fusion
approach uses radar data that is not affected by hazard weather conditions
as an attention mechanism to select relevant areas of the LiDAR depth map
data, what leads to a an accuracy drop of a 7.1 % in comparison to the case
of the SSD where it dropped a 18.3 % and CenterPoint v2 a 11.2 %.

This result proves how the proposed approach, apart from improving the
initial accuracy in comparison with a single-sensor approach, helps to main-
tain a high accuracy result in unexpected hazard situations in autonomous
vehicle scenarios such as weather conditions or partial occlusion of sensors.

After discussing the performance results in our custom dataset, the pro-
posed model has been evaluated in the NuScenes dataset to ensure its flexibi-
lity to achieve high performance results with different sensors and scenarios.
The final accuracy achieved by our proposed algorithm in this dataset is
58.6 %. The individual accuracy for each of the classes as well as the error
distribution in the NuScenes dataset is shown in Figure 8.8. In this confu-
sion matrix, like in the previous one, columns represent target classes and
rows the predictions. The different classes have been codified into: 1-car, 2-
truck, 3-bus, 4-trailer, 5-construction, 6-pedestrian, 7-motorcycle, 8-bicycle,
9-traffic cone, 10-barrier and 11- no detected targets.

Confusion Matrix

4817100 | 7 3 2 0 2 8 0 0 [7.5%)
30.2%| 0.6% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.1% |0.0% | 0.0% | 2.5%
518 (910 | 48 | 57 | 32 [0 0 0 0 0 |p8.1%)
3.2% (5.7%|0.3% | 0.4% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |4 1.9%
398 | 364 | 240 | 127 | 182 | 0 0 0 0 0 |18:3%)
2.5%|2.3% | 1.5% | 0.8%| 1.1% | 0.0% | 0.0% | 0.0% |0.0% | 0.0% [81.7%
431 | 207 | 37 | 193 | 110 | © 0 0 0 0 [19.7%)|
2.7%|1.3% | 0.2% | 1.2%| 0.7% | 0.0% | 0.0% | 0.0% |0.0% | 0.0% [30.3%
141 0 1 50 (146 | 0 0 0 1} 0 K3.2%|
0.9% [0.0% | 0.0% | 0.3% | 0.9% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% [56.8%

0 0 0 0 0 (2547 31 47 1} 0 P7.0%|
0.0% [0.0% | 0.0% | 0.0% | 0.0% [15.9%| 0.2% | 0.3% | 0.0% | 0.0% | 3.0%

0 0 0 0 0 364 | 212 | 128 1} 0 [30.1%)|
0.0% |0.0% | 0.0% | 0.0% | 0.0% | 2.3% | 1.3% | 0.8% | 0.0% | 0.0% [59.9%

0 0 0 0 0 736 | 45 | 215 | 0O 0 R1.6%|
0.0% |0.0% |0.0% | 0.0% | 0.0% |4.6% | 0.3% | 1.3% | 0.0% | 0.0% [78.4%

0 0 0 0 0 0 0 0 51 6 B9.5%|
0.0% |0.0% |0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.3% | 0.0% [10.5%

0 0 0 0 0 0 0 0 2 | 27 3y
0.0% [0.0% |0.0% | 0.0% | 0.0% [0.0% | 0.0% | 0.0% | 0.0% | 0.2% | 6.9%
499 (423 198 | 58 | 369 | 718 | 36 | 97 | 16 | 15 |0.0%
3.1% [2.6% [1.2% | 0.4% | 2.3% [4.5% | 0.2% | 0.6% | 0.1% | 0.1% | 100%
70.8%{45.4%45 2%)|39.5%|17 4%|58 4%|65.0%43 4%(73.9%|56 3%|ia.s%
29.2%|54.6%|54.8%|60.5%82.6%41.6%]35.0%56.6%[26.1%43.8 %4 1.4%)

N

w

~

(5]

[=2]

~

Output Class

<o

©

N sk s e A s 9 e

Target Class

Figure 8.8: Confusion matrix result in NuScenes dataset.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection
160 at the Network Edge

It can be observed how the accuracy results highly differ among classes,
such as the difference between the classes car and construction. This is the
result of the high class imbalance in this dataset as well as the difficulty
to detect smaller targets, such as traffic cones, with LiDAR sensors, which
may not get enough points belonging to these targets if the are not close
enough. However, the accuracy results for common targets such as car and
pedestrian are not far from the state of the art results. At the same time, it
is possible to observe how the error distribution follows the expected results
where classes car, truck, bus and construction and often wrongly classify
due to the similarities of these vehicles when studying only their shapes.
The same problem is detected between classes pedestrian, motorcycle and
bicycle since the main surface of these targets is the person.

After the study of the results on this dataset, the proposed algorithm and
the state-of-the-art algorithms for target detection based on LiDAR data in
the NuScenes dataset will be compared. The selected parameters to compare
among all the discussed models in Table 8.3 are the size of the models,
accuracy, latency and used sensors. These parameters have been selected
since they are the most representative of the performance of a model at the
network edge at the same time it is relevant to know what sensors have
been used. This is relevant since the performance for a detection is highly
affected by initial data, i.e. in the case of camera data, the state-of-the-
art accuracy for detection is higher than LiDAR due to the larger number
of features that can be extracted. However, camera sensors may incur into
privacy problems as previously discussed. At the same time, camera sensors
are sensitive to environmental conditions (weather, lighting, etc.) which can
affect the performance in hazard situations.

Models tested on NuScenes dataset have been selected for the compari-
son in order to ensure the same data was used. At the same time, since the
proposed LR-ML model requires LIDAR and radar data, it is the most repre-
sentative dataset in contrast with other datasets, such as KITTI, which do
not provide radar data. Among all models evaluated in the NuScenes data-
set, 4 representative models have been selected due to their high positions in
the benchmark NuScenes table as well as the information authors provided
regarding these models and their trustworthiness. The chosen models for the
comparison are: CenterPoint v2 (2), FusionPainting (22), MEGVII (23) and
Shape Signature Networks (SSN) v2 (24). Nevertheless, since most of the
authors do not focus on edge computing approaches, information regarding
latency and memory size of the models is not public in some of the cases.
Consequently, this comparison must be understood as a general view of the
state of the art and not a direct comparison. Examples of LiDAR-radar fu-
sion models have not been included in the comparison due to the lack of
information regarding these models in the NuScenes benchmark table.

Table 8.3 shows how the accuracy results achieved by the proposed model

8.3. Experiments 161

Model Size of the | Accuracy (%) | Latency (s) Sensors
model
LR-ML (proposal) | 101.5 MB 58.6 0.038 LiDAR-Radar
CenterPoint v2 (2) 106 MB 67.4 0.057 LiDAR
FusionPainting (22) — 68.1 > 0,124 LiDAR-Camera
MEGVII (23) — 52.8 LiDAR
SSN v2 (24) — 50.6 — LiDAR

Table 8.3: Comparison of LiDAR-Camera fusion networks for target detec-
tion on NuScenes dataset.

does not surpass the state-of-the-art results such as the CenterPoint v2,
which uses a voxel approachand 3D convolutional layers not supported by
Edge Devices, (2) or the FusionPainting (22) models, which achieve a 8.8 %
and 9.5 % higher accuracy respectively. On the other hand, the proposed
model accuracy is better than the rest of the compared models.

Regarding latency, it is possible to observe how the proposed model is
a 50 % faster than the CenterPoint v2. The FusionPainting latency is also
higher than the achieved by the proposed model. This latency has been
calculated based on the latency of each of the detectors and auxiliary modules
required in the FusionPainting model, resulting in a minimum latency of
0.124 seconds. The rest of the models do not provide information regarding
their latency in the NuScenes dataset so a direct comparison is not possible.

Similarly, the size of the models have been compared but not all the
compared target detection models evaluated in the NuScenes dataset provide
information about their memory size so a direct comparison is not possible.
However, some of them do provide this information, such as the CenterPoint
v2 model, which is 4.5 MB larger than the proposed model. The models
that do not provide information regarding their memory size can be assumed
larger than the proposed one due to their structure, such as SSN v2 (24) that
prior the target detection reconstruct missing information of covered parts of
the targets based on symmetry or the MEGVII (23) that requires the input
data to be transformed into voxels to later study it using 3D convolutions.
Similarly, the FusionPainting required to study the LiDAR 3D data at the
same as the camera data prior their fusion to generate an attention map
for the target detection. These preprocessing steps are based on semantic
segmentation models, known by their high memory requirements. At the
same time, none of these models have been optimized for the network edge
as it is possible to observe by the layers, such as 3D Convolutional layers,
that are not commonly supported by Edge Devices.

As a conclusion from this table, it is possible to observe how other models
achieve better accuracy results due to larger and more complex structure that
are not suitable for the network edge or the integration of sensors, i.e. camera

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection
162 at the Network Edge

sensors, that may lead to privacy issues. Therefore, when taking into account
the constrains at the network edge as well as the trend to avoid sensors that
may record private data, our model proposed a different approach to face
these problems in the topic of target detection.

8.4. Conclusions

A robust Multi-Level Sensor Fusion DNN based on LiDAR and radar
sensors has been developed in this manuscript for target detection in au-
tonomous vehicles scenarios. To better fit the constrains of these scenarios,
network edge, the algorithm has been developed taking into account the
memory usage and latency. To evaluate the proposed model, it has been
implemented in a Google Coral TPU Edge Device where it achieved an ac-
curacy of 58.6 % and a latency of 38 milliseconds in the challenging NuScenes
dataset.

Even when the accuracy results do not surpass the state-of-the-art accu-
racy shown by other models, as a result of the optimization applied to the
model, it achieved a reduced latency and memory requirements in contrast
to the rest of compared models in this manuscript.

At the same time, the advantages of using a sensor fusion approach rather
than a single sensor model have been studied by comparing our proposed
algorithm and a single LiDAR sensor SSD model in the initial custom dataset
and a synthetic dataset that emulates hazard weather conditions. In this
test it was possible to observe the robustness of the proposed model to data
corruption in comparison with single-sensor techniques.

We can conclude that the proposed model has been designed taking into
consideration the constrains of Edge Devices as well as limitations of the
final application such as autonomous driving. Consequently, the algorithm
follows a trade-off among the accuracy, latency and memory size.

References

[1] Claudine Badue, Ranik Guidolini, Raphael Vivacqua Carneiro, Pedro
Azevedo, Vinicius Brito Cardoso, Avelino Forechi, Luan Jesus, Rodrigo
Berriel, Thiago Meireles Paixao, Filipe Mutz, et al. Self-driving cars: A
survey. Expert Systems with Applications, page 113816, 2020.

[2] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d
object detection and tracking. In CVPR, 2021.

[3] Rui Qian, Xin Lai, and Xirong Li. Boundary-aware 3d object detection
from point clouds. ArXiv, abs/2104.10330, 2021.

REFERENCES

163

4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-
ensembling single-stage object detector from point cloud. In Procee-
dings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14494-14503, June 2021.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang,
and Qi Tian. Centernet: Keypoint triplets for object detection. In
Proceedings of the IEEE/CVF' International Conference on Computer
Vision, pages 6569-6578, 2019.

F. Nobis, M. Geisslinger, M. Weber, J. Betz, and J. Lienkamp. A Deep
Learning-based Radar and Camera Sensor Fusion Architecture for Ob-
ject Detection. 2019 Sensor Data Fusion: Trends, Solutions, Applica-
tions (SDF), Bonn, Germany, pages 1-7, 2019.

J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, and J. W. Choi. Robust
camera lidar sensor fusion via deep gated information fusion network.
In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1620-1625,
2018.

Zhizhong Kang, Juntao Yang, Ruofei Zhong, Yongxing Wu, Zhenwei Shi,
and Roderik Lindenbergh. Voxel-based extraction and classification of
3-d pole-like objects from mobile lidar point cloud data. IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
11:4287-4298, 11 2018.

Javier Mendez, Miguel Molina, Noel Rodriguez, Manuel P Cuellar, and
Diego P Morales. Camera-lidar multi-level sensor fusion for target de-
tection at the network edge. Sensors, 21(12):3992, 2021.

Hojoon Lee, Heungseok Chae, and Kyongsu Yi. A geometric model
based 2d lidar/radar sensor fusion for tracking surrounding vehicles.
IFAC-PapersOnLine, 52(8):130-135, 2019. 10th IFAC Symposium on
Intelligent Autonomous Vehicles IAV 2019.

Babak Shahian Jahromi, Theja Tulabandhula, and Sabri Cetin. Real-
time hybrid multi-sensor fusion framework for perception in autonomous
vehicles. Sensors, 19(20), 2019.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Os-
car Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11621-11631, 2020.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

164

at the Network Edge

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Google. Google coral tpu dev board. https://coral.ai/products/
dev-board/. Accessed: 2021-10-01.

Hongwu Kuang, Bei Wang, Jianping An, Ming Zhang, and Zehan
Zhang. Voxel-fpn: Multi-scale voxel feature aggregation for 3d object
detection from lidar point clouds. Sensors, 20(3):704, 2020.

Maxime Soma, Francois Pimont, and Jean-Luc Dupuy. Sensitivity of
voxel-based estimations of leaf area density with terrestrial lidar to ve-
getation structure and sampling limitations: A simulation experiment.
Remote Sensing of Environment, 257:112354, 2021.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. ArXiv, abs/1704.04861, 2017.

Russell Reed. Pruning algorithms-a survey. IEEFE transactions on Neu-
ral Networks, 4(5):740-747, 1993.

Blickfeld. Blickfeld cube 1 lidar sensor. https://www.blickfeld.com/
products/cube-1/. Accessed: 2021-10-05.

Infineon Technologies AG. BGT60TR13C evaluation board.
https://www.infineon.com/cms/de/applications/solutions/

sensor-solutions/presence-detection/#!boards. Accessed:
2021-10-05.

Velodyne. Velodyne hdl-64e sensor. https://velodynelidar.com/
products/hdl-64e/. Accessed: 2021-10-4.

Shaoqing Xu, Dingfu Zhou, Jin Fang, Junbo Yin, Bin Zhou, and Liang-
jun Zhang. Fusionpainting: Multimodal fusion with adaptive attention
for 3d object detection. ArXiv, abs/2106.12449, 2021.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang Yu.
Class-balanced grouping and sampling for point cloud 3d object detec-
tion. arXiv preprint arXiv:1908.09492, 2019.

Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and Dahua
Lin. Ssn: Shape signature networks for multi-class object detection
from point clouds. In Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXV
16, pages 581-597. Springer, 2020.

REFERENCES

165

References

1]

2]

3]

4]

[5]

6]

7]

8]

19]

[10]

Hervé Abdi. Metric multidimensional scaling (mds): analyzing distan-
ce matrices. Encyclopedia of measurement and statistics, pages 1-13,
2007.

Paolo Annibale, Jason Filos, Patrick A Naylor, and Rudolf Rabenstein.
Tdoa-based speed of sound estimation for air temperature and room

geometry inference. IEEFE transactions on audio, speech, and language
processing, 21(2):234-246, 2012.

Sebastian Anzinger, Christian Bretthauer, Johannes Manz, Ulrich
Krumbein, and Alfons Dehé. Broadband acoustical mems transceivers
for simultaneous range finding and microphone applications. 2019 20th
International Conference on Solid-State Semsors, Actuators and Mi-
crosystems € Eurosensors XXXIII (TRANSDUCERS € EUROSEN-
SORS XXXIII), pages 865-868, 2019.

Ben Beklisi Kwame Ayawli, Ryad Chellali, Albert Yaw Appiah, and
Frimpong Kyeremeh. An overview of nature-inspired, conventional,
and hybrid methods of autonomous vehicle path planning. Journal of
Advanced Transportation, 2018, 2018.

Igal Bilik, Oren Longman, Shahar Villeval, and Joseph Tabrikian. The
rise of radar for autonomous vehicles: Signal processing solutions and
future research directions. IEEE signal processing Magazine, 36(5):
20-31, 2019.

Dennis A Bohn. Environmental effects on the speed of sound. Journal
of the audio engineering society, Audio Engineering Society Convention
83, 1987.

Mat Buckland. Programming Game Al by Example. Wordware Pu-
blishing, Inc., 2005.

Aladin Carovac, Fahrudin Smajlovic, and Dzelaludin Junuzovic. Ap-
plication of ultrasound in medicine. Acta Informatica Medica, 19(3):
168, 2011.

Jian Chen, Fan Yu, Jianxin Yu, and Lin Lin. A three-dimensional
pen-like ultrasonic positioning system based on quasi-spherical pvdf
ultrasonic transmitter. IEEE Sensors Journal, 2020.

Maximo Cobos, Fabio Antonacci, Anastasios Alexandridis, Athanasios
Mouchtaris, and Bowon Lee. A survey of sound source localization
methods in wireless acoustic sensor networks. Wireless Communica-
tions and Mobile Computing, 2017, 2017.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

166

at the Network Edge

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato.
Version Control with Subversion. O’Reilly, 2004. ISBN 0-596-00448-6.

SAE On-Road Automated Vehicle Standards Committee et al. Taxo-
nomy and definitions for terms related to on-road motor vehicle auto-
mated driving systems. SAE Standard J, 3016:1-16, 2014.

MMDetection3D Contributors. MMDetection3D: OpenMMLab next-
generation platform for general 3D object detection. https://github.
com/open-mmlab/mmdetection3d, 2020.

David MJ Cowell and Steven Freear. Separation of overlapping linear
frequency modulated (1fm) signals using the fractional fourier trans-
form. IEEFE transactions on ultrasonics, ferroelectrics, and frequency
control, 57(10):2324-2333, 2010.

Tobias Dahl, Joao L Ealo, Hans J Bang, Sverre Holm, and Pierre Khuri-
Yakub. Applications of airborne ultrasound in human—computer inter-
action. Ultrasonics, 54(7):1912-1921, 2014.

Amit Das, Ivan Tashev, and Shoaib Mohammed. Ultrasound based
gesture recognition. 2017 IEEFE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 406-410, 2017.

Mathieu De Coster, Mieke Van Herreweghe, and Joni Dambre. Sign
language recognition with transformer networks. In 12th International
Conference on Language Resources and FEvaluation, pages 6018-6024.
European Language Resources Association (ELRA), 2020.

Jan De Leeuw and Patrick Mair. Multidimensional scaling using ma-
jorization: Smacof in r. 2011.

Vin De Silva and Joshua B. Tenenbaum. Sparse multidimensional sca-
ling using landmark points. Technical report, Technical report, Stan-
ford University, 2004.

Yao Deng, Xi Zheng, Tianyi Zhang, Chen Chen, Guannan Lou, and
Miryung Kim. An analysis of adversarial attacks and defenses on auto-
nomous driving models. In 2020 IEEE international conference on per-
vasive computing and communications (PerCom), pages 1-10. IEEE,
2020.

Rail Dominguez, Enrique Onieva, Javier Alonso, Jorge Villagra, and
Carlos Gonzalez. Lidar based perception solution for autonomous vehi-
cles. In 2011 11th International Conference on Intelligent Systems De-
sign and Applications, pages 790-795. IEEE, 2011.

REFERENCES

167

[22]

23]

[24]

[25]

[26]
[27]

28]

[29]

[30]

[31]

[32]

[33]

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang,
and Qi Tian. Centernet: Keypoint triplets for object detection. In
Proceedings of the IEEE/CVF International Conference on Computer
Viston, pages 6569-6578, 2019.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang,
and Qi Tian. Centernet: Keypoint triplets for object detection. In
Proceedings of the IEEE/CVF international conference on computer
viston, pages 6569-6578, 2019.

W. Yu et al. A Survey on the Edge Computing for the Internet of
Things. IEEE Access, 6:6900-6919, 2018.

Jamil Fayyad, Mohammad A Jaradat, Dominique Gruyer, and Homa-
youn Najjaran. Deep learning sensor fusion for autonomous vehicle
perception and localization: A review. Sensors, 20(15):4220, 2020.

Martin Fowler. Continuous integration, 2006.

Y. Gao, M. A. Maraci, and J. A. Noble. Describing ultrasound video
content using deep convolutional neural networks. 2016 IEEE 15th
International Symposium on Biomedical Imaging (ISBI), pages 787—
790, 2016. doi: 10.1109/ISBI.2016.7493384.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440-1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580-587, 2014.

David G. Gobbi, Roch M. Comeau, and Terry M. Peters. Ultrasound
probe tracking for real-time ultrasound/mri overlay and visualization
of brain shift. pages 920-927, 1999.

José Luis Guinén, Emma Ortega, José Garcia-Antéon, and Valentin
Pérez-Herranz. Moving average and savitzki-golay smoothing filters
using mathcad. Papers ICEE, 2007, 2007.

Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. Sound-
wave: using the doppler effect to sense gestures. Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, pages
1911-1914, 2012.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

168

at the Network Edge

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Chris Hand. A survey of 3d interaction techniques. 16(5):269-281,
1997.

Simon Haykin, John Litva, Terence J Shepherd, et al. Radar array
processing. Springer, 1993.

G Hayward, F Devaud, and JJ Soraghan. Plg-3 evaluation of a bio-
inspired range finding algorithm (bira). 2006 IEEE Ultrasonics Sym-
posium, pages 1381-1384, 2006.

Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua, and Lei
Zhang. Structure aware single-stage 3d object detection from point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vi-
ston and Pattern Recognition, pages 11873-11882, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735-1780, 1997.

Ke-Nung Huang and Yu-Pei Huang. Multiple-frequency ultrasonic dis-
tance measurement using direct digital frequency synthesizers. Sensors
and Actuators A: Physical, 149(1):42-50, 2009.

Google I/O. Google tpu. URL https://coral.ai/docs/edgetpu/
faq/. Accessed: 2022-02-07.

J. C. Jackson, R. Summan, G. I. Dobie, S. M. Whiteley, S. G. Pierce,
and G. Hayward. Time-of-flight measurement techniques for airborne
ultrasonic ranging. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 60(2):343-355, 2013.

Young Jeon, Taehong Kim, and Taejoon Kim. Fast and robust time
synchronization with median kalman filtering for mobile ad-hoc net-
works. Sensors, 21(2):590, 2021.

Moran Ju, Jiangning Luo, Panpan Zhang, Miao He, and Haibo Luo. A
simple and efficient network for small target detection. IEEE Access,
7:85771-85781, 2019.

Vijay Kakani, Van Huan Nguyen, Basivi Praveen Kumar, Hakil Kim,
and Visweswara Rao Pasupuleti. A critical review on computer vision
and artificial intelligence in food industry. Journal of Agriculture and
Food Research, 2:100033, 2020.

Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif
Ahmed. Edge computing: A survey. Future Generation Computer
Systems, 97:219 — 235, 2019. ISSN 0167-739X. doi: https://doi.org/
10.1016/j.future.2019.02.050. URL http://www.sciencedirect.com/
science/article/pii/S0167739X18319903.

REFERENCES

169

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

AKRMLPJ Khosravi, RNN Koury, L Machado, and JJG Pabon. Pre-
diction of wind speed and wind direction using artificial neural network,
support vector regression and adaptive neuro-fuzzy inference system.
Sustainable Energy Technologies and Assessments, 25:146-160, 2018.

J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, and J. W. Choi. Robust
camera lidar sensor fusion via deep gated information fusion network.
In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1620-1625,
2018. doi: 10.1109/1VS.2018.8500711.

Jelena Kocié¢, Nenad Jovi¢i¢, and Vujo Drndarevié. Sensors and sen-
sor fusion in autonomous vehicles. In 2018 26th Telecommunications
Forum (TELFOR), pages 420-425. IEEE, 2018.

Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber
Fallah. A survey of deep learning applications to autonomous vehicle

control. TEEE Transactions on Intelligent Transportation Systems, 22
(2):712-733, 2020.

Taavi Laadung, Sander Ulp, Muhammad M. Alam, and Yannick Le
Moullec. Active-passive two-way ranging using uwb. pages 1-5, 2020.

doi: 10.1109/ICSPCS50536.2020.9309999.

Patrick Lazik and Anthony Rowe. Indoor pseudo-ranging of mobile
devices using ultrasonic chirps. pages 99-112, 2012.

Hojoon Lee, Heungseok Chae, and Kyongsu Yi. A geometric mo-
del based 2d lidar/radar sensor fusion for tracking surrounding vehi-
cles. IFAC-PapersOnLine, 52(8):130-135, 2019. ISSN 2405-8963. doi:
https://doi.org/10.1016 /j.ifacol.2019.08.060. 10th IFAC Symposium
on Intelligent Autonomous Vehicles TAV 2019.

John J. Leonard and Hugh F. Durrant-Whyte. Mobile robot locali-
zation by tracking geometric beacons. IFEFE Transactions on robotics
and Automation, 7(3):376-382, 1991.

Jacques Lewiner. Paul langevin and the birth of ultrasonics. Japanese
Journal of Applied Physics, 30(S1):5, jan 1991. doi: 10.7567 /jjaps.30s1.
5. URL https://doi.org/10.7567%2Fjjaps.30s1.5.

Wenbin Li and Matthieu Liewig. A survey of ai accelerators for ed-
ge environment. In World Conference on Information Systems and
Technologies, pages 35—44. Springer, 2020.

Xinrong Li. Collaborative localization with received-signal strength in
wireless sensor networks. IEEE Transactions on Vehicular Technology,

56(6):3807-3817, 2007.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

170

at the Network Edge

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Yehao Li, Ting Yao, Yingwei Pan, and Tao Mei. Contextual transfor-
mer networks for visual recognition. arXiv preprint arXiv:2107.12292,
2021.

Ziyu Li, Yuncong Yao, Zhibin Quan, Wankou Yang, and Jin Xie. Sie-
net: spatial information enhancement network for 3d object detection
from point cloud. arXiv preprint arXiv:2105.15396, 2021.

Alejandro Lindo, Enrique Garcia, Jesus Urena, Maria del Carmen, and
Alvaro Hernandez. Multiband waveform design for an ultrasonic indoor
positioning system. I[EEE Sensors Journal, 15(12):7190-7199, 2015.

Kang Ling, Haipeng Dai, Yuntang Liu, and Alex X Liu. Ultragesture:
Fine-grained gesture sensing and recognition. 2018 15th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON), pages 1-9, 2018.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method
for large scale optimization. Mathematical programming, 45(1):503—
528, 1989.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Wei-
song Shi. Edge computing for autonomous driving: Opportunities and
challenges. Proceedings of the IEEFE, 107(8):1697-1716, 2019.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multi-
box detector. In Furopean conference on computer vision, pages 21-37.
Springer, 2016.

Yunxiang Liu and Jinpeng Ren. Laser point cloud road 3d target
detection based on deep learning. In 2021 2nd International Conference
on Big Data and Informatization Education (ICBDIE), pages 78-81.
IEEE, 2021.

Jiageng Mao, Yujing Xue, Minzhe Niu, Haoyue Bai, Jiashi Feng, Xiao-
dan Liang, Hang Xu, and Chunjing Xu. Voxel transformer for 3d object
detection. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3164-3173, 2021.

J. M. Martin, A. R. Jiménez, F. Seco, L. Calderén, Jose L. Pons, and
R. Ceres. Estimating the 3d-position from time delay data of us-waves:
experimental analysis and a new processing algorithm. Sensors and
Actuators A: Physical, 101(3):311-321, 2002.

Robert Mecklenburg. Managing Projects with GNU Make, 3rd edition.
O’Reilly Media, Inc, 2004. ISBN 0596006101.

REFERENCES

171

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

7]

78]

[79]

Carlos Medina, José Carlos Segura, and Angel De la Torre. Ultrasound
indoor positioning system based on a low-power wireless sensor network
providing sub-centimeter accuracy. Sensors, 13(3):3501-3526, 2013.

Javier Mendez, Manuel Cuéllar, and Diego Morales. Lidar-radar ro-
bust multi-level sensor fusion for target detection at the network edge.
Elsevier Measurements - Under review, 012 2021.

Javier Mendez, Miguel Molina, Noel Rodriguez, Manuel P Cuellar,
and Diego P Morales. Camera-lidar multi-level sensor fusion for target
detection at the network edge. Sensors, 21(12):3992, 2021.

Javier Mendez, Stephan Schoenfeldt, Xinyi Tang, Jakob Valtl
MP Cuellar, and Diego P Morales. Automatic label creation framework
for fmcw radar images using camera data. IEEFE Access, 2021.

Javier Mendez, Kay Bierzynski, Manuel Cuéllar, and Diego Morales.
Edge intelligence: Concepts, architectures, applications and future di-
rections. ACM Transactions on Embedded Computing Systems, 01
2022. doi: 10.1145/3486674.

Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online
limited memory bfgs. The Journal of Machine Learning Research, 16
(1):3151-3181, 2015.

José L. Morales. A numerical study of limited memory bfgs methods.
Applied Mathematics Letters, 15(4):481-487, 2002.

Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz,
and Markus Lienkamp. A deep learning-based radar and camera sensor
fusion architecture for object detection. In 2019 Sensor Data Fusion:
Trends, Solutions, Applications (SDF'), pages 1-7. IEEE, 2019.

Abdelmoumen Norrdine. An algebraic solution to the multilateration
problem. 1315, 2012.

Mahdi Panahi, Nitheshnirmal Sadhasivam, Hamid Reza Pourghasemi,
Fatemeh Rezaie, and Saro Lee. Spatial prediction of groundwater po-
tential mapping based on convolutional neural network (cnn) and sup-
port vector regression (svr). Journal of Hydrology, 588:125033, 2020.

Dinesh Dash Partha Pratim Ray and Debashis. Edge computing for
Internet of Things: A survey, e-healthcare case study and future direc-
tion. Network and Computer Applications, 140:1-22, 2019.

Matti Pastell, Lilli Frondelius, Mikko Jérvinen, and Juha Backman.
Filtering methods to improve the accuracy of indoor positioning data
for dairy cows. Biosystems Engineering, 169:22-31, 2018.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

172

at the Network Edge

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[38]

[39]

[90]

Marco Patané, Beatrice Rossi, Pasqualina Fragneto, and Andrea Fusie-
llo. Wireless sensor networks localization with outliers and structured
missing data. pages 1-7, 2017.

Diego Peteiro-Barral and Bertha Guijarro-Berdinas. A survey of
methods for distributed machine learning. Progress in Artificial In-
telligence, 2(1):1-11, 2013.

Marius-Constantin Popescu, Valentina E. Balas, Liliana Perescu-
Popescu, and Nikos Mastorakis. Multilayer Perceptron: Architectu-
re Optimization and Training with Mized Activation Functions. BD-
CA’17. Association for Computing Machinery, New York, NY, USA,
2017. ISBN 9781450348522. doi: 10.1145/3090354.3090427. URL
https://doi.org/10.1145/3090354 .3090427.

Sorin C Popescu and Kaiguang Zhao. A voxel-based lidar method for
estimating crown base height for deciduous and pine trees. Remote
sensing of environment, 112(3):767-781, 2008.

Antonin Povolny, Hiroshige Kikura, and Tomonori Thara. Ultrasound
pulse-echo coupled with a tracking technique for simultaneous measu-
rement of multiple bubbles. Sensors, 18(5):1327, 2018.

Veronika Putz, Julia Mayer, Harald Fenzl, Richard Schmidt, Markus
Pichler-Scheder, and Christian Kastl. Cyber—Physical Mobile Arm
Gesture Recognition using Ultrasound and Motion Data. 2020.

J. Cao Q. Zhang Y. Li W. Shi and L. Xu. Edge Computing: Vision
and Challenges. IEEFE Internet of Things Journal, 3(5):637-646, 2016.

Jun Qi and Guo-Ping Liu. A robust high-accuracy ultrasound indoor
positioning system based on a wireless sensor network. Sensors, 17
(11):2554, 2017

Rui Qian, Xin Lai, and Xirong Li. Boundary-aware 3d object detection
from point clouds. ArXiv, abs/2104.10330, 2021.

Yang Qifan, Tang Hao, Zhao Xuebing, Li Yin, and Zhang Sanfeng.
Dolphin: Ultrasonic-based gesture recognition on smartphone plat-
form. 2014 IEEE 17th International Conference on Computational
Science and Engineering, pages 1461-1468, 2014.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages

779-788, 2016.

REFERENCES

173

[91]

192]

[93]

[94]

[95]

[96]

197]

98]

[99]

[100]

[101]

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-
cnn: Towards real-time object detection with region proposal networks.
Advances in neural information processing systems, 28:91-99, 2015.

Sara Casado-Vara Roberto Sitton-Candanedo Inés Alonso Ricardo
Corchado Rodriguez, Juan Rodriguez. A Review of Edge Compu-
ting Reference Architectures and a new Global Edge Proposal. Future
Generation Computer Systems, 2019.

Wenjie Ruan, Quan Z Sheng, Lei Yang, Tao Gu, Peipei Xu, and Longfei
Shangguan. Audiogest: enabling fine-grained hand gesture detection
by decoding echo signal. Proceedings of the 2016 ACM international
joint conference on pervasive and ubiquitous computing, pages 474-485,
2016.

Daniel Ruiz, Jests Urena, Juan C. Garcia, Carmen Pérez, José M. Vi-
lladangos, and Enrique Garcia. Efficient trilateration algorithm using
time differences of arrival. Sensors and Actuators A: Physical, 193:
220-232, 2013.

T. A. Mohammed S. Albawi and S. Al-Zawi. Understanding of a con-
volutional neural network. International Conference on Engineering
and Technology (ICET), Antalya, 2017, pages 1-6, 2017.

Nasir Saeed, Haewoon Nam, Mian I. U.l Haq, and Dost B. Muham-
mad Saqib. A survey on multidimensional scaling. ACM Computing
Surveys (CSUR), 51(3):1-25, 2018.

Borja Saez-Mingorance, Antonio Escobar-Molero, Javier Mendez-
Gomez, Encarnacion Castillo-Morales, and Diego P Morales-Santos.
Object positioning algorithm based on multidimensional scaling and
optimization for synthetic gesture data generation. Sensors, 21(17):
5923, 2021.

S. R. Safavian and D. Landgrebe. A survey of decision tree classifier
methodology. IEEE Transactions on Systems, Man, and Cybernetics,
21(3):660-674, 1991.

Yu Sang, Laixi Shi, and Yimin Liu. Micro hand gesture recognition
system using ultrasonic active sensing. IFEFEE Access, 6:49339-49347,
2018.

M. Satyanarayanan. The emergence of edge computing. Computer, 50
(1):30-39, 2017.

R. Schmidt. Multiple emitter location and signal parameter estima-
tion. IEEE Transactions on Antennas and Propagation, 34(3):276-280,
1986. doi: 10.1109/TAP.1986.1143830.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

174

at the Network Edge

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

[110]

[111]

[112]

[113]

[114]

[115]

Babak Shahian Jahromi, Theja Tulabandhula, and Sabri Cetin. Real-
time hybrid multi-sensor fusion framework for perception in autono-
mous vehicles. Sensors, 19(20), 2019. ISSN 1424-8220. doi: 10.3390/
$19204357. URL https://www.mdpi.com/1424-8220/19/20/4357.

Maurice G Silk. Ultrasonic transducers for nondestructive testing.
Adam Hilger Ltd., Accord, MA, 1984.

Deepti Singhal and Rama M. Garimella. Simple median based infor-
mation fusion in wireless sensor network. pages 1-7, 2012.

Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Pri-
yantha. Tracking moving devices with the cricket location system.
pages 190-202, 2004.

Richard M. Stallman. GNU Emacs Manual for Version 22, 16th Edi-
tion. Free Software Foundation, 2007.

Alan N Steinberg and Christopher L Bowman. Rethinking the jdl data
fusion levels. Nssdf Jhapl, 38:39, 2004.

Inc. ThoughtWorks. Cruise control, 2001.

Michael W. Trosset and Carey E. Priebe. The out-of-sample problem
for classical multidimensional scaling. Computational statistics € data
analysis, 52(10):4635-4642, 2008.

Jennifer Vesperman. FEssential CVS. O’Reilly, 2003. ISBN 0-596-
00459-1.

General Vision. Neuroshield. (accessed: 20.04.2020). URL https:
//www.general-vision.com/hardware/neuroshield/.

S. Elanayar V.T. and Y. C. Shin. Radial basis function neural network
for approximation and estimation of nonlinear stochastic dynamic sys-
tems. IEEE Transactions on Neural Networks, 5(4):594-603, 1994.

Miao Wang and Yi-Hsing Tseng. Incremental segmentation of lidar
point clouds with an octree-structured voxel space. The Photogram-
metric Record, 26(133):32-57, 2011.

Shuxia Wang. Wireless network indoor positioning method using non-
metric multidimensional scaling and rssi in the internet of things en-
vironment. Mathematical Problems in Engineering, 2020, 2020.

Tai Wang, ZHU Xinge, Jiangmiao Pang, and Dahua Lin. Probabilistic
and geometric depth: Detecting objects in perspective. In Conference
on Robot Learning, pages 1475-1485. PMLR, 2022.

REFERENCES

175

[116]

[117]

118]

[119]
[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

128]

Wei Wang, Yujing Yang, Xin Wang, Weizheng Wang, and Ji Li. Deve-
lopment of convolutional neural network and its application in image
classification: a survey. Optical Engineering, 58(4):040901, 2019.

Zhangjing Wang, Yu Wu, and Qingqing Niu. Multi-sensor fusion in
automated driving: A survey. leee Access, 8:2847-2868, 2019.

Thomas M Ward, Pietro Mascagni, Yutong Ban, Guy Rosman, Nicolas
Padoy, Ozanan Meireles, and Daniel A Hashimoto. Computer vision
in surgery. Surgery, 169(5):1253-1256, 2021.

Wikipedia. LaTeX.

Christopher R. Wren, Ali Azarbayejani, Trevor Darrell, and Alex P.
Pentland. Pfinder: Real-time tracking of the human body. IEEE

Transactions on pattern analysis and machine intelligence, 19(7):780—
785, 1997.

Ling Xiao, Renfa Li, and Juan Luo. Sensor localization based on non-
metric multidimensional scaling. STRESS, 2(1), 2006.

Shaoqing Xu, Dingfu Zhou, Jin Fang, Junbo Yin, Bin Zhou, and Liang-
jun Zhang. Fusionpainting: Multimodal fusion with adaptive attention
for 3d object detection. ArXiv, abs/2106.12449, 2021.

Samir S Yadav and Shivajirao M Jadhav. Deep convolutional neu-
ral network based medical image classification for disease diagnosis.
Journal of Big Data, 6(1):1-18, 2019.

Maosheng Ye, Shuangjie Xu, and Tongyi Cao. Hvnet: Hybrid voxel
network for lidar based 3d object detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pa-
ges 1631-1640, 2020.

Costas Yiallourides and Pablo P. Parada. Low power ultrasonic gesture
recognition for mobile handsets. pages 2697-2701, 2019. doi: 10.1109/
ICASSP.2019.8683781.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d
object detection and tracking. In CVPR, 2021.

Qinglin Zeng, Zheng Kuang, Shuaibing Wu, and Jun Yang. A method
of ultrasonic finger gesture recognition based on the micro-doppler ef-
fect. Applied Sciences, 9(11):2314, 2019.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
Deepthings: Distributed adaptive deep learning inference on resource-
constrained iot edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2348-2359, 2018.

CHAPTER 8. Lidar-Radar Robust Multi-Level Sensor Fusion for Target Detection

176

at the Network Edge

[129]

[130]

[131]

[132]

Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-
ensembling single-stage object detector from point cloud. In Procee-
dings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14494-14503, June 2021.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang. Edge inte-
lligence: Paving the last mile of artificial intelligence with edge com-
puting. Proceedings of the IEEE, 107(8):1738-1762, Aug 2019. ISSN
1558-2256. doi: 10.1109/JPROC.2019.2918951.

Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and Gang
Yu. Class-balanced grouping and sampling for point cloud 3d object
detection. arXiv preprint arXiv:1908.09492, 2019.

Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and Dahua
Lin. Ssn: Shape signature networks for multi-class object detection
from point clouds. In Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXV
16, pages 581-597. Springer, 2020.

- Qué te parece desto, Sancho? — Dijo Don Quijote —
Bien podran los encantadores quitarme la ventura,

pero el esfuerzo y el dnimo, serd imposible.

Segunda parte del Ingenioso Caballero
Don Quijote de la Mancha
Miguel de Cervantes

