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A B S T R A C T   

Spatially offset Raman spectroscopy (SORS) is a novel technique capable of measuring samples through the 
original packaging and recovering the spectra without the contribution of surface layers. Here, a portable SORS 
equipment was used to measure 62 samples of margarines and fat spreads through the original plastic container. 
Chemometric tools were used to analyse the data obtained. A total of 25 classification models were developed 
based on: (i) geographical origin, (ii) vegetable oils and (iii) some significant minor constituents present in the 
samples. Partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM) and soft inde
pendent modelling of class analogy (SIMCA) were used for model classification. Quantitative analysis using the 
partial least squares regression (PLSR) method was also performed to determine the total fat content. In parallel, 
a benchtop conventional Raman spectrometer was used to analyse the same samples, develop the models with 
the same training and validation sets in order to compare the results. The calculated classification performance 
metrics showed better classification models from SORS data than conventional Raman spectroscopy (CRS), 
highlighting the one-class SIMCA models for margarines containing phytosterols, olive oil or linseed oil. These 
models exhibited very high predictability (performance parameters with values equal to or higuer than 0.8, 0.9 
and 1, respectively). The quantitation model developed from SORS exhibited a higher R2 than from CRS data, 
and prediction errors below 5% from SORS versus errors between 5 and 13% from CRS data. 

These results reveal the ability of SORS to avoid the influence of fluorescence, a major drawback when 
analysing Raman spectra, but also the potential of the technique as a fast, non-destructive and non-invasive 
analytical technique in the field of food analysis. In conclusion, the tandem ’SORS-chemometrics’ has been 
shown to be a potential tool in the food quality and food authentication fields. Thus, it is necessary to perform 
further investigations in this field in order to advance the knowledge of this technique and to be able to develop 
new methods of rapid analysis.   

1. Introduction 

Advanced Raman spectroscopy techniques such as spatially offset 
Raman spectroscopy (SORS) have demonstrated the ability to overcome 
some disadvantages of conventional Raman spectroscopy (CRS). When 
SORS is applied, Raman signal is acquired at a certain distance from the 
laser incidence (some millimetres) and the collected signal provides 
spectral information of both the outer and inner layers of the measured 
material due to the spatially shift. This shift allows the deep layers 
photons to be emitted from a laterally shifted point of the incidence 

region while the surface photons are emitted from the same incidence 
point. The pathway followed by the interior photons is randomised, so it 
is more likely to retrieve this interior emission from a shifted point than 
from the same point of incidence [1]. For this, SORS becomes even more 
relevant by being able to collect photon emission from the inside of 
diffusely scattering materials, since most samples are either opaque or 
contained in opaque materials, while allowing measurements to be 
performed without damaging the sample, making SORS a remote, non- 
invasive and non-destructive technique [2,3]. 

Ensuring the stability of the sample during measurements as well as 
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properly selecting the optimal offset are important parameters for 
measurement success. The optimal offset is characteristic for each type 
of sample as the intensity of spectral bands and the depth range to be 
reached depends on it [1,4]. Conventional instruments to perform SORS 
measurements are custom design builds, primarily composed of a laser 
source, a charge-coupled device (CCD) camera as a sensor and a fibre 
bundle or fibre optic. Moreover, filters are used to supress the fluores
cence radiation emitted by the measured sample that could interfere 
with the low intensity Raman signals. Usually, wavelengths excitation in 
SORS measurements are 785, 830 and 1064 nm. The latter has 
demonstrated a greater ability to remove fluorescence [2]. 

However, since 2017, it is possible to acquire Raman signals with 
branded portable and handheld SORS equipment [5]. These instruments 
were manufactured for particular applications, making easier fast and 
effective analysis, e.g., for hazardous substances security screening or 
raw materials control in pharmaceutical industry. Commercial equip
ment still has some drawbacks inherent to the Raman spectroscopy, such 
as the inability to perform measurements through fully opaque package 
materials as metal materials, including tetrabrik. Minor sensitivity and 
lower signal-to-noise ratio in collected Raman signals have also been 
reported using commercial instruments [2]. 

Note that when Raman spectroscopy is employed as an analytical 
technique to evaluate the authenticity or quality of foodstuffs, the signal 
obtained is considered as non-specific, in which all the chemical and 
structural information of the sample is collected. In other words, this 
signal is an instrumental fingerprint and therefore it is necessary to 
apply chemometric/data mining tools in order to extract the information 
of interest which is not shown in an evident form [6]. The tandem 
composed by fingerprinting methodology and chemometrics is focused 
on the development of multivariate (qualitative or quantitative) models 
using proper mining/machine learning algorithms [7], so-called pattern 
recognition methods. The aim is to establish the belonging to one class 
or another of a set of samples with a characteristic feature (e.g., origin, 
ingredients, manufacturing, differentiated quality claims, etc.) or to 
carry out the quantitation of one or more feature-related parameters [8]. 
Chemometric pattern recognition methods are usually divided into two 
categories: unsupervised and supervised methods. Unsupervised 
methods show the intrinsic data pattern and are typically used to 
exploratory purposes. The most common unsupervised approaches are 
hierarchical cluster analysis (HCA) and principal components analysis 
(PCA). Supervised methods consider the belonging class of the sample 
and the development of model involves a training step followed by a 
validation step which can be performed using new samples different 
from those used in the training step (external validation) or using the 
same samples (cross-validation). Some of the supervised methods 
include k-nearest neighbours (kNN), soft independent modelling by 
class analogy (SIMCA), partial least squares-discriminant analysis (PLS- 
DA), or support vector machine (SVM). Furthermore, as far as quanti
tative analysis is concerned, the most widely used is by partial least 
squares regression (PLSR) [9]. 

SORS measurements in combination with chemometric tools have 
been used for multiple applications in different fields. To date, the most 
explored with industrial application is pharmaceutical industry for the 
identification of raw materials, drug detection through packaging or 
control the adulteration of drugs [2]. Other fields of application are the 
non-invasive analysis of artworks [10], the detection of explosives in 
liquids in the context of the security [11], and biomedical applications 
[12] or some in the food and beverage sector [2,4]. However, despite the 
potential of this analytical technique to be used in the food quality 
control, food safety or food authentication fields among others, appli
cations of SORS-chemometrics are still limited in the scientific literature 
and as far as is known, they are not yet applied at the industry level. 

Margarines and related fat-spread products could be an appropriate 
target for SORS research. The container for these products is usually 
made of plastic, a material that is permeable to the laser allowing 
acquisition of Raman spectra of the sample contained inside. 

Historically, margarine was created to replace butter as a lower cost 
option. It is a water-in-oil solid emulsion composed mainly of vegetable 
fats (such as sunflower, rapeseed, palm and olive oil) and rarely animal 
fats up to a maximum of 3% [13]. Unlike butter which must derive only 
from milk, other ingredients are also permitted in margarine 
manufacturing such as phytosterols, vitamins, minerals or sugars as well 
as additives, including colouring agents, emulsifiers, stabilisers or an
tioxidants [14]. Fat-spreads are classified according to the total fat 
percentage by Codex Alimentarius. Commonly, for a product to be 
properly called margarine, it must have at least 80% fat, otherwise it is 
called fat-spread (with less than 80%) [15]. However, the EU legislation 
establishes more categories: (i) margarine, if fat content is between 80% 
and 90%, (ii) three-quarter-fat margarine, if fat content is between 60% 
and 62%, (iii) half-fat margarine if fat content is between 39% and 41% 
and (iv) fat spreads X% for the rest of fat content percentages [16]. The 
legislation of others counties may be different. For instance, Moroccan 
law provides that margarine is any edible fat other than butter and lard. 
This legislation does not specify a minimum fat percentage required to 
call the product margarine, and also allows for the addition of up to 10% 
milk fat, either from milk or whipped cream [17]. 

Most traditional analytical techniques, such as high performance 
liquid chromatography (HPLC) or gas chromatography (GC), employed 
to analyse this type of product involve several sample pre-treatments, 
such as previous extraction or isolation of the required compound or 
compounds family as well as need long time to perform the analysis 
[18]. However, vibrational spectroscopy techniques such as Fourier 
transform-near infrared (FT-NIR) provide the possibility to conduct 
rapid, simple and non-destructive analysis of margarines and fat-spreads 
in terms to assess proper quality control and food authentication [19]. 
Among these techniques, SORS has already been applied to detect the 
presence of margarine in butter, i.e., to detect butter adulteration [20]. 
Thus, a food such as margarine could be a good product to be analysed 
with the SORS technique in a fast, non-invasive and non-destructive 
form, for authenticating this food product. 

The present paper aims the use of SORS to extract Raman spectra of a 
set of margarines and fat-spread products measured through the original 
packaging using a recently commercialised handheld instrument. 
Different multivariate models have been developed using unsupervised 
(PCA) and supervised (PLS-DA, SVM, SIMCA) methods for prior 
screening and qualitative classification, and PLSR to quantify the fat 
contents of the samples. To further improve the reliability of the mea
surements performed, a comparison with CRS has been also carried out. 

2. Material and methods 

2.1. Margarines and spreads samples 

A total of 62 samples of margarines and fat-spreads from different 
geographic origins of production were analysed. Table 1 shows the 
different geographic origins of manufacture and the number of samples 
from each of them. The samples were purchased in different local gro
cery shops and supermarkets in Spain, France, United Kingdom and 
Morocco. As for the samples whose manufacturing origin is different 

Table 1 
Geographical origin of the margarine samples included in the study.  

Geographical origin Number of samples 

Europe Spain 19 
France 13 
United Kingdom 12 
Belgium 4 
Germany 1 
The Netherlands 1 

Morocco  12 

Total number of samples 62  
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(Belgium, Germany and Holland), they were purchased in retail in 
Spain. In addition to the geographic origins of manufacture, the samples 
differ in composition (ingredients) and amount of macronutrients (car
bohydrates, fats and proteins). After purchase, the samples were stored 
under conditions similar to those of retail sale, i.e., refrigerated at 4 ◦C. 

For CRS measurements, a small portion of each sample (approxi
mately 10 g) was transferred to a vial for analysis. For the SORS mea
surements, this was not necessary as they were measured through the 
original container. 

2.2. SORS measurements 

The commercial SORS equipment used for measuring margarines 
and fat-spreads products through the original packaging was the Vaya 
Raman (Agilent Technologies, Santa Clara, CA, USA). This device uses a 
laser with an excitation wavelength of 830 nm, which allows fluores
cence to be suppressed. The spectral range was 350–2000 cm− 1, while 
the maximum power of the laser was 450 mW (100% power), which is 
user adjustable. 

The equipment performs two measurements: with zero offset 
(equivalent to the CRS spectrum) and with spatial offset, namely with an 
offset of 0.7 mm from the point of incidence of the laser to the collection 
point. After internal signal processing, the SORS spectrum is obtained: a 
Raman spectrum of the sample without the influence of the container 
layers. Fig. 1 shows an example of the spectra obtained. Fig. 1A shows 
the raw spectra of the container (spectrum without offset, light green 
line) and of one of the samples without offset (dark green line) and with 
offset (blue line). Note that the contribution of the container seen in the 
spectrum (dark green line), coinciding with the spectrum of the 
container, is completely subtracted from SORS measurement. Fig. 1B 
shows the final spectrum of the same sample pre-processed and nor
malised. The ‘final spectrum’ obtained from SORS were the data used to 
carry out the multivariate data treatment. 

Measurements were taken directly from the original packaging of the 
62 margarine or fat-spread samples. The measurement time for each 
sample was between 30 s and 2 min, while the exposure time of the 
samples to the laser was 0.5 to 2 s. 

2.3. CRS measurements 

The measurements were performed with the IDRAMAN Reader 
(Ocean Optics, Oxford, UK), equipped with laser wavelength at 785 nm 
with 100 mW laser power. The scattered light was collected on a 2048- 
element NIR-enhanced CCD array with thermoelectric cooling to 
− 10 ◦C. The samples were heated to 40 ◦C in a water bath until fully 
mixed, and a 2 mL liquid was placed into a sealed glass vial. For the 
spectra acquisition, 2 mL vial analysed sample was used and each 
sample was obtained three times. The spectral range was 200–3200 
cm− 1 with an integration time of 20 s, and all Raman measurements 
were conducted at room temperature. Fig. 1C shows an example of the 
obtained spectra of one of the samples using CRS. 

2.4. Multivariate data treatment 

Raman and SORS raw data were exported from CSV format (comma- 
separated vectors) to.mat using MATLAB (Mathworks, Massachusetts, 
USA, version R2013a). 

All multivariate data treatment was carried out using PLS_Toolbox 
(Eigenvector Research Inc. MA, USA, version 7.5.0) working under the 
MATLAB framework. Chemometric tools applied were (i) PCA as a non- 
supervised pattern exploratory method, (ii) PLS-DA, SVM and SIMCA as 
supervised pattern recognition methods to build different classification 
models and (iii) PLSR to develop quantitation models to estimate fat 
percentage. All of the above methods were applied to both Raman and 
SORS data and full comparisons are presented in the results section. 

For the classification models, a plot with training and validation set 

will be presented in the next section. The discrimination threshold was 
established at 0.5 for all models and a range of ± 0.1 was assigned to 
designate an area of inconclusive results. In addition, a cut-off was also 
set at ± 1 (i.e., 1.5 above and − 0.5 below) and samples falling in these 
areas, both at the upper and lower limits, were assigned to the incon
clusive results group when calculating quality parameters. 

The most appropriate pre-processing was chosen according to the 
multivariate method to be used. Different pre-processing methods were 
tested and the best results were obtained by applying mean center or 
autoscale, as discussed in the next section. 

A total of 50 classifications models were developed according to 
different characteristics of the samples. Firstly, 8 models related to the 
different geographical origin were developed, 4 for each of the tech
niques used (CRS and SORS), differentiating between samples manu
factured in Morocco, Spain, France and United Kingdom. Then, 42 
models (21 with the data obtained for each technique) based on the 
different ingredients that constitute the margarines analysed in order to 
differentiate between those that have a particular ingredient from those 
that do not. The ingredients consider as ’target class’ were sunflower oil, 
olive oil, linseed oil, palm oil or fat, buttermilk, phytosterols and leci
thin. Different classification performance metrics, such as sensitivity, 
specificity, positive and negative predictive value or efficiency, among 
others, were determined according to the tutorial published by Cuadros 
et al. [21]. For the four quantitation models developed, the root mean 
square error of validation (RMSEV), the mean absolute error of valida
tion (MAEV), the median absolute error of validation (MdAEV), the 
standard deviation of validation residuals (SDV) [22] and the coefficient 
of determination (R2) were used to evaluate prediction accuracy. A 
comprehensive layout is shown in Fig. 2. 

Note that for classification purposes, samples were divided into two 
general classes. For the geographical origin models, one class was the 
country in which the samples were manufactured and the other class 
consisted of the rest of the samples manufactured in another country (e. 
g. for ’Spain / no Spain’ model, the samples of the ’no Spain’ class were 
the samples manufactured in the UK, France, Belgium, Germany and 
Netherlands). And for the ingredients models, one class is the ’target 
class’ (samples containing the ingredient in its composition) and the 
other class is composed of the samples that do not have that ingredient. 

3. Results and discussion 

The Raman spectra peak at 1750 cm− 1 (see Fig. 1B) corresponds to 
the ester bonds related to the presence of triglycerides [23]. The band 
observed at 3050–3090 cm− 1 (see Fig. 1C) may be attributable to lipids, 
corresponding to the peaks observed in different vegetable oils in the 
study of Dyminska et al. [24]. Peaks around 875 cm− 1 may be attributed 
to phosphodiester symmetric stretching of the phospholipids present in 
the margarine samples [25]. These peaks only showed in either SORS or 
CRS (Table 2), therefore, these three bands were excluded for the model 
development. The rest of the peaks correspond to margarine samples can 
be found below. The band around 1654 cm− 1, belongs to the aromatic 
ring stretch, were related to oil content [26,27]. The peak around 1440 
cm− 1 is related to CH2 deformations [28], while the peak observed 
around 1260 cm− 1 is assigned to the (C–H) bending vibration at the cis 
double bond in R–HC = CH–R [29]. And the band at 1061 cm− 1 origi
nate from the (C–C) stretching [30]. 

3.1. Exploratory analysis 

PCA was employed to study the natural grouping of the 62 margarine 
samples. The pre-processing chosen was mean centring for both CRS and 
SORS data. Five and eight principal components (PCs) explained 86.91% 
and 99.96% of the cumulative variance (CV) for the SORS and CRS data, 
respectively. Fig. 3 shows the scores obtained for each sample in the first 
two PCs of the SORS and CRS data. It is evident that with both tech
niques is possible to establish a grouping of the samples according to 
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Fig. 1. Raw Raman spectra of the container (zero offset) and of one of the samples measured through packaging without (zero) and with offset using spatially offset 
Raman spectroscopy (SORS) (A), final Raman spectrum of the same sample after pre-processing and normalise using SORS (B), Raman spectrum of the same sample 
using conventional Raman spectroscopy (CRS) (C). 
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their geographical origin of production. Fig. 3A and 3B illustrate a clear 
separation between European or Moroccan origin, and in Fig. 3C and 3D, 
slight differences and natural groupings can be seen, differentiating 
those of European origin between Spain, France, United Kingdom and 
other countries. 

For the data obtained from CRS measurements, the positive part of 
PC1 is related to the samples coming from Morocco and the negative 
contribution of the same PC to the European samples. However, 
regarding the SORS data, the difference between the two origins is 
related to the negative contribution of PC2 for the Morocco origin and 
the positive contribution of the same PC for the Europe origin. 

With respect to the different countries of origin of the European 
samples, more separation between the groups from Spain and United 
Kingdom can be observed when comparing the SORS (Fig. 3C) with 
respect to the CRS data (Fig. 3D), where a greater overlap between the 
groups is evident. 

3.2. Classification by geographical origin 

According to the results of the exploratory analysis, different clas
sification models were developed to classify the samples on the basis of 
geographic origin namely: ’Europe / Moroco’ model (50 / 12 samples, 
respectively), ’Spain / no Spain’ with membership in the ’Europe’ class 
(19 / 31 samples, respectively), ’France / no France’ with membership 

in the ’no Spain’ class (13 / 18 samples, respectively) and ’United 
Kingdom / no United Kingdom’ model with membership in the ’no 
France’ class (12 / 6 samples, respectively). Pre-processing was mean 
center for both SORS and CRS data. 

PLS-DA method was used to perform the classification models ac
cording to geographical origin. Fig. 4 shows an example of the classifi
cation plot obtained for ’Europe / Morocco’ model for both SORS data 
(Fig. 4A) and CRS data (Fig. 4B). The models were built with a training 
set composed of 43 samples and an external validation set composed of 
19 samples. Five and six latent variables (LVs) explaining 85.53% and 
99.95% of the CV for SORS and CRS data respectively, were selected for 
the development of the models. 

Table 3 shows the results of the four classification models: (i) ’Europe 
/ Morocco’, (ii) ’Spain / no Spain’ (seven LVs explaining 85.73% CV for 
SORS data and three LVs explaining 99.53% CV for CRS data), (iii) 
’France / no France’ (six LVs explaining 82.68% CV for SORS data and 
two LVs explaining 99.63% CV for CRS data) and (iv) ’United Kingdom / 
no United Kingdom’ (six LVs explaining 90.21% CV for SORS data and 
four LVs explaining 99.56% CV for CRS data). The corresponding clas
sification plots for the last three models can be found in the supple
mentary material (Figures S1-S3). The training sets were composed of 
35, 23 and 12 samples and the external validation sets of 15, 8 and 6 
samples for the ’Spain / no Spain’ model, the ’France / no France’ model 
and the ’United Kingdom / no United Kingdom’ model, respectively. 

Some of the most relevant classification performance metrics 
calculated for the geographical origin classification models are shown in 
Table 4. The values correspond to the average calculated after esti
mating the parameters for the two classes that constitute each model. It 
should be noted that the best results were obtained for both ’Europe / 
Morocco’ and ’France / no France’ models, and especially with the data 
obtained with the SORS. This may be related to the influence of fluo
rescence on the spectra obtained with the CRS or with the applied pre- 
processing. Both aspects are discussed in section 3.6. 

3.3. Classifications by vegetable oil types 

As mentioned above, legislation allows margarines and fat spreads to 
include different types of vegetable oils or fats in their composition. This 

Fig. 2. Comprehensive layout of the strategy used to perform the classification and quantitation models.  

Table 2 
Band assignment of the SORS and CRS spectra. Table adaptated from [23].  

Raman shift from 
SORS (cm− 1) 

Raman shift from 
CRS (cm− 1) 

Molecule Group Vibration 

1750 — RC = OOR C = O stretching 
1656 1654 cis RCH =

CHR 
C = C stretching 

1442 1440 – CH2 C–H deformation 
1264 1252 cis RCH =

CHR 
=C–H deformation 

1067 1061 – (CH2)n – C–C stretching 
— 875 – (CH2)n – C–C stretching 

“—”: peak not shown in the spectrum. 
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aspect has been used to perform different classification models accord
ing to some of the types of oil present in the analysed samples. PLS-DA, 
SVM and SIMCA models based on different samples parameters were 
built with data obtained both from SORS and CRS measurements. 
Linseed oil, olive oil, sunflower oil and palm oil were the four selected 
vegetable oil types to perform the classification models. PLS-DA and 
SIMCA classification models were developed applying mean center as 
pre-processing, while SVM classification models applying autoscale. 
This was applicable for the data obtained by both techniques (SORS and 
CRS) in order to be compared later. 

SIMCA models were developed following the one-class strategy (OC- 
SIMCA). This approach has been highlighted several times in the liter
ature for food authentication and it is especially relevant when classi
fying foods that have a particularity (in this study, an ingredient) from 
the rest that do not [31]. For this purpose, the target input class with 
which the model is trained are only samples that include this ingredient 
in their composition. The plots to be presented for the models developed 
with OC-SIMCA represent Hotteling’s T2 versus Q-residuals of the target 
class at a confidence level of 95%. To consider a sample as a target class, 
i.e. ’within the model’, the values of these two statistics (T2 and Q) must 
be below 1, within the bounded square in the corresponding plot. The 
OC-SIMCA plots shown represent the values obtained only for the vali
dation set and are zoomed to see the confidence area. 

’Linseed / no linseed’ models are shown in Fig. 5. PLS-DA models 
were built with eight LVs each, explaining 79.53% and 99.99% of the 
CV, and OC-SIMCA models were built with seven and two PCs explaining 
88.27% and 99.81% of the CV, respectively for SORS and CRS data in 
both cases. PLS-DA and SVM models were developed with a training set 
of 43 samples and 19 samples for the external validation set. The OC- 
SIMCA models were performed with a training set of 18 samples of 
the target class and the validation set including all samples (62 in total). 

Best results were obtained with PLS-DA models compared to SVM, 
especially for SORS data. Furthermore, with respect to the OC-SIMCA 
model, notice that better results were obtained with SORS data 

compared to CRS despite that the same samples were analised. This can 
be seen in Table 5 which gives the quality parameters of the six models 
built to differentiate the samples containing linseed oil. For this case, the 
OC-SIMCA model developed from the SORS data is the one that best 
classifies the samples according to this parameter, all the classification 
performance metrics are above 0.8. 

Note that negative value of the Matthews correlation coefficient of 
the OC–SIMCA model built from CRS data indicate a negative correla
tion. However, negative value of the Kappa coefficient indicates the 
model’s prediction to be worse than a random prediction. This occurs in 
a few more models throughout the text. 

The corresponding classification plots for the others vegetable oils 
models (olive, sunflower and palm) can be found in the supplementary 
information (Figures S4-S6), as well as the parameters selected to carry 
out the PLS-DA and OC-SIMCA models, explained in the figure caption. 
The quality parameters of these models are shown in Tables S2-S4. 

For the ’olive / no olive’ models developed with SVM the quality 
parameters were not calculated (Table S2), because these models did not 
provide good results, not being able to distinguish samples with and 
without olive oil (Figure S4C and S4D). This may be due to the limited 
number of samples containing olive oil in their composition (6 samples 
out of 62). The same occurs with the PLS-DA models, which were not 
able to correctly discriminate the samples of the validation set con
taining olive oil. However, it is again remarkable the results obtained 
with the OC-SIMCA model with the SORS data, for which all quality 
parameters are above 0.9. 

Regarding the other models (’sunflower / no sunflower’ and ’palm / 
no palm’), the results were generally not as satisfactory, perhaps 
because the amount of these ingredients in the margarines is relatively 
small, or because the spectra do not offer sufficiently relevant chemical 
information to detect these ingredients compared to other components. 
Even so, the quality parameters of the ’sunflower / no sunflower’ SVM 
model developed from the data obtained with CRS (Figure S5C, 
Table S3) and the PLS-DA ’palm / no palm’ model from the SORS data 

Fig. 3. PCA scores plot of Raman spectra of margarines samples with data obtained from SORS data (A,C) and CRS (B,D). The samples are differentiated according to 
their geographical origin of fabrication following the legend. 
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Fig. 4. Classification plots obtained for the ’Europe / Morocco’ models developed by applying PLS-DA to the SORS data (A) and CRS data (B). The green squares (■) 
and the red rhombuses (◆) represent the European and Moroccan origin of the margarines, respectively. 

Table 3 
Results of the assigned class to the validation sets of the classification models developed according to the geographical origin of the samples, both for SORS and CRS 
data.     

SORS CRS    

Reference class  Reference class  

Europe / Morocco    Europe Morocco TNA Europe Morocco TNA 
Assigned class Europe 13 0 13 11 1 12 

Morocco 0 4 4 1 2 3 
Inconclusive 2 0  3 1  

TNB 15 4  15 4  
Spain / no Spain    Spain no Spain TNA Spain no Spain TNA 

Assigned class Spain 4 0 4 2 2 4 
No Spain 0 8 8 2 7 9 
Inconclusive 2 1  2 0  

TNB 6 9  6 9  
France / no France    France no France TNA France no France TNA 

Assigned class France 3 0 3 2 0 2 
No France 0 4 4 1 3 4 
Inconclusive 0 1  0 2  

TNB 3 5  3 5  
UK / no UK    UK no UK TNA UK no UK TNA 

Assigned class UK 2 0 2 2 1 3 
No UK 0 2 2 0 0 0 
Inconclusive 2 0  2 1  

TNB 4 2  4 2  

TNA: total number of samples assigned to the class; TNB: total number of samples belonging to the class; UK: United Kingdom. 
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Table 4 
Classification performance metrics for PLS-DA geographical origin models developed from both types of Raman techniques.   

Europe / Morocco Spain / no Spain France / no France UK / no UK  

SORS CRS SORS CRS SORS CRS SORS CRS 

Sensitivity  0.89  0.68  0.80  0.60  0.88  0.63  0.67  0.33 
Specificity  0.97  0.55  0.76  0.51  0.93  0.64  0.83  0.17 
Positive predictive value (Precision)  1.00  0.86  1.00  0.67  1.00  0.84  1.00  — 
Negative predictive value  1.00  0.72  1.00  0.61  1.00  0.91  1.00  — 
Efficiency (Accuracy)  0.89  0.68  0.80  0.60  0.88  0.63  0.67  0.33 
AUC (Correctly classified rate)  0.93  0.62  0.78  0.56  0.90  0.63  0.75  0.25 
Matthews correlation coefficient  0.93  0.45  0.77  0.23  0.89  0.55  0.71  — 
Kappa coefficient  0.75  0.33  0.65  0.25  0.77  0.37  0.50  0.00 

“—”: the parameter could not be determined because the number of samples assigned to the class was 0. 

Fig. 5. Classification plots obtained for the ’linseed / no linseed’ models developed by applying PLS-DA to the SORS data (A) and CRS data (B), SVM-C to the SORS 
data (C) and CRS data (D), and OC-SIMCA to the SORS data (E) and CRS data (F). The green squares (■) and the red rhombuses (◆) represent the margarines 
including and non-including linseed oil, respectively. 
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(Figure S6B, Table S4) stand out. 

3.4. Classification by other ingredients 

In addition to the models based on the type of vegetable oil or fat 
included in some margarines, classification models based on other minor 
constituents were also developed: buttermilk, sterol esters (called phy
tosterols because they are of vegetable origin) and lecithin (some mar
garines contain soybean lecithin, others sunflower lecithin and others do 
not specify the type of lecithin, so they were divided into two groups 
according to whether or not they contain lecithin without specifying the 
origin). The same data pre-processing strategy as in the previous section 
was used. The results obtained for the ’phytosterols / no phytosterols’ 
classificatory models are presented below, while the rest can be found in 
the supplementary information (Figures S7 y S8). 

Fig. 6 shows the results for PLS-DA, SVM and OC-SIMCA 

Table 5 
Classification performance metrics for PLS-DA, SVM and OC-SIMCA ’linseed / 
no linseed’ models developed from both types of Raman techniques.   

PLS-DA SVM OC-SIMCA  

SORS CRS SORS CRS SORS CRS 

Sensitivity  0.79  0.79  0.79  0.79  0.92  0.31 
Specificity  0.92  0.67  0.54  0.41  0.97  0.62 
Positive predictive value 

(Precision)  
0.96  1.00  1.00  0.84  0.94  0.48 

Negative predictive value  0.88  1.00  1.00  0.94  0.85  0.36 
Efficiency (Accuracy)  0.79  0.79  0.79  0.79  0.92  0.31 
AUC (Correctly classified 

rate)  
0.86  0.73  0.66  0.60  0.94  0.46 

Matthews correlation 
coefficient  

0.77  0.72  0.61  0.39  0.83  − 0.11 

Kappa coefficient  0.60  0.57  0.55  0.27  0.82  − 0.05  

Fig. 6. Classification plots obtained for the ’phytosterols / no phytosterols’ models developed by applying PLS-DA to the SORS data (A) and CRS data (B), SVM-C to 
the SORS data (C) and CRS data (D), and OC-SIMCA to the SORS data (E) and CRS data (F). The green squares (■) and the red rhombuses (◆) represent the 
margarines including and non-including phytosterols, respectively. 
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’phytosterols / no phytosterols’ models. PLS-DA models were built with 
nine and eight LVs explaining 83.09% and 99.99% of CV, and OC-SIMCA 
models were built with three PCs each, explaining 89.26% and 99.83% 
of CV, respectively for SORS and CRS data in both cases. 

Despite the scarce number of samples including phytosterols in their 
composition (6 samples out of 62), the developed models demonstrated 
excellent results for classifying margarines according to this parameter. 
As shown in Table 6, classification performance metrics show a perfect 
OC-SIMCA model developed with SORS data (all parameters with a 
value of 1.00), the same as the OC-SIMCA model built from CRS data, for 
which all quality parameters are above 0.87. 

When differentiating samples containing buttermilk or lecithin 
(classification performance metrics for these models can be found in 
supplementary material), the results obtained were not as good as in the 
case of phytosterols. This is probably due to the same reasons stated in 
the previous section for the ’sunflower / no sunflower’ and ’palm / no 
palm’ models. In fact, some quality parameters were not calculated like 
those of the ’buttermilk / no buttermilk’ model developed applying SVM 
from SORS data (Table S5) or the ’lecithin / no lecithin’ model devel
oped with SVM (Table S6), because these models were not able to 
distinguish between the two classes. 

3.5. Quantitation of fat content 

Once the potential of the SORS technique to perform qualitative 
analysis was established, a quantitative analysis to determine the total 
fat content was performed. This quantitative method is just proposed to 
be applied as a pre-screening method to verify the fat content stated on 
the label declared by the manufacturer. 

In line with the EU regulation [36,37], the samples were divided into 
different groups, namely: margarine (80% fat), fat spread 70%, three- 
quarter-fat margarine (60%), fat spread 50%, half-fat-margarine 
(40%) and fat spread 32%. It should be noted that the percentage is 
an average of the total number of samples included in that group (see 
Table 7). Also note that this percentage refers to the total fat content in 
grams per 100 g of product. The samples were then split into a training 

set and an external validation set, with the exception of six samples 
whose total fat content was not stated and which were reserved for a 
final step as test data in the model development. 

As means of a fair comparison between both Raman techniques, two 
PLSR quantitation models for each dataset (SORS and CRS) were built 
applying both mean center and autoscale as pre-processing. The models 
performed from SORS data were built by choosing ten and eight LVs, 
explaining 89.28% and 54.83% of the CV, after using the mean center 
and autoscale as pre-processing, respectively. The CRS models were 
built with eight LVs each, explaining 99.99% and 99.85% of the CV, 
respectively. The internal validation for all the PLSR models was vene
tian blinds with 6 splits and 1 samples per split. 

Fig. 7 shows the plots obtained by representing the total fat content 
predicted by the different models against the total fat content declared 
in the labelling of the samples. These plots correspond to the training set. 
The coefficient of determination (R2) and the corresponding root mean 
square error of cross validation (RMSECV) are indicated in each figure. It 
is worth noting that the best results when building the models were 
obtained by using autoscaling as pre-processing for the data obtained by 
both techniques (Fig. 7B and 7D). However, when comparing the two 
techniques, the R2 values from SORS data were much higher with both 
types of pre-processing. 

The predicted values of the total fat content of the samples from the 
validation set obtained with the different models developed by PLSR 
(see Table S7) were compared with the original total fat content 
declared on the labelling of the samples to calculate the quantitation 
performance metrics shown in Table 8. Based on these results, it can be 
inferred that the best models were obtained using autoscale as pre- 
processing for the data obtained from CRS data and mean center for 
the SORS data. The results from the CRS showed quantitation perfor
mance metrics below 10%, except for the SDV with a value of 10.6%. 
However, with the spectral data obtained after measuring the samples 
through their original packaging, i.e. from the SORS, errors were even 
lower, below 5%. The R2 confirms that the best predicting model for 
total fat content is the developed from SORS data using medium 
centering as a pre-processing. 

Finally, evaluation of the models developed was carried out with six 
of the samples analysed that did not declare the total fat content on their 
labeling, so their content was unknown. Table 9 shows the results pre
dicted by each model developed for these samples, while the obtained 
plots can be seen in supplementary material (Figure S9). Different re
sults can be observed between the values obtained with the models 
developed from both SORS and CRS darta. 

The values predicted of the total fat content from the CRS mea
surements are inconsistents because they are always largely higher than 
100%. However, the predicted values from SORS data could potentially 
make sense, as they are ranging between 60 and 80%. This is the case 
with both models developed from SORS data, i.e., with the two pre- 
processing methods that were applied (mean center and autoscale). 

3.6. Comparison between CRS and SORS 

The results shown in the previous sections comparing the data ob
tained by the two techniques, both for qualitative and quantitative 

Table 6 
Classification performance metrics for PLS-DA, SVM and OC-SIMCA ’phytos
terols / no phytosterols’ models developed from both types of Raman 
techniques.   

PLS-DA SVM OC-SIMCA  

SORS CRS SORS CRS SORS CRS 

Sensitivity  0.95  0.89  0.95  0.84  1.00  0.98 
Specificity  0.99  0.55  0.55  0.10  1.00  1.00 
Positive predictive value 

(Precision)  
1.00  1.00  1.00  0.80  1.00  0.99 

Negative predictive value  1.00  1.00  1.00  0.09  1.00  0.87 
Efficiency (Accuracy)  0.95  0.89  0.95  0.84  1.00  0.98 
AUC (Correctly classified 

rate)  
0.97  0.72  0.75  0.47  1.00  0.99 

Matthews correlation 
coefficient  

0.97  0.69  0.71  − 0.08  1.00  0.92 

Kappa coefficient  0.78  0.56  0.73  − 0.08  1.00  0.91  

Table 7 
Fat content of each analysed sample and groups established to carry out the quantitation models.  

Group Fat % range Fat % average Number of samples Samples in training set Samples in validation set 

Margarine* 90 – 80 80 2 2 0 
Fat spread 70% 79 – 63 70 12 8 4 
Half-fat margarine* 62 – 60 60 13 9 4 
Fat spread 50% 59 – 42 50 19 13 6 
Three-quarter-fat margarine* 41 – 39 40 6 4 2 
Fat spread 32% less than 38 32 4 3 1 
Unknown — — 6 — — 

*Designation according to legislation. 
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analysis of margarine and fat spreads samples, highlight the great po
tential of SORS to perform the authentication of these products, 
considering different characteristics (geographical origin, different oil 
types, different minor constituents and total fat content). Evidence of 

this is the high performance parameters calculated for the models 
developed. 

When comparing the Raman spectra without any pre-processing 
method of the same sample in the same spectral range (350–2000 
cm− 1) with both techniques, it can be seen that the chemical information 
provided is the same, as shown in Fig. 8 in the regions marked in green 
and orange. In this figure it is also observed that the influence of the 
fluorescence is higher in the CRS spectrum (area marked in blue), while 
the non-preprocessed SORS spectrum exhibits a lower influence, due to 
the fact that the equipment is already programmed for this purpose. In 
addition, the figure shows the processed spectrum obtained with the 
same equipment, where the influence of fluorescence is totally elimi
nated, obtaining a completely clean spectrum but with the same relevant 
chemical information. This could be the reason why the models seem to 
perform better from SORS data than from CRS data. Here, it is demon
strated that despite the use of a portable SORS, the spectral resolution 
does not appear to be lower than that obtained from a benchtop CRS. 

It should therefore be noted that with the SORS technique it is 

Fig. 7. Total fat content of margarine samples predicted by the PLSR model for the training set using data obtained by SORS with mean center (A) and autoscale as 
pre-processing (B) and CRS data with mean center (C) and autoscale as pre-processing (D) versus total fat content reported. 

Table 8 
Quantitation performance metrics for the predicted total fat content results of the validation set from the different PLSR models developed.   

SORS CRS  

Mean center Autoscale Mean center Autoscale 

Root Mean Square Error (RMSE, %)  5.0  10.4  12.3  10.0 
Mean Absolute Error (MAE, %)  4.1  6.0  6.2  5.6 
Median Absolute Error (MdAE, %)  4.0  7.6  9.8  7.3 
Standard Deviation of Validation Residuals (SDV)  5.0  10.1  12.3  10.6 
Coefficient of determination (R2)  0.7  0.2  0.1  0.3  

Table 9 
Predicted results of the total fat content of margarines, whose value was un
known, by the different PLSR quantitation models developed.  

Sample Predicted total fat content (g/100 g product) 

SORS CRS 

Mean center Autoscale Mean center Autoscale 

1  67.4  64.5  152.6  122.1 
2  60.0  67.9  167.0  138.8 
3  79.0  81.5  155.6  130.1 
4  68.3  73.8  149.3  122.6 
5  66.8  72.2  134.9  122.4 
6  70.2  77.8  142.1  125.4  
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possible to obtain the spectrum of the margarines by measuring through 
their original packaging, and also with a higher resolution, i.e. enriched 
structural information, of the spectrum. This can also be seen in the 
intensity scale, which is an order of magnitude higher in the spectrum 
obtained using SORS. 

Loadings plots of all developed models were also examinated. Most 
relevant ones are included in supplementary material as examples. Ac
cording to the band assignment (see Table 2) the peak around 1654 
cm− 1 stands out, which is related to oil content [25] and more specif
ically to sunflower oil content [32]. The information from this peak 
seems to be relevant for the development of the PLSDA ’sunflower / no 
sunflower’ and PLSR models from SORS (see Figures S10-S12). Similar 
for CRS the peaks highlighted in the loading plot of the PLSR model are 
related to the presence of unsaturated and saturated fatty acids respec
tively [30]. However, the loading plot of the ’linseed / no linseed’ model 
seems to be influenced by the fluorescence perturbation, which may 
explain why the results of this model were not so satisfactory. 

In short, the chemical information provided by the data from SORS, 
especially related to oils and fatty acids, is responsible for developing 
classification and quantitation models with better results than those 
from CRS. 

4. Conclusions 

The results presented in this paper demonstrate the ability of SORS to 
recover the Raman spectra of margarines and fat spread products in a 
rapid, non-invasive and non-destructive way after measuring them 
through the original packaging. The chemometric tools allowed the 
extraction of the relevant chemical information from these spectra for 
qualitative and quantitative analyses. High-quality multivariate classi
fication models were developed to distinguish samples according to 
their geographical origin of production and according to some of the 
relevant ingredients of their composition, namely linseed oil, olive oil 

and phytosterols. It is worth highlighting the case of both ’phytosterols / 
no phytosterols’ and ’olive / no olive’ models, which have obtained very 
acceptable classification results, as precision values above 0.8 in these 
case, and most around 1. Despite not finding significant differences 
between the spectra of samples containing this ingredient and those that 
do not, the use of chemometric tools to treat the data as an instrumental 
fingerprint characteristic of each product has proven to be able to 
extract this relevant and non-evident information. Furthermore, the 
quantitation model performed with PLSR allowed predicting the total fat 
content of the samples with errors below 5%, as well as predicting the fat 
content of unknown samples, with values within the limit of what can be 
expected. The proposed method could be therefore applied as a pre- 
screening method to straightforwardly verify some of the claims stated 
on the label declared by the manufacturer. 

Comparison with CRS measurements revealed the potential of SORS 
to avoid the main problem associated with the use of this technique, 
namely the influence of fluorescence. Moreover, a lower spectral reso
lution was not observed compared to CRS and, in fact, the results of the 
classification and quantitation models were better from the SORS data. 
These facts are consistent with the literature on the use of the ’SORS- 
chemometrics’ tandem and open the door to further research into the 
use of SORS in the area of analytical chemistry for food quality and 
authentication control. 
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L. Cuadros-Rodríguez, Deep (offset) non-invasive Raman spectroscopy for the 
evaluation of food and beverages – A review, LWT - Food Sci. Technol. 149 (2021), 
111822, https://doi.org/10.1016/j.lwt.2021.111822. 

[6] Y. Xu, P. Zhong, A. Jiang, X. Shen, X. Li, Z. Xu, Y. Shen, Y. Sun, H. Lei, Raman 
spectroscopy coupled with chemometrics for food authentication: A review, Trends 
Analyt. Chem. 131 (2020), 116017, https://doi.org/10.1016/j.trac.2020.116017. 

[7] A.I. Ropodi, E.Z. Panagou, G.-J.-E. Nychas, Data mining derived from food analyses 
using non-invasive/non-destructive analytical techniques; determination of food 
authenticity quality & safety in tandem with computer science disciplines, Trends 
Food Sci. Technol. 50 (2016) 11–25, https://doi.org/10.1016/j.tifs.2016.01.011. 

[8] C. Berghian-Grosan, D.A. Magdas, Raman spectroscopy and machine-learning for 
edible oils evaluation, Talanta 218 (2020) 121176. DOI: 1016/j. 
talanta.2020.121176. 
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