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A CHARACTERIZATION OF THE WEAK TOPOLOGY IN

THE UNIT BALL OF PURELY ATOMIC L1 PREDUALS

GINÉS LÓPEZ-PÉREZ AND RUBÉN MEDINA

Abstract. We study Banach spaces with a weak stable unit ball, that
is Banach spaces where every convex combination of relatively weakly
open subsets in its unit ball is again a relatively weakly open subset
in its unit ball. It is proved that the class of L1 preduals with a weak
stable unit ball agree with those L1 preduals which are purely atomic,
that is preduals of ℓ1(Γ) for some set Γ, getting in this way a complete
geometrical characterization of purely atomic preduals of L1, which an-
swers a setting problem. As a consequence, we prove the equivalence for
L1 preduals of different properties previously studied by other authors,
in terms of slices around weak stability. Also we get the weak stability
of the unit ball of C0(K,X) whenever K is a Hausdorff and scattered
locally compact space and X has a norm stable and weak stable unit
ball, which gives the weak stability of the unit ball in C0(K,X) for
finite-dimensional X with a stable unit ball and K as above. Finally
we prove that Banach spaces with a weak stable unit ball satisfy a very
strong new version of diameter two property.

1. Introduction

A convex subset C of a topological vector space X is said to be stable
if the midpoint map C × C → C given by (x, y) → x+y

2 is open for the
restricted topology on C. Then C is stable if, and only if, every convex
combination of relatively open subsets in C is again a relatively open subset
in C [20] (do not confuse with the concept of weakly stable Banach spaces
in the Krivine-Maurey sense). In the past, the stability has been a relevant
tool in different contexts. For example, in [20] it was proved, in the case C
is compact, that the openness of the above midpoint map is equivalent to
the openness of the barycentre map (see [23]), which gives the continuity of
the convex envelope for every continuous function on C [26]. Also, stability
implies regularity (see [9]), which gives solution to the abstract Dirichlet
problem [8]. Stability is a key to the study of extremal operators, since for
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K a compact and Hausdorff space, a norm one element f ∈ C(K,X), the
space of continuous functions on K into a Banach space X with stable unit
ball, is an extreme point of the unit ball if, and only if, every value of f
is an extreme point in the unit ball of X [12]. More recently, it is proved
in [24] the stability of the convex set of positive trace-class operators on a
separable Hilbert space with trace one, known as the set of quantum states
or density operators, and this fact is the key to study the continuity of Von
Neumann entropy, relevant in theoretical quantum information.

The prototype example of a stable compact convex set is a Bauer simplex,
that is the positive face of the unit sphere in the dual of a C(K) space or
equivalently the set of Radon probability measures for its weak-star topology
[20]. Examples of Banach spaces with a norm stable unit ball are strictly
convex spaces or spaces with 3.2 intersection property [9]. Also stable con-
vex compact sets in finite-dimensional spaces are completely characterized.
Indeed, a compact and convex subset K in Rn is stable if, and only if, the
p-skeleton {x ∈ K : dim(face(x)) 6 p} is closed for 0 6 p 6 n − 1 (face(x)
denotes the minimal face in K containing x, and dim means the dimension
of the affine span). Then K is always stable if n = 2, K is stable if, and
only if, the set of extreme points of K is closed, in the case n = 3, and for
n > 3, there are compact and convex subsets K with a closed set of extreme
points, failing to be stable. As a consequence of the above, every unit ball
of a finite-dimensional Banach space with a finite set of extreme points, or
such that every point in the unit sphere is an extreme point, is stable [22].

As the above cited example, most of results about stability in the past,
have been obtained in the compact case, or concern with norm stability.
More recently, motivated by the fact that the positive face of the unit sphere
of the space L1[0, 1] is weak stable [11, Remark IV.5], in relation with other
geometrical properties in Banach spaces as diameter two properties [19] (also
octahedrality, Daugavet property, etc [6]), the weak stability has attracted
the attention of researchers in geometry of Banach spaces, and new examples
of weak stable unit balls of Banach spaces have emerged. For example, in [1]
and [13] it is proved that the unit ball of C0(K), for a Hausdorff and locally
compact space K, is weak stable if, and only if, K is scattered (see also [2]
and [5]). As it can be seen in the above references, the current interest is
to know how big is the class of Banach spaces with a weak stable unit ball,
and the natural questions in the setting of the above papers is to know what
preduals of L1 or C0(K,X) spaces have a weak stable unit ball.

From now, we will say that a Banach space X has a weak stable unit ball
BX , if it is stable for the inherited weak topology (other names have been
used to mention stability in recent papers, but it seems natural keeping the
used notation in the past). In the case BX is stable for the norm topology,
we will say that X has a stable unit ball.

Observe that a Banach space with a weak stable unit ball satisfies the
strong diameter two property [19]. Then X∗ is octahedral from [6] and so
the class of L1 preduals is a natural class to looking for weak stable unit
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balls. Our main result in Section 2 proves that a L1 predualX is weak stable
if, and only if, X∗ is purely atomic, that is, X∗ = ℓ1(Γ) for some set Γ, which
gives a complete geometric characterization of purely atomic L1 preduals.
Taking into account the existence of preduals of ℓ1 which are not isomorphic
to complemented subspaces of C(K) spaces [7], the above fact improves
the aforementioned results around weak stability, known up to now. Our
main result uses continuous selections of multivalued maps techniques in the
setting of L1 preduals. In Section 3, after introduce some easy consequences
of Banach spaces with a stable unit ball, we prove using again multivalued
maps techniques the weak stability of the unit ball of C0(K,X), whenever K
is a Hausdorff and scattered locally compact space and X has a stable and
weak stable unit ball, which improves the known results up to now. Observe
for example that in [2], the above result is obtained for finite-dimensional
X satisfying an hypothesis which we will prove to be equivalent to norm
stability of the unit ball in X. We finish the paper by showing that Banach
spaces with a weak stable unit ball satisfy a stronger new version among the
known diameter two properties.

We use standard terminology for Banach spaces. SX and BX denote the
unit sphere and the closed unit ball, respectively, of a Banach space X. w
and w∗ denote the weak and weak-star topologies and X∗ is the topological
dual of X. A slice in BX is the intersection of BX with an open semi-space.
A face of a subset C in a Banach space X is a subset F ⊂ C satisfying that
x, y ∈ F whenever x, y ∈ C and tx + (1 − t)y ∈ F for some t ∈ [0, 1]. An
extreme point of C is a point x ∈ C such that the singleton {x} is a face of
C. co(A) denotes the convex hull of A. A L1 predual is a Banach space X
so that X∗ is linearly isometric to L1(µ) for some measure space (Ω,Σ, µ).
If Γ is a set, ℓ1(Γ,K) is the classical Banach space of (absolutely) summable
families of scalars in K = R or C.

Now we pass to introduce some notation and known results, which will
be used in the following. For X and Y topological spaces, we denote by
P(Y ) the power set of Y . A map defined on X with values into P(Y ) will
be called a multivalued map φ : X → Y so that φ(x) is a nonempty subset
of Y for every x ∈ X. We recall that φ is called lower semicontinuous
(l.s.c) or hemicontinuous at x ∈ X if for every open subset U of Y such
that φ(x) ∩ U 6= ∅, there is an open subset V of X with x ∈ V such that
φ(z)∩U 6= ∅ whenever z ∈ V . φ is called lower semicontinuous if φ is lower
semicontinuous at x, for every x ∈ X. Also, φ is lower semicontinuous if,
and only if, the set φℓ(U) := {x ∈ X : φ(x) ∩ U 6= ∅} is an open subset
of X for every open subset U of Y . Then a map f : X → Y between
topological spaces X and Y is open if, and only if, the multivalued map
f−1 : Y → X given by f−1(y) = {x ∈ X : f(x) = y} is l.s.c. A multivalued
map φ : X → Y , with X and Y convex subsets of real or complex vector
spaces, is called convex if tφ(x) + (1 − t)φ(y) ⊂ φ(tx + (1 − t)y) for every
t ∈ [0, 1] and x, y ∈ X. φ is called symmetric if φ(zx) = zφ(x) for every
x ∈ X and z a modulus one complex scalar. A continuous selection of
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a multivalued map φ : X → Y will be a continuous map f : X → Y
such that f(x) ∈ φ(x) for every x ∈ X. The well known Michael selection
principle asserts that the above φ has a continuous selection whenever X is
a paracompact topological space, Y is a Fréchet space, φ is l.s.c and φ(x) is
a closed and convex subset of Y for every x ∈ X. Finally, we recall a useful
criteria for l.s.c. multivalued maps (see [4, Chapter 17] for background about
the above topics). We will use the above freely in the sequel.

Lemma 1.1. ([4, Theorem 17.21]) For X and Y topological spaces, and
φ : X → Y a multivalued map, the following assertions are equivalent:

i) φ is l.s.c.
ii) For every net {xα} in X converging to x ∈ X, and for every y ∈

φ(x), there is a subnet {xαλ
} of {xα} and a net {yλ} in Y such that

yλ ∈ φ(xαλ
) for every λ and {yλ} converges to y.

Moreover, net and subnet can be changed in ii) by sequence and subsequence,
whenever X and Y are first countable.

2. Purely atomic L1-preduals

As we said in the introduction, our goal is to enlarge the known class
of Banach spaces with a weak stable unit ball. It is known that C(K)
spaces, with K a scattered, Hausdorff and compact topological space, are
weak stable [1], [13]. Also, other properties around weak stability has been
considered by different authors (see [1, 2, 5, 13, 19]), like the weak relative
openess of convex combination of slices in the unit ball, nonempty relative
weak interior of convex combinations of slices in the unit ball, nonempty
relative weak interior of convex combinations of relative weak open subsets
in the unit ball, or property (P1). A Banach space X is said to verify the
property P1 if for every convex combination of slices in BX , C, and for every
x ∈ C there is a weak open subset relative to BX , U , so that x ∈ U and
U ⊂ C. Clearly weak stability implies all the above properties. With the
above in mind, it is natural trying to characterize the weak stability for the
class of preduals of L1, improving the above known results. This will be
our first goal, and for that, our main tool will be the next well known result
about continuous selections in the setting of real or complex L1 preduals.

Theorem 2.1. ([18, Theorem 2.2], [21]) Let X be a real or complex Banach
space with X∗ isometric to L1(µ) space and E be a Fréchet space. Consider
a convex, symmetric and w∗−l.s.c. multivalued map φ : BX∗ → E such that
φ(x∗) is a convex and closed subset of E for every x∗ ∈ BX∗ . Then φ admits
an affine, symmetric and w∗−continuous selection h : BX∗ → E. Moreover,
if F is a face of BX∗ with H := co(F ∪ −F ) w∗−closed and g : H → E
is an affine, symmetric and w∗−continuous selection of φ|H , then h can be
chosen so that h|H = g.

The above result was proved in [18, Theorem 2.2] in the real case. The
complex case appears in [21], assumming that H is the intersection of BX∗
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with a L-ideal. This intersection agree with the concept of biface in [18] in
the case of real preduals of L1, as said in [21] (see also [3, Pag. 168]).

Before showing our main result we need a simple lemma.

Lemma 2.2. Let Γ a nonempty set and E := {eγ : γ ∈ Γ} the set of basis
vectors in ℓ1(Γ,K). Then the linear span of E is norm dense in ℓ1(Γ,K),
and for C a finite subset of E, one has that co(C) is a w∗−closed face of
Bℓ1(Γ,K) and co(C) is a simplex, that is, every element in co(C) has a unique
expression as a convex combination of elements in C.

Proof. Lets take G = {γ1, . . . , γk} ⊂ Γ and define C = {eγ , γ ∈ G} ⊂ E. In
order to show that co(C) is a face of Bℓ1(Γ,K), let λ1, . . . , λk ∈ (0, 1) be such

that
k∑

i=1
λi = 1 and take the point x =

k∑
i=1

λieγi . Given a, b ∈ Bℓ1(Γ,K) such

that a+b
2 = x then we state that a, b ∈ co(C):

First of all, if we fix γ ∈ Γ \G, then b(γ) = −a(γ) so we have

2 ≥ ||a|| + ||b|| ≥ 2|a(γ)| +
k∑

i=1

|a(γi)|+ |b(γi)| ≥ 2|a(γ)| +
k∑

i=1

|a(γi) + b(γi)|

= 2|a(γ)| + 2
k∑

i=1

λi = 2|a(γ)| + 2,

which arises that a(γ) = b(γ) = 0 for every γ ∈ Γ \G. The real case is now
done. Lets consider K = C for the rest of the proof. If we suppose that
there exists j ∈ {1, . . . , k} such that a(γj) /∈ R, then

||a|| + ||b|| =
k∑

i=1

|a(γi)|+ |b(γi)| >
k∑

i=1

|Re(a(γi))|+ |Re(b(γi))|

≥
k∑

i=1

|Re(a(γi) + b(γi))| = 2,

which is a contradiction with the fact that a, b ∈ Bℓ1(Γ,K).
The rest of the proof is straightforward.

Now we pass to get the characterization of weak stable L1 predual unit
balls.

Theorem 2.3. Let X be a real or complex isometric predual of a L1(µ)
space for some measure µ. Then BX is weak stable if, and only if, µ is
purely atomic.

Proof. If X is a real Banach space with a weak stable unit ball, in particular
every convex combination of slices inBX has nonempty relative weak interior
inBX . Then we deduce that µ is purely atomic, from [19, Theorem 4.7] (note
that [19, Theorem 4.7] is deduced from [19, Theorem 4.1] and a localizable
measure space is used, however L1(µ) is linearly isometric to a ℓ1−sum of
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spaces L1(µi) with µi localizable from [16, Pag. 136], see also [10, Pag.
501]). The above is valid in the real case, but it can be easily adapted too
for the complex case.

Assume now that µ is purely atomic, so X∗ = ℓ1(Γ) for some set Γ.

Pick O1, O2 relatively weak open subsets of BX and x ∈ O1+O2

2 . Put

x = z1+z2
2 , with zi ∈ Oi, i = 1, 2. Then there is 1 > ρ > 0 such that

si := (1− ρ)zi + ρx ∈ Oi, i = 1, 2. Now

(2.1) |x∗(si)| 6 1− ρ+ ρ|x∗(x)| ∀x∗ ∈ BX∗ .

As the subspace generated by the set E of basis vectors of BX∗ is dense inX∗

for the norm topology from Lemma 2.2, we can choose weak neighborhoods
Ui of si, relative to BX , satisfying Ui ⊂ Oi, given by

Ui = {z ∈ BX : |x∗ij(z − si)| < ε, j ∈ 1, . . . , ki},

where ε > 0, k1, k2 ∈ N and x∗ij ∈ E for i = 1, 2 and 1 6 j 6 ki. Now,

our goal will be to prove that U1+U2

2 is a weak neighborhood of x relative to
BX . In order to do that, define C := {x∗ij} i∈{1,2}

j∈{1,...,ki}

and δ := min
x∗∈C

|x∗(x)|<1

{1 −

|x∗(x)|} > 0, in the case AC
x := {x∗ ∈ C : |x∗(x)| < 1} 6= ∅, otherwise we put

δ := 1 (observe that |x∗(x)| 6 1− δ whenever x∗ ∈ AC
x ). Also we consider

U := {z ∈ BX |x∗(z − x)| < µ ∀x∗ ∈ C},

for 0 < µ < min{ρδ, ε}. As U is a neighborhood of x relative to BX , it is

enough to show that U ⊂ U1+U2

2 . In order to prove that, fix y ∈ U and
put F = co(C). As C is a finite subset of points in E, we have that F is a
w∗−closed face of BX∗ from Lemma 2.2, and so H := co(SKF ) is w∗−closed
(in the complex case, even in the real one, we have that H agree with the
intersection of an L- ideal, the linear span of C, with BX∗). In order to
apply Theorem 2.1, we define g1, g2 : C → K by

gi(x
∗) =

{
x∗(si + y − x) if x∗ ∈ AC

x and so |x∗(x)| ≤ 1− δ

x∗(y) if |x∗(x)| = 1

It is clear that g1 and g2 admit unique affine and symmetric extensions to H
from Lemma 2.2, which we will call again g1, g2 : H → K. In order to prove
that gi(x

∗) ∈ BK for i = 1, 2, x∗ ∈ H, it is enough to see that gi(x
∗) ∈ BK

for every x∗ ∈ C. Indeed, in the case x∗ ∈ C with |x∗(x)| ≤ 1− δ we have,
applying (2.1) and taking into account that y ∈ U with µ < ρδ,

|gi(x
∗)| =|x∗(si + y − x)| ≤ |x∗(si)|+ |x∗(y − x)|

≤1− ρ+ ρ|x∗(x)|+ µ < 1− ρ(1− |x∗(x)| − δ) ≤ 1,

while in the case x∗ ∈ C with |x∗(x)| = 1, we have |gi(x
∗)| = |x∗(y)| ≤ 1.

Now we define the multivalued map φ : BX∗ → K×K by

φ(x∗) =

{
(r1, r2) ∈ BK ×BK :

r1 + r2
2

= x∗(y)

}
∀x∗ ∈ BX∗ .
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It is easy to see that φ is an convex and symmetric multivalued map, with
φ(x∗) a closed and convex subset of K × K, for every x∗ ∈ BX∗ . The fact
that φ is a w∗-l.s.c. multivalued map is consequence that φ = f−1 ◦ ŷ, where
f : BK ×BK → BK is the midpoint map, and ŷ is the natural injection of y
in X∗∗ (observe that ŷ is w∗-continuous as an element of X∗∗ and f−1 is a
l.s.c multivalued map since BK is stable, that is since f is open).

We will check now that g := (g1, g2) is a symmetric, affine and w∗-
continuous selection map of φ|H . It is clear that g is symmetric, affine
and w∗-continuous. Since φ is symmetric and convex, it is enough to show
that g(x∗) ∈ φ(x∗) for every x∗ ∈ C in order to prove that g(x∗) ∈ φ(x∗) for
every x∗ ∈ H. In fact, in the case x∗ ∈ C with |x∗(x)| ≤ 1− δ we have

g1(x
∗) + g2(x

∗)

2
=
x∗(s1 + y − x+ s2 + y − x)

2

=x∗
(
s1 + s2

2

)
+ x∗(y − x) = x∗(x) + x∗(y − x) = x∗(y),

while in the case x∗ ∈ C with |x∗(x)| = 1 we have

g1(x
∗) + g2(x

∗)

2
=

x∗(y) + x∗(y)

2
= x∗(y).

Then we have proved that g is a symmetric, affine and w∗-continuous se-
lection map of φ|H . We apply now Theorem 2.1 to find out h := (h1, h2),
a symmetric, affine and w∗-continuous selection map of φ, satisfying that
h|H = g. Define, for i = 1, 2

xi : X
∗ → K

by

xi(x
∗) =

{
0 if x∗ = 0

||x∗||hi
(

x∗

||x∗||

)
if x∗ ∈ X∗ \ {0}

From Krein-Smulian Theorem, we can assume that x1, x2 are w
∗-continuous

linear functionals on X∗ such that xi(BX∗) ⊂ BK. So we assume that
x1, x2 ∈ BX and for 0 6= x∗, as (h1, h2) is a selection of φ, we have that

x∗
(
x1 + x2

2

)
=
x∗(x1) + x∗(x2)

2
=

||x∗||h1
(

x∗

||x∗||

)
+ ||x∗||h2

(
x∗

||x∗||

)

2

=||x∗||

(
h1 + h2

2

)(
x∗

||x∗||

)
= ||x∗||

(
x∗

||x∗||

)
(y) = x∗(y).

So we deduce that x1+x2

2 = y.
Finally, we show that xi ∈ Ui for i ∈ {1, 2}. In the case x∗ ∈ C with

|x∗(x)| ≤ 1− δ, one has

|x∗(xi − si)| =

∣∣∣∣||x
∗||hi

(
x∗

||x∗||

)
− x∗(si)

∣∣∣∣ = |gi(x
∗)− x∗(si)|

=|x∗(si + y − x)− x∗(si)| = |x∗(y − x)| < µ < ε,
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while in the case x∗ ∈ C with |x∗(x)| = 1 we deduce from x∗(s1)+x∗(s2)
2 =

x∗(x) and |x∗(si)| 6 1, that x∗(x) = x∗(s1) = x∗(s2). Then

|x∗(xi − si)| =

∣∣∣∣||x
∗||hi

(
x∗

||x∗||

)
− x∗(si)

∣∣∣∣ = |gi(x
∗)− x∗(si)|

=|x∗(y)− x∗(si)| = |x∗(y − x)| < µ < ε.

So xi ∈ Ui for i ∈ {1, 2} with x1+x2

2 = y and we are done

It is worth to mention that inside the class of isometric preduals of ℓ1,
there are Banach spaces not isomorphic to complemented subspaces of any
C(K) space [7, Theorem 2.13], so that Theorem 2.3 definitively enlarges the
class of spaces with a weak stable unit ball far away, even isomorphically
speaking, to C(K) spaces known up to now, in a natural way. Also, as a
consequence of the above result, we get the equivalence between different
considered properties up to now by different authors, around weak stability,
in the natural setting of L1 preduals.

Corollary 2.4. Let X be an isometric predual of some L1(µ) space. Then
the following assertions are equivalent:

i) BX is weak stable.
ii) Every convex combination of slices in BX is a relatively weakly open

subset in BX .
iii) Every convex combination of slices in BX has nonempty relatively

weak interior in BX .
iv) Every convex combination of relatively weakly open subsets in BX

has nonempty relatively weak interior in BX .
v) X satisfies the property P1.

Moreover, one of the above assertions holds if, and only if, µ is purely
atomic, that is X∗ is isometrically isomorphic to ℓ1(Γ) for some set Γ.

Proof. i) ⇒ ii) ⇒ iii), i) ⇒ iv) ⇒ iii) and i) ⇒ iv) are clear. iii) ⇒ i) is a
consequence of [19, Theorem 4.7] and Theorem 2.3. v) ⇒ i) is a consequence
of [5, Theorem 2.13], [14] and Theorem 2.3.

We don’t know the exact relation between the assertions i) to v) in Corol-
lary 2.4 for general Banach spaces. In particular, we don’t know if assertions
i) and ii) in Corollary 2.4 are equivalent for general Banach spaces.

Thanks to Theorem 2.3, we can partially answer a question posed in [2],
wether the injective tensor product of 2 Banach spaces with weak stable
unit ball has a weak stable unit ball.

Given ℓ1(Γ1) and ℓ1(Γ2), we are able to completely identify ℓ1(Γ1, ℓ1(Γ2))
and ℓ1(Γ1 × Γ2) by the identification

T : ℓ1(Γ1, ℓ1(Γ2)) → ℓ1(Γ1 × Γ2)
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where T (x)(γ1, γ2) = x(γ1)(γ2) for every γi ∈ Γi with i = 1, 2. It is well
known that ℓ1(Γ1, ℓ1(Γ2)) = ℓ1(Γ1)⊗̂πℓ1(Γ2) so the next result arises as a
direct consequence of this and Theorem 2.3.

Corollary 2.5. Let X and Y be L1 preduals, then the injective tensor prod-
uct of X and Y has a weak stable unit ball if and only if both X and Y have
weak stable unit balls.

Let us now get into another special case of injective tensor product, the
one in which one of the factors is a C(K) space.

3. Weak stability in the unit ball of C(K,X)

First, we are going to remind the concept of stable unit ball for the norm
topology.

Definition 3.1. Let X be a Banach space. We say that BX is stable if
it is stable for the norm topology, that is, if every convex combination of
relatively norm open subsets of BX is relatively open in BX for the norm
topology.

Stability and weak stability seem to have a very strong connection. In
fact, some of the main known properties for weak stable unit balls (see [1]
and [13]) are also true for (norm) stable unit balls, as the following results
show.

Proposition 3.2. Let X and Y be Banach spaces with stable unit balls,
then:

i) If Z is a 1-complemented subspace of X, BZ is stable.
ii) If W = X ⊕∞ Y then BW is stable.

Proof. i) Let P : X → Z be the norm 1 projection. If X is stable, let
O1, O2 ⊂ BZ relatively norm open subsets, and λ ∈ (0, 1/2]. We call OZ =
(1− λ)O1 + λO2, so that OX = (1− λ)(P−1(O1)∩BX) + λ(P−1(O2)∩BX)
satisfy OZ = OX ∩BZ and i) is proved.

ii) Let us take wi = (xi, yi) ∈ BW for i = 1, 2 and consider λ ∈ (0, 1/2] and
δ > 0. Considering now Bλ = (1− λ)B1 + λB2 where Bi = BW (wi, δ)∩BW

for i = 1, 2 we prove ii) since

Bλ = ((1− λ)BX
1 + λBX

2 )× ((1− λ)BY
1 + λBY

2 )

where BX
i = BX(xi.δ) y BY

i = BY (yi, δ) for i = 1, 2.

Proposition 3.3. If (Xn) is a sequence of Banach spaces with stable unit
ball, then X = C0(Xn) has a stable unit ball.

Proof. Let x, s1, s2 ∈ C0(Xn) and λ > 0 be such that (1 − λ)s1 + λs2 = x
where x = (xn), s

1 = (s1n) and s2 = (s2n). We define for arbitrary ε ∈ (0, 1)
the set

Bx = (1− λ)BC0(Xn)(s
1, ε) ∩BC0(Xn) + λBC0(Xn)(s

2, ε) ∩BC0(Xn).
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Let us now take N ∈ N such that ∀n > N , ||sin|| < 1 − ε for i = 1, 2. For
every n ≤ N , we first consider δn > 0 satisfying

BXn
(xn, δn)∩BXn

⊂ (1− λ)BXn
(s1n, ε) ∩BXn

+ λBXn
(s2n, ε)∩BXn

:= Bxn
.

Now, taking 0 < δ < min
n=1,...,N

{δn, ε}, we claim that BC0(Xn)(x, δ)∩BC0(Xn) ⊂

Bx:

If y = (yn) ∈ BC0(Xn)(x, δ) ∩BC0(Xn), for n ≤ N , then yn ∈ BXn
(xn, δ) ∩

BXn
⊂ Bxn

. Otherwise, if n > N then yn = (1− λ)y1n + λy2n where

y1n = s1n+yn−xn ∈ BXn
(s1n, ε)∩BXn

, y2n = s2n+yn−xn ∈ BXn
(s2n, ε)∩BXn

and we are done.

It can be easily shown that there exist Banach spaces with stable but not
weak stable unit balls such as strictly convex spaces [9]. However, all the
examples that we have of weak stable unit balls of Banach spaces are also
norm stable. We don’t know if weak stability implies norm stability.

As we said in the introduction, our main goal is to get conditions to have
(weak) stability in C0(K,X). For the weak stability, we will use strongly
multivalued maps techniques. So, we begin by showing an easy consequence
of these techniques, which it will be useful to get our main result.

Lemma 3.4. Let C be a stable convex subset of a metrizable topological
vector space X. Consider a sequence {xn} in C and x ∈ C such that {xn}
converges to x. If p1, p2, q1, q2 ∈ C satisfying that x = p1+p2

2 = q1+q2
2 , then

there are {pn1}, {p
n
2}, {q

n
1 } and {qn2 } sequences in C, and there is {xσ(n)} a

subsequence of {xn}, such that xσ(n) =
pn
1
+pn

2

2 =
qn
1
+qn

2

2 for every n ∈ N, with
{pni } converging to pi and {qni } converging to qi, for i = 1, 2.

Proof. Consider φ : C ×C → C the midpoint map on C, given by φ(x, y) =
x+y
2 . As C is stable, we have that φ is open, so the map φ× φ : (C × C)×

(C × C) → (C × C) given by (φ × φ)(x, y, z, w) = (φ(x, y), φ(z, w)) is also
open. Then the multivalued map (φ×φ)−1 is l.s.c. Since {xn, xn} converges
to (x, x), we get, from Lemma 1.1, the desired conclusion.

We obtain now our result about stability of C0(K,X).

Theorem 3.5. Let X be a stable and weak stable Banach space and K a
scattered Hausdorff topological space. Then C0(K,X) is weak stable.

Proof. Consider O1, O2 nonempty relative weakly open subsets of BC0(K,X).

We are going to prove that O1+O2

2 is again a relative weakly open subset of

BC0(K,X). Pick x ∈ O1+O2

2 and put x = s1+s2
2 , with si ∈ Oi, i = 1, 2.

We can assume that, for i = 1, 2, Oi = {x ∈ BC0(K,X) : |fi,j(x) − αi,j | <
εi,j, 1 6 j 6 ki}, where ki ∈ N, fi,j ∈ SC0(K,X)∗ and αi,j ∈ [−1, 1] for 1 6

j 6 ki. Define µi,j := εi,j − |fi,j(x)− αi,j| and ε := min16i62,16j6ki µi,j > 0.
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Note now that BC0(K,X)∗ = co{δt ⊗ x∗ : t ∈ K,x∗ ∈ SX∗} (δt denotes the
evaluation functional at t as an element in C0(K)∗). Indeed, as C0(K,X)∗ =
C0(K)∗⊗̂πX

∗ and BC0(K,X)∗ = co(SC0(K)∗ ⊗SX∗), we get that BC0(K,X)∗ =
co{δt ⊗ x∗ : t ∈ K,x∗ ∈ SX∗}, since K is scattered and so C0(K)∗ = ℓ1(K).
Then, for every i ∈ {1, 2} and every 1 6 j 6 ki we can find out Nij ∈ N

and finite subsets E ⊂ K and A ⊂ SX∗ , both with Nij elements, so that
‖gij − fij‖ < ε/3, where gij ∈ co(δE ⊗A) being δE = {δt : t ∈ E}.

Now we get that

Ui := {y ∈ BC0(K,X) : |gij(y − si)| < ε/3, 1 6 j 6 ki} ⊂ Oi ∀i ∈ {1, 2}.

For every t ∈ E and for every i ∈ {1, 2} we define

Bt
i = {z ∈ BX : |x∗(z − si(t))| < ε/4 ∀x∗ ∈ A}.

It is clear that Bt
i is a nonempty, convex and relatively weak open subset

of BX . Furthermore, as X is weak stable, we have that Ot :=
Bt

1
+Bt

2

2 is a
relatively weak open subset of BX containing x(t), for every t ∈ E. So there
are δ > 0 and x∗1, . . . , x

∗
m ∈ BX∗ such that

{z ∈ BX : |x∗i (z − x(t))| < 2δ, 1 6 i 6 m}} ⊂ Ot.

Put

U = {y ∈ BC0(K,X) : |x
∗(y(t)− x(t))| < δ ∀t ∈ E, ∀x∗ ∈ A ∪ {x∗1, . . . , x

∗
m}}.

It is clear that U is a relatively weak open subset of BC0(K,X) containing x.

Now our goal will be to show that U ⊂ O1+O2

2 , which is enough to finish the
proof.

Take y ∈ U . Then we may choose a finite family of disjoint open subsets
{Vt : t ∈ E} of K such that t ∈ Vt for every t ∈ E and satisfying

|x∗(y(s)− y(t))| < δ ∀s ∈ Vt, ∀x∗ ∈ A ∪ {x∗1, . . . , x
∗
m}

for every t ∈ E. Now it is clear that y(s) ∈ Ot for every s ∈ Vt.
Our next step will be to define for i = 1, 2 a function si : K → X. If

s ∈ K \
⋃
t∈E

Vt we define s̃i(s) = y(s). Given t ∈ E, before define si(s) for

s ∈ Vt, we consider the multivalued map Ft : Ot ։ X2 given by

Ft(z) =

{
(z1, z2) ∈ Bt

1 ×Bt
2 :

z1 + z2
2

= z

}
∀z ∈ Ot.

Note that Ot is paracompact in norm, since X is. Also, X2 is a Fréchet space
and Ft(z) is a nonempty, closed and convex subset for every z ∈ Ot. Then, in
order to apply the Michael selection principle, it is enough to check that Ft

is a norm lower semicontinuous multivalued map. To do this we will apply
Lema 1.1, so pick {zn} a sequence in Ot converging in the norm topology

to some point z ∈ Ot. Also we pick (p1, p2) ∈ Bt
1 ×Bt

2 such that p1+p2
2 = z.

As Ot =
Bt

1
+Bt

2

2 , we can take (q1, q2) ∈ Bt
1 × Bt

2 such that q1+q2
2 = z. From

Lemma 3.4 there are a strictly increasing map σ : N → N and sequences
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{(pn1 , p
n
2 )}, {(q

n
1 , q

n
2 )} in BX × BX so that for every i = 1, 2 {pni } converges

to pi, {q
n
i } converges to qi and

pn1 + pn2
2

=
qn1 + qn2

2
= zσ(n) ∀n ∈ N.

For i = 1, 2, λ ∈ [0, 1] and n ∈ N define vni (λ) = (1−λ)qni +λpni so that {vni }

converges vi(λ) := (1− λ)qi + λpi. As pi ∈ Bt
i , qi ∈ Bt

i and Bt
i is convex we

get that vi(λ) ∈ Bt
i for every λ ∈ [0, 1). Take now a sequence (tr)r∈N ⊂ [0, 1)

converging to 1. As Bt
i is open, we can choose a strictly increasing sequence

{Nr} ∈ N such that vNr

i (tr) ∈ Bt
i . Finally we put yr := (vNr

1 (tr), v
Nr

2 (tr)).
It is clear that yr ∈ Ft(zσ(Nr)) for every r, and {yr} converges to (p1, p2),
which proves that Ft is norm l.s.c.

Appliyng the Michael selection principle to Ft, we can take a continuous
selection ft = (f t

1, f
t
2) of F . From Urysohn lemma there is a continuous

function nt : K → [0, 1] such that nt(t) = 1 and nt(s) = 0 for every s ∈
K \ Vt. Now we define for i = 1, 2

s̃i(s) = nt(s)f
t
i (y(s)) + (1− nt(s))y(s) ∀s ∈ Vt.

Recall that we had defined before s̃i(s) = y(s) for every s ∈ K \
⋃
t∈E

Vt. It is

clear that s̃i ∈ C0(K,X) for i = 1, 2 and y = s̃1+s̃2
2 .

It is worth to mention that this result generalizes a known result [2, Th.
2.5 b)] for finite dimensional X. In fact, in [2] it is considered the property
(co):

Definition 3.6. A Banach space X is said to be (co) if for every x, s1, s2 ∈
BX , λ ∈ (0, 1/2] satisfying that x = (1−λ)s1+λs2 and ε > 0, there is δ > 0
such that there exist two continuous functions

(3.1) vi : BX(x, δ) ∩BX → BX(si, ε) ∩BX ∀i ∈ {1, 2}

satisfying y = (1− λ)v1(y) + λv2(y) for every y ∈ B(x, δ) ∩BX .

Using our selection technique, it is easy to prove that property (co) is
equivalent to norm stability of the unit ball for arbitrary Banach spaces.

Proposition 3.7. Let X be a Banach space. X is (co) if and only if BX is
stable.

Proof. Property (co) implies the stability of BX by Proposition 2.2 of [2].
Now, if BX is stable and we have x, s1, s2 ∈ BX , λ ∈ (0, 1/2] and ε > 0 such
that x = (1− λ)s1 + λs2, then we consider the multivalued map given by

φ : BX(x, δ) ∩BX →
(
BX(s1, ε) ∩BX

)
×

(
BX(s2, ε) ∩BX

)

φ(y) =
{
(z1, z2) ∈ BX×BX : (1−λ)z1+λz2 = y, zi ∈ BX(si, ε/2), i = 1, 2

}
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where δ > 0 is such that BX(x, δ) ∩ BX ⊂ (1 − λ)BX(s1, ε/2) ∩ BX +
λBX(s2, ε/2) ∩BX (which exists because BX is stable). By the same argu-
ment as in Theorem 3.5 we are able to prove that φ is norm l.s.c. so applying
the Michael Selection Principle to φ we are done.

Proposition 3.7 turns Theorem 2.5 (b) of [2] into a complete character-
ization since weak and norm stability agree on finite dimensional spaces.
Observe that the weak stability of the unit ball in C0(K,X) implies the
weak stability of the unit ball in both C0(K) and X [2], since C0(K) and X
are 1-complemented in C0(K,X). We don’t know if the converse is true.

4. Relationship with diameter two properties

As Theorem 2.3 is a geometric characterization of purely atomic preduals
of L1(µ) spaces, one can get, as a consequence, geometric implications of
such spaces in relation with other well known geometric properties, as di-
ameter two properties (see [6] and references there for background). In [25]
it is defined a very strong diameter 2 property called the symmetric strong
diameter 2 property (SSD2P for short).

Definition 4.1. Let X be a Banach space. We will say that X has the
symmetric strong diameter 2 property (SSD2P for short) whenever for every
finite family {Si}

n
i=1 of slices of BX and ε > 0, there exist xi ∈ Si and

y ∈ BX , independent of i, such that xi ± y ∈ Si for every i ∈ {1, . . . , n} and
||y|| > 1− ε.

In view of this property, we define the next property, which will be proved
to be satisfied by Banach spaces with stable unit balls.

Definition 4.2. Let X be a Banach space. We will say that X has the
attaining symmetric strong diameter 2 property (ASSD2P for short) when-
ever for every finite family {Si}

n
i=1 of slices of BX , there exist xi ∈ Si and

y ∈ SX , independent of i, such that xi ± y ∈ Si for every i ∈ {1, . . . , n}.

Obviously, the ASSD2P implies the SSD2P which in particular implies the
strong diameter 2 property (see [25]). In order to obtain a characterization
of the ASSD2P, we need the concept of symmetric convex combination of
slices. Given Si slices for i ∈ {1, . . . , n}, it is defined the symmetric convex
combination of those slices as a set of the form

n∑
i=1

λiSi −
n∑

i=1
λiSi

2

where λi > 0 with
n∑

i=1
λi = 1.

Proposition 4.3. Let X be an infinite-dimensional Banach space. Then,

i) X has the ASSD2P if, and only if, every intersection of symmetric
convex combinations of slices reaches the sphere.
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ii) X has the SSD2P if, and only if, for every ε > 0 and every intersec-
tion of symmetric convex combinations of slices C there exists y ∈ C
of norm ||y|| > 1− ε.

Proof. i) Let {Si}
n
i=1 be a finite family of Slices of the unit ball and consider

the set

C =
n⋂

i=1

Si − Si

2
.

If we assume that intersection of symmetric convex combinations of slices
reaches the sphere then there is y ∈ SX ∩ C. Then, for every i ∈ {1, . . . , n}
there are two points si, zi ∈ Si such that y = si−zi

2 . Considering xi =
si+zi

2
we are done since xi − y = zi ∈ Si and xi + y = si ∈ Si. To prove the
other implication, consider for every i ∈ {1, . . . , n} a symmetric convex

combination of slices Ci−Ci

2 where Ci is an arbitrary convex combination
of slices in X. By Proposition 2.1 of [25] a) ⇔ c), we may take for every
i ∈ {1, . . . , n} a point xi ∈ Ci and a point y ∈ SX such that xi ± y ∈ Ci for
every i ∈ {1, . . . , n}. We are now done since

y =
(xi + y)− (xi − y)

2
∈

Ci − Ci

2
∀i ∈ {1, . . . , n}.

The assertion ii) of the Proposition is proved in the same way.

We thank an anonymous referee of an old version of this paper for asking
to us about the possibility that weak stability of the unit ball for L1 preduals
implies ASSD2P. The next corollary answers positively this question and
even more.

Corollary 4.4. Banach spaces with a weak stable unit ball satisfy ASSD2P.

The question now is wether the reverse result is true or not. For that
purpose, we are going to give an example of a space with the ASSD2P
whose unit ball is not weak stable. C[0, 1] does not have a weak stable unit
ball as it is a non purely atomic L1-predual. Let us prove that C[0, 1] is the
example that we are looking for.

Proposition 4.5. C[0, 1] enjoy the ASSD2P.

Proof. Let ε ∈ (0, 1) and µ1, . . . , µn ∈ SM[0,1], so that we consider the slices
Si given by

Si = {f ∈ BC[0,1] : |µi(f)| > 1− 2ε} ∀i ∈ {1, . . . , n}

and we take for every i ∈ {1, . . . , n} an element fi ∈ Si such that |µi(fi)| >
1− ε. First, we take r ∈ (0, 1) and δ > 0 such that

µi(r − δ, r + δ) <
ε

2
∀i ∈ {1, . . . , n}.

Let g : [0, 1] → [0, 1] be a continuous function such that g(t) = 1 for every
t ∈ [0, 1] \ (r − δ, r + δ) and g(t) = 0 for every t ∈ [r − δ/2, r + δ/2]. If we
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define gi = fig it is straightforward that gi ∈ BC[0,1] is such that

|µi(gi − fi)| =

∣∣∣∣
∫

[0,1]
gi − fi dµi

∣∣∣∣

≤

∫

(r−δ,r+δ)
|gi − fi| dµi +

∫

[0,1]\(r−δ,r+δ)
|gi − fi| dµi < ε,

so gi ∈ Si. Now, it is enough to consider a continuous function h : [0, 1] →
[0, 1] such that h(t) = 0 for t ∈ [0, 1] \ (r − δ/2, r + δ/2) and g(r) = 1. It
is easy to check that gi + h, gi − h ∈ Si as gi and h have disjoint support,
where h ∈ SC[0,1].

Thanks to Proposition 4.5 we have that

w-stable : ASSD2P.

Now, let us prove that the ASSD2P is strictly stronger than the SSD2P.

From [27] page 168 we know there exists a Banach space X which is
both Almost Square (ASQ) and strictly convex. This means that X has
the Symmetric Strong Diameter 2 Property (SSD2P) as it is an Almost
Square Banach space [25]. Since the ASSD2P implies the Attaining Strong
Diameter 2 Property (see Theorem 3.4 of [19]), which is incompatible with
strictly convex spaces (Proposition 2.3 of [19]). It follows that X does not
have the ASSD2P, meaning that

ASSD2P : SSD2P.

As purely atomic L1 preduals satisfy ASSD2P, it is natural wondering what
is the class of L1 preduals with ASSD2P.

We have shown that stability arises a lot of geometric consequences related
with diameter 2 properties. Finally, let us now stablish the next Proposition
4.6 focusing on some geometric consequences relating extreme points.

Proposition 4.6. Let X be a Banach space with a weak stable unit ball.
Then:

i) Every face of BX has a weakly closed set of extreme points and so
Ext(BX) is weakly closed.

ii) Ext(BX) is nowhere weakly dense in BX , that is, for every U ⊂ BX

nonempty relatively weakly open subset, there exists another V ⊂ U
nonempty relatively weakly open subset such that V ∩Ext(BX) = ∅.

Proof. From [22, Proposition 1.1], we know that the multivalued map T :
C → C which gives for every x ∈ C the face generated by x, that is

T (x) = {y ∈ C : ∃z ∈ C, ∃λ ∈ (0, 1) with x = λy + (1− λ)z}

is l.s.c. when C is a stable convex set. In particular, it says that Ext(C) is
closed when C is stable.
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The first assertion is due to that and the fact that every face of a stable
convex set is again stable. In fact, if C is a stable convex set and F is one
of its faces, then, taking U1, U2 ⊂ C relatively open sets and making use of
the definition of face, we have that

U1 ∩ F + U2 ∩ F

2
=

(
U1 + U2

2

)
∩ F,

so F is stable.
For the second assertion, let us consider U a nonempty relatively weakly

open subset of BX . Then by Bourgain’s Lemma [11, Lemma II.1] we know
there is a nontrivial convex combination of disjoint slices V inside U . As
slices are relatively weakly open subsets of BX and BX is weak stable, we
know that V is a nonempty relatively weakly open. It is straightforward to
see that V cannot have any extreme point of BX , as it is a convex combi-
nation of more than one nonempty disjoint subsets of BX .

Acknowledgements.- We want to thank Miguel Mart́ın and Abraham
Rueda for their help looking for some adequate reference.
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