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Introduction 

The widespread use of computed tomography (CT) and 
magnetic resonance imaging (MRI) for imaging spinal 
disorders has led to a decrease in the use of radiography as 
the first imaging modality in many clinical settings. Several 
guidelines are available to assist clinicians in ordering 
appropriate imaging techniques to achieve an accurate 

diagnosis and to ensure appropriate medical care that meets 
the efficacy and safety needs of patients (1-5).

When advanced imaging of the lumbar spine is required, 
MRI is often recommended over CT, due to the higher 
soft tissue contrast of the former and the use of ionizing 
radiation of the latter (6,7). Nevertheless, CT is still a useful 
technique for the study of bone structure and the follow-up 
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of interventional procedures.
Because CT and MRI have replaced conventional 

radiography in the study of many spinal conditions, it is 
essential to know when these techniques are indicated 
instead of or as complementary tests to radiography, which 
findings can be expected in different clinical settings, 
and their significance in the diagnosis of different spinal 
conditions.

General indications for CT and MRI of the spine

The primary indications for CT of the spine mainly 
include the evaluation of congenital anomalies, alignment 
abnormalities, traumatic injuries, and postoperative 
evaluation, sometimes with the use of intrathecal contrast.

On the other hand, MRI is the technique of choice in 
patients with suspected spinal cord injury or compression, 
in the presence of warning signs such as cauda equina 
syndrome, neoplasia or infection, or in case of complicated 
low back pain (e.g., persistent for more than 6 weeks despite 
conservative treatment), either because the patient is a 
candidate for intervention or surgery or because there is 
no diagnostic certainty. Patients with recurrent pain after 
surgery should be studied using contrast-enhanced MRI (1-5).

CT and MRI in congenital conditions of the spine

Congenital alterations of the spine can be simple, when 
there is no associated spinal deformity or they have little 
or no clinical significance, or complex, when they are 
associated with severe deformities. Morphologically, 
congenital alterations of the spine can be classified as 
secondary to defects involving vertebral formation, 
vertebral segmentation, or both (8,9). In the first case, all or 
part of the vertebra is not well formed/developed, leading 
to deformities such as agenesis, hemivertebrae, wedged 
or butterfly vertebrae. In the second case, the embryonic 
vertebrae do not separate, resulting in congenital vertebral 
block when complete, or unsegmented bar formation when 
incomplete (Figure 1). 

Congenital deformities can also be classified according 
to the pattern of curvature. Among patients with 
congenital spinal deformities, 80% had scoliosis, 14% had 
kyphoscoliosis, and 6% had pure kyphosis. Hemivertebra 
is the most common cause of congenital scoliosis followed 
by unilateral unsegmented bar. Segmented hemivertebra 
is the most frequent and dangerous form because, totally 
separated from its adjacent vertebrae, it grows and acts as 

a wedge that enlarges and leads to progressive scoliosis. 
A semi-segmented hemivertebra is synostosed to one 
of the neighbouring vertebrae, thus the potential of 
growing deformity is usually lower. Finally, incarcerated 
hemivertebrae are inserted in a niche of the spine with no 
significant disc spaces and, therefore, they show less growth 
potential and minor deformity (8) (Figure 1).

Anterior failure of vertebral body formation is the most 
common cause of congenital kyphosis or kyphoscoliosis, 
followed by segmentation failure and mixed abnormalities (8). 
It has been classified into posterolateral quadrant vertebra 
(35%), posterior hemivertebra (7%), butterfly vertebra 
(13%) and anterior wedge vertebrae (5%) (11) (Figure 1).

Vertebral malformations have also been classified 
according to the underlying embryopathy.  When 
abnormalities occur in the early phase of notochord 
formation, the gastrulation phase in the first 2–3 weeks of 
embryo development, malformations may affect structures 
derived from the three germinal cell layers, including the 
neuroaxis and axial skeleton. Abnormalities during primary 
or secondary neurulation (3–6 weeks) can also contribute 
to these malformations. These congenital malformations 
of the spine and spinal cord are collectively referred to as 
spinal dysraphism. Depending on the presence or absence 
of overlying skin covering, spinal dysraphism is divided into 
open and closed types. Myelomeningocele account for 98% 
of open dysraphism in which both the neural placode and 
meningeal lining protrude through the bony and cutaneous 
defect in the midline. Closed spinal dysraphism can be 
further classified according to the presence or absence of a 
subcutaneous mass. In the presence of a subcutaneous mass, 
two main forms of closed dysraphism can be differentiated: 
lipomyelocele and lipomyelomeningocele. They can be 
differentiated based on the position of the neural placode-
lipoma interface, which lies within and out of the limits of 
the spinal canal, respectively. When no subcutaneous mass is 
present, several simple dysraphic states can be distinguished, 
including intradural lipoma, filar lipoma, tight filum 
terminale, dermal sinus and persistent terminal ventricle. 
Finally, there are other complex dysraphic states such as 
dorsal enteric fistula, neuroenteric cyst, split notochord 
syndrome, split cord/diastematomyelia, caudal regression 
syndrome, and segmental spinal dysgenesis (12-14)  
(Figure 2).

Radiography is usually the first imaging method to study 
congenital vertebral anomalies and related deformities, 
allowing their classification, evaluation of severity, risk 
of deformity progression, and vertebral count (15). As 
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the number of bone malformations increases, there is a 
higher incidence of cord anomalies ranging from 20% to 
58% (9,15,16), being higher in the presence of combined 
failures of segmentation and formation. Deformities in 
the sacrococcygeal area present the highest rate of spinal 
cord anomalies (16). MRI is the appropriate technique for 
complete evaluation of intraspinal abnormalities, including 
the presence of Chiari malformation or syrinxes, anomalies 
of the conus medullaris, or tethered cord syndrome (TCS). 
Filar thickness >2 mm measured at the L5-S1 level is 
considered abnormal. Proximal to this level, the stretched 
filum may falsely appear of normal thickness (17,18). CT 
may also be useful in defining the anatomy of vertebral 

deformities in pre-surgical planning (19). The information 
provided by imaging methods should be accurate, reporting 
the correct type of malformation is fundamentally important 
in the decision-making process (8,18).

Among simple congenital abnormalities, transitional 
vertebra is considered a developmental variant secondary to 
failed segmentation. The estimated mean prevalence is 7.5% 
for sacralization and 5.5% for lumbarization (20), ranging 
from 9.9% to 28.6% (21). The Castellvi classification is 
the most widely used to categorize lumbosacral transitional 
anomalies: type I refers to unilateral or bilateral enlarged 
transverse processes, type II includes unilateral or bilateral 
pseudo-articulation between the transverse process and 

Figure 1 Congenital deformities. (A) Scoliosis secondary to a semi-segmented hemivertebra. (B) Klippel-Feil syndrome with formation 
and segmentation abnormalities. (C) Scoliosis secondary to asymmetric butterfly vertebra [from reference (10)]. (D) Kyphosis secondary to 
anterior failure of vertebral formation.
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the sacrum, type III refers to unilateral or bilateral fusion 
of the transverse process with the sacrum, and type IV is 
when there is unilateral fusion and contralateral pseudo-
articulation. Types II and IV, in which a dysplastic 
transverse processes articulates with the sacrum, show a 
positive correlation with the presence of low back pain due 
to mechanical stress, or extraforaminal nerve compression 
at the transitional level (22-24) (Figure 3). Nevertheless, 
a recent study suggests that Castellvi type III seems to be 
associated with prolonged low back pain (21). Many authors 
consider that degenerative findings more commonly occur 
in transitional vertebrae above the transitional level (21,25).

Differentiating lumbarization from sacralization on 
MRI may be challenging when a complete vertebral count 
of the entire spine cannot be performed. Several methods 
have been described to identify the level of the vertebral 
body. The iliolumbar ligament is present in 85.7% of 
cases and extends from the L5 transverse process to the 
iliac wing in 96% (26). Other anatomical landmarks, such 

as the level of the conus medullaris, right renal artery, 
superior mesenteric artery, aortic bifurcation, or iliac crest 
height, are considered less accurate (27,28). More recently, 
identification of the nerve root of L5, with no proximal 
branching, has demonstrated 98% accuracy to identify the 
L5 vertebral body (29) (Figure 4).

Transitional anomalies can also be found at the 
cervicothoracic junction. Cervical ribs are the most frequent 
transitional abnormalities and have been described in 
association with lumbar sacralization. Another less known 
transitional anomaly is the elongation of the anterior 
tubercle of the cervical transverse process, which can lead to 
fusion of two vertebrae, typically C5 and C6 (30).

Traumatic pathologies 

Conventional radiography has been largely superseded by CT 
for the assessment of traumatic spinal injury (2). The reported 
sensitivity values of the former are much lower compared to 

Figure 2 Spinal dysraphism. (A) Myelomeningocele in open dysraphism in intrauterine fetus showing the protruded placode (arrow). 
(B) Posterior closed dysraphism with lipomyelomeningocele. The lipoma/placode interface (arrow) is outside the spinal canal.  
(C) Lipomyelocele The lipoma/placode interface (arrow) is within the spinal canal. (D) Dermal sinus (arrow). (E) Tethered cord with filum 
terminale lipoma (*) and filar thickening (arrow). (F) Split cord/diastematomyelia.
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Figure 3 Castellvi types of transitional vertebra in three cases. Type II on CT depicting the neo articulation (arrow) (A) and MRI  
(B) showing the subchondral edema (arrow). (C) Type III on 3D CT. (D) Type IV on coronal CT. CT, computed tomography; MRI, 
magnetic resonance imaging.

Figure 4 Transitional vertebral. (A) Iliolumbar ligament at L5 (arrows). (B) Splitting pattern of L4 (arrow) compared to L5 nerve root. 
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CT at the cervical and thoracolumbar spine, ranging from 
36% to 65% in the former case (31,32), and from 49% to 82% 
in the latter (33-35). The most widely accepted classification 
system at present is mainly based on CT findings, either at the 
cervical (36) or thoracolumbar (37) level. The thoracolumbar 
fracture system scores include the morphology of the 
fracture (0–8 points) and the neurological status (0–4 points),  
but also other modifying variables such as the status of 
ligaments, which can tilt the balance between medical or 
surgical treatment. Three types of vertebral injuries based 
on morphological criteria have been described, with a 
total of 9 subgroups which are classified into three main 
categories: (I) compression injuries, (II) tension band 
injuries, and (III) translational injuries (Figure 5). The 
score strongly influences the therapeutic management. 
Injuries with a score of less than or equal to three points are 
treated non-surgically, those with more than five points are 
managed surgically, while both options are acceptable for 
scores of four and five points. Therefore, all B2, B3 and C 
type fractures must be managed surgically, unless there is 
a medical contraindication. Both surgical and non-surgical 
treatment can be applied to type A4 and B1 fractures. The 
remaining fracture subtypes can be managed conservatively, 
except when neurological or other clinical modifiers increase 
score severity (38). One of the modifiers included in this 
score is the status of the ligamentous complex, which adds  

1 point when altered. Indirect signs of posterior ligamentous 
complex (PLC) injury include vertebral translation greater 
than 3.5 mm (39) and increased interspinous distance (40). 
Regarding the interspinous distance, variations of up to 
7 mm can be normal, while 20% widening compared to 
adjacent levels is considered as an indirect sign of unstable 
PLC, that frequently results in surgical treatment (40).

MRI is primarily indicated when doubts about the 
most suitable treatment persist after CT evaluation of the 
fracture, as it allows quantification of spinal cord damage 
and assessment of the presence and severity of PLC  
injury (41). Ligament rupture on MRI is evidenced as a 
frank interruption of a normally dark ligament, which is 
replaced by fluid of high signal intensity on fluid sensitive 
MRI sequences. The accuracy of MRI has been reported to 
be higher for detecting injuries of the supraspinous ligament 
and ligamentum flavum, and slightly lower for injuries to 
the interspinous ligament and facet capsule (42) (Figure 5). 
The integrity of the PLC may imply a change in treatment 
strategy towards conservative therapy or minimally invasive 
surgery (43).

In terms of morphology, the classification is similar at 
the cervical and lumbar spine, except for subtle differences 
in individual scoring categories, and the fact that the 
ligaments are considered along with the disc complex, i.e., 
disco-ligamentous complex (DLC). Morphology score  

Figure 5 AO-Spine thoracolumbar fracture classification score. (A) A0. Apophyseal fracture. (B) A1. Compression fracture without 
involvement of the posterior wall. (C) A2. Split fracture without involvement of the posterior wall. (D) A3. Burst fracture with involvement 
of one endplate. (E) A4. Burst fracture with involvement of both endplates. (F) B1. Trans osseous fracture. (G) B2. Posterior tension band 
injury fracture. (H) B3. Anterior tension band injury fracture (arrow). (I) Fracture dislocation injury type C. (J) MRI showing flavum (arrow), 
interspinous and supraspinous ligamentum tear. AO, Arbeitsgemeinschaft für Osteosynthesefragen; MRI, magnetic resonance imaging.

A B C D E

F G H I J
A0: 0 point A1: 1 point A2: 2 points A3: 3 points A4: 5 points

B1: 5 points B2: 6 points B3: 7 points C: 8 points
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(0–4 points), DLC score (0–2 points) and neurologic status 
(0–4 points) are thus considered in the decision-making 
process; fractures with score ≤3 are managed conservatively 
and fractures with score ≥5 surgically, whereas in fractures 
with score 4 both options are acceptable (44) (Figure 6).

No morphometric abnormalities related to the trauma 
scores 0 point. Simple compression receives 1 point, 
whereas a burst fracture receives 2 points. Distraction 
injuries, including perched facets, receive 3 points. 
Rotation/translation injuries score 4 points (45).

The DLC consists of the intervertebral disc, anterior and 
posterior longitudinal ligaments, interspinous ligaments, 
facet capsules, and ligamentum flavum. Accordingly, DLC 
status can be scored as 0 (intact), 1 (indeterminate, isolated 
MRI signal change or isolated widening of the spinous 
process), and 2 (disrupted, widening of the disc, facet perch 
or locked) (46) (Figure 6).

Facet fractures are additionally classified as follows: 
F1 fractures when non-displaced fractures present with 
fragments smaller than 1 cm or less than 40% involvement 

of the lateral mass; F2 fractures are those that have the 
potential to be unstable (i.e., a fragment greater than 1 
cm, involvement of more than 40% of the lateral mass, 
or presence of facet displacement). F3 fractures consist 
of a floating lateral mass that occurs when the fracture of 
the pedicle and lamina isolate the lateral mass from the 
vertebral body. Finally, F4 fractures include subluxation 
and/or facet lock. A ‘bilateral modifying factor’ applies 
when the same type of facet injury bilaterally affects the 
same vertebra.

Although the neurological status is usually assessed 
clinically, MRI allows correlating clinical neurological 
findings with the severity and extent of spinal cord damage. 
Therefore, MRI is useful in determining the exact location 
and extent of damage. Spinal cord injuries are classified into 
three types based on T2-weighted and/or T2*-gradient 
echo images: (I) represents cord hemorrhage, shows initial 
hypointensity on MRI and carries a poor prognosis; (II) 
represents cord edema, shows initial hyperintensity and 
bears the best prognosis; (III) is considered as a contusion 

Figure 6 AO-Spine subaxial fracture classification score. (A) Compression fracture; (B) burst fracture; (C) tension band injury fracture;  
(D) locked facets; (E) fracture dislocation; (F) sagittal T2 weighted images showing ligamentum flavum and supraspinous ligaments tear 
(arrow). AO, Arbeitsgemeinschaft für Osteosynthesefragen.
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or small central hemorrhage surrounded by edema, shows 
a mixed pattern, and has an intermediate prognosis (47) 
(Figure 7). 

Modifying factors at the cervical level include M1, 
which describes the existence of an incomplete injury to the 
PLC. M2 includes the presence of a critical disc herniation 
protruding posteriorly to a line that continues the posterior 
border of the vertebra below the level of the fracture. It 
should be noted that the incidence of disc herniation in the 
setting of spinal trauma is low, around 0.4% (48). M3 is a 
modifying factor that assesses the presence of a metabolic 
disease that stiffens the spine such as diffuse idiopathic 
skeletal hyperostosis (DISH), ankylosing spondylitis (AS), 
or ossifications of the posterior longitudinal ligament 
and ligamenta flava. Finally, the M4 factor considers the 
presence of signs of vertebral artery injury.

MRI is considered inferior to CT in the identification 
and characterization of cortical fractures, but superior 
in the identification of soft tissue injuries and trabecular 
fractures of the vertebral bodies. MRI is indicated if 
there is suspicion of myelopathy or ligament instability, 
or if a hematoma or disc herniation needs to be ruled 
out before proceeding with closed reduction of locked 
cervical facets. Myelopathy can be compressive due to acute 
traumatic herniation or the presence of a bony fragment 
or extramedullary hematoma. Epidural hematomas usually 
show an iso-hyperintense signal on T1 weighted images 
and hyperintensity on T2 weighted images. The incidence 
of epidural hematomas after trauma has been estimated 
at about 2.5%, although 59% of them were associated 
with cord compression (49,50). Diffusion tensor imaging 
(DTI) with measurement of the apparent diffusion 

coefficient (ADC) and fractional anisotropy (FA), as well 
as tractography, allow quantitative data to be obtained 
on the axonal integrity of the spinal cord in traumatized  
patients (51).

Low energy vertebral fractures 

The development of a vertebral fracture following minor 
trauma is a hallmark of osteoporosis. These fractures can 
be characterized and quantified by radiography or CT, 
but MRI is the best option for detecting edema, which is 
considered a sign of acute or unstable chronic fracture. 
In addition, the morphological changes that allow the 
diagnosis of osteoporotic fractures may take time to develop. 
Therefore, non-visualization of a vertebral fracture on plain 
radiography in an osteoporotic patient does not exclude 
its presence. MRI can detect fractures without vertebral 
deformity. In elderly patients with spinal trauma, in addition 
to the traumatic fracture, attention should be paid to screen 
whether other chronic osteoporotic vertebral fractures 
(OVF) or deformities (OVD) exist (Figure 8). Trauma signs 
on radiographs can be very subtle, and particular attention 
should be paid to buckling of the anterior vertebral  
cortex (52) (Figure 9).

On MRI, changes in vertebral signal intensity depend 
on the age of the fracture (Figure 10). Acute fractures 
usually show a band-like pattern of bone edema, located 
subchondral to the vertebral platform, with preservation of 
the normal signal intensity in the rest of the vertebral body. 
The linear image of the fracture can often be identified 
within the area of subchondral edema. The margin between 
the edema and the normal bone marrow is usually regular 

Figure 7 Traumatic spinal cord injury. (A) Type I, hemorrhagic lesion; (B) Type II, edematous injury; (C) Type III, mixed injury.

A B C
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and well defined. Bone marrow edema (BMO) usually 
resolves within 1 to 3 months, provided the fracture 
stabilizes. If it remains unstable, the edema can become 
chronic and be associated with sclerotic changes (10).

Fissures or cysts of air or fluid content may also form 
within the vertebral body. Their presence indicates 
intravertebral instability or lack of repair of the fracture site 
and are much more frequent in OVFs than in pathological 
fractures due to tumor involvement of the vertebral bodies 
(53,54). With the chronicity of the fracture, the fat signal 
from the vertebral bone marrow is recovered. Regarding 
morphology, the retropulsion of a bone fragment into the 
canal indicates a burst fracture and is considered a specific 
sign of benignity (Figure 10C,10D).

Finally, it should be noted that the age group with high 
prevalence of OVF also has a high prevalence of metastatic 
spinal tumors. Differentiating between OVD and metastatic 
deformity can be sometimes difficult using radiography 
alone. In such cases, MRI is the preferred imaging 

technique for differential diagnosis (10). Visualization of 
the convex posterior border of the vertebral body, extension 
into the posterior elements, and diffuse abnormal bone 
marrow signal are suggestive of pathologic fracture (55) 
(Figure 11).

The role of contrast agents in the differentiation between 
benign and malignant fractures has also been discussed in 
the literature. At the intraosseous level, benign fractures 
exhibit a gadolinium enhancement pattern equivalent 
to that of the adjacent normal vertebrae, with T1 signal 
intensity analogous to the normal appearance of non-
fractured vertebrae. Conversely, gadolinium enhancement 
in malignant fractures is usually more heterogeneous 
and intense than in the adjacent normal vertebrae. 
However, in acute benign fractures with significant edema, 
vertebral enhancement can be so intense that it can mimic  
malignancy (56).

In-phase and out-of-phase T1 weighted chemical 
shift images have also been advocated for this differential 

Figure 8 Elderly patient with spine trauma. (A) Radiograph; (B) sagittally reconstructed CT; (C) sagittal T2 weighted fat suppressed MRI. A 
T12 traumatic fracture, L3 chronic osteoporotic upper endplate fracture, and L4 chronic osteoporotic deformity (i.e., fracture) are detected. 
For T12, on radiograph, attention should be paid to the anterior cortex fracture and vertebral height loss, while on MRI apparent abnormal 
high signal is noted. Conversely, L3 and L4 show deformity, but no abnormal high signal is noted on MRI. CT, computed tomography; 
MRI, magnetic resonance imaging.
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purpose. In in-phase images, water and fat contribute to the 
bone marrow signal. In out-phase images fat is subtracted 
from water, thus decreasing signal intensity. In the case of 
tumor infiltration, fat is replaced by neoplastic cells and, 
thus, this decrease in signal does not occur. A ratio of the 
out-of-phase to in-phase signal >0.8 is moderately sensitive 
and highly specific for malignancy (57) (Figure 11).

Degenerative pathologies

Degenerative pathology of the spine can affect several 
anatomical locations, including synovial joints, spinous 
processes, intervertebral discs, and ligaments and their 
insertions at the bone.

Synovial joints: atlanto-axial, facets, costovertebral and 
sacroiliac

The facet joints constitute the outer wall of the vertebral 
foramen. Since they are synovial joints, degenerative signs 

of osteoarthritis include joint space narrowing, subchondral 
cysts and/or sclerosis, vacuum phenomenon, and osteophyte 
formation. MRI allows the detection of intra-articular 
effusion and edematous changes in bone and soft tissues (58). 
These findings have been associated with instability of the 
involved segment and the presence of symptoms (58-60), 
and they have been described in at least 14% of patients 
with low back pain (61,62). Some authors consider the facet 
joint effusion of more than 1 mm in recumbent MRI is an 
indication to perform standing or dynamic radiograph to 
check for occult spondylolisthesis or instability (63).

These features are important for decision-making, 
since facet joint osteoarthritis has been described in 
64–67% of asymptomatic patients in CT, and in 3–18% of 
asymptomatic patients in MRI (64-67) (Figure 12).

Spinous processes (Baastrup’s disease)

Baastrup’s disease (kissing spine syndrome) refers to 
interspinous degenerative changes associated with hyper-

Figure 9 Subtle osteoporotic fracture after low energy trauma (arrow). (A) Radiograph; (B) radiograph magnified view for T12; (C) sagittally 
reconstructed CT; (D) T1 weighted MRI. On radiograph T12 vertebral anterior cortex buckling is noted. There is no apparent height 
loss of the vertebral body. CT confirms T12 fracture and vertebral anterior cortex break. MRI also confirms T12 fracture. CT, computed 
tomography; MRI, magnetic resonance imaging. 
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lordosis and narrowing of the disc and facet joints 
interspace. The hallmark of the imaging findings is the close 
approximation and contact of adjacent spinous processes, 
with associated abnormalities including edema, bone cysts, 
sclerosis, flattening and enlargement of the articulating 
surfaces, bursitis and, occasionally, epidural cysts or 
midline epidural fibrotic masses (68). Interspinous bursitis 
and epidural cyst may communicate with the facet joints  
(Figure 12).

Intervertebral disc

MRI can accurately depict early or advanced changes of disc 
degeneration. Disc degeneration, whether physiological 

or pathological, is usually manifested by changes in signal 
intensity in the nucleus pulposus and annulus fibrosus. 
Fibrous transformation of the nucleus pulposus leads to 
formation of intranuclear clefts. It may be followed by 
varying degrees of loss of signal intensity in T2 weighted 
images and reduction in disc height. Several classifications 
have been published quantifying these changes into discrete, 
moderate, and severe (69,70). The Pfirrmann classification 
of disc degeneration was modified by Griffith for research 
purposes rather than clinical utility (71). Although these 
abnormalities are highly prevalent in asymptomatic subjects, 
mild changes are more common than moderate or severe 
changes (69,72). 

Disc space narrowing is commonly considered a sign 

Figure 10 Osteoporotic fractures. Sagittal T1 (A) and STIR (B) showing the band like edema pattern (arrows). (C) Burst fracture with 
intravertebral vacuum cleft (arrow) and retropulsion of the posteroinferior margin (*). (D) Sagittal STIR with intravertebral liquid cleft (arrow) 
and retropulsion of posterosuperior margin (*). STIR, short tau inversion recovery.
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Figure 11 Pathologic fracture in several cases of metastatic lung cancer. Sagittal CT (A) and sagittal T2 weighted images (B) showing 
convex posterior border. Sagittal T1 weighted image without (C) and with (D) contrast in pathologic fracture. In phase (E) and out of phase (F) 
showing lack of fat in this metastatic vertebra, with a signal intensity out phase/phase ratio of 0.95. CT, computed tomography.

Figure 12 Osteoarthritis of the posterior elements. (A) Axial CT of facet joint osteoarthritis (arrows). (B) Sagittal STIR showing edema in 
cervical facet joint osteoarthritis (arrow). (C) Sagittal CT showing Baastrup’s disease (arrow). (D) Interspinous bursitis (arrow) demonstrated 
during injection with dye and steroids of the facets joint. CT, computed tomography; STIR, short tau inversion recovery.
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of disc degeneration. In common practice, applying both 
Pfirrmann 5-level grading and Griffith’s 8-level grading 
schemes, a higher degree of disc space narrowing leads to 
higher disc degeneration scores. However, osteoporosis is 
associated with vertebral height loss, particularly vertebral 
middle height loss, which allows the expansion of the disc 
vertically (73,74). It has been noted that lower lumbar 
bone mineral density (osteopenia and osteoporosis) is 
associated with a decrease in lumbar disc anterior height 
and posterior height; however, the middle height of the 
discs was increased (therefore the disc biconvexity index 
was increased) (74). Thus, an osteoporotic spine is less 
likely graded as having disc space narrowing, and thereof, 
less likely graded as having disc degeneration (or would 
likely being graded as a lesser degree of disc degeneration). 
Therefore, Pfirrmann criteria for lumbar spine degeneration 
is less applicable in elderly subjects, particularly elderly 
female subjects among whom osteoporosis is very common 
(75). Moreover, loss of the bright signal on T2 weighted 
images can also be due to natural aging, rather than disc 
degeneration alone. The classification of “degenerated 

disc” according to Pfirrmann et al. and Griffith et al. does 
not compel the reader to differentiate the pathologic 
degeneration from the normal consequence of aging. 
Moreover, there are two types of disc degeneration (76). 
‘Endplate-driven’ disc degeneration involves endplate 
defects and inwards collapse of the annulus, which has a 
high heritability, mostly affects discs in the upper lumbar 
and thoracic spine, and often starts to develop before age 
30 years. ‘Annulus-driven’ disc degeneration involves a 
radial fissure and/or a disc prolapse, has a low heritability, 
mostly affects discs in the lower lumbar spine, and develops 
progressively after age 30 years.

Degenerative changes in the annulus fibrosus usually 
manifest as high intensity zones (HIZ) on T2 weighted 
images and have been found to be a diagnostic sign of 
painful intervertebral disc disease with a positive predictive 
value ranging from 53% to 95% (72,77,78). They are 
secondary to tears or fissures of the annulus fibrosus, which 
are classified as concentric, rim or transverse, and radial. 
Radial fissures have been associated to discogenic pain 
(Figure 13) (79). Nevertheless, concentric, and transverse 

Figure 13 Annular tears on T2 weighted images. Sagittal (A) and axial (B) of transverse tears (arrow). (C) Concentric and radial (D) tears 
(arrows).
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fissures have also been described in asymptomatic 
individuals, and their prevalence increases with age 
(70,80,81). Hyperintensity or contrast enhancement cannot 
be considered a sign of acuity because they may be apparent 
for long periods of time without being symptomatic all the 
time (80). 

Disc displacement is currently classified as bulging or 
disc herniation based on the nomenclature agreement of 
the joint task forces of the North American Spine Society, 
the American Society of Spine Radiology, and the American 
Society of Neuroradiology (Figure 14) (82). 

Disc bulging is defined as a disc protruding beyond the 
margins of the vertebral endplates by more than 25% of its 
circumference. It may be symmetric or asymmetric. It has 
been described in 15–81% of asymptomatic subjects (69,80).

A disc herniation is a focal protrusion of disc material 
affecting less than 25% of the disc circumference. Two types 
of herniations are considered. In the protrusion type, only a 
partial tear of the annulus fibrosus is present. On imaging, 

the base of the hernia is wider than the rest of dimensions of 
the protruded disc. In extrusion hernia, the whole thickness 
of the annulus fibrosus is torn. On imaging, the base of the 
extruded disc is smaller than the length of the extruded 
material. The prevalence of disc herniation in asymptomatic 
individuals is higher for the protrusion type (20–63%) than 
for the extrusion type (24%) (69,72,80,83,84).

The extruded disc may migrate upward or downward or 
lose contact with the parent disc as a sequestered fragment. 
Sequestration has not been described in asymptomatic 
subjects (72). 

With respect to a transverse plane through the intervertebral 
disc, the location of lesions within the spinal canal can 
be described from medial to lateral as occupying the 
central area (including paracentral, more precisely, right 
central or left central), subarticular (including lateral 
recess), foraminal, extraforaminal and anterior. The term 
“paracentral”, although less precise than right or left 
central, is useful in clinical practice because the base of the 

Figure 14 Disc displacement. (A) Diffuse bulge; (B) central protrusion; (C) right paracentral disc extrusion; (D) foraminal extrusion;  
(E) cranial migration of the disc extrusion; (F) sequestered fragment (arrow).
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herniation may affect the whole central area (82). 
Discs may also herniate through the vertebral endplate 

(Schmorl’s nodes). In the acute presentation, they may be 
surrounded by edema and be symptomatic. In the chronic 
form, they are surrounded by fat or sclerotic bone (85,86).

Vertebral endplate changes associated to degenerative 
disc disease have been described by Modic (Figure 15). Type 
I represents edema and can be stable, disappear or aggravate, 
or progress to type II. They manifest as hypointense on T1 
weighted and hyperintense on fluid sensitive techniques. 
The positive predictive value for low back pain of type 1 
Modic changes was 81% (87). Persistence or aggravation of 
Modic changes, associated loss of disc height and vertebral 
endplate irregularities are associated with persistence of 
pain. Modic I changes that regress or change to type II 
are associated with improvement of pain. Symptomatic 
Modic I changes tend to affect lower lumbar discs and have 
greater extension in height and backward in the vertebral 
endplate than asymptomatic Modic I changes which tend 
to be focally localized in the anterosuperior margin of the 
mid-column vertebral bodies. Posteriorly oriented Modic 
changes are more painful than anteriorly oriented Modic 
changes. Vertically larger Modic changes are more strongly 
associated with low back pain (88,89).

Type II Modic changes represent fat deposition and 
are usually considered stable, but sometimes can evolve to 

type I (90,91). They manifest as hyperintense on T1 and 
T2 sequences and hypointense on fat saturated images. 
Type III Modic changes represent subchondral sclerosis 
and are considered very rare (72), but this is probably 
due to the insensitivity of MRI to detect sclerotic bone  
(Figure 15). They manifest as low signal in all sequences. 
The prevalence of Modic changes increases with age and 
have been described in 0–13.5% of asymptomatic patients 
for Modic I and 3–25% for Modic II, respectively (72,80,84).

Ligaments and their insertions at the bone, resulting  
in DISH

DISH is a systemic condition, with an estimated prevalence 
of approximately 10% in people >50 years of age. The 
radiographic criterion proposed by Resnik for its diagnosis 
is the presence of large bridging osteophytes in at least 
four adjacent thoracic vertebrae. Patients with DISH are 
often asymptomatic, although can manifest clinically with 
back pain and stiffness, neurologic compromise from spinal 
stenosis, and dysphagia or airway obstruction from large 
anterior cervical bridging osteophytes (92). Spinal stiffness 
in the final stages of the disease implies increased spinal 
vulnerability to low energy trauma (93). On the other 
hand, the diagnostic criteria proposed by Utsinger reduced 
the threshold for spinal involvement to two contiguous 

Figure 15 Modic changes. Sagittal T1 weighted image (A), T2 weighted image (B) and STIR sequence image (C) of Modic type I changes. 
Sclerosis (arrow) detected at S1 on CT (D) is barely visible on MRI. Sagittal T1 weighted image (E), T2 weighted image (F) and STIR 
image sequence (G) of Modic type II changes. Sclerosis (arrows) conspicuous on CT (H) is barely suspected on MRI. STIR, short tau 
inversion recovery; CT, computed tomography; MRI, magnetic resonance imaging.
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vertebral bodies, but involvement of peripheral entheses 
was included for early diagnosis (94) (Figure 16).

Spinal stenosis

Degenerative disorders may lead to degenerative spinal 
stenosis. It may coexist with or be affected by a pre-
existing congenital or developmental stenosis. MRI allows 
differentiating the two forms of spinal stenosis by assessing 
the morphology of the central and lateral canal, as well 
characterizing, and quantifying its severity. It may also be 
useful in identifying other causes of spinal stenosis in which 
the osseous architecture is unremarkable, such as epidural 
lipomatosis (95).

The criteria for defining developmental stenosis at 
lumbar level are not uniform in the literature (96), with 
the reported pathological values of sagittal diameter 
ranging from 9 to 14 mm at the lower lumbar level (97-
101); however, the axial area of the thecal sac is considered 
a more effective parameter in the diagnosis of stenosis. In 
this regard, severe stenosis is defined by values <76 mm2, 
while values ranging from 76 to 100 mm2 indicate moderate 
stenosis (102). Park classified central stenosis based on 
nerve root aggregation of the cauda equina (103). According 

to this classification, grade 1 (mild stenosis) is present 
when the anterior cerebrospinal fluid (CSF) space is mildly 
obliterated with no nerve root aggregation. Grade 2 or 
moderate stenosis indicates cauda equina aggregation, while 
grade 3 implies severe stenosis, with the entire cauda equina 
appearing as a bundle (Figure 17).

In the lateral canal, stenosis may occur at the proximal 
entrance of the root (i.e., lateral recess), or at the exit (i.e., 
foramen). Nerve root involvement in the lateral recess 
ranges from contact of the disc with the nerve root to 
deviation and/or compression of the root between the disc 
and posterior osseous structures (101). Bartynski et al. (101)  
graded lateral recess stenosis as (104): grade 0, no stenosis; 
grade 1, mild stenosis with no repercussion on the nerve 
root; grade 2, moderate stenosis, with root flattening 
and partial obliteration of the CSF space; grade 3, severe 
stenosis in which there is severe root compression with 
complete obliteration of the CSF space.

According to Lee’s classification of foraminal stenosis, 
perineural fat obliteration in either vertical or transverse 
direction is considered mild stenosis, and obliteration in 
both the vertical and transverse axes implies moderate 
stenosis. Severe stenosis shows morphological changes or 
collapse of the nerve root (105). Wildermuth’s classification 

Figure 16 DISH. (A) Sagittal STIR showing subligamentous edema (arrows). (B) Sagittal reformatted CT showing bridging osteophytes.  
(C) Sagittal CT of low energy cervical fracture in a patient with DISH (arrow). DISH, diffuse idiopathic skeletal hyperostosis; STIR, short 
tau inversion recovery; CT, computed tomography. 
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Figure 17 Lumbar canal stenosis. Axial T2 images of mild (A), moderate (B) and severe (C) central canal stenosis. (D) Mild bilateral lateral 
recess stenosis (arrows). Moderate (E) and severe (F) left foraminal stenosis (arrows).

considers grade 1 foraminal stenosis when there is only 
deformity of the epidural fat, moderate (grade 2) stenosis 
when epidural fat only partially surrounds the nerve root, 
and severe or advanced (grade 3) stenosis when there is 
complete obliteration of the foraminal epidural fat (106). 
Several parameters of the compressed nerve root have 
been associated with good response to foraminal injections, 
including increased nerve T2 signal intensity (107) and 
perineural fat effacement >25%, described as the “melting 
sign” (108) (Figure 18). 

The estimated minimum sagittal diameter of the cervical 
spinal canal between C3 and C7 is 12 mm. Lower values 
increase the risk of degenerative spinal stenosis (109). In 
the foramen, uncovertebral arthrosis is the main cause of 
stenosis. Uncinate joints are found from C2-C3 to C6-C7, 
and they become hypertrophic because of the mechanical 
overload caused by disc impingement. Osteophytes 
may project into the foramen resulting in stenosis with 

radiculopathy (110).
Central canal stenosis at the cervical level was classified 

by Kang et al. in 4 grades (111): grade 0, absence of stenosis; 
grade 1, obliteration of the subarachnoid space greater than 
50% without deformity of the spinal cord; grade 2, central 
canal stenosis with spinal cord deformity but without altered 
signal intensity in the spinal cord; grade 3, central canal 
stenosis with signs of compressive myelopathy (hyperintense 
T2-weighted intramedullary signal) (Figure 19).

Grading of cervical foraminal stenosis in clinical practice 
on MRI must be based on both sagittal and axial images 
to get a complete picture of the neural foramen. Park  
et al. (112) classified stenosis severity based on oblique 
sagittal views, although these are not routinely performed 
and need to be reconstructed, while Kim et al. (113) graded 
foraminal stenosis based on morphometric measurements on 
axial images, which can be time consuming. Therefore, most 
clinicians grade foraminal stenosis based on subjective terms 
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Figure 19 Cervical canal stenosis. Sagittal T2 weighted of mild (A), moderate (B) and severe (C) central canal stenosis (arrow). 

Figure 18 Lumbar foraminal stenosis. Sagittal T2 weighted images of mild (A), moderate (B) and severe (C) foraminal stenosis (arrow). (D) 
Axial intermediate weighted fat saturated image showing increased signal of L5 nerve root (arrow) in severe foraminal stenosis. 
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Figure 20 Cervical foraminal stenosis. Axial T2* weighted images of mild (A), moderate (B) and severe (C) foraminal stenosis (arrow). 
Sagittal T2 weighted images of mild (D), moderate (E) and severe (F) foraminal stenosis (arrow).

such as “mild”, “moderate” and “severe” (114) (Figure 20). 
In the Park’s classification system, mild foraminal stenosis 
shows partial perineural fat obliteration involving less than 
50% of the nerve root circumference, moderate stenosis 
indicates perineural fat obliteration >50% of the nerve 
root circumference, and severe foraminal stenosis causes 
morphological changes in the nerve root (Figure 20). More 
severe grades are more likely related to clinical symptoms 
and are the target of treatment (115).

Alignment abnormalities

Six types of spondylolistheses have been described: 
congenital or dysplastic, isthmic, traumatic, pathologic, 
iatrogenic, and degenerative (pseudospondylolysis) (116). 

Isthmic spondylolisthesis is the most frequent type 
of spondylolisthesis in young people and is generally 

secondary to a stress fracture in a previously normal 
bone. Direct visualization of the fracture on sagittal MRI 
may be difficult due to the small size of the isthmus. 
The sensitivity and specificity of this technique has been 
reported to be 81% (95% CI: 54–94%) and 99% (95% 
CI: 98–100%), respectively. Therefore, due to the absence 
of radiation, MRI is considered the first imaging exam 
to investigate spondylolisthesis, with CT being reserved 
for non-diagnostic or inconclusive cases (117). The use 
of isotropic volumetric MRI sequences, such as 3D-T1-
VIBE (a T1-weighted, 3D gradient-echo MR sequence), 
has demonstrated greater diagnostic accuracy compared to 
CT. MRI achieved 100% accuracy in detecting complete 
fractures. For incomplete fractures, MRI sensitivity, 
specificity, and precision were 96.7%, 92.0%, and 94.6%, 
respectively (118). Early diagnosis is very important 
in young patients because it facilitates early treatment 
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increasing the healing rate. The degree of edema on fluid-
sensitive sequences (e.g., T2 weighted MRI or STIR 
sequence) is associated with the severity of the stress injury. 
The Hollenberg’s grading system includes 5 stages (119): 
grade 0 indicates a normal pars interarticularis with no 
MRI changes; grade 1 involves signal abnormalities in the 
pars interarticularis without fracture; grade 2 is defined by 
the presence of edema with incomplete fracture; grade 3 
indicates the presence of complete fracture with edema; 
and grade 4 involves complete fracture without signal 
alterations, indicating chronic non-union. Other authors 
have added grade 0a, which implies cortical thickening 
with sclerosis but with no edema, as well as grade 2a, which 
indicates incomplete fracture without edema, probably 
denoting a healing fracture (Figure 21) (120). MRI is not 
particularly useful in follow-up because bone edema may 
persist in spite of clinical resolution of spondylolysis. It is 

also inferior to CT in the assessment of bony repair (121).
An indirect sign of L5 spondylolysis, even without 

spondylolisthesis, is the presence of epidural fat between 
the posterior dural layer and the anterior part of the spinous 
process of the vertebra in a median sagittal image, secondary 
to enlargement of the central canal. According to Sherif  
et al. (122), the specificity and sensitivity of this indirect sign 
are 96.7% and 78.8%, respectively. When spondylolisthesis 
develops there is usually widening of the central canal and 
narrowing of both foramina (Figure 22).

The second most common site of neural arch injury after 
the pars interarticularis is the vertebral pedicle. It may be 
associated with unilateral spondylolysis but has been also 
described without associated spondylolysis in some young 
athletes or even in osteoporotic patients (123).

Degenerative spondylolisthesis is secondary to facet and 
disc degeneration while the neural arch remains intact. As 

Figure 21 MRI of spondylolysis. (A) Sagittal STIR image of grade 1 spondylolysis showing edema without pars interarticularis defect (arrow). 
(B) Grade 2 spondylolysis, partial defect with edema (arrow). (C) Grade 2A spondylolysis, partial defect without edema (arrow). (D) Grade 
3 spondylolysis, complete defect with edema (arrow). (E) Grade 4 spondylolysis, chronic defect without edema (arrow). (F) Bilateral pedicle 
spondylolysis (arrow). MRI, magnetic resonance imaging; STIR, short tau inversion recovery. 
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a result, the spinous process is anteriorly displaced along 
with the vertebral body, and the central canal usually 
becomes stenosed (Figure 23). It is the most frequent cause 
of spondylolisthesis in the elderly (124). A high proportion 
of degenerative spondylolisthesis can be asymptomatic and 
have no clinical consequence (125).

Traumatic spondylolisthesis is a rare injury defined as 
any acute fracture or dislocation of the posterior elements 
associated with vertebral spondylolisthesis. When it occurs 
at the C2 level, it is known as “hangman’s fracture”, with 
radiological signs analogous to isthmic spondylolisthesis. 
Of note, vertebral artery dissection has been found 
to be associated to this fracture type. Therefore, it is 
recommended to rule out this complication in patients with 
hangman’s fracture and pay particular attention to the signal 
intensity of the vertebral artery in T2-weighted images, 
as loss of the normal flow-void signal is an indirect sign of 
artery dissection (126) (Figure 23). 

Retrolisthesis is a manifestation of spondylolisthesis that 
consists of posterior shifting of a cephalad vertebra over 
a caudal vertebra. It is generally secondary to loss of disc 
material caused by intervertebral osteochondrosis or acute 
herniation of the nucleus pulposus (116).

Alterations in the spinal curvature

Scheuermann’s disease or idiopathic kyphosis accounts for 
90% of cases of juvenile kyphosis. Diagnostic criteria for 
this condition are kyphosis >45° and at least one vertebra 
with wedging >5°. Irregular endplates and Schmorl’s nodes 

are associated findings (127) (Figure 24).
Scoliosis is defined as a lateral curvature of the spine 

>10° as measured by the Cobb method on a standing 
radiograph (128). Scoliosis can be classified as congenital, 
neuromuscular, degenerative, or idiopathic, the latter being 
the most common, usually painless, and diagnosed after 
excluding other potential etiologies.

MRI is indicated in children under 10 years of age who 
develop scoliosis (infantile and juvenile forms) because of 
its frequent association with neural axis anomalies (129). In 
general, tomographic imaging techniques are not indicated 
in adolescent idiopathic scoliosis (11 to 17 years), the most 
common type, except when painful or unusual symptoms are 
present, such as headache or neurological involvement (130). 
Presurgical screening in these patients has demonstrated a 
prevalence of neurological axis abnormalities of 7.9–12.6% 
(131-133). Bony causes of scoliosis include benign tumors 
such as osteoid osteoma or osteoblastoma (134) (Figure 24). 

Inflammatory pathologies 

Radiography is still useful as initial examination to rule out 
structural damage of the spine in suspected inflammatory 
spondyloarthritis (135). The main drawback of radiography 
is the lack of sensitivity in detecting early non-structural 
changes, such as BMO, synovitis, enthesitis, capsulitis, and 
intra-articular effusion, that may be indicative of active 
inflammatory changes. MRI is the dominant technique 
to depict early active changes (136). In fact, MRI can 
demonstrate signs of active sacroiliitis years before 

Figure 22 MRI Indirect signs of spondylolysis and spondylolisthesis. (A) Epidural fat interposition between the thecal sac and the L5 
spinous process in spondylolysis without spondylolisthesis. (B) Widening of the central canal (arrow) and foraminal stenosis (arrow) (C) in 
spondylolysis with spondylolisthesis. MRI, magnetic resonance imaging.
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Figure 23 Alignment abnormalities in three patients. (A) Sagittal T2 weighted image of a patient with degenerative spondylolisthesis 
with narrowing of the central canal and anterior shifting of the spinous process (arrow). (B) Sagittal CT with retrolisthesis of L5. (C) CT 
with MIP reconstruction in Hangman’s fracture. (D) Axial T2 of a hyperintense vertebral artery (arrow) secondary to arterial dissection in 
Hangman’s fracture. CT, computed tomography; MIP, maximum intensity projection.

Figure 24 Alterations in spinal curvature. (A) Sagittal T2 weighted image of a case with Scheuermann’s disease. (B) Coronal T2 weighted 
image of a case with neuromuscular scoliosis in Rett syndrome. (C) Coronal T2 weighted image of a patient with scoliosis secondary to 
osteoid osteoma (arrow).
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Figure 25 Sacroiliitis in four patients. (A) Axial STIR in active inflammatory spondyloarthropathy. (B) CT showing structural changes at the 
sacroiliac joints. (C) T2 weighted image of a patient with chronic sacroiliitis with fused joints. (D) Axial STIR sequence image of a patient 
with post-partum subchondral edema at both iliac wings. STIR, short tau inversion recovery; CT, computed tomography. 

radiographic findings become evident (137).
Some authors differentiate between early non-

radiographic AS, when no imaging abnormalities are seen 
on radiographs with or without inflammatory changes on 
MRI, and late radiographic AS, when signs of structural 
sacroiliitis are present on radiographs according to the 
New York classification criteria (138,139). These structural 
changes include erosions, sclerosis, bone fatty infiltration, 
fat deposition in an erosion cavity, and bone bridging or 
ankylosis, with being CT, the most accurate technique 
to depict most structural changes (137). CT findings of 
structural changes had a 58% sensitivity and 69% specificity 
for discerning which patients reported pain relief from an 
anesthetic injection (137) (Figure 25).

Currently,  the Assessment in Spondyloarthritis 
International Society (ASAS) classification criteria for AS 
are the most widely used. These criteria cover patients 
with and without radiographic sacroiliitis and include a 
clinical and an imaging arm. Imaging findings consistent 
with sacroiliitis are the key criterion on the imaging arm 
and include definite radiographic sacroiliitis according to 
the modified New York criteria (NYC) or active sacroiliitis 

on MRI (138,140,141). The required MRI feature for 
sacroiliitis is the presence of BMO on either two consecutive 
slices, or multiple lesions on a single slice. Inflammation 
must be clearly present and in a typical anatomical location 
(subchondral bone) (142). 

The two arms altogether have 82.9% sensitivity and 
84.4% specificity and, for the ‘imaging arm’ alone, the 
reported sensitivity was 66.2% and specificity 97.3% 
(143,144). Of note, imaging cannot be assessed in 
isolation and needs to be interpreted in the light of clinical 
presentation and results of laboratory investigations. It must 
be considered that BMO can be present in asymptomatic 
individuals, may be related to sport activities and be present 
in other conditions like osteoarthritis or the post-partum 
period (135) (Figure 25). 

Regarding spinal lesions, a new consensus will replace 
the previous agreement of the ASAS group (145,146). 
Vertebral corner BMO and corner fat lesions, known as 
Romanus lesions, were recorded if present on 2 slices; 
facet joint, lateral, and posterior inflammatory lesions 
were recorded if present on a single slice. The presence 
of ≥2 vertebral corner BMO had 90–95% specificity for 
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axial spondyloarthropathy (147). Inflammatory changes 
in the vertebral endplate are known as Andersson lesions. 
Two theories about its pathogenesis consider that it 
may be either part of the inflammatory process of the 
disease or a pseudoarthrosis after minor trauma. It is 
important to differentiate them because the former may 
be treated medically and the latter usually require surgical 
management (147) (Figure 26).

Infectious pathologies

In suspected spinal infection, MRI is the preferred imaging 
technique due to its high sensitivity and specificity, which 
has been proved to be superior to radiographs and bone 
scans (148-151). MRI can detect osteomyelitis as early as 
3–5 days after onset of infection with reported sensitivity, 
specificity, and accuracy values of 96%, 92% and 94%, 
respectively (149,152). In addition, it can detect the very 
earliest sign of spondylodiscitis, namely subtle subchondral 
endplate edema changes (153). Edema or fluid in the psoas 
musculature, termed MRI psoas sign, is another finding 
consistent with early spondylodiscitis, with sensitivity 
and specificity values around 92% (154,155). MRI can 
localize the sites of infection, such as disc, vertebral bodies, 
facet joints, paravertebral musculature, epidural space, 
meninges, or spinal cord. Intravenous gadolinium contrast 
administration helps to delineate abscess formation. 
Hyperparathyroidism, neuropathic arthropathy, acute 

Schmorl’s nodes, SAPHO syndrome, AS, Modic changes 
type I and tumors are non-infectious mimics that may 
resemble pyogenic spondylodiscitis (136,156,157).

Extension to paravertebral soft tissues or the epidural 
space can be in the form of a phlegmon, which shows 
homogeneous enhancement with no significant pus 
collection, or forming a liquid abscess that shows peripheral 
enhancement delimiting a fluid collection (156). Abscess 
usually shows high signal on diffusion weighted images and 
low ADC value indicating restricted diffusion (157).

The evolution of pyogenic infections is much faster 
compared with tuberculosis due to the release of proteolytic 
enzymes in the former group. Tuberculosis usually exhibits a 
more chronic pattern, and radiographic changes take longer 
to become apparent, usually between 8–12 weeks (158). 
Subligamentous spread of tuberculosis can occur before 
spreading to the intervertebral space. In this case, erosion 
or scalloping of the anterior vertebral wall can be detected 
on radiographs (159) (Figure 27). Some findings that favor 
the diagnosis of tuberculosis include larger collections, cold 
abscesses adjacent to the affected spine, thoracolumbar 
junction, no/scarce involvement of the disc space, skip 
lesions involving multiple locations due to subligamentous 
spread and whole vertebral body or posterior involvement 
(160,161) (Figure 27).

Brucellosis is an endemic zoonotic disease that may affect 
the spinal column with a chronic course mimicking another 
disease, including spondylosis. It may present with a typical 

Figure 26 Spinal involvement in axial spondyloarthropathy. Sagittal STIR images showing Romanus lesions (arrows) (A), costovertebral 
joints inflammation (arrows) (B), and Andersson lesions (arrows) (C). STIR, short tau inversion recovery.
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pattern of discitis, but most often shows inflammatory 
changes of the vertebral body (162) (Figure 27).

Tumor pathologies

Spinal tumors can be metastatic, primary benign or primary 
malignant. Approximately 90% of them are metastatic 
and 20% present with canal invasion and/ or cord  

compression (163). Due to the overlapping of bony 
structures of the spine, conventional radiography is often 
insufficient and further characterization with CT or MRI 
is needed (164). MRI is usually the most useful method 
for evaluating spinal tumors and has superior contrast to 
localize disease in various compartments (intramedullary, 
intradural-extramedullary, extradural, intraosseous, 
paravertebral). Regarding primary bone tumors it has shown 

Figure 27 Infectious pathology of the spine. (A) Sagittal STIR image of a case of pseudomonas discitis. (B) Sagittal T1 weighted image of a 
case of brucella osteomyelitis (arrow). (C) Sagittal T2 weighted image of a case of tuberculous prevertebral subligamentous abscess (arrow). 
(D) Axial CT of a case of chronic bilateral psoas abscess showing muscle enlargement with fluid collection and small calcifications (arrows). 
STIR, short tau inversion recovery; CT, computed tomography. 
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higher diagnostic accuracy than CT and radiography (165).  
Regarding bone metastases, MRI has shown better 
diagnostic performance than SPECT, PET or CT (166,167). 
In myeloma, MRI has shown greater sensitivity than 
18F-FDG-PET in staging, but inferior for evaluating 
response to treatment that is detected earlier on 18F-FDG-
PET whereas it takes approximately 9–12 months for 
lesions to resolve on MRI (168,169).

Hemangiomas is the most frequent benign tumor 
lesions seen in the spine with an incidence ranging from 
10% to 27% and related to increasing age (170,171). 
CT is more sensitive than radiography revealing a classic 
“corduroy cloth” on sagittal images or the polka dot 
sign on axial images (171,172). Typical hemangiomas are 
generally non-symptomatic and appear as hyperintense 
on T1 and T2 weighted MRI, due to the predominance 
of fatty tissue that is suppressed with fat suppression  
techniques (173). Hyperintensity is typically greater 
than that of fat on T2 images because of the water 
content, thereby differentiating hemangiomas from 
focal fat deposition (173). Atypical hemangiomas show 
iso-hypointense signal on T1 weighted sequences and 
hyperintense signal on T2 weighted and fat suppression 
sequences with variable extent of enhancement after 
gadolinium administration. CT can show the typical 
osseous remodelling of hemangiomas and the typical 
signs described above in up to 80% of the cases (174). 
Aggressive vertebral hemangiomas consist of a very rare 
subset of vertebral hemangiomas that enlarge, disrupting 
the cortex and extending to the soft tissues, even resulting 
in neural compression (170). Due to its aggressive 
appearance the final diagnosis may require CT guided 
biopsy (175) (Figure 28).

Other benign osteolytic tumors or pseudo-tumors 
involving the spine include eosinophilic granuloma (EG), 
osteoid osteoma, osteoblastoma, giant cell tumor (GCT), 
and aneurysmatic bone cyst (ABC). Extreme collapse of 
the vertebral body, vertebra plana or coin-on-edge vertebra 
is a typical feature of EG, a benign tumor-like disorder 
characterized by clonal proliferation of Langerhans cells. 
Spinal EG account for up to 15% of all EGs and most 
lesions affect children between 3 and 12 years. With 
healing, a reconstruction of the vertebra occurs and re-
establishes an almost normal appearance (176) (Figure 29). 

Osteoid osteoma and osteoblastoma share imaging 
and pathological features. The size of the radiolucent 

nidus is the only criterium to differentiate them, with 
osteoblastomas nidus greater than 2 cm and showing a 
more aggressive expansion pattern. Both show surrounding 
sclerosis and an edema pattern on MRI that may simulate a 
more sinister condition. GCT and ABC usually present as 
osteolytic expansile lesions that may have fluid-fluid levels. 
GCT is more frequent at the sacrum, while ABC tends to 
affect the posterior elements (176,177) (Figure 30).

Benign sclerotic tumors or pseudotumors include bone 
island (enostosis), sclerosis secondary to osteoid osteoma, or 
healed benign lesions such as cysts or fibromas. Bone island, 
or enostoma, is often considered a variant of normality. It 
appears when compact bone develops within bone marrow 
and typically shows an irregula and spiculated margin 
surrounded by normal trabecular bone. MRI shows low 
signal on T1 and T2 weighted images with no enhancement 
after contrast injection. Sometimes, it may be difficult to 
differentiate enostoma from malignant osteoblastic lesions. 
Biopsy should be considered if the lesion increases in 
diameter by more than 25% within 6 months or 50% within 
1 year (172,176-178) (Figure 31).

Osteochondroma is a benign developmental exophytic 
lesion rather than an actual tumor. Spinal osteochondromas 
account for 1–4% and 9% of all solitary and multiple 
osteochondromas,  respectively.  Radiographical ly, 
osteochondroma is a bone exostosis protruding from the 
bone and showing varying degrees of chondroid calcification 
of the cartilaginous cap (176,178,179) (Figure 31).

Regarding primary malignant tumors, metastases, 
lymphoma, and multiple myeloma (MM) are the most 
frequent. Chordoma, plasmacytoma, osteosarcoma and 
primary lymphoma of the bone are rare. Osteosarcoma 
often presents with osteoid calcification of the tumor 
matrix, with marked mineralization originating in 
the vertebral body that may manifest as an “ivory  
vertebra”. This sclerotic vertebra can also be seen in bone 
lymphoma (164).

Chordomas usual ly  present  with an osteolyt ic 
pattern and soft tissue mass. They usually appear in 
the sacrococcygeal region (50% of cases), followed by 
the spheno-occipital region (35%) and the vertebral 
bodies (15%). It should be differentiated from benign 
notochordal tumors that are contained within the 
vertebral bones, and usually behave as hypointense on T1 
weighted images, hyperintense on T2 weighted images, 
with no significant contrast enhancement. They tend to 
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Figure 28 Vertebral hemangioma. Sagittal T1 weighted image (A), T2 weighted image (B), and STIR sequence image (C) of typical 
hemangioma (arrows), hyperintense on T1 and T2 due to fat content, remaining hyperintense on STIR only the vascular content. Sagittal 
T1 weighted image (D), T2 weighted image (E), and STIR image sequence (F) of atypical hemangioma (arrows), hypointense on T1 due 
to predominance of vascular component and scarce fat content. Sagittal T1 weighted image (G), T2 weighted image (H), and STIR image 
sequence (I) of aggressive hemangioma (arrows) extending to the spinal canal (*). STIR, short tau inversion recovery.
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Figure 29 Eosinophilic granuloma. (A) Initial sagittal T2 weighted image that evolved to severe collapse of the vertebral body in 2 months (B). 
(C) Partial vertebral height recovery at 3 years follow-up. 

Figure 30 Osteolytic lesions of the spine. (A) Axial CT image of osteoblastoma showing the osteolytic lesion (arrow), and (B) edema pattern 
on MRI (arrow). (C) CT of aneurysmal bone cyst (arrow). (D) T2 weighted image showing fluid-fluid levels in the same case (arrow). CT, 
computed tomography; MRI, magnetic resonance imaging.
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be smaller (<30 mm) and mostly sclerotic (179). These 
may be managed by radiological surveillance, while for 
chordomas or atypical lesions, biopsy and/or surgical 
removal must be considered (180) (Figure 32).

Metastatic bone lesions can manifest on CT with an 
osteolytic, osteoblastic, or mixed pattern. Focal lytic 
metastases demonstrate decreased T1 weighted signal 
relative to the muscle or disc, and increased T2 weighted 
signal compared to normal bone marrow. Blastic lesions 
show decreased T1 weighted and T2 weighted signal. 
Enhancement after contrast administration is variable (181) 
(Figure 33).

Infiltration patterns in MM may range from normal 
bone marrow appearance to focal infiltration, diffuse 
disease, ‘salt-and-pepper’ like involvement, or combined 

involvement (Figure 34) (181-183). MM lesions show high 
contrast-enhancement due to neo-angiogenesis, with steep 
and rapid first-pass enhancement followed by washout. 
High signal on high b-value images indicates bone marrow 
infiltration. Of note, normal red bone marrow, which is 
usually more pronounced in young individuals, tends to 
exhibit the same signal intensity changes compared to MM-
infiltrated bone marrow. Contrast enhancement curves may 
vary, usually with a less steep wash-in and wash-out than in 
MM (183).

Leukemia and lymphoma may also present as bone 
marrow infiltrative disorders. A diffuse infiltrative pattern is 
most frequent in patient with leukemia and a focal/patchy 
pattern is more prevalent in patients with lymphoma (184) 
(Figure 35).

Figure 31 Benign tumors of the spine. (A) Axial CT image of enostoma; (B) sagittal T1 and STIR (C) images of enostoma; (D) coronal 
reformatted CT image of osteochondroma. CT, computed tomography; STIR, short tau inversion recovery.
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Figure 33 Spinal metastases. (A) Sagittal CT reformation and Sagittal T2 weighted images (B) in a case of osteolytic lung cancer metastasis. 
(C) Sagittal CT reformation and sagittal T2 weighted image (D) in a case of osteoblastic breast carcinoma metastasis demonstrating 
increased density on CT scan and hypointensity on MRI. CT, computed tomography; MRI, magnetic resonance imaging.

Figure 32 Notochordal tumors. (A) Coronal reformatted CT of a lumbar chordoma. (B) Sagittal T1 without and with contrast (C) of a 
sacral chordoma. Sagittal reformatted CT (D), T1 (E), and STIR images (F) of a benign notochordal tumor. CT, computed tomography; 
STIR, short tau inversion recovery.
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Figure 34 Patterns of spinal involvement in myeloma. Sagittal T1 weighted imaging shows diffuse (A) and salt and pepper (B) infiltration. (C) 
Focal and combined (D) involvement of the spine.

Figure 35 Infiltrative pattern in hematologic malignancies. (A) Sagittal T1 in diffuse infiltrative pattern in leukemia. (B) Patchy infiltrative 
pattern in Hodgkin’s lymphoma.
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Conclusions

Proper use of CT and MRI in spinal disorders may facilitate 
the diagnosis and management of spinal conditions. An 
adequate clinical approach, an expert understanding of 
the pathological manifestations demonstrated by these 
imaging techniques and a comprehensive report based 
on a universally accepted nomenclature represent the 
indispensable tools to improve the diagnostic approach and 
the decision-making process in patients with spinal pain.
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