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Abstract: Preterm birth (PTB) is a phenomenon that brings risks and challenges for the survival of
the newborn child. Despite many advances in research, not all the causes of PTB are already clear. It
is understood that PTB risk is multi-factorial and can also be associated with socioeconomic factors.
Thereby, this article seeks to use unsupervised learning techniques to stratify PTB risk in Brazil
using only socioeconomic data. Through the use of datasets made publicly available by the Federal
Government of Brazil, a new dataset was generated with municipality-level socioeconomic data and
a PTB occurrence rate. This dataset was processed using various unsupervised learning techniques,
such as k-means, principal component analysis (PCA), and density-based spatial clustering of ap-
plications with noise (DBSCAN). After validation, four clusters with high levels of PTB occurrence
were discovered, as well as three with low levels. The clusters with high PTB were comprised mostly
of municipalities with lower levels of education, worse quality of public services—such as basic
sanitation and garbage collection—and a less white population. The regional distribution of the
clusters was also observed, with clusters of high PTB located mostly in the North and Northeast
regions of Brazil. The results indicate a positive influence of the quality of life and the offer of public
services on the reduction in PTB risk.

Keywords: preterm birth; clustering; unsupervised learning; PTB risk; Brazil

1. Introduction

Complications of preterm birth (PTB), defined as a birth which happens prior to the
37th week of pregnancy, are the most common cause of mortality among children of 5 years
old or younger [1–3]. In addition, it was shown as a critical factor for the survival of
newborns [2]. Preterm-born babies present a major challenge to medical assistance, which
needs to supplement their yet not fully developed vital organs [4]. Trying to understand
and to prevent the causes of PTB has become increasingly more common in scientific
research, especially with the recent emergence of progressively more trustful and more
complex government-owned datasets. Coming closer to this goal could mean finding of
ways of preventing PTB or at least of anticipating it, thus providing assistance to the mother
in time, possibly reducing the amount of lives lost.

The work presented in [5] shows that PTB’s etiology is multi-factorial and that the risk
of PTB could be associated with the socioeconomic situation of a given region (neighbour-
hood socioeconomic status or neighbourhood SES). Neighbourhood SES is an area-level
measurement which aggregates SES factors (such as income, education and employment)
in a certain geographic level [6]. Research shows that PTB rates are higher in areas with
low SES when compared to areas with high SES [7].
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Numerous machine learning techniques have been previously applied to the problem
of PTB prediction or stratification, including SVMs [8], neural networks [9–11] and decision
trees [12,13]. However, the most commonly applied techniques are logistic regression
and linear regression, employed in the analysis and prediction of PTB for various factors:
poverty [14], pregnant mother’s working conditions [15,16], general social factors [17,18]
and, mainly, clinical and hereditary factors [19–22]. There is a vast literature associating
different factors to preterm birth using traditional statistical methods [23–25], including an
association of social factors [26,27].

One way of comprehending the associated risk of the many SES factors to the occur-
rence of PTB is through data clustering. Clustering is a segment of unsupervised machine
learning techniques that seek to associate and group elements together without any initial
comprehension of the data themselves. In order to do so, clustering techniques make use
of distancing algorithms to judge how close or similar two points are from each other
and whether or not they should be grouped in the same cluster. Clustering techniques
have been used for scientific analyses for decades in many areas, such as psychology [28],
genetics [29] or geophysics [30].

Clustering as the method to discover the groups which are more vulnerable to PTB
risk is less common than traditional statistical methods. However, its application can
already be seen in some recent studies. In [31], spacial clustering shows a possible relation
between living closer to landfills and PTB occurrences. The studies presented in [32,33]
show the clustering of hereditary and behavioural factors associating them with PTB risk.
In addition, in [34], the study investigates the geographical distribution of PTB risk in Paris
by clustering at the level of “census blocks”.

Thereby, the main objective of this work is to stratify the risk of PTB in Brazil from
SES factors in order to confirm or deny that PTB occurrence is indeed related to socioe-
conomic conditions, a common general finding of multiple previous works in this area.
The stratification process is conducted through clustering analysis based on unsupervised
machine learning techniques. The analysis was performed by combining three freely avail-
able datasets collected by the Federal Government of Brazil: Sistema de Informações sobre
Nascidos Vivos (SINASC) [35], containing data regarding gestation, birth, newborns and
mothers; Cadastro Único (CADU) [36], containing a wide range of socioeconomic data from
Brazilian citizens on a personal and family level; and the population estimate as disclosed
by Instituto Brasileiro de Geografia e Estatística (IBGE) [37]. A new dataset was generated from
the combination of these datasets and a new metric—PTB Municipal Rate (PMR)—was
created. These two were used together in a clustering analysis, at municipal level, seeking
to visualise the relation between SES factors and PTB risk. This article presents an analysis
of some SES factors associating them with each discovered cluster. That way, the results
presented in this work might contribute to the elaboration of more efficient and specialised
politics for the Brazilian public health service.

2. State of the Art

The relationship between SES factors and occurrence of PTB, as mentioned before, has
been studied by many authors, mostly but not exclusively dealing with just one or two
“dimensions” of SES (e.g., education and income) and traditional statistical comparison
methods rather than machine learning. For instance, this is the case observed by [16],
where working conditions are observed together with preterm birth. Women with long
work-hour schedules and those reportedly dissatisfied with their current work are shown
to have significant higher risk of PTB in European countries. Women working excessively
long hours (over 43 h/week) were found to have a preterm delivery odds ratio of 1.33
compared the unity (30–39 h/week), and women who had to work in standing position for
over 6 h had an odds ratio of 1.26 compared to the unity (less than 2 h). These findings put
working conditions and stressful situations as some of the possible non-biological factors
to influence PTB, a view also strengthened by the results observed by [38], whose study
observes the same relation of work, stress and PTB in Cypriot women.
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The possibility of a certain region’s sanitation and housing conditions affect birth
delivery time is explored by related recent studies by [26,39,40]. These studies present
access to proper sanitation facilities as possibly an important factor to help increase PTB
occurrences among Indian women. All studies obtained a statistically significant difference
in the frequency of PTB outcomes when contrasting people with toilet access with people
with no toilet access. Furthermore, the results of [26] also suggest that the harassment of
girls and women (stressful event) and excessive time fetching water (over 2 h/day, manual
labour) increase the risk of PTB, with odds ratios of 1.26 and 1.33, respectively. The results
of [39,40] also include analyses on education data, and, in both studies, women with higher
levels of education appear to have significantly lower risk of PTB.

Education as a social factor that raises the risk of PTB is also defended by the meta-
analysis presented by [27]. The analysis was performed over 12 distinct countries’ groups
of mothers, collected in different years and using different education indicators. Its results
indicate that mothers with low levels of education are more likely to experience PTB, with an
increased risk of 48% and 84% on the two scoring methods used. This is a considerably
large difference and is a strong indication that education is an important aspect when
exploring PTB factors. The same idea is given by the study provided by [41], where the
higher educated women in Lombardy are shown to have 19% less risk of experiencing
PTB, and a reduced risk was also observed when analysing foreign-born and local-born
mothers separately.

The notion of relating all or most of these social factors at once and studying and
treating them all as factors of social deprivation or social inequality is seen with association
to preterm in the study presented in [5]. The study merges these factors into an SES
Neighbourhood feature and associates it with personal data from the patients. The results
given by intra-cluster correlation indicate SES neighbourhood-level circumstances to be
responsible for 5.72% of all variance in PTB. Although only a small portion of the total
variance, this can have considerable impact on model fine-tuning if one aims to develop a
preterm predictor, and it provides a strong case for the continued studies on socioeconomic
factors and PTB.

Another study to tackle the relationship of SES Neighbourhood and preterm was
presented by [42] and also had results that advocate for the importance of the socioeconomic
environment to PTB. The main difference of this study when compared to [5] is that their
study used income variation over time as a way of measuring the socioeconomic status
of neighbourhoods, with this different method obtaining final numbers that showed that
women living in areas of low socioeconomic indices or in areas where socioeconomic levels
are declining have higher risk of PTB occurrence. Stable Low-level areas (i.e., low-level
areas that do not show progress in socioeconomic factors) had the highest odds ratio of
1.20—compared to Stable High-level areas.

A recent study by [34] also uses SES Neighbourhood to investigate preterm birth
across the city of Paris’ block areas using spatial clustering, and its results endorse the idea
of SES factors as an influential factor of PTB. When using SES Neighbourhood as cluster
detection variables, the clustering resulted in a final cluster division with a p-value of 0.06,
but when adjusting for SES, removing it from the clustering, the p-value increased to 0.81,
a much less significant number, indicating that SES Neighbourhood was responsible for a
great portion of the explainable PTB variance.

As it has already been put, most of these works presented above, as well as most of
the non-cited related literature, make use of traditional statistical methods, associating a
selected range of features and verifying possible correlations. The three latest mentioned
works [5,34,42], go one step further and work with a merged value of many dimensions,
but they still need a subjective human decision on how to unite these values into a signifi-
cant feature. A few questions yet unanswered or only partially answered on PTB and SES
are as follows: (1) If such a relationship exists and is significant, can high and low PTB
areas be discovered through the clustering of SES factors? (2) Is this relationship intrinsic
enough that it can be found automatically by a machine without any significant feature
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selection? (3) Is it possible to uncover the socioeconomically deprived areas most likely to
suffer from high PTB numbers? (4) Which SES factors are more likely to alter considerably
in regions with high and low PTB occurrences? Therefore, the current work contributes
to the research area by attempting to fully or partially answer these questions by using
two distinct unsupervised learning methods to explore large Brazilian datasets of SES and
birth data.

By combining k-Means and DBSCAN, two very different clustering algorithms, the first
method also contributes by creating a new method for targeted cluster analysis. The al-
gorithm initially provides a free clustering layer of k-Means clustering, with results then
filtered by a target variable excluded from the initial cluster. The results are then passed
to a final/decision cluster, generalising and removing clusters to provide the final results.
This method allows us to completely isolate PTB from the SES clustering, while also finding
significant clusters without having to rely a traditional optimal cluster techniques, which
would ignore the external targeted variable.

3. Materials and Methods
3.1. Datasets

As described in the introduction, three datasets were used to generate the training set:
SINASC, CADU and IBGE. The analysis performed in this work dealt only with data from
2018 for all the datasets used.

The SINASC dataset, here characterised by the variable TSN, is a dataset with 61
features and almost 3 million samples. It stores data related to births that occurred on
Brazilian territory, and it can be found at the DATASUS website [35]. For the purpose of
this work, two columns of TSN were used, one related to the gestational period length and
the other to the mother’s municipality of residence, as shown in Table 1.

Table 1. SINASC dataset variables, TSN.

SINASC (TSN)

Indexer Mother’s Residential Municipality Code

Selected Weeks of Pregnancy

Dropped 59 others

The CADU dataset was split into two distinct datasets: CADU Individual, charac-
terised by the variable TP, and CADU Household, characterised by TF.

The TP dataset has over 12 million samples of Brazilian citizens, each with 26 features,
storing basic individual data, such as gender, age, and race, but also more specific data
about education and employment, as described in Table 2.

Table 2. CADU Individual dataset variables, TP.

CADU Individual (TP)

Indexer ID Individual, ID Household

Selected
Gender, Age, Race, Residential Municipality Code, Place of Birth, Disability, Literacy,
Type of School, Educational Level, Employment Situation, Type of Job, Total Income,
Welfare Income

Dropped Degree of Kinship to Head of Household, Regional Information

In the TF dataset, there are about 4 million household samples, each with 23 features,
including data about living conditions, household income and type of family, as detailed in
Table 3.

The population dataset used here is the official 2018 population estimate dataset by
IBGE, which includes estimates for 5570 municipalities. Represented here by TIBGE, this
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dataset has 5 columns, described in Table 4, of which only 2, referring to total population
and municipality code, were used.

Table 3. Dataset variables, TF.

CADU Household (TF)

Indexer ID Household

Selected
Type of Property, Amount of Rooms, Wall Material, Floor Material, Water Supply, Sanitary
Drainage, Garbage Collection, Lighting, Pavement, Special Groups Classification, Average
Household Income

Dropped Register Date, Modification Date, Update Date, EAS/MS Code, CRAS/CREAS Code

Table 4. IBGE dataset variables, TIBGE.

IBGE Population Estimate (TIBGE)

Indexer Municipality Code

Selected Population

Dropped Municipality Name, Federal Unit, Federal Unit Name

The sources and dimensions of each dataset for the year 2018 can be seen in Table 5.

Table 5. Summary of datasets used.

Dataset Dataset Year Samples Features

TSN SINASC 2018 2,944,932 61

TIBGE IBGE 2018 5570 5

TP CADU Individual 2018 12,852,599 26

TF CADU Household 2018 4,807,996 23

3.2. Preprocessing

In order to join the information available in all four datasets so it can serve as the
input for a clustering algorithm, a preprocessing stage was designed, being subdivided
into: preprocessing P1, dealing with TSN and TIBGE, and preprocessing P2, dealing with
TP and TF. P1 and P2 generate, respectively, intermediate datasets I1 and I2 as output.
These intermediate datasets are composed of 5570 samples each, one for each Brazilian
municipality, and they both are joined together using the unique Municipality Code,
generating A0. Figure 1 details the general preprocessing scheme.

Datasets Preprocessing ML Input

Figure 1. General preprocessing scheme to generate dataset A0 (machine learning process input),
including preprocessing stages P1 and P2, their outputs I1 and I2 and the original datasets TSN, TIBGE,
TP and TF.
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3.2.1. Preprocessing P1

As described in Figure 1, the SINASC dataset, characterised by the variable TSN, was
preprocessed to obtain the number of preterm births by municipality.

First of all, TSN was filtered by weeks of pregnancy, keeping only the samples with
less than 37 weeks. Then, TSN was grouped by the mother’s residential municipality code,
counting the number of samples for each municipality.

Next, the grouped TSN was joined with the population estimate dataset (TIBGE)
through the Municipality Code. As described in Figure 1, the SINASC dataset, charac-
terised by the TSN variable, was preprocessed to obtain the total number of PTB occurrences
by municipality.

First, TSN was filtered by weeks of gestation, keeping only those samples with less
than 37 weeks. Next, TSN was grouped by the mother’s municipality of residence, counting
how many occurrences were registered in each municipality.

Then, by joining TSN with the IBGE population estimate dataset (TIBGE), using the
Municipality Codes present in both datasets, the information about population size was
added to TSN, generating intermediate dataset I1.

On I1, it was then calculated the PTB Municipality Rate PMR. PMR is the metric
proposed in this work to measure the frequency of PTB occurrences by municipality,
expressed as the following:

PMR =
NNP

NP
(1)

where NNP is the total number of PTB occurrences in a given municipality, and NP is the
population of that same municipality.

During the research, it was decided to use the total population instead of the total
number of births—which could be obtained from TSN—because it was observed that
some of the PTB over total number of births fractions were resulting in very unrealistic
percentages: for instance, one municipality had 70% of its registered births reported as PTB.
Even though the most extreme values will be removed later in process P3, the total number
of births was replaced by the population so that the possibility of these unbalanced values
impacting municipalities of closer-to-the-median PMR may reduce, assuming that TSN is
missing data.

The output of preprocessing P1 is the intermediate dataset I1, comprised of 2 columns:
Municipality Code and PMR.

3.2.2. Preprocessing P2

As described in Figure 1, datasets CADU Individual, expressed by variable TP,
and CADU Household, characterised by variable TF, were preprocessed in order to turn
their categorical features into numerical features, able to be used by the selected cluster-
ing algorithms.

First, the dataset TP was filtered, removing all samples of people who are male and also
female under 14 or over 40 years of age, removing ages of recognisable less fertility [43].
Next, one-hot encoding was applied to all the categorical features, generating 29 new
binary features. Finally, an additional processing was to aggregate educational features
representing the same educational level. As for the TF dataset, which represents data on a
family level, one-hot encoding was applied to all categorical features, generating 48 new
binary features. The datasets were joined by the Household ID, present in both, adding
household data present in TF to each person sample of TP that belongs to that household.
At the end of the process, values were grouped by municipality of residence, calculating
each feature’s average by municipality. Thus, the output of P2 was the intermediate
dataset I2.

3.2.3. Output A0

In order to generate the general preprocessing output, indicated by the dataset A0,
the outputs of P1 and P2 (datasets I1 and I2, respectively) were joined by Municipality Code.
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Dataset A0 is comprised of 5529 samples and 104 features, and each sample represents a
Brazilian municipality.

3.3. Methodology

The methodology used for generating the final clusters followed the sequence of
stages seen in the diagram of Figure 2. In which A0 was turned into a intermediate
dataset ARN through the P3 preprocessing. Then, ARN was processed by a clustering
block called multiple k-means, identified here as MkM. MkM generates a centroids matrix,
here referenced by the variable C0. C0 then went through the last preprocessing stage P4,
generating a new matrix CRN. Finally, CRN was processed by the density-based spatial
clustering of applications with noise (DBSCAN) algorithm, where the final clusters were
revealed. The DBSCAN model is referenced here as DBS.

Figure 2. Clustering process sequence diagram, including both employed algorithms MkM and DBS,
preprocessing stages P3 and P4, and intermediate datasets generated in each stage.

3.3.1. Preprocessing P3

As shown in Figure 3, the P3 preprocessing is characterised by removal of outliers,
dimensionality reduction and normalisation. First, municipalities considered as PMR
outliers, that is, those whose PMR values are three standard deviations above or below the
national average, were removed from A0, generating a new dataset A1. The column that
stores PMR values was removed from A1, and its data was stored separately for future uses.
A1 is comprised of 103 features, and considering the natural difficulty of optimising clusters
in high dimensions (curse of dimensionality), principal component analysis (PCA) was used
to reduce dimensions, generating a reduced dataset AR that kept 95% of A1’s variance with
58 features. Next, AR was normalised through the cascading application of 3 techniques:
(1) Yeo–Johnson Transformation, making the original dimensions’ distribution more normal
distribution-like; (2) L2 sample normalisation, re-balancing samples individually to capture
points of higher and lower impact in each; (3) and finally, 0 to 1 normalisation by feature.
These normalisation techniques generate the k-means (MkM) input dataset ARN .

PCA

Normalisation

Outliers
Removal

Figure 3. P3 preprocessing diagram.

3.3.2. Multiple k-Means (MkM)

In order to find representative centroids associated to our problem, a processing
strategy, here called MkM, was proposed. MkM is characterised by a group of N k-means
models that are all executed to the same input: ARN . Each ith k-means model, here called
kMi, is executed with a determined number of centres, Nci, randomly initialised. At the
end, they generate a matrix expressed as:

C0 =

 GT
1

...
GT

N

 (2)
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where each ith Gi is characterised by a set of Nci centres associated to each i-th kMi model,
and they are expressed as:

Gi =
[
ci,1, . . . , ci,Nci

]
(3)

where ci,j is the j-th centre of the i-th kMi model, and they are expressed as:

ci,j =
[
ci,j,1, . . . , ci,j,H

]
(4)

where H represents the total number of features from the inputted dataset, which, in
this work, equals H = 58, as mentioned in the past subsection. So, the matrix C0 can be
rewritten as:

C0 =



c1,1
...

c1,Nc1
...

cN,1
...

cN,NcN


=



c1,1,1 · · · c1,1,H
...

. . .
...

c1,Nc1,1 · · · c1,Nc1,H
...

. . .
...

cN,1,1 · · · cN,1,H
...

. . .
...

cN,NcN ,1 · · · cN,NcN ,H


. (5)

The number of rows in C0 can be determined as:

L =
N

∑
i=1

Nci. (6)

For this work, N = 290 was used, that is, 290 k-means models were executed for
ARN . The number of centres in k-means varied from 2 to 30, that is, Nci ∈ {2, . . . , 30}
(29 different numbers), and for each number of centres, 10 different instances of the model
were run, adding up to N = 290 models. Each i-th model, kMi, was optimised with the
expectation-maximisation algorithm, the tolerance for convergence was set to 10−7, and
the maximum number of iterations was 10,000. The results from each of the N = 290
models were in a matrix C0 with L = 4640 samples, representing all the centres detected by
the models.

In addition C0, a new intermediate dataset AC is created, comprised of 5529 samples
and N + 1 features. Each sample represents a municipality, and the features are the
municipality’s PMR and the clusters each sample is associated with for each n-th k-means
model found in MkM. Thereby, each municipality, in each i-th row, belongs to a k-th cluster
in each n-th column of AC. Each n-th k-means model generated by MkM has Nc clusters
grouping a set of B municipalities.

3.3.3. Preprocessing P4

In preprocessing P4, matrix C0 was filtered, keeping only the centres that represent
clusters treated as “Clusters of Interest” (CoI), that is, those clusters whose mean PMR
exceeds or is exceeded by the national average PMR in at least 10%. The data associated to
each cluster are obtained through AC, and the mean PMR can be calculated as:

TMPmedia =
1
B

B

∑
i=1

TMPi (7)

where TMPi is the PMR related to the i-th municipality, and B is the total number of
municipalities for a given cluster. For the calculation of the national PMR, the formula is
used considering the cluster of municipalities to be one containing all the municipalities
present in the datasets and B to be the total number of municipalities: in this case, B = 5529.
After filtering C0, a new matrix is generated containing containing only the centres of the
CoI, here referred to as Cci.
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In order to group the CoI, Cci, retrieved from the multiple k-means executions by the
MkM block, a correlation matrix was generated from the samples of C0. The idea here is
to work with the similarity between the centres—representing the CoI—to facilitate the
clustering process in the following stages. The correlation matrix is characterised by the
variable C1.

In order to reduce the dimensionality of the correlation matrix C1, the PCA algorithm
was a applied to C1, generating a reduced matrix CR. CR is composed of 4 columns that
maintain 99% of the original variance of C1. Next, CR was normalised by column to keep
values between 0 and 1, generating CRN . Figure 4 details the P4 preprocessing.

Cluster of
Interest Filtering

Correlation
Matrix

PCANormalisation

Figure 4. P4 preprocessing diagram.

3.3.4. DBSCAN (DBS)

The DBSCAN receives CRN as input, containing the sample correlation data. Unlike
k-means, DBSCAN does not need a fixed target number of centres (clusters) to be set
beforehand because its functionality is defined solely by the adjustments in two parameters:
minimum Euclidean distance between two points (ε) and minimum amount of points per
cluster. As output, DBS generates a classification of the clusters discovered by the MkM
from their respective centres, grouping together those so similar they can be treated as
different instances of the same cluster, while also discarding centres without enough similar
pairs and treating these as noise.

For DBS, the minimum number of occurrences was defined as 50, and ε = 0.06.
As there is not a well-defined or standard method to measure the quality of the validated
clusters, data visualisation techniques were used to verify cluster consistency. Graphical
representations were created to show the municipality-cluster association and also to
visualise CRN post-classification (2D plot with t-SNE). The parameters were adjusted in
order to avoid too much regional fragmentation (clusters with no regional aspect, over-
fitting) or empty regions (no classified municipalities in a large map area, under-fitting).

3.4. Computational Tools

In order to achieve the goals of this research, we made use of a few Python im-
plementations of the aforementioned algorithms, designed by the Scikit-Learn [44] and
Pandas [45,46] projects. The exact way each of them was used within our workflow can be
thoroughly observed in an online repository [47]. All the main scripts developed for this
research were made publicly available in the repository, as well as some of the obtained
datasets, including the one representing dataset A0.

4. Results

After the application of P1, P2 and P3, the MkM model generated a total of 1337 CoI.
The number of detected CoIs grew according to the total numbers of clusters defined in the
k-Means models, Nci, as it can be seen in Figure 5. It also shows that the first cases of CoI
appear when the k-means input number of centres, Nci, equals 5, reaching about 90 CoIs
for the highest number of Nci (27 to 30).

The correlation matrix, C1, and its reordered version can be seen in items (a) and (b) of
Figure 6, resepctively. It is possible to observe some cluster patterns from the distance-based
reordering alone. In item (c) of Figure 6, the final clusters for each sample are highlighted
in different colours, allowing a visual comparison between the DBS output and the sample
distance algorithm.



Int. J. Environ. Res. Public Health 2022, 19, 5596 10 of 20

5 10 15 20 25 30
Input Number of Clusters (K-Means)

0

20

40

60

80

De
te
ct
ed
 C
oI

Figure 5. Clusters discovered by MkM by input number of clusters.

Figure 6. (a) Correlation matrix, (b) Correlation Matrix reordered by distance between samples, and
(c) Classification of reordered samples after DBSCAN.

After applying the P4 preprocessing steps, the final clustering was performed by using
DBS. DBS found seven final clusters, divided into four clusters with high PMR (PTB
Municipality Rate) and three clusters with low PMR. In item (c) of Figure 6, it is shown how
some of the rows of the correlation matrix were not selected to any final cluster. In item (a)
of Figure 7, it is possible to observe a stagnation or even a reduction in the identification of
valid clusters for the highest input number of centres in comparison with median values.
In item (b), the same clusters are shown but now separated not by high and low PMR
but for individual final clusters.
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Figure 7. Clusters found per epoch in MkM: (a) by cluster type, (b) by final cluster. Symbol (•)
indicates high PMR cluster.
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The CoI’s PMR distribution for each final cluster was calculated. This distribution can
be observed in Figure 8, where each cluster is represented on the x-axis, the distributions
on the y-axis and the national average PMR is indicated visually (aprox. 1.4× 10−4). It is
shown that almost all validated clusters have their centroid PMR varying from 1× 10−4 to
2.5× 10−4 in comparison to the national average, with the exception of Cluster 1, with a
centroid PMR almost 8× 10−4 units above the average.

1.20 × 10 −3

1.40 × 10 −3

1.60 × 10 −3

2.00 × 10 −3

2.20 × 10 −3

2.40 × 10 −3

2.60 × 10 −3

Figure 8. PMR distribution of final clusters.

The regional distribution of these clusters was also observed, that is, which municipal-
ities belong to which cluster. Through data visualisation, it is possible to contextualise—as
well as to validate—the discovered clusters. Since the input of the problem is social data, it
was expected for at least some of the clusters to be located in socially similar concentrated
areas. Three visualisations were generated to verify that.

The first visualisation is shown in Figure 9: it is a binary plot generated using the type
of cluster (high or low PMR). The amount of times each municipality was classified into a
validated high or low PMR cluster was counted, and each municipality was marked with
the type it was mostly classified as. White-coloured municipalities were never classified in
a CoI.

The second visualisation was generated from the subtraction of the total amount of
times in which a municipality was classified as high PMR minus the total amount of times,
in which it was classified as low PMR, obtaining a type of degree of intensity or belonging
of each municipality to the types of clustering, and it can be seen in Figure 10.
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Figure 9. Municipalities by most common type of cluster (high or low PMR). White-coloured
municipalities were not classified in a Cluster of Interest.

Figure 10. Municipalities by difference of number of times they were classified as each cluster type.
Negative values ( blue) indicate that a municipality was mostly classified in low PMR clusters;
positive values ( red) indicate it was mostly classified in high PMR clusters.

The third visualisation, seen in Figure 11, reveals in which of the seven final clusters
each municipality was mostly classified by the MkM models, making it possible to visualise
the regional aspects of the clusters. Clusters 1, 2, 3, and 6 appear to be more concentrated
in specific regions of the map, while 0, 4, and 5 have a more sparse distribution.
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Figure 11. Municipalities by most common cluster. Symbol (•) means high PMR cluster. White-
coloured municipalities were not classified in a Cluster of Interest.

Looking at Figures 9 and 10, it is possible to see a clear regional aspect not only for
the individual clusters, but also for the types of clusters, with High PMR clusters located
mostly in the North and Northeast regions, and the Low PMR clusters in the Centre-South
area. In the Northeast, High PMR clusters are concentrated in the state of Maranhão and
across the São Francisco River valley. The most intense Low PMR clusters are seen in
the state of São Paulo and in Southern Minas Gerais. The North region is almost entirely
classified in clusters of High PMR and, as it is shown in Figure 11, the most frequently
observed cluster in the region is Cluster 1, notably the one with highest PMR.

In order to measure how the clusters are differing from one another, T-tests were
performed to measure the p-value of each variable. Two additional sets, treated here
as clusters, were created for comparison, N, containing all municipalities that were not
grouped in any of the final seven clusters, and A, containing all municipalities, regardless
of clustering.

The p-value was calculated for every variable and for every pair of clusters. The com-
parison of a cluster to itself was done by generating two random sub-samples of the cluster
and testing them against each other. After every p-value was determined, the percentage of
variables with a p-value above the 5% threshold for every pair of cluster was calculated and
is shown in Figure 12. It is possible to observe how clusters are significantly distinct from
each other through most variables. The closest similarity was observed between clusters
5 and 6 and between clusters 0 and 5 (only 37% and 50% of variables were significantly
different, respectively).

In addition, in order to obtain a general view of how High PMR and Low PMR
compare to each other on different aspects of SES, the features used for clustering were
categorised into seven segments: Sanitation, Employment, Living Conditions, Education,
Household Type, Race and Income. Then, a subset of the data was created for each segment,
containing all municipalities, their assigned clusters and only the features of the respective
segment. Dimensionality was reduced using t-SNE for visualisation purposes to create
2D maps of the subsets, and an SVM-RBF classifier was applied to the t-SNE maps to
find the boundaries in the generated space that best separates High PMR and Low PMR
clusters. The t-SNE outcome and the boundaries can be seen in Figure 13. The first (upper)
plot for each segment contains only the Low PMR cluster points, the second (lower) also
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shows the High PMR cluster points and the separation boundaries. It is possible to see,
even without reaching the most easily understandable feature-level view, how High and
Low PMR clusters follow distinct patterns SES-wise. Some segments, such as Sanitation
and Living Conditions, show High PMR cluster points as very well-grouped, and when
comparing upper and lower plots, it is almost as if the High PMR points filled an empty
space in the lower plot. Others, such as Education and Income, show High and Low PMR
cluster points being more mixed up but with High PMR points centred in a smaller area.
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Figure 12. Percentage of variables with a p-value under 1% when comparing the pairs of clusters
via t-test.
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Figure 13. t-SNE 2D representation of final clusters by SES variable type, including SVM-RBF
boundaries for type of cluster.

Finally, the core of each validated cluster was extracted, containing information about
the mean and variance observed for each of the seven clusters. With that information, it is
possible to view the detailed features of each cluster.

It is possible, by checking the individual characteristics of each cluster, to see the
relationship between SES factors used as input and the PMR. Figure 14 shows the percentage
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difference between each cluster and the national average for some of those characteristics:
higher education, race, water supply, garbage destination, sewage access and number of
rooms in residence. It is noticeable that there is a clear contrast between High PMR and
Low PMR clusters among these characteristics.

Cluster 4 is notable for being the only cluster that does not strongly respect this
contrast. In Figure 8, Cluster 4 is shown as the one with lowest PMR among those with
above-average PMR. In Figure 11, it is visible how cluster 4 is the most disperse among
the High-PMR-type clusters, with a noticeable amount of coastal municipalities both in the
Northeast and in the state of Rio de Janeiro. In contract, Clusters 1, 2 and 3, with higher
PMRs, are concentrated in the North region and in the Northeast region’s countryside.
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Figure 14. Characteristics associated with clusters: (a) Higher Education; (b) Race; (c) Sewage;
(d) Income; (e) Running Water; (f) Garbage Destination; (g) Rooms.

5. Discussion

In this work, unsupervised learning techniques, a two-level clustering, was used two
discover clusters of High and Low preterm birth (PTB) rate among Brazilian municipalities
while clustering only for SES factors. The clustering resulted in seven final clusters, four
with a High PTB Rate and three with a Low PTB Rate, and found significant socioeconomic
differences between these High and Low PTB Rate clusters. The results found in this
clustering process corroborate and add to the discoveries made by [5]. Their study uses
a considerably smaller group for analysis (5297 pregnant women), performs prediction—
logistics regression—instead of clustering and uses the SES factors of income, education
and employment. Their results suggest that SES factors can help improve accuracy when
predicting PTB, thus implying the existence of a relationship between SES factors and PTB.
The fact that we were able to observe a similar relationship, with significant difference in
PTB among varying SES clusters, even when working with data from a different country
with a much larger population and with a larger number of features and a different learning
algorithm, strengthens the idea that such a relationship is indeed meaningful. The feature-
level analysis endorses the results found by [7,26,27] with High PTB clusters generally
having lower levels of income, running water, sanitation access and (mother’s) education.
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Medical and health sciences extensively use data, especially biological data, to tackle
daily problems. Preterm birth, despite much research, is still not totally comprehended,
but studies suggest the influence of external factors, including SES factors. Although
deeper research is needed to fully externalise the reasons why SES factors can affect PTB,
some strong possibilities are the lack of health assistance/infrastructure leading to worse
pregnancy accompaniment by health professionals and, therefore, to higher chances of
pregnancy issues leading to PTB, as well as a worse quality of sanitation services causing
pregnant women to have overall worse health conditions that could increase the chances
of PTB. By finding SES neighbourhoods that are more suitable for the occurrence of PTB,
the health system may be able adjust itself better, and earlier, in order to provide assistance
to the maximum number of newborns. The use of machine learning clustering techniques
allows the analysis of multiple factors at once, with the algorithm naturally adjusting the
relevance of each dimension during the training process, creating a situation that is less
dependent on a single person’s or a few people’s take on the subject. This characteristic
makes it a convenient choice to test and compare assumptions made by less feature-rich
models, challenging or reinforcing the current understanding of the subject. In addition,
the possibility of applying clustering to the problem also provides a fast, self-adjusting
method that could possibly serve as part of a larger, automated and maybe live health
management predictive model.

The two-level clustering method described, MkM followed by DBS, allows k-Means
clustering in contexts usually not covered by traditional “optimal number of clusters” tech-
niques. By setting a initially designated cluster target rule, k-Means can be used to track
down specific sorts of clusters, guaranteeing the significance of the found cluster(s) through
recurrence and DBSCAN validation, while also maintaining the algorithm’s explainability
factor for posterior analyses. Using this method, we were able to identify seven distinct
clusters of notably outlying PTB Rate (10% threshold) as well as how strongly each mu-
nicipality is associated to those clusters and how different these clusters are amongst each
other at the feature level, segment level and overall. The two-level clustering validation
behaved as expected, selecting similar cluster centres and discarding the noise generated
mostly from the “over-fitting” high number of cluster in some MkM units. The validated
final clusters, even if chosen only by their PTB Rate, were shown to be significantly dis-
tinguishable in most of the SES factors used in the process. The clustering, working in
a PCA-reduced hyperspace, was also able to find clusters that are shown to be distinct,
even in specific SES segments such as sanitation and living conditions. In addition, since
neighbouring municipalities tend to be more socially alike to each other than to further
away municipalities, the more regionally concentrated clusters found here are another
previously expected outcome.

Although the goal of finding the High PTB Rate clusters was successful, it represents
just a step in what could be followed by a series of analyses concerning each variable
or segment of SES individually. Sensible studies and analyses should follow to discover
the most relevant features among the 104 considered to explain why such features matter
for PTB and to know which features are not relevant—so they can be ignored in a future
improved model. Preterm birth analyses reach many areas of study, and SES is just one of
the considered factors, so an isolated study such as this is naturally limited in its results.
Although many studies have explored the subject analysed here, there was no such study
found for comparison that employs precisely the three key points: preterm birth, SES
data and unsupervised learning. Finally, this work provides a method that allows cluster
analysis on high-dimensional datasets and applies this method to enable the analysis of
PTB Rate through SES factors.

6. Comparison to State of the Art

The results found in this clustering process corroborate and add to the discoveries
made in [5]. Their study uses a considerably smaller group for analysis (5297 pregnant
women), performs prediction—logistic regression—instead of clustering and uses SES
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factors of income, education and employment. Their results suggest that SES factors can
help improve accuracy when predicting PTB, thus implying the existence of a relationship
between SES factors and PTB. The fact that we were able to observe a similar relationship,
with significant difference in PTB among manifold SES clusters, even when working with
data from a different country, with a much larger population, with a larger number of
features and a different learning algorithm, strengthens the idea that such relationship is
indeed meaningful. Their work also notes how such a relationship is restricted; how having
such SES information—combined with some individual-level data that they used—is still
insufficient for a real-world clinical application of predicting PTB (their work’s goal), which
matches with our pre-work thoughts on PTB that it is a multi-factorial problem; and also
helps to explain our difficulty and our need to develop an alternative method to achieve our
clustering goals using k-Means. There are many aspects of PTB invisible to both our work
and theirs, and small differences when dealing with different levels of SES are observable
but are naturally limited.

How we were able to cluster SES factors in a non-personal level and observes that
the regions found had considerable PTB difference draws comparison to and supports
the findings in [34]. Their study finds socioeconomic clusters around the city of Paris’
blocks using a spatial clustering technique. They clustered the city into areas and found
out the ones where mothers are most likely of experience PTB, and then adjusted the
clustering using as control variable an SES index created from 41 original SES variables
available. After the adjustment, their results suggest a considerable influence of SES factors
on PTB occurrences, as the non-adjusted model showed a much more significant (smaller)
p-value. This interpretation is supported by the results of our work by the k-Means method,
as it is perceptible in the Brazilian map of clusters shown for both methods how some
regions differ considerably in terms of PTB rate, and similarly to their work, those clusters
predominantly assume a regional-centred aspect, creating contiguous areas of similar SES
characteristics, of which some have significantly higher or lower PTB rate. Unlike in [34],
which uses the geographical location as part of its spatial algorithm, this regional-centred
aspect was not intended nor influenced by any location feature, which were removed from
the original dataset. For that reason, we obtained an outcome that re-emphasises this strong
regional aspect of SES and PTB and, consequently, how neighbouring regions affect the
SES and PTB outcomes of a given municipality or city block.

In the feature-wise view presented for k-Means method, a few types of variables stood
out. Sanitation variables were among the most outstanding in both models, with proper
sewage systems, water systems and garbage collecting systems being considerably more
present in High PMR regions; this can be linked to and reinforces the findings by [26,39,40].
Although their works do not assess all of these sanitation points, many key variables found
are strongly linked to their work, and the “Household with Bathroom” variable, a major
point of their analyses, showed a much higher presence on higher PMR clusters, being
one of the most diverging features in the k-Means method. This was also viewed in a
general comparison for the k-Means method and corroborates with the findings by [27,41],
all of which found statistically significant differences in PTB when stratified by mother’s
education. Another clear disparity observed was related to race/skin, with white skin
being one of the features most strongly related to Low PMR; this corroborates the findings
of the meta-analysis presented by [48], which aggregates several studies related to race and
preterm birth occurrences in the United States between 2010 and 2015 and finds a higher
risk (1.51 OR) of PTB among historically disfavoured racial groups. Although the exact
groups cannot be compared properly, as the Brazilian and U.S. populations have significant
racial differences, the high presence of whites in Low PMR clusters and the high presence of
pardos and indigenous people in the High PMR provide a strong ratification of their results.

7. Conclusions

By applying a combination of different clustering methods and dimensionality reduc-
tion techniques based on unsupervised learning to socioeconomic data on a municipality-
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level, it was possible to extract important information on municipal clusters with high
and low PTBs. The results obtained here reveal a clear socioeconomic contrast between
clusters with high and low risk of PTB, with high-risk clusters predominantly located in
regions with the worst social indexes. PTB is a complex and multi-factorial phenomenon
and the search for its causes demands analyses of several different aspects. Here, it was
seen how the quality of life and public services possibly affect, positively, the reduction in
PTB occurrences in such a way that it could and should be included among those aspects.
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