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Abstract: Human ageing involves several physiological impairments—in particular, a decrease in
sensorimotor function and changes in the nervous system reduce muscle strength, power, balance,
and functional capacity performance. Preventive strategies are essential to ensure the quality of life
of the elderly. High-speed resistance training (HSRT) may be an effective approach to muscle power
development in this population, with significant short-term effects on neural adaptations and muscle
power production. Therefore, the present study intends to analyze and systematize the studies
focused on HSRT interventions and their effects on health outcomes in independent older adults.
Four electronic databases (PubMed, Web of Science, EBSCO, and Scielo) were used for the purposes
of searching randomized controlled trials that measured at least one key outcome measure focusing
on velocity-based training and health outcomes in older adults on 7 March 2022 and identified
1950 studies. At the end of the process, fourteen studies were included in this systematic review
and ten studies were included in the quantitative analysis. The main results showed that HSRT
interventions would improve health measures, mostly cognitive function (large effects, p = 0.001,
SMD = 0.94), neuromuscular function (moderate effects, p = 0.003, SMD = 0.70), and physical function
(moderate effects, p = 0.04, SMD = 0.55 and p = 0.009, SMD = −0.59). Additionally, the results sug-
gested that interventions with ten weeks or more, performed three times a week, provide significant
improvements in neuromuscular function. In this sense, HSRT is effective for improving overall
health outcomes in older adults. Future studies should include proper follow-ups (e.g., minimum
six months) to assess the durability of HSRT intervention effects on all health-related variables.

Keywords: older people; high-speed resistance training; power training; neuromuscular function;
health measures

1. Introduction

In accordance with the latest data report from Eurostat, approximately 20% of the
total population in Europe is over 65 years old, and by 2050, this figure will rise to around
30% [1]. Human ageing involves several physiological impairments [2,3]. In particular, the
decrease in the sensorimotor function and changes in the nervous system [4] reduce muscle
strength, power, balance, and functional capacity performance [5,6], which can increase
the risk of falling [7]. Falls are the second leading cause of unintentional injury-related
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deaths in the world population, and are becoming a serious public health problem for
the elderly [8]. The United Kingdom spends an estimated 2.3 billion dollars a year in the
treatment of injuries caused by falls [9]. Preventive strategies are essential to ensure the
quality of life of the elderly and reduce healthcare costs, which threaten the stability of the
public health system.

Falling or the fear of falling may impair physical activity levels and set in motion a
vicious cycle in which the risk of future falls increases due to the deterioration of functional
ability caused by not actively participating in daily activities [10,11]. The reduction in
physical activity levels can have negative physiological effects for an ageing population
(e.g., increased chronic diseases and the risk of non-communicable diseases) [12].

Due to reduced levels of physical activity and ageing, loss of muscle strength is
associated with a decrease in the performance of daily life activities and negatively affects
health, functional autonomy, survival, and quality of life, further increasing the risk of
falling [13,14]. In this regard, the loss of muscle strength may be more closely associated
with the impairment of muscle power than muscle mass [15–18]. On the other hand,
muscle power has been reported to decline faster with ageing when compared to muscle
strength [17,19].

High-speed resistance training (HSRT) may be an effective approach to muscle power
development in this population [20–25], with significant short-term effects on neural adap-
tations and muscle power production [15,25,26]. Several studies [24,27–29] suggest that the
above-mentioned intervention has an impact on the power generation capacity of older
adults. In this sense, the HSRT approach is a key intervention strategy to counteract the
harmful effects caused by ageing [28,30–33]. Some studies [34,35] reported that this method
also makes it possible to mitigate capillary deterioration resulting from ageing, especially
in the lower limbs. A suitable capillarization can improve protein synthesis metabolism
by ensuring the transport of amino acids and growth factors to muscle fibers—in partic-
ular, growth factor-1 (IGF-1), hepatocyte growth factor (HGF), interleukin-6 (IL-6), and
myostatin—thereby regulating satellite cell function and supporting muscle repair and/or
remodeling/adaptation, which are essential after 65 years of age [36,37]. In addition, this
intervention can offer advantages concerning other traditional resistance training (RT)
interventions, mainly when the participants perform the concentric muscle contraction of
each exercise repetition as rapidly as possible, showing improvements in morphological
and neural adaptations [25,38] and functional capacity performance [39].

To our knowledge, solely two systematic reviews studied the effects of interventions
of HSRT on health outcomes in older people, such as functional capacity [40] and power
outcomes [41]. However, said studies were conducted in participants aged over 60, com-
pared the effects caused by fast-intended velocity vs. moderate and low-velocity resistance
training, and did not compare the RT program’s effects on the experimental group (EG)
vs. the control group (CG). Therefore, it is relevant to carry out a systematic review that
summarizes the effects of HSRT interventions on a population over 65 years of age and
compare the EG and the CG in the most diverse parameters related to health status, such
as body composition parameters, phase angle, heart rate variability, balance, and gait
variability. Another significant criterion used in this review is that it only includes inde-
pendent participants (i.e., older people that are able to perform activities of daily living
independently, notably eating, bathing, and mobility) [42,43].

Therefore, the present review intends to analyze and systematize the studies focused
on HSRT interventions and their effects on health outcomes in independent older adults.
In this regard, health outcomes are defined as events that occur with an end result after an
intervention. These outcomes can be measured clinically through physical examinations,
laboratory and imaging tests, self-reported through questionnaires, or observed, such
as fluctuations in gait pattern [44]. Thus, the present review study and meta-analysis
sought to systematize the effects of HSRT interventions on health outcomes. Finally, we
hypothesized that the HSRT interventions would improve health status parameters and that
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longer-duration HSRT interventions provide more significant benefits than short-duration
HSRT interventions.

2. Materials and Methods

This systematic review and meta-analysis was conducted in accordance with the items
of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [45].
This review was also protocoled at the International Prospective Register of Systematic
Reviews (PROSPERO), registered under number CRD42021272242.

2.1. Search Strategy and Data Sources

The following electronic databases were used to search for relevant publications
on 7 March 2022: PubMed, Web of Science (WoS), Psychology and Behavioral Sciences
Collection (EBSCO), and SciELO Citation Index (Scielo CI). In order to include the most
recently published studies in the review, we set citation notifications for all these databases,
but no restriction to date of publication was applied.

The data search was performed by using the U.S. National Library of Medicine’s
Medical Subject Headings terms and English language terms related to HSRT and the
elderly population. The following word combinations were used in all databases: (“elderly”
OR “older people” OR “older adult” OR “older subject”) AND (“high-speed resistance
training” OR “high-speed strength training” OR “high-speed power training” OR “power-
training” OR “velocity-based training” OR “rapid-strength” OR “explosive-strength”). It
was possible to perform 28 different searches in each of the mentioned databases (112 in
total) through these word combinations. Additionally, the reference lists of the studies
retrieved were manually searched to identify potentially eligible studies not captured by
the electronic searches (1 study was found).

2.2. Eligibility Criteria

The inclusion of studies for revision was decided by consensus between the first and
last authors. In case of disagreement regarding the inclusion of an article, the second author
was consulted. The selected studies were then filtered according to the following inclusion
criteria: (1) studies included participants with age ≥ 65 years old, from both sexes, without
any clinical condition and physically independent; (2) at least one of the protocols under
study was an HSRT program with maximal concentric velocity (i.e., as fast as possible, ≤1 s)
lasting 2 weeks or longer; (3) studies included pre- and post-intervention measurements;
(4) the study compared the EG with the CG at post-intervention; and (5) only original and
full-text studies written in English, Portuguese, or Spanish.

Trials were excluded if: (1) studies included participants with age < 65 years old;
(2) participants performed an intervention other than HSRT; (3) did not compare the re-
sults of the EG with the CG; (4) did not clearly describe the concentric and/or eccentric
velocity; (5) examined of the effects of combined training methods (i.e., fast-intended-
and moderate-velocity or balance training); (6) included participants with any associated
disease (i.e., cancer, dementia, diabetes) or non-physically independent; (7) written in a lan-
guage other than English, Portuguese, or Spanish; and (8) other article types than original
(e.g., reviews, letters to editors, trial registrations, proposals for protocols, editorials, book
chapters, and conference abstracts).

2.3. Data Extraction

All articles identified by the search strategy underwent an evaluation of the titles
and abstracts, in duplicate, by two assigned researchers. All studies that did not meet
the inclusion criteria were excluded. Abstracts that did not provide sufficient information
regarding the inclusion and exclusion criteria were selected for full-text evaluation. In a
second phase, the same two assigned researchers independently evaluated all selected
full-text articles and conducted a second selection following the inclusion and exclusion
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criteria. In a meeting with a third researcher present, disagreements between reviewers
were solved by consensus.

Data extraction from the selected full-text articles was conducted by both assigned
researchers independently, using a list of intended data: (i) first author; (ii) year of publica-
tion; (iii) the sample (size and age); (iv) intervention details—duration, frequency, intensity,
volume (sets and repetitions), rest interval, concentric and eccentric velocity, and type of
exercises; (v) control group characteristics; and (vi) main results (health status).

2.4. Methodological Quality Assessment

The methodological study quality was assessed using the Physiotherapy Evidence
Database (PEDro) scale [46], a valid and reliable instrument to assess eligibility, group allo-
cation, blinding of allocation, and comparison between groups at baseline and its outcomes.
This scale includes 11 questions with yes or no answers (yes = 1; no = 0), providing a total
score that ranges between 0 (poor methodological quality) and 10 (excellent methodological
quality) (the first item is not included in the rating).

Scores were obtained from the PEDro database and were therefore scored indepen-
dently, avoiding any potential bias of the authors. When a study was not available on the
PEDro database, two authors alone (A.D.M. and R.O.) rated the risk of bias. Disagreements
between authors were solved by consensus in a meeting with the last author present (J.P.B.).

2.5. Level of Evidence

Based on the physiotherapy evidence database scale and to assess the interventions’
evidence, the Van Tulder criteria [47] were applied. Therefore, the selected studies were
grouped by levels of evidence, according to their methodological quality. A study with a
physiotherapy evidence database score of 6 or more is considered level 1 (high method-
ological quality) (6–8: good, 9–10: excellent) and a score of 5 or less is considered level 2
(low methodological quality) (4–5: moderate; <4: poor).

Due to the clinical and statistical heterogeneity of the results, a qualitative review was
performed, conducting a best-evidence synthesis [48,49]. This classification indicates that if
the number of studies displaying the same level of evidence for the same outcome measure
or equivalent is lower than 50% of the total number of studies found, no evidence can be
concluded regarding any of the methods involved in the study.

2.6. Statistical Analysis

When the same variable was found in more than two articles, it was included in the
meta-analysis. In this sense, the studies included in this analysis (n = 10) were analyzed
using the random effects model [50]. The forest plot was generated for some health
outcomes. Studies’ heterogeneity was assessed by calculating the following statistics:
(i) Tau2, (ii) Chi2, and (iii) I2. The following classification was used to evaluate the I2

(i.e., described inconsistency between trials): lower than 50% represents low heterogeneity;
50–74% represents substantial heterogeneity; and 75% and higher represents considerable
heterogeneity [51].

The following scale was used to evaluate the standardized mean differences (SMDs)
(i.e., SMDs = ([mean post-value intervention group—mean post-value control group]/
pooled variance) [52], according to the following thresholds: 0–0.19 = negligible effect;
0.20–0.49 = small effect; 0.50–0.79 = moderate effect; and 0.80 and higher = large effect.

All statistical analyses were performed within the Cochrane Review Manager (RevMan)
[Computer program], version 5.4.1, The Cochrane Collaboration, 2020 [53].

3. Results
3.1. Studies Included

A total of 1950 studies were retrieved from the selected databases and one study was
found in other sources, using the chosen keywords. These studies were then exported to
reference manager software (EndNoteTM 20.0.1, Clarivate Analytics, Philadelphia, PA,
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USA). Duplicates (1540 references) were subsequently removed either automatically or
manually. The remaining 411 articles were screened for their relevance based on titles and
abstracts, resulting in the removal of a further 209 studies. At the end of the screening
procedure, we had 202 eligible articles, which were read and analyzed in depth. After
reading full texts, a further 188 studies were excluded due to not meeting the eligibility
criteria (Figure 1). A total of fourteen studies were identified as meeting the criteria for
inclusion and were assessed for quality using the PEDro scale. Finally, ten of these articles
were included in the quantitative analysis (meta-analysis).
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3.2. Methodological Quality

The methodological assessment of the fourteen studies included can be found in Table 1.
These studies obtained a score between 3 [54–57] and 6 [58,59] on the PEDro scale. From all studies
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reviewed, two studies presented high methodological quality (level 1) [58,59], and twelve studies
showed low methodological quality (level 2) [54–57,60–67]. Furthermore, the results of the PEDro
scale showed that five studies did not specify the inclusion and exclusion criteria [55–57,65,66],
three studies did not randomly allocate the participants into groups [54–56], two studies did not
perform a baseline comparability [57,60], and all studies allocated the participants into groups in a
concealed way.

Table 1. Analysis of the risk of bias of the studies included in this systematic review.

Authors
PEDro Scale

Total Score Methodological Quality
1 2 3 4 5 6 7 8 9 10 11

Fang et al. [60] § Y 1 0 0 0 0 0 1 0 1 1 4 Moderate
Lee et al. [63] Y 1 0 1 0 0 0 1 0 1 1 5 Moderate

Yoon et al. [67] N 1 0 1 0 0 0 0 0 1 1 4 Moderate
Yoon et al. [66] Y 1 0 1 0 0 0 0 0 1 1 4 Moderate

Beijersbergen et al. [54] § Y 0 0 1 0 0 0 1 0 0 1 3 Poor
Beijersbergen et al. [55] § N 0 0 1 0 0 0 1 0 0 1 3 Poor
Beijersbergen et al. [56] § N 0 0 1 0 0 0 1 0 0 1 3 Poor

Hvid et al. [61] Y 1 0 1 0 0 1 0 0 1 1 5 Moderate
Sayers & Gibson [65] N 1 0 1 0 0 0 0 0 1 1 4 Moderate

Marsh et al. [64] Y 1 0 1 0 0 0 0 0 1 1 4 Moderate
Reid et al. [59] Y 1 0 1 0 0 0 1 1 1 1 6 Good

Katula et al. [62] Y 1 0 1 0 0 0 0 0 1 1 4 Moderate
Bean et al. [58] Y 1 0 1 0 0 1 1 0 1 1 6 Good

Miszko et al. [57] N 1 0 0 0 0 0 0 0 1 1 3 Poor

Abbreviations: 1, Eligibility; 2, Random allocation; 3, Concealed allocation; 4, Baseline comparability; 5, Blind
subjects; 6, Blind therapists; 7, Blind assessors; 8, Adequate follow-up; 9, Intention-to-treat analysis; 10, Between-
group comparisons; 11, Point estimates and variability; Y, yes; N, No; §, Scored by reviewers. Note: Eligibility
criteria item does not contribute to total score.

Additionally, none of the studies included blinded the participants and the technicians
responsible for the program’s sessions, two studies blinded the technicians who measured at
least one key outcome [58,61], seven studies could not perform assessments on at least one
key outcome from more than 85% of subjects [57,61,62,64–67], only one study performed
an intention-to-treat analysis [59], three studies did not report a between-group statistical
comparison for at least one key outcome [54–56], and finally, all studies reported both point
measures and measures of variability for at least one key outcome.

3.3. Studies’ Characteristics

Table 2 shows the characteristics of the studies included in this systematic review
in terms of country, sample, age, body fat, body mass, and BMI. Most of the included
studies did not register the intervention, and only one study reported the protocol [61].
Two studies [58,66] only included females in their analysis and no study was conducted
with only men.

Regarding the origin of the studies, six studies were conducted in the United States
(North of America) [58–60,62,64,65], three were performed in Germany (Europe) [54–56],
three were conducted in South Korea (Asia) [63,66,67], and the last two articles were
carried out in two different countries on the same mainland (Europe)—Denmark [61] and
Greece [57]. Fourteen studies included in this review randomized 408 participants into
two groups; thus, CG included 199 participants and EG (were performed HSRT) included
209 participants. These participants ranged in age from 69 years old [54] to 82 years old [61].
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Table 2. Characteristics of included studies.

Authors Country
Sample by

Gender
(N)

Age (years)
(M ± SD)

Groups
(N)

Body Fat
(%)

Body Mass
(kg)

BMI
(kg/m2)

Registered
Protocol?

Fang et al. [60] USA 9 F
11 M

CG = 71.8 ± 4.8
EG = 70.8 ± 5.8

CG = 8
EG = 12 NR NR NR No

Lee et al. [63] South Korea 24 F
16 M

CG = 74.2 ± 4.4
EG = 73.7 ± 4.6

CG = 22
EG = 18 NR CG = 60.6

EG = 61.0 NR No

Yoon et al. [67] South Korea 30 F
13 M

CG = 74.0 ± 4.3
EG = 73.9 ± 4.4

CG = 23
EG = 22 NR NR CG = 24.4

EG = 24.9 No

Yoon et al. [66] South Korea 30 F CG = 78.0 ± 1.0
EG = 75.0 ± 0.9

CG = 7
EG = 14

CG = 33.4
EG = 38.8

CG = 51.2
EG = 58.4

CG = 22.9
EG = 25.5 No

Beijersbergen
et al. [54] Germany 25 F

16 M
CG = 69.1 ± 4.4
EG = 72.9 ± 5.4

CG = 14
EG = 15 NR CG = 73.9

EG = 73.6
CG = 25.5
EG = 25.8 No

Beijersbergen
et al. [55] Germany 29 * CG = 69.1 ± 4.4

EG = 72.9 ± 5.4
CG = 14
EG = 15 NR CG = 73.9

EG = 73.6
CG = 25.5
EG = 25.8 No

Beijersbergen
et al. [56] Germany 25 * CG = 69.7 ± 5.0

EG = 72.1 ± 5.4
CG = 13
EG = 12 NR NR CG = 25.1

EG = 26.2 No

Hvid et al. [61] Denmark 23 F
14 M

CG = 81.6 ± 1.1
EG = 82.3 ± 1.3

CG = 21
EG = 16 NR CG = 73.4

EG = 76.5 NR Yes

Sayers and
Gibson [65] USA 24 F

14 M
CG =72.8 ± 4.1
EG = 74.1 ± 6.4

CG = 12
EG = 13 NR CG = 78.6

EG = 76.6 NR No

Marsh et al. [64] USA 25 F
11 M

CG = 74.4 ± 5.2
EG = 76.8 ± 6.4

CG = 15
EG = 15 NR CG = 81.0

EG = 81.2
CG = 30.4
EG = 30.7 No

Reid et al. [59] USA 31 F
26 M

CG = 79.7 ± 9.0
EG = 72.3 ± 6.0

CG = 12
EG = 23 NR CG = 70.2

EG = 80.9
CG = 26.5
EG = 29.8 No

Katula et al. [62] USA 36 * CG = 74.3 ± 5.4
EG = 76.8 ± 6.5

CG = 13
EG = 12 NR CG = 81.7

EG = 81.2
CG = 30.7
EG = 30.8 No

Bean et al. [58] USA 21 F CG = 78.9 ± 7.8
EG = 77.1 ± 5.7

CG = 10
EG = 11 NR CG = 65.6

EG = 60.1
CG = 26.4
EG = 26.2 No

Miszko et al. [57] Greece 22 F
17 M

CG = 72.4 ± 7.2
EG = 72.3 ± 6.7

CG = 15
EG = 11

CG = 26.8
EG = 29.1

CG = 68.2
EG = 79.7 NR No

Abbreviations: N, number; M, mean; SD, standard deviation; CG, control group; EG, experimental group; F,
female; M, male; USA, united states of America; BMI, body mass index; kg, kilograms; NR, not reported. *, date
unreported gender data.

3.4. Interventions’ Characteristics

Table 3 presents the description of the interventions performed in the included stud-
ies, namely exercise modality, names of exercises, weekly frequency, intensity, sets, reps,
duration of the intervention and sessions, eccentric velocity, and whether the sessions were
supervised or not.

The duration of the RT interventions ranged from eight [60,63] to sixteen weeks [57,67],
with two studies reporting for eight weeks [60,63], three reporting for ten weeks [54–56], seven
reporting for twelve weeks [58,59,61,62,64–66], and two reporting for sixteen weeks [57,67].
Concerning the duration of sessions, these varied from 30 [58] to 60 min [64,66,67]; the in-
tensity of the sessions mainly was quantified through the percentage of repetition maximum
(RM) [57,59–62,64,65]. For the majority of the studies, the sessions were performed three times a
week [54–60,62–65,67].
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Table 3. Description of the interventions performed in the included studies.

Authors Exercise Modality Exercises (Names) Frequency (Days/
Week) Intensity Sets/Exercise (N) Reps per Set (N) Rest

Intervention
Duration
(weeks)

Session
Duration

(min)

Eccentric
Velocity

(s)
Supervised

Fang et al. [60]
Computerized

Pneumatic
Machines

Leg press; seated row;
leg curl;

chest press;
hip adduction; lat pulldown; hip

abduction; tricep extension;
seated calf raise;

bicep curl

3

40% 1 RM—lat pulldown
50% 1 RM—leg press, chest

press, seated row
55% 1 RM—bicep curl

60% 1 RM—leg curl, tricep
extension

65% 1 RM—calf raise, hip
abduction, hip adduction

1 (wk 1)
2 (wk 2)

3 (wk 3–8)
10–12 1–2 min after

each circuit 8 40–45 2 Yes

Lee et al. [63] Elastic Bands

Seated row; one-leg press;
applied pec deck flus or lateral
raises; seated leg raises; squats;

full squats; wide
squats; bridging

3 12 to 13 from 6–20 RPE scale 2–3 10–12
30 s between

exercises
1 min between sets

8 50 3 Yes

Yoon et al. [67] Elastic Bands

Seated row;
one leg press; applied

pec deck flus; seated leg raises;
lateral raise; semi-squats; wide

squats; and bridging

3 12 to 13 from 6–20 RPE scale 2–3 12–15 NR 16 60 2 Yes

Yoon et al. [66] Elastic Bands NR 2 12 to13 from 6–20 RPE scale 2–3 12–15
2 min between

exercises
1 min between sets

12 60 2 Yes

Beijersbergen et al. [54] Weightlifting
Machine

Leg press; ankle press; knee
extension; knee flexion 3 40–60% 3 RM 3 6–10 NR 10 NR Normal

pace NR

Beijersbergen et al. [55] Weightlifting
Machine

Leg press; ankle press; knee
extension; knee flexion. 3 40–60% 3 RM 3 6–10 NR 10 NR Normal

pace NR

Beijersbergen et al. [56] Weightlifting
Machine

Leg press; ankle press; knee
extension; knee flexion 3 40–60% 3 RM 3 6–10 NR 10 NR Normal

pace NR

Hvid et al. [61] Weightlifting
Machine NR 2 70–80% 1 RM 3 10 (wk 1–6)

8 (wk 7–12) NR 12 NR 2–3 Yes

Sayers and Gibson [65]
Computerized

Pneumatic
Machines

Leg press; seated knee extension 3 40% 1 RM 3 12–14 NR 12 NR 2 Yes

Marsh et al. [64]
Computerized

Pneumatic
Machines

Leg press;
knee extension 3 70% 1 RM 3 8–10 NR 12 60 2–3 Yes

Reid et al. [59]
Computerized

Pneumatic
Machines

Leg press;
knee extension 3 70% 1 RM 3 8 NR 12 NR >2 Yes

Katula et al. [62]
Computerized

Pneumatic
Machines

Leg press;
knee extension 3 70% 1 RM 3 8–10 NR 12 NR 2–3 Yes

Bean et al. [58] Weighted Vest
Chair stands; toe raises; pelvic
raises; step ups; seated tricep

dips; chest press
3 At 16 from 6–20 RPE scale 3 10 1–2 min between

sets 12 30 >2 Yes

Miszko et al. [57]
Computerized

Pneumatic
Machines

Seated row; chest press; tricep
extension;
leg press;

leg extension; seated leg curl;
bicep curls; plantar flexion; jump

squats

3 40–70% 1 RM 3 8–10 NR 16 NR 2 NR

Abbreviations: N, number; min, minutes; s, seconds; wk, week; RM, repetition maximum; RPE, rated perceived exertion; NR, not reported.
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The research seems to be relatively diverse regarding the number of sets and repeti-
tions. The number of sets performed in the interventions was as follows: ten interventions
used three sets [54–59,61,62,64,65], three interventions used two to three sets [63,66,67],
and only one intervention used a non-fixed number of sets [60]. Regarding the number
of repetitions used per set of exercises, three studies used six to ten [54–56], three studies
used eight to ten [57,62,64], two studies used ten to twelve [60,63], one study used twelve
to fourteen [65], two studies used twelve to fourteen [66,67], one study only used eight [59],
one study only used ten [58], and one study used a non-fixed number of repetitions [61].

The exercise interventions of the fourteen studies included in this systematic review
were performed using elastic bands [63,66,67], in a weightlifting machine [54–56,61], using
computerized pneumatic machines [57,59,60,62,64,65], and using a weighted vest [58].

Ten studies reported the dropout rates of their respective participants [54,56–58,61–66],
with two studies stating that no participants dropped out of the EG [58,64]. Furthermore, seven
studies presented the dropout rate of its EG with further explanations [54,56,57,61,63,65,66]
and one study provided no explanation for said dropout [62]. Two studies did not report
adverse events in both groups [58,63]. However, three studies reported several negative events
in both groups, notably falls that did not result in fractures (three cases in EG and CG), and
temporary localized joint pain (three cases in EG and one case in CG) [64]. One of the three
studies mentioned above reported sacral-iliac pain following completion of baseline testing
in CG, as well as persistent chest pain in EG [59], and another study reported the occurrence
of serious medical events [66]. Additionally, some participants from the groups mentioned
above withdrew from the studies due to the diagnosis of several types of tumors and aortic
aneurism [59,64]. Finally, supervised exercise interventions were used in most studies (Table 3).

3.5. Results of the Studies

Table 4 presents the aim, outcome variable, and main results of the fourteen studies in
this review. Only outcomes addressed in more than three studies will be described here.

Physical function was analyzed in seven studies [54,57,58,61,63,66,67]. Four stud-
ies showed improvements in physical function in only the EG between pre- and post-
training [58,61,63,67]. Outcomes of muscle strength, such as grip strength, were assessed
in six studies [56,57,61,64,66,67]; three out of seven studies [61,64,67] reported differences
between CG and EG at post-training in these outcomes (p < 0.05). Lastly, outcomes of
muscle power were described in four studies [54,55,59,65]; of these four studies, two [59,65]
demonstrated significant differences between CG and EG at post-training in peak power
outcomes at different %RM (40 to 90% 1 RM) (p < 0.05).
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Table 4. Main results of the included studies.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Fang et al. [60]

To characterize changes in the retinal
microvascular density and their relationship

with cognitive function in cognitively
normal older people

Outcomes of optical function

Vessel density in the total retinal vascular network
CG 1.79 1.79 >0.05

>0.05
NR

EG 1.79 1.79 >0.05 NR

Vessel density in the superficial vessel plexus
CG 1.79 1.78 >0.05

>0.05
NR

EG 1.78 1.78 >0.05 NR

Vessel density in the deep vessel plexus
CG 1.80 1.80 >0.05

>0.05
NR

EG 1.80 1.80 >0.05 NR

Outcome of cognitive function

MMSE (score)
CG 30 ± 0 29 ± 1 0.08

NR
NR

EG 30 ± 1 30 ± 1 0.59 NR

Lee et al. [63]
To investigate the effects of HSRT on

neuromuscular, executive, and
gait performance

Outcomes of neuromuscular function

Movement time (ms)
CG 906.36 ± 36.27 1010.04 ± 65.89 >0.05

<0.05
NR

EG 921.69 ± 40.10 799.51 ± 72.84 <0.05 NR

Pre-motor time (ms)
CG 700.64 ± 36.62 757.34 ± 56.37 >0.05

>0.05
NR

EG 663.82 ± 40.48 626.96 ± 62.32 >0.05 NR

Motor time (ms)
CG 205.67 ± 17.45 252.70 ± 34.44 >0.05

<0.05
NR

EG 271.40 ± 19.29 181.15 ± 38.08 <0.05 NR

Antagonist co-activation (% p. EMG)
CG 25.28 ± 3.75 25.04 ± 3.72 >0.05

>0.05
NR

EG 27.89 ± 4.14 26.32 ± 3.48 >0.05 NR

Rate of EMG rise (% p. EMG/s−1)
CG 169.30 ± 12.04 161.82 ± 10.41 >0.05

<0.05
NR

EG 166.48 ± 13.31 197.94 ± 11.51 <0.05 NR

Normalized peak torque (N·m·kg−1)
CG NR NR >0.05

>0.05
NR

EG NR NR <0.05 NR

Rate of torque development
CG NR NR >0.05

<0.05
NR

EG NR NR <0.01 NR

Outcome of cognitive function

FAB (score)
CG 11.72 ± 2.11 11.77 ± 2.22 >0.05

>0.05
NR

EG 11.38 ± 2.56 12.16 ± 1.79 >0.05 NR

Outcomes of physical function

4.44 m gait speed (s)
CG NR NR >0.05

>0.05
NR

EG NR NR <0.01 NR

TUG (s)
CG NR NR >0.05

>0.05
NR

EG NR NR <0.01 NR
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Yoon et al. [67]
To elucidate the effects of high-speed

resistance exercise on cognitive function
and physical performance

Outcomes of cognitive function

Memory (score)
CG 10.26 ± 2.85 10.52 ± 2.79 >0.05

0.445
0.09

EG 8.55 ± 2.39 10.00 ± 3.71 >0.05 0.46 #

Processing speed (s)
CG 43.04 ± 11.95 42.59 ± 15.92 >0.05

0.036
0.03

EG 54.15 ± 28.43 48.26 ± 27.33 <0.05 0.21 #

Cognitive flexibility (s)
CG 188.92 ± 81.38 187.20 ± 70.14 >0.05

0.532
0.45 #

EG 163.37 ± 62.45 140.82 ± 34.65 >0.05 0.02

Working memory (score)
CG 10.09 ± 2.04 10.39 ± 1.83 >0.05

0.448
0.14

EG 10.20 ± 1.54 10.70 ± 1.34 >0.05 0.35 #

FAB (score)
CG 11.87 ± 2.12 12.09 ± 2.00 >0.05

0.022
0.11

EG 12.00 ± 2.45 13.70 ± 2.11 <0.05 0.74 *

Outcomes of physical function

SPBB (score)
CG 10.04 ± 1.46 10.91 ± 1.20 >0.05

0.001
0.65 *

EG 9.25 ± 2.31 10.85 ± 1.60 <0.05 0.81 *

TUG (s)
CG 9.95 ± 1.51 9.89 ± 1.59 >0.05

<0.01
0.04

EG 10.66 ± 2.41 9.26 ± 2.03 <0.01 0.65 *

4.44 m gait speed (s)
CG 6.04 ± 0.82 5.58 ± 0.81 >0.05

0.027
0.56 #

EG 6.21 ± 1.04 5.34 ± 0.81 <0.01 0.93 *

Outcomes of neuromuscular function

Grip strength (kg)
CG 21.81 ± 6.31 23.78 ± 7.14 >0.05

0.020
0.29 #

EG 21.41 ± 6.58 23.60 ± 7.76 <0.05 0.30 #

Isokinetic 60◦/s peak torque/BW
CG 70.77 ± 24.32 64.23 ± 20.72 >0.05

0.004
0.01

EG 65.05 ± 25.82 71.20 ± 36.68 <0.05 0.19

Isokinetic 180◦/s average power per rep (W)
CG 72.77 ± 23.82 66.59 ± 23.67 >0.05

0.001
0.26 #

EG 68.32 ± 40.60 82.09 ± 44.63 <0.05 0.32 #
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Yoon et al. [66]

To compare the effects of two different
exercise regimens on cognitive function,

body composition, muscular strength, and
functional ability

Outcomes of body composition

BW (kg)
CG 51.19 ± 4.13 50.14 ± 3.75 <0.01

0.001
NR

EG 58.39 ± 6.82 57.50 ± 7.01 <0.01 NR

BMI(kg/m2)
CG 22.90 ± 1.81 22.54 ± 1.71 >0.05

0.005
NR

EG 25.46 ± 2.47 25.02 ± 2.35 <0.01 NR

Skeletal muscle mass (kg)
CG 17.11 ± 1.45 17.49 ± 1.35 >0.05

0.008
NR

EG 18.84 ± 2.84 19.63 ± 2.63 <0.01 NR

Percent body fat (%)
CG 33.39 ± 8.26 33.27 ± 3.35 >0.05

0.004
NR

EG 38.83 ± 5.37 35.50 ± 4.72 <0.01 NR

WHR
CG 0.88 ± 0.04 0.86 ± 0.03 >0.05

0.014
NR

EG 0.91 ± 0.07 0.89 ± 0.06 <0.05 NR

Arm circumference (cm)
CG 26.71 ± 2.75 26.29 ± 2.69 >0.05

0.494
NR

EG 29.21 ± 2.91 28.04 ± 2.32 >0.05 NR

Thigh circumference (cm)
CG 49.14 ± 4.60 47.57 ± 4.71 >0.05

0.115
NR

EG 51.14 ± 4.00 50.57 ± 4.69 >0.05 NR

Outcomes of cognitive function

MMSE (score)
CG 22.29 ± 1.11 21.14 ± 1.57 <0.05

<0.05
−0.85

EG 21.00 ± 1.04 25.36 ± 1.78 <0.01 2.99 §

MoCA (score)
CG 18.71 ± 2.63 18.14 ± 2.97 >0.05

<0.05
0.19

EG 18.29 ± 2.81 24.29 ± 2.58 <0.01 2.22 §

Outcomes of physical function

SPPB (score)
CG 7.14 ± 1.77 7.57 ± 0.98 >0.05

<0.05
0.30 #

EG 8.14 ± 2.48 10.79 ± 1.58 <0.01 1.27 §

TUG (s)
CG 11.48 ± 1.02 10.59 ± 1.03 >0.05

>0.05
−0.87

EG 0.51 ± 1.86 9.14 ± 1.42 >0.05 −0.83
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Outcomes of neuromuscular function

Grip strength (kg)
CG 17.69 ± 0.91 18.99 ± 1.81 >0.05

<0.05
1.86 §

EG 19.26 ± 3.57 24.01 ± 4.14 <0.01 4.58 £

Isokinetic 60◦/s peak torque/BW—Right extensor (Nm)
CG 105.71 ± 20.92 116.86 ± 31.74 >0.05

>0.05
0.41 #

EG 77.57 ± 29.03 115.43 ± 31.92 <0.01 1.24 §

Isokinetic 60◦/s peak torque/BW—Right flexor (Nm)
CG 74.86 ± 17.44 58.14 ± 18.00 <0.05

>0.05
−0.94

EG 66.21 ± 20.77 67.43 ± 17.82 >0.05 0.06

Isokinetic 60◦/s peak torque/BW—left extensor (Nm)
CG 96.86 ± 25.42 108.86 ± 27.67 >0.05

>0.05
0.45 #

EG 90.36 ± 31.70 90.57 ± 21.99 >0.05 0.01

Isokinetic 60◦/s peak torque/BW—left flexor (Nm)
CG 69.57 ± 19.84 53.00 ± 16.34 <0.05

>0.05
−0.91

EG 64.14 ± 17.22 58.10 ± 17.60 >0.05 −0.35

Isokinetic 180◦/s peak torque/BW—Right extensor (Nm)
CG 57.29 ± 13.88 67.43 ± 18.60 <0.05

<0.05
0.62 *

EG 49.07 ± 20.00 68.29 ± 17.55 <0.01 1.02 *

Isokinetic 180◦/s peak torque/BW—Right flexor (Nm)
CG 54.43 ± 9.24 37.71 ± 9.93 >0.05

>0.05
−1.74

EG 44.14 ± 14.69 36.00 ± 15.11 >0.05 −0.55

Isokinetic 180◦/s peak torque/BW—Left extensor (Nm)
CG 54.71 ± 14.85 66.57 ± 21.45 <0.05

>0.05
0.64 *

EG 50.29 ± 17.82 63.21 ± 19.88 <0.05 0.68 *

Isokinetic 180◦/s peak torque/BW—Left flexor (Nm)
CG 51.43 ± 13.13 32.57 ± 13.01 <0.01

>0.05
−1.44

EG 45.71 ± 14.31 37.22 ± 13.79 <0.05 −0.60

Beijersbergen et al.
[54]

To determine the effects of lower-extremity
power training and detraining on

lower-limb muscle power and
gait kinematics

Outcomes of neuromuscular function

Maximal muscle power of knee extension 60◦/s (W)
CG 98.4 ± 39.4 93.6 ± 39.1 0.680

NR
−0.12

EG 97.5 ± 37.7 119.9 ± 43.2 <0.01 0.59 #

Maximal muscle power of knee extension 120◦/s (W)
CG 169.4 ± 61.7 164.7 ± 49.2 0.738

NR
−0.08

EG 161.7 ± 64.5 199.1 ± 72.8 <0.01 0.58 #

Maximal muscle power of knee extension 180◦/s (W)
CG 229.2 ± 77.6 234.0 ± 64.9 0.685

NR
0.06

EG 216.9 ± 93.5 256.9 ± 96.3 <0.01 0.43 #

Maximal muscle power of knee flexion 60◦/s (W)
CG 54.6 ± 24.6 51.1 ± 20.4 0.557

NR
−0.14

EG 54.6 ± 27.7 71.5 ± 37.5 <0.01 0.61 *

Maximal muscle power of knee flexion 120◦/s (W)
CG 103.4 ± 38.9 101.0 ± 35.5 0.794

NR
−0.06

EG 104.6 ± 59.0 126.8 ± 71.1 <0.01 0.38 #

Maximal muscle power of knee flexion 180◦/s (W)
CG 156.6 ± 59.0 161.7 ± 50.3 0.541

NR
0.09

EG 167.7 ± 92.2 186.3 ± 96.9 0.002 0.20 #
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Maximal muscle power of knee plantar flexion 20◦/s (W)
CG 13.6 ± 6.7 15.3 ± 6.9 0.095

NR
0.25

EG 12.6 ± 8.1 17.3 ± 9.8 0.001 0.57 #

Maximal muscle power of knee plantar flexion 40◦/s (W)
CG 25.3 ± 11.2 29.1 ± 14.7 0.225

NR
0.34 #

EG 23.3 ± 13.6 30.1 ± 16.0 <0.01 0.50 #

Maximal muscle power of knee plantar flexion 60◦/s (W)
CG 35.8 ± 15.8 36.6 ± 19.6 0.734

NR
0.05

EG 32.4 ± 21.1 40.8 ± 23.2 <0.01 0.40 #

Outcomes of physical function

Stair ascent power
(W·kg−1)

CG 4.36 ± 0.65 4.41 ± 0.85 0.819
NR

0.07

EG 4.05 ± 0.84 4.36 ± 0.92 0.075 0.38 #

Stair descent power (W·kg−1)
CG 5.01 ± 0.91 5.21 ± 1.18 0.225

NR
0.22 #

EG 4.48 ± 0.87 4.88 ± 1.21 0.061 0.46 #

Six-min walk test (m/s)
CG 1.26 ± 0.14 1.27 ± 0.14 0.293

NR
0.03

EG 1.29 ± 0.14 1.31 ± 0.15 0.252 0.18

Gait velocity (habitual speed) (m/s)
CG 1.35 ± 0.14 1.34 ± 0.16 0.652

NR
−0.07

EG 1.32 ± 0.16 1.36 ± 0.15 0.220 0.25 #

Gait velocity (fast speed) (m/s)
CG 1.97 ± 0.35 1.93 ± 0.31 0.526

NR
−0.18

EG 1.85 ± 0.28 1.96 ± 0.38 0.026 0.39 #

Beijersbergen et al.
[55]

To examine the effects of lower-extremity
power training and detraining on

gait kinetics

Outcomes of neuromuscular function

Knee extensor power 60 deg/s (W/kg·m)
CG NR NR >0.05

NR
NR

EG NR NR <0.05 NR

Knee extensor power 120 deg/s (W/kg·m)
CG NR NR >0.05

NR
NR

EG NR NR <0.05 NR

Knee extensor power 180 deg/s (W/kg·m)
CG NR NR >0.05

NR
NR

EG NR NR <0.05 NR

Plantar flexor power 20 deg/s (W/kg·m)
CG NR NR >0.05

NR
NR

EG NR NR <0.05 NR

Plantar flexor power 40 deg/s (W/kg·m)
CG NR NR >0.05

NR
NR

EG NR NR <0.05 NR

Plantar flexor power 60 deg/s (W/kg·m)
CG NR NR >0.05

NR
NR

EG NR NR <0.05 NR

Outcomes of physical function

Gait velocity (habitual speed) (m/s)
CG 1.35 ± 0.14 1.34 ± 0.16 0.652

NR
NR

EG 1.32 ± 0.16 1.36 ± 0.15 0.220 NR

Gait velocity (fast speed) (m/s)
CG 1.97 ± 0.35 1.93 ± 0.31 0.526

NR
NR

EG 1.85 ± 0.28 1.96 ± 0.38 0.026 NR
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Beijersbergen et al.
[56]

To examine the effects of 10 weeks of
lower-extremity power training on gait

velocity and neuromuscular activation of
lower-extremity muscles during

level walking

Outcomes of neuromuscular function

Isometric muscle strength of the knee flexors
CG NR NR >0.05

NR
≤0.31

EG NR NR 0.002 0.34 #

Isometric muscle strength of the knee extensors
CG NR NR 0.021

NR
0.50 #

EG NR NR <0.01 0.74 *

Isometric muscle strength of the plantar flexors
CG NR NR >0.05

NR
NR

EG NR NR 0.002 0.80 *

EMG amplitudes of the knee flexors
CG NR NR >0.05

NR
NR

EG NR NR 0.004 1.47 §

EMG amplitudes of the knee extensors
CG NR NR 0.021

NR
NR

EG NR NR 0.013 0.50 #

EMG amplitudes of the plantar flexors
CG NR NR >0.05

NR
NR

EG NR NR 0.076 0.47 #

Outcomes of physical function

Gait velocity (habitual speed) (m/s)
CG 1.41 ± 0.19 1.39 ± 0.29 0.240

NR
−0.11

EG 1.28 ± 0.14 1.34 ± 0.17 0.079 0.42 #

Gait velocity (fast speed) (m/s)
CG 1.91 ± 0.26 1.89 ± 0.26 0.396

NR
−0.07

EG 1.82 ± 0.18 1.88 ± 0.23 0.059 0.31 #

Hvid et al. [61]

To examine the effects of 12 weeks of
progressive high-intensity power training

on the outcomes of knee extensor voluntary
muscle activation and maximal gait speed

Outcomes of neuromuscular function

Thickness (cm)
CG 2.52 ± 0.11 2.50 ± 0.11 >0.05

>0.05
NR

EG 2.69 ± 0.12 2.74 ± 0.15 >0.05 NR

Strength (N. m)
CG 101.9 ± 0.1 102.7 ± 8.3 >0.05

<0.05
NR

EG 98.9 ± 7.7 113.1 ± 7.5 <0.05 NR

Voluntary activation (%)
CG 79.1 ± 2.4 79.0 ± 2.6 >0.05

<0.05
NR

EG 78.9 ± 3.5 84.9 ± 2.1 <0.05 NR

Outcomes of physical function

2-MWT (m/s)
CG 1.06 ± 0.04 1.03 ± 0.04 <0.05

<0.05
NR

EG 1.00 ± 0.06 1.09 ± 0.07 <0.05 NR
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Sayers and Gibson
[65]

To determine whether low-load HSPT and
traditional high-load, slow-speed resistance

training may have differing effects on
power output obtained across a range of

external resistances and to explore the
impact of these RT regimens on the

determinants of muscle power

Outcomes of neuromuscular function

Peak power 40% 1 RM (W)
CG 292.6 ± 165.9 283.5 ± 153.9 NR

<0.05
NR

EG 313.2 ± 118.4 383.3 ± 113.3 NR NR

Peak power 50% 1 RM (W)
CG 315.5 ± 180.0 313.9 ± 169.1 NR

≤0.02
NR

EG 339.0 ± 138.1 426.6 ± 133.6 NR NR

Peak power 60% 1 RM (W)
CG 315.4 ± 178.8 327.3 ± 180.0 NR

≤0.03
NR

EG 350.6 ± 144.1 456.6 ± 136.6 NR NR

Peak power 70% 1 RM (W)
CG 304.4 ± 174.3 320.3 ± 180.5 NR

<0.01
NR

EG 342.8 ± 149.6 456.3 ± 150.2 NR NR

Peak power 80% 1 RM (W)
CG 281.4 ± 155.3 302.9 ± 169.7 NR

≤0.02
NR

EG 317.2 ± 145.6 457.6 ± 149.3 NR NR

Peak power 90% 1 RM (W)
CG 252.1 ± 150.7 242.4 ± 111.2 NR

≤0.04
NR

EG 272.9 ± 154.2 431.3 ± 162.4 NR NR

Velocity at peak power (N·m·s−1)
CG NR NR NR

<0.01
NR

EG NR NR NR NR

Marsh et al. [64]
To compare the effects of lower-extremity

power training on muscle strength, physical
function, and body composition

Outcomes of neuromuscular function

Knee extension strength (kg)
CG 25.03 ± 10.03 23.99 ± NR NR

0.024
NR

EG 25.87 ± 11.77 29.33 ± NR NR NR

Knee extension power (W)
CG 161.46 ± 62.44 143.60 ± NR NR

0.003
NR

EG 148.33 ± 84.50 221.30 ± NR NR NR

Leg press strength (kg)
CG 93.97 ± 31.17 100.12 ± NR NR

0.026
NR

EG 94.07 ± 34.09 117.82 ± NR NR NR

Leg press power (W)
CG 185.47 ± 75.64 211.4 ± NR NR

<0.01
NR

EG 171.06 ± 89.04 308.7 ± NR NR NR

Reid et al. [59] To explore the effects of power training on
muscle power and strength

Outcomes of neuromuscular function

Knee extension 1 RM—∆ (W)
CG NR NR NR

<0.01
NR

EG NR NR <0.01 NR

Knee extension—absolute peak power at 40% 1 RM (W)
CG NR NR NR

≤0.003
NR

EG 48 ± 15 62 ± 16 0.002 NR

Knee extension—absolute peak power at 70% 1 RM (W)
CG NR NR NR

≤0.003
NR

EG 77 ± 39 118 ± 54 <0.05 NR

Leg press 1 RM—∆ (W)
CG NR NR NR

>0.05
NR

EG NR NR 0.140 NR

Leg press—absolute peak power at 40% 1 RM (W)
CG NR NR NR

>0.05
NR

EG NR NR 0.190 NR

Leg press peak power at 70% 1 RM—∆ (W)
CG NR NR NR

>0.05
NR

EG NR NR 0.220 NR
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Table 4. Cont.

Authors Aim Outcome Variable Group
Main Results (M ± SD)

p Value p Value
(CG vs. EG) & Effect Size a

Pre Post

Katula et al. [62]

To compare the effects of strength training
and power training to one another and to a

wait list control group with respect to
changes in quality of life

Outcomes of quality of life

Self-efficacy for strength (score)
CG 25.07 ± 17.67 34.46 ± 19.88 >0.05

<0.05
0.50 #

EG 25.07 ± 17.53 72.16 ± 22.58 <0.05 2.34 £

Satisfaction with physical function (score)
CG −0.73 ± 1.69 −0.35 ± 1.96 >0.05

<0.05
0.21 #

EG −0.85 ± 1.86 1.10 ± 1.20 <0.05 1.21 §

Life satisfaction (score)
CG 22.93 ± 6.46 21.46 ± 6.06 >0.05

<0.05
−0.23

EG 25.78 ± 7.47 29.25 ± 6.38 <0.05 0.50 #

Bean et al. [58]
To evaluate the efficacy of another form of
weighted vest exercise on muscle power

and mobility function

Outcomes of physical function

SPBB (score)
CG 7.30 ± 1.50 NR 0.009

0.377
NR

EG 7.70 ± 1.30 NR <0.01 NR

Chair-5 time (s)
CG 19.60 ± 4.10 NR <0.01

0.019
NR

EG 18.50 ± 3.60 NR <0.01 NR

Gait speed (m/s)
CG 0.70 ± 0.16 NR 0.339

0.356
NR

EG 0.80 ± 0.15 NR 0.006 NR

Unilateral stance time (s)
CG 6.05 ± 5.90 NR 0.900

0.342
NR

EG 4.52 ± 5.40 NR 0.028 NR

Miszko et al. [57]

To determine whether power training was
more efficacious than strength training for
improving whole-body physical function
and to examine the relationship between
changes in anaerobic power and muscle

strength and changes in physical function

Outcomes of neuromuscular function

Chest press—1 RM (kg)
CG 29.36 ± 12.20 29.18 ± 13.60 NR

>0.05
NR

EG 31.01 ± 12.90 34.81 ± 14.60 NR NR

Leg press—1 RM (kg)
CG 75.61 ± 38.90 79.71 ± 37.50 NR

>0.05
NR

EG 95.45 ± 33.20 107.65 ± 32.20 NR NR

Outcomes of physical function

CS-PFP test—total (score)
CG 55.5 ± 14 57.0 ± 18 NR

<0.05
NR

EG 58.2 ± 13 67.1 ± 13 NR NR

Abbreviations: Significant differences are highlighted in bold. CG, control group; EG, experimental group; M, mean; SD; standard deviation; NR, not reported; MMSE, mini-mental state
test; FAB, frontal assessment battery; SPPB, short physical performance battery; TUG, time up and go test; ms, milliseconds; s, seconds; kg, kilograms; BW, body weight; Nm, newton
meter; m/s, meter per second; deg/s, degree per second; mm, millimeter; cm, centimeters; BMI, body mass index; WHR, waist-to-hip ratio; MoCA, cognitive assessment; W, watts;
EMG, surface electromyography for maximal muscle activation; RFD, rate of force development; CS-PFP, continuous-scale physical functional performance; N, newton; RM, repetition
maximum; HSRT, high-speed resistance training; µV, microvolt; rep, repetitions; &, p value of comparison between CG and EG at post; a, effect size by Hopkins et al. [68]; #, small effect
size (between 0.20 and 0.59); *, moderate effect size (between 0.60 and 1.19); §, large effect size (between 1.20 and 1.99); £, very large effect size (≥2.00).
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3.6. Meta-Analysis

The meta-analysis with ten studies showed moderate to large effects of the HSRT
interventions on some health outcomes (cognitive function, neuromuscular function, and
physical function) in older adults. Four studies revealed large effects on cognitive function
(analyzed through frontal assessment battery (FAB) and mini-mental state examination
(MMSE)) in favor of intervention groups compared to control groups (p = 0.001, SMD = 0.94
[0.20, 1.68], I2 = 71%); see Figure 2.
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Figure 2. Forest plot presenting standardized mean difference and 95% confidence intervals from
studies reporting high-speed resistance-training-induced changes in cognitive function between
the intervention groups and the control groups. IV, independent variable; CI, confidence interval;
SMD, standardized mean difference; FAB, frontal assessment battery; MMSE, mini-mental state
examination [60,63,66,67].

In the same sense, six articles indicated moderate effects on neuromuscular function
(analyzed through grip strength and muscle and power outcomes) in favor of intervention
groups compared to control groups (p = 0.003, SMD = 0.70 [0.24, 1.15], I2 = 53%); see Figure 3.
Finally, the analysis of the effects on physical function was divided into approaches in order
to facilitate the interpretation of the results (Figure 4A,B). Consequently, this figure shows
moderate effects on physical function in favor of intervention groups compared to control
groups (Figure 4A, p = 0.004, SMD = 0.55 [0.02, 1.07], I2 = 72%; and Figure 4B, p = 0.009,
SMD = −0.59 [−1.27, 0.08], I2 = 35%).
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Figure 3. Forest plot presenting standardized mean difference and 95% confidence intervals from
studies reporting high-speed resistance-training-induced changes in neuromuscular function between
the intervention groups and the control groups. IV, independent variable; CI, confidence interval;
SMD, standardized mean difference [54,57,61,65–67].
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Figure 4. Forest plot presenting standardized mean difference and 95% confidence intervals from studies reporting high-speed resistance-training-induced changes
in physical function ((A), through SPBB and gait velocity; (B), through TUG) between the intervention groups and the control groups. IV, independent variable; CI,
confidence interval; SMD, standardized mean difference; SPPB, short physical performance battery; TUG, timed up and go test [54–56,61,66,67].
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4. Discussion

The present systematic review and meta-analysis aimed to analyze and systematize the
studies focused on HSRT interventions and their effects on health outcomes in independent
older adults. The main findings suggest a lack of good-quality and pre-registered studies
comparing HSRT interventions and CG. These analyses revealed moderate to substantial
levels of heterogeneity and a wide range of predictive interval. There were moderate to
substantial levels of heterogeneity between the studies. High heterogeneity may indicate
that there are no benefits of HSRT over control groups [51,69]. Furthermore, all the variables
show a prediction interval crossing the zero line.

The main finding of this review suggests that HSRT interventions would improve health
measures—mostly cognitive function (large effects), neuromuscular function (moderate
effects), and physical function (moderate effects)—thereby confirming the study hypotheses.

It is also important to note that there is a relationship between the duration of the
intervention and the level of benefit. In this regard, interventions with ten weeks or more
revealed significant improvements in muscle strength and power [54–56,59,61,64–67] and
physical function [58,61,63,66,67]. These findings are of extreme importance for clinical
practice, since muscle power is essential for physical performance during daily tasks [70,71].

For the sake of clarity, the Discussion section is organized into subsections according
to the variables studied.

4.1. Cognitive Function

Regarding cognitive function, only one study investigated the retinal microvasculature
density through changes occurring in the brain in cognitively normal older people [60].
The authors reported a negative correlation between retinal microvascular density and
cognitive function (r = −0.54; p = 0.007), indicating that the improvement in cognitive
function after HSRT could be mediated by the vascular effects. Nonetheless, regarding
cognitive function, the studies by Yoon et al. [66] and Yoon et al. [67] addressed the effects
of HSRT on cognitive function through the Montreal cognitive assessment (MoCA), FAB,
and MMSE tests. The authors showed positive effects on processing speed, cognitive
assessment, FAB, and MMSE test parameters. However, Lee et al. [63], who reported
positive effects of 8-week HSRT on the neuromuscular function and gait performance in
the elderly with mild cognitive impairment, failed to find any increase in the executive
function of the frontal lobe. The sample characteristics and time of intervention may have
compromised the expected results for these outcomes. Other studies have reported positive
effects of HSRT on processing speed and executive function [67,72]. However, current
evidence is limited.

The small number of included studies reduced the statistical power of this meta-
analysis and did not allow an appropriate analysis of heterogeneity. Hence, more research
on the role of exercise parameters (e.g., volume, types, and intensity) in specific cogni-
tive functions is necessary. Addressing cognitive function is particularly important when
considering the decline in executive and functional ability associated with ageing [73–76].
In this sense, cognitive function and muscular power [6,77,78] should be considered the
primary factors influencing the decline in functional status in elderly populations. Con-
sequently, it is fundamental to find ways to attenuate age-related executive function and
muscular power decline due to the significant impact on life quality and the maintenance
of an independent lifestyle.

Since neuromuscular deterioration accompanying the process of ageing is one of
the first signs of decreased power output [78,79] and atrophy in areas associated with
neuromuscular control [75], a potential relationship may exist between age-related declines
in muscular power and cognitive function. Remarkably, research shows that exercise
programs enhance a variety of functional and cognitive tasks, and that brain regions
exclusively dedicated to executive function appear to be especially sensitive to exercise
training [80–83]. The HSRT interventions showed promising results in cognitive executive
function and memory, cognitive flexibility, and working memory [63,84]. The intensity
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of these interventions can be controlled through changes in load and movement velocity.
However, research that examined resistance training and cognition used loading to increase
the intensity, which thus justifies further studies controlling the speed or using both load
indicators [63].

4.2. Neuromuscular Function

Concerning neuromuscular function with a particular focus on neural functions, some
studies investigated the effects of HSRT on neural factors [54–56,61,63]. The effects of the
HSRT intervention on neural factors showed positive results in two aspects: first, between
the CG and EG in movement time, motor time, rate of electromyography (EMG) rise, rate of
torque development, and percentage of voluntary activation; and second, between pre- and
post-intervention in normalized parameters peak torque, and in the EMG amplitudes of the
knee flexors, extensors, vastus lateralis (VL), vastus medialis (VM), and rectus femoris [56].

In the latter study [56], muscle activation determined by recording the surface elec-
tromyogram during a maximal isometric leg exercise demonstrated that the rates of EMG
rose, similar to other studies. In this sense, Reid et al. [85] reported a significant increase
in the rate of EMG rise among the elderly averaged 77-year old who performed HSRT at
40% of 1 RM for 16 weeks compared to the elderly who underwent HSRT at 70% of 1 RM.
It can be inferred that the low-intensity HSRT may influence the apparent increase in the
rate of EMG rise. This increase may occur because the abilities to recruit motor units and
maximal motor unit-firing rate were developed in parallel to the increased rate of torque
development associated with recruiting motor units [86].

In the last two decades, studies with pneumatic and isokinetic devices have shown
that the peak muscle power of the leg extensors [54–56,59,63,65–67,87,88] and ankle plantar
flexors [18] are stronger predictors of functional performance than muscle strength. The
peak muscle power declines sooner and more rapidly than muscle strength [19,89] and
is a more important predictor of functional performance than strength [18,87]. Therefore,
peak muscle power could be a more critical variable on which to focus RT programs among
older men and women.

Based on data from selected studies [56,61,63], this review reveals that HSRT was
more effective than traditional resistance training with rising muscle activation, as reported
by Reid et al. [85]. There was an increase in muscle activation of VM and VL muscles,
suggesting increased recruitment and firing frequency of motor units [55,86,90,91]. In
addition to gains in maximal EMG amplitudes and isometric strength, older adults showed
elevated knee extensor activation and coactivation during early stance and elevated plantar
flexor activation during push-off [55]. The data suggest that power training-induced
increases in voluntary muscle activation and agonist muscle activation underlie increases
in isometric muscle strength and gait velocity. Therefore, training based on HSRT can
modify neuromuscular activation and increase older adults’ leg muscle strength and
walking performance.

The small number of included studies for grip strength reduced the statistical power
of this meta-analysis and there were substantial levels of heterogeneity between studies.
However, all the variables showed a prediction interval crossing the zero line, suggesting
the possibility of the real beneficial effects of HSRT. For the four studies on the muscle and
power outcomes, null heterogeneity may indicate that there are real benefits of HSRT over
the CG.

The mechanism underlying the increased neuromuscular activation may involve,
but is not limited to, increased neural drive via corticospinal pathways, increased motor
neuron and/or muscle fiber excitability, an increased number of active motor units, and/or
increased conduction velocity [92,93].

The neuromuscular function was evaluated through various strength parameters,
such as grip strength and isokinetic peak torque/body weight [66,67], rate of torque
development [63], isokinetic power in average at different execution speeds [67], isometric
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strength [56], peak power at 40 to 80% 1 RM [65], and knee extension and leg press
strength [64].

Moreover, the maximal isokinetic power at different execution speeds was evaluated
in relation to body weight and joint range [54], and one study evaluated maximal isometric
strength relative to leg length [61]. Two studies evaluated peak power at different percent-
ages of 1 RM [64,65], as well as the velocity at peak power in air resistance equipment [65].
The maximal strength was evaluated through the 1 RM in leg extension, leg press [59,64],
and chest press exercises [57]. Our findings evidenced that HSRT interventions are effective
in improving strength and power. Despite the consistency in the results of the assessments
on neuromuscular function in the comparison of pre–post or/and between CG and EG,
some studies do not report positive effects in some parameters [57,59,66]. In the study by
Reid et al. [59], the 1 RM of knee extension increased significantly from baseline in either
the strength training group (41%) or the HSRT group (49%) when compared to CG (p < 0.01).
However, there was no significant time–group interaction for the execution of the 1 RM
leg press exercise. Hence, the authors concluded that the principal finding of their study
was that, in older people with mild–moderate mobility impairments, a 12-week HSRT
intervention induced similar improvements in lower-extremity muscle power compared
to traditional slow-velocity resistance training. The non-significant increases in absolute
power on the leg press in response to HSRT are considerably lower than those reported
by other studies in older adults [57,64,65,94]. These results suggest that gains in muscle
quality, which occurred without measurable hypertrophy, may have been due to neural
adaptation to this form of explosive resistance training [63,95]. The muscle power decreases
more precipitously than muscle strength in older adults, causing a dramatic loss in the
ability to produce force rapidly.

The current evidence emphasizes the challenges regarding the development of op-
timal exercise strategies for clinically relevant outcomes in older adults [96,97]. In this
sense, strategies that promote rapid increases in strength development should be a top
priority in resistance training interventions, followed by methods that stimulate muscle
hypertrophy [98,99].

4.3. Physical Function

Regarding physical function, namely gait function, over the past two decades, there
has been a proliferation of research surrounding resistance training to increase func-
tional activities. Specifically, studies have demonstrated that HSRT can promote signifi-
cant improvements in functional outcomes [57,100–102] compared to standard resistance
training programs.

Nine of the studies in this systematic review used some form of a timed walking
test, namely the 2-min maximal walking test; 10-m walking test; gait velocity at usual
speed and fast speed; 4.44 m gait speed test; timed up and go test (TUG test); and 8-foot
up and go test. Most of the studies reported improvements in the pre–post within-group
and between-group (EG vs. CG). Nevertheless, Lee et al. [63] only found improvements
in the pre–post in EG (4.44 m gait speed test and TUG test). Some studies [54–56] did
not improve gait velocity at the usual speed. However, two of the three studies [54,55]
presented improvements when comparing pre–post to gait velocity at fast speed. However,
the significant between-group change in gait speed suggested that the clinical relevance is
0.05–0.10 m/s [103].

According to Ramírez-Campillo et al. [24], the HSRT intervention in older peo-
ple significantly improved walking ability and TUG test results compared to the CG.
Ringsberg et al. [104] and Karttunen et al. [105] reported that the older men and women
(average 75 years old) showed a statistically significant relationship between isometric knee
extensor strength and gait speed. Thereby, in this population, the HSRT with heavy and
light loads seems to mediate adaptations in the neural system and translates into improve-
ments in physical function, namely in gait function. In the same sense, Harridge et al. [106]
reported submaximal voluntary activation of the knee extensor muscles in frail older people.
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The current knowledge indicates incomplete voluntary muscle activation as an essential
mechanism for the loss of mechanical muscle function and physical function, contributing
to the pathway of mobility disability [61,107,108].

In this meta-analysis, only two studies addressed the SPPB variable, which reduced
the statistical power of these meta-analyses and did not allow an appropriate analysis of
heterogeneity. They present high heterogeneity (I2 = 91%, 1.01 [−1.16, 3.18]); however, the
variables show a prediction interval crossing the zero line. The same is observed in the
gait velocity variable; although it was included in five studies, three of the studies had a
major limitation, which was its origin in the same clinical trial [54–56], which could result
in analysis bias. Finally, in the meta-analysis for the TUG test, only two studies reported
this variable and presented values favorable to the intervention with the HSRT.

4.4. Body Composition

Finally, regarding body composition, the HSRT seems to induce skeletal muscle hyper-
trophy and neuromuscular adaptations [66]. This intervention can also facilitate increases
in muscle quality in response to power training [59] and promote significant reductions in
several parameters, namely body weight, body mass index, percent body fat, and waist-to-
hip ratio [66]. Some studies showed evident morphological adaptations [58,109,110] due to
an increase in muscle thickness of VL in all strength training groups, which indicates that
hypertrophy likely contributed to the increased maximal and dynamic strength.

According to Reid et al. [59], the studies that reported improvements in muscle strength
and power without associated alterations in body composition may reflect enhanced neu-
ral adaptations in the early stages of training, as reported by other studies [91,111]. It is
likely that the earlier motor unit activation and enhanced maximal firing rates associated
with HSRT would be principle stimuli for neural adaptations to this explosive form of
training [111]. The results of improvements in muscle strength and power without associ-
ated alterations in body composition may also be a consequence of the short duration of
interventions and low weekly frequency, and the differences in neuromuscular adaptation
should be investigated over longer periods (e.g., six months).

4.5. Limitations

This study presents two limitations that should be pointed out. The first is the poor
methodological quality of some of the included studies. Twelve of the fourteen included
studies showed low methodological quality (level 2). This should be taken as a serious
warning to the scientific community and may hinder the credibility and practical effect of
said studies. Second, although our meta-analysis suggests very satisfactory results, it was
conducted with a small number of studies in each function, so it is necessary that future
studies be conducted in this area.

5. Conclusions

The present systematic review confirms that HSRT interventions that progressively
increase in training intensity can improve several health outcomes in older people, mostly
cognitive, neuromuscular, and physical function (moderate to large effects).

Furthermore, the results suggest that interventions with ten weeks or more and per-
formed three times a week result in significant improvements in neuromuscular function.

6. Future Lines of Research

It should be noted that even though gait variability [97] and phase angle from bioelec-
trical impedance [112] have high clinical significance, none of the included studies verified
the effect of the HSRT intervention on said outcomes. Therefore, we suggest that future
studies conducted with older people and based on this approach (HSRT intervention) in-
clude the following variables. The first is gait variability—which refers to the magnitude of
the stride-to-stride fluctuations and their changes over time during a walk—which may be
useful in understanding the physiology of gait, in quantifying age-related and pathologic
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alterations in the locomotor control system, and in augmenting the objective measurement
of mobility and functional status [113,114]. A gait variability study through non-linear
methods [97,115] can help us to understand the physiological changes associated with
ageing induced by an increase in noise in the neuromotor system, promoting significant
changes in the control of the locomotor system [113,116]. Multiple age-related physiological
changes increase neuromotor noise, increasing gait variability. If older adults alter how they
regulate their stride variables, this could further exacerbate this variability. The second is
the phase angle from electrical bioimpedance—the assessment of this indicator represents
an interesting measure for future research on healthy populations, because it can reflect
cellular health and mass and cell membrane integrity [112,117], and in the elderly popula-
tion, it is a predictor of muscle function [96,118] and sarcopenia [119] and an indicator of
general health status [120,121].

Finally, we also recommend further research to include an adequate follow-up (e.g.,
minimum six months) to assess the durability of HSRT intervention effects on all health-
related variables.
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