We present an evaluation of the π^\pm and K^\pm box contributions to the hadronic light-by-light piece of the muon's anomalous magnetic moment, a_μ. The calculation of the corresponding electromagnetic form factors (EFFs) is performed within a Dyson-Schwinger equations (DSE) approach to quantum chromodynamics. These form factors are calculated in the so-called rainbow-ladder (RL) truncation, following two different evaluation methods and, subsequently, in a further improved approximation scheme which incorporates meson cloud effects. The results are mutually consistent, indicating that in the domain of relevance for a_μ, the obtained EFFs are practically equivalent. Our analysis yields the combined estimates of $a_\mu^{\pi^\pm{\text{-box}}} = -(15.6 \pm 0.2) \times 10^{-11}$ and $a_\mu^{K^\pm{\text{-box}}} = -(0.48 \pm 0.02) \times 10^{-11}$, in full agreement with results previously obtained within the DSE formalism and other contemporary estimates.

I. INTRODUCTION

There has been a renewed interest in the anomalous magnetic moment of the muon, a_μ, after the first measurement from the new muon g-2 experiment at FNAL \cite{1}.

\[
a_\mu^{\text{FNAL}} = 116592040(54) \times 10^{-11}.
\] (1)

Combining it with the final average from the muon g-2 measurements at BNL \cite{2} yields

\[
a_\mu^{\text{Exp}} = 116592061(41) \times 10^{-11}
\] (2)

as the corresponding world average, which has a remarkable precision of 0.35 parts per million. On the other hand, the outcome of the Muon g-2 theory initiative for the Standard Model prediction of this quantity \cite{3},

\[
a_\mu^{\text{SM}} = 116591810(43) \times 10^{-11},
\] (3)

has a comparable accuracy and deviates by 4.2σ from a_μ^{Exp}. This difference hints at the tantalizing prospect of new physics being at work.

The BMW lattice QCD result \cite{59} for the dominant component of the SM uncertainty, i.e., the hadronic vacuum polarization contribution (HVP) was not taken into account for the a_μ^{SM} value in the white paper \cite{3}. If this value were used, the incompatibility between the SM prediction and the world average is reduced to merely 1.6σ level.\cite{2} This result needs to be confirmed or refuted by other lattice analyses achieving a similar accuracy, thus constituting a very active area of research.

The uncertainty in a_μ^{Exp} is expected to shrink further as more data is analyzed, demanding a commensurate improvement in a_μ^{SM}. Its different contributions—particularly the hadronic ones (HVP and hadronic light-by-light, HLbL), which dominate the uncertainty—are continuously refined to achieve this objective.

In this work we focus on a specific HLbL contribution to a_μ, namely, the P-box contributions ($P = \pi^\pm, K^\pm$), depicted in Fig. 1 and denoted herein as $a_\mu^{P{\text{-box}}}$. For pion, the dispersive evaluation of Ref. \cite{22} achieved a considerably small uncertainty of 0.2×10^{-11}. The Dyson-Schwinger...
FIG. 1. Leading order P-box contributions to a_{μ}^{HEAL}, where the corresponding P meson EFFs are highlighted by the purple filled circles.

The DSE formalism, dissecting all the pieces entering the corresponding electromagnetic current. The numerical results of Sec. II describes the computation of EFFs within the DSE (TFFs) [76]

The matrix element reads

$$\langle P(p_f) | j_\mu | P(p_i) \rangle = 2K_\mu F_P(Q^2),$$

where $Q = p_f - p_i$ is the photon momentum and $2K = (p_f + p_i)$; the electromagnetic current is

$$j_\mu = \Gamma_P^I G_0 (\mu - \mathcal{K}_\mu) G_0 \Gamma_P,$$

with Γ_P^I denoting the incoming and outgoing P meson Bethe-Salpeter amplitudes (BSAs), respectively; G_0 represents an appropriate product of dressed quark propagators, such that

$$\Gamma_\mu = (S^{-1} \otimes S^{-1})_\mu = \Gamma_\mu \otimes S^{-1} + S^{-1} \otimes \Gamma_\mu$$

defines the impulse approximation (IA) [81]; this will be shown explicitly later. Beyond IA effects are encoded in \mathcal{K}_μ (see Appendix), which characterizes the interaction of the photon with the Bethe-Salpeter kernel describing the two-body interaction [68, 82]. Thus, all the parts entering Eq. (6) require the knowledge of quark propagators, BSAs, quark-photon vertex (QPV), and their corresponding interaction kernels. We shall now describe how to gather those ingredients within the DSE approach.

A. Quark propagator and meson

Bethe-Salpeter amplitudes

The DSEs are the QCD equations of motion, encoding full dynamics of the theory, simultaneously capturing the perturbative and nonperturbative facets of QCD [65, 67]. The DSEs form an infinite set of coupled integral equations that relate the theory’s Green functions; subsequently, any tractable problem demands a systematic and rigorous truncation scheme [83-86].

The DSE for the f-flavor quark propagator, also referred to as the gap equation, reads as:

$$S_f^{-1}(p) = Z_2[S_f^{(0)}(p)]^{-1} + \int_q \Lambda [K^{(1)}(q, p)] S_f(q),$$

$$[K^{(1)}(q, p)] = \frac{4}{3} Z_1 g^2 D_{\mu\nu}(p - q) [\gamma_\mu \otimes \Gamma_P^{fg}(p, q)],$$

where $\int_q \Lambda$ stands for a Poincaré invariant regularized integration, Λ being the regularization scale.
The components that constitute the one-body kernel, \([K^{(1)}]\), carry their usual meanings (color indices have been omitted for the simplicity of notation):

(i) \(D_{\mu\nu}\) is the gluon propagator and \(g\) is the coupling constant for all the QCD interactions appearing in the Lagrangian.

(ii) \(\Gamma^{\mu}_{\nu} = \gamma_{\mu} g_{\nu} + \gamma_{\nu} g_{\mu}\) represents the fully-dressed quark-gluon vertex (QGV); in general characterized by 12 Dirac structures [83–89].

(iii) \(Z_{1,2}\) are the QGV and quark wave-function renormalization constants, respectively.

Herein, \(S_f^{(0)}(p) = [\gamma \cdot p + m_f^{(\text{b})}]^{-1}\) is the bare propagator and \(m_f^{(\text{b})}\) the bare fermion mass. The fully dressed quark propagator is represented as

\[
S_f(p) = Z_f(p^2)(\gamma \cdot p + M_f(p^2))^{-1},
\]

in clear analogy with its bare counterpart. Multiplicative renormalization entails that the quark mass function, \(M_f(p^2)\), is independent of the renormalization point \(\zeta\).

The description of mesons is obtained from the Bethe-Salpeter equation (BSE) [83–85]:

\[
\Gamma_H(p; P) = \int_q [K^{(2)}(q, p; P)] \chi_H(q; P),
\]

whose ingredients are defined as follows:

(i) As before, \(\Gamma_H\) denotes the BSA, with \(H\) labeling the type of meson.

(ii) \(\chi_H(q; P) = S(q_+)\Gamma_H(q; P)S(q_-)\) corresponds to the Bethe-Salpeter wave function (BSWF).

(iii) The kinematic variables: \(P\) is the total momentum of the bound state such that \(P^2 = m_H^2\) (\(m_H\) the mass of the meson); \(q_+ = q + \eta P\) and \(q_- = q - (1 - \eta)P\), where \(\eta \in [0, 1]\) determines the relative momentum. The Dirac structure characterizing the BSA depends on the meson’s quantum numbers. For a pseudoscalar meson \(P\):

\[
\Gamma_P(q; P) = \gamma_5 [\bar{\psi}_P(q; P) + \gamma \cdot PF_P(q; P)\]
\[
+ \gamma \cdot q \bar{\psi}_P(q; P) + q_\mu \sigma_{\mu\nu} P^{\nu} \bar{\psi}_P(q; P)].
\]

The two-body interaction in Eq. (11) is represented by \([K^{(2)}(q, p; P)]\); it corresponds to two-particle irreducible quark/antiquark scattering kernel, which contains all possible interactions between the quark and antiquark within the bound state [90]. Once the 1 and 2-body kernels have been specified (i.e., a truncation scheme has been defined), gap and Bethe-Salpeter equations can be solved. In fact, \([K^{(1)}]\) and \([K^{(2)}]\) are related via vector and axial-vector Ward-Green-Takahashi identities (WGTIs) [91–93], implying charge conservation and the appearance of pions and kaons (in the chiral limit) as Nambu-Goldstone bosons of dynamical chiral symmetry breaking [94].

B. Rainbow ladder truncation

The simplest truncation that fulfills vector and axial-vector WGTIs is defined by the kernel \((\{r, s, t, u\}\) are color indices):

\[
[K^{(2)}]_{rs}(q, p; P) = -\frac{4}{3} e^2 D^{\text{eff}}_{\mu\nu}(p - q)[\gamma_{\mu}; r][\gamma_{\nu}; s].
\]

which relate the 1-body and 2-body kernels as:

\[
K^{(2)}(q, p; P) = K^{(2)}(q, p; P) = -K^{(1)}(q, p; P).
\]

This truncation is dubbed as the RL truncation [94]. It provides a reliable and practical approach so long as we restrain ourselves to ground-state pseudoscalar and vector mesons [71,72,76,95]. It is worth noticing that the gluon propagator has been demoted to an effective one, \(gD_{\mu\nu} \rightarrow D^{\text{eff}}_{\mu\nu}\), where:

\[
D^{\text{eff}}_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_{\mu} k_{\nu}}{k^2}\right) G(k^2).
\]

Herein, \(G(k^2)\) is an effective coupling, typically obtained from either lattice QCD or phenomenological models [96–98]. Throughout this work, we shall employ the well-known Qin-Chang (QC) interaction [98]:

\[
G(q^2) = \frac{8\pi^2}{w^4} De^{-\frac{2}{w^2}} + \frac{2\pi\gamma_m (1 - e^{-q^2/\Lambda_{\text{QCD}}^2})}{\ln[q^2 - 1(1 + q^2/\Lambda_{\text{QCD}}^2)]}.
\]

The first term above controls the strength of the effective coupling, in such a way that the QC model is defined once the mass parameter, \(m_G = (wD)^{1/3}\), is fixed to produce the masses and decay constants of the ground-state pseudoscalar mesons. Typical RL parameters are \(m_G \approx 0.8\) GeV and \(w \sim 0.5\) GeV; herein, the later is varied within the range \(w \in (0.4, 0.6)\) to estimate model uncertainties. The second term is simply set to reproduce the 1-loop behavior of the QCD’s running coupling: \(\gamma_m = 12/(11N_C - 2N_f) = 12/25\) is the anomalous dimension, with \(N_f = 4\) flavors and \(N_C = 3\) colors, and \(\Lambda_{\text{QCD}} = 0.234\) GeV; the parameter \(\Lambda = 1\) GeV is introduced for technical reasons and has no material impact on the computed observables. Table I collects the RL inputs and some static properties of the pion and kaon.

It is worth mentioning that the RL truncation is self-consistent with the IA, in such a way that the EFF is obtained from:

\[
2K_P F_P(Q^2) = e_u[F_P(Q^2)]_\mu + e_{\bar{u}}[\bar{F}_P(Q^2)]_\mu,
\]

where \(P\) is a \(u\bar{h}\) meson and \(e_u, e_{\bar{u}}\) are the electric charges of the quark and antiquark, respectively. \([F_P(Q^2)]_\mu\) denotes
the interaction of the photon with a valence constituent \(f \)-in-\(P \), such that:

\[
[F^f_P(Q^2)]_\mu = \text{tr}_{CD} \int_q \chi'^f_\mu(q + p_f, q + p_i)
\times \Gamma_P(q; p_i) S(q) \Gamma_P(q_f; -p_f). \quad (18)
\]

The kinematics is defined as follows: \(p_{i,f} = K \mp Q/2 \) and \(q_{i,f} = q + p_{i,f}/2 \), such that \(p^2_{i,f} = -m^2_f \); naturally, \(m_P \) is the mass of the pseudoscalar meson and \(Q \) the photon momentum. The trace, \(\text{tr}_{CD} \), is taken over color and Dirac indices. The only remaining ingredient to compute the EFFs in the RL approximation is the QPV. This is described below.

C. Quark-photon vertex

The QPV might be obtained via the inhomogeneous BSE:

\[
\Gamma^f_\mu(p; P) = \gamma_\mu + \int_q [K^{(2)}(q, p; P)] \chi'^f_\mu(q; P), \quad (19)
\]

where \(\chi'^f_\mu(q; P) \) is simply the unamputated vertex,

\[
\chi'^f_\mu(q; P) = S^f(q_+) \Gamma^f_\mu(q; P) S^f(q_-). \quad (20)
\]

The choice of the 2-body kernel in Eq. (19) renders the QPV self-consistent with the chosen truncation, ensuring, for example, that the Abelian anomaly related with the process \(\gamma \gamma \rightarrow \pi^0 \) is faithfully reproduced [99,100]. For the purpose of clarity, we refer to this approach as the direct computation.

In the RL truncation, vector meson bound states appear as poles on the negative real axis in the \(Q^2 \) plane in the inhomogeneous BSE for the QPV [101] and, as a consequence, in the timelike form factors. The appropriate inclusion of these poles favors obtaining the correct value for the charge radius [81,101]. The EFFs in the timelike region are harder to describe in the DSE-BSE approach. For all practical purposes, this should not affect the way EFFs contribute to \(a_\mu \), because only a relatively small spacelike region of the corresponding form factors near \(Q^2 = 0 \) actually matters for determining their contribution [31,79]. We expect this small effect to be virtually remedied by adjusting the model parameters to reproduce the correct value of the charge radius.

Notwithstanding, it is worth exploring and reassuring our expectations through a proper treatment of the timelike region. In order to shift the vector meson poles appearing in the QPV to the complex plane, and turn the bound state into a resonance with a nonvanishing decay width, the interaction kernels \(K^{(1,2)} \) must allow virtual decays into suitable channels [102,103]. The truncation explored in [82] and employed in [68] for the calculation of the pion timelike EFF, denoted herein as beyond rainbow-ladder (BRL), takes into account resonance effects and incorporates meson cloud effects (MCEs) in the description of the pion EFF. This is sufficient to produce the correct behavior of the pion EFF in the timelike axis. We adopt this approach to compute the \(\pi - K \) EFFs and corresponding box contributions. As Eq. (7) suggests, it is also desirable to go beyond the IA. Nevertheless, to alleviate the numerical calculations we neglect further photon couplings and consider the IA only. Some aspects of the calculation of EFFs in the BRL truncation are canvassed herein, in Appendix, and detailed through Refs. [68,82]. As clarified in Table I, the QC model favors \(m_G = 0.87 \) GeV and \(\omega \sim 0.7 \) GeV.

Due to technical reasons, when employing the QPV obtained from Eq. (19), the calculation of EFF is limited to a certain domain of spacelike momenta. For instance, the pion elastic and \(\gamma^* \gamma \rightarrow \pi^0 \) transition form factors can only be obtained up to \(Q^2 \sim 4 \) GeV\(^2\) [81,100], without appealing to sophisticated mathematical techniques for extrapolation [80]. While not the entire spacelike domain is crucial to \(a_\mu \), it is reassuring to access it in its entirety.\(^3\) For this reason and in direct connection with our previous work on the HLbL contributions of neutral pseudoscalars [79], we also present an alternative technique, based upon perturbation theory integral representations (PTIRs), to evaluate the form factors at arbitrarily large momenta.

D. The PTIR approach

A practical PTIR approach for the quark propagators and BSAs was put forward in [71,75], to calculate the pion distribution amplitude and spacelike EFF. It was subsequently implemented to the case of \(\gamma^* \gamma^* \) TFFs [76–79].

\(^3\)The large-\(Q^2 \) behavior of the \(\gamma^* \gamma^* \) TFFs is quite useful to parametrize the numerical solutions [79,104].
The general idea, which applies to all pseudoscalars, is to describe the quark propagators in terms of $j_m = 2$ complex conjugate poles (CCPs), and express the BSAs, A_j, as follows:

$$A_j(k;P) = \sum_{i,j=1}^{i_{\max}} \int_{-1}^{1} dw \rho^j_i(w) \frac{c^j_i (\Lambda^2_{i,j})^\rho_{ij}}{(k^2 + w k \cdot P + \Lambda^2_{i,j})^\rho_{ij}}. \tag{21a}$$

The interpolation parameters involved, i.e., $\{z_j, m_j\}$, $\{\alpha_i^j, \beta_i^j, \Lambda_{i,j}, c_i^j, i_n = 3\}$ (for quark propagators and BSAs, respectively), as well as the spectral weights, $\rho^j_i(w)$, are determined through fitting of the numerical results of the corresponding DSE-BSEs. The carefully constructed sets of RL truncation parameters are found in Refs. [74,76].

Constructing a PTIR for the QPV in Eq. (19) turns out to be difficult and unpractical [95]. Thus, appealing to gauge covariance properties [105], the following Ansatz has been proposed and systematically tested [76–79]:

$$\chi^f_{\mu}(k_o, k_i) = \gamma^j_\mu \Delta^f_{\nu}$$

$$+ \left[s_f \gamma \cdot k_o \gamma^\mu \cdot k_i \right] \Delta^f_{\nu}$$

$$+ \left[s_f \gamma \cdot k_o \gamma^\mu + \gamma^\mu \gamma \cdot k_o \right] \Delta^f_{\nu}$$

$$+ \tilde{s}_f \left(\gamma \cdot k_i \gamma^\mu + \gamma^\mu \gamma \cdot k_o \right) i \Delta^f_{\nu}, \tag{22}$$

where $\Delta^f_{\nu} = [\phi^f(k_o^2) - \phi^f(k_i^2)]/(k_o^2 - k_i^2)$ and $\tilde{s}_f = 1 - s_f$. According to [79], the transverse pieces are weighted by

$$s_f = s_f \exp \left[- \left(\sqrt{Q^2/4 + m^2_P} - m_P \right)/M^2_F \right], \tag{23}$$

such that the strength parameter s_f is tuned to reproduce the π^0, Abelian anomaly and $\gamma \gamma \rightarrow \{\eta, \eta', \eta_c\}$ empirical decay widths. Nonetheless, as confirmed by our numerical evaluations, such weighting for the case of the EFFs is irrelevant and one can simply set s_f to zero. The reasons can be easily understood: first, the terms which dominate at low-Q^2 in Eq. (18), those involving the product of leading BSAs ($E_P \times E_P$), are not affected at all by the choice of s_f since the corresponding trace is exactly zero; then, with $F_P(Q^2 = 0) = 1$ entirely fixed by charge conservation, being exponentially suppressed, the s_f-weighted subleading terms could only provide a minor contribution in neighborhood of $Q^2 \sim 0$.

Defined as in Eq. (22), the QPV is fully written in terms of the quark propagator dressing functions. With all the ingredients in Eqs. (17) and (18) expressed in a PTIR, the evaluation of the 4-momentum integral follows after a series of standard algebraic steps (numerical integration is only carried out for the Feynman parameters and spectral weights). Hence, the form factors can be calculated at arbitrarily large spacelike momenta.

III. NUMERICAL RESULTS

A. Electromagnetic form factors

The $\pi - K$ EFFs are presented in Fig. 2. We compare the RL results which follow from the direct computation and PTIR approach; the compatibility between both calculations is evident. In the domain of interest, the BRL truncation yields similar outcomes. Furthermore, our obtained EFFs are in clear agreement with the DSE results reported in Ref. [31]. The charge radii are obtained from the derivative of the form factor:

$$r^2_p = -\frac{d F_P(Q^2)}{d Q^2} \bigg|_{Q^2=0}. \tag{24}$$

Both RL and BRL direct computations yield similar values: $r_p = 0.677(4)$ fm and $r_K = 0.597(3)$ fm (RL), and

![FIG. 2. π^+ and K^+ EFFs. The narrow band in the RL-direct result accounts for the variation of the QC model parameters, as described in text; those corresponding to the PTIR and BRL results are not shown, since there is a considerable overlap. The charge radii, Table I, are practically insensitive to the model inputs and truncation. Experimental data is taken from Refs. [106–109].](image-url)

\[r_\pi = 0.676(2) \, \text{fm} \quad \text{and} \quad r_K = 0.593(2) \, \text{fm} \quad \text{(BRL)}; \quad \text{the error accounts for the variation of } \omega \text{ in the QC model, as explained in Table I.} \]

The RL-PTIR case also falls within these values: \(r_\pi = 0.676(5) \, \text{fm} \) and \(r_K = 0.596(5) \).

B. Pion and kaon box contributions

The integrations in Eqs. (4)–(5) have been carried out employing the CUBA library [110], benchmarked with the vector meson dominance (VMD) ansatz:

\[
F_{\pi}^{\text{VMD}}(Q^2) = \frac{m_\pi^2}{m_\rho^2 + Q^2},
\]

\[
F_{K^+}^{\text{VMD}}(Q^2) = 1 - \frac{Q^2}{2} \left[\frac{1}{m_\rho^2} + \frac{1}{m_\omega^2} + \frac{1}{m_{\phi}^2} \right] + \frac{2}{3} \left(\frac{1}{m_\rho^2 + Q^2} - \frac{1}{m_\omega^2 + Q^2} + \frac{2}{3} \left(\frac{1}{m_\phi^2 + Q^2} \right) \right),
\]

which yield the results

\[
a_{\pi}^{+\text{-box}} = -16.4 \times 10^{-11} \quad \text{[RL-PTIR]},
\]

\[
a_{K^+}^{+\text{-box}} = -0.5 \times 10^{-11} \quad \text{[BRL]},
\]

where we have employed \(m_\pi = 0.13957 \, \text{GeV} \), \(m_K = 0.49367 \, \text{GeV} \), \(m_\rho = 0.7752 \, \text{GeV} \), \(m_\omega = 0.7827 \, \text{GeV} \), \(m_\phi = 1.0195 \, \text{GeV} \), \(m_\mu = 0.10565 \, \text{GeV} \) and \(\alpha_{\text{em}} = 1/137.03599 \) [111]. The estimates in Eq. (27) match those quoted in [31], and the integration errors have been omitted, since those are two orders of magnitude smaller.

With the EFFs obtained in the RL (direct and PTIR) and BRL truncations, the numerical estimates for the \(\pi^\pm - \text{box} \) contributions are

\[
a_{\mu}^{+\text{-box}} = -(15.4 \pm 0.3) \times 10^{-11} \quad \text{[RL-direct]},
\]

\[
a_{\mu}^{+\text{-box}} = -(15.6 \pm 0.3) \times 10^{-11} \quad \text{[RL-PTIR]},
\]

\[
a_{\mu}^{+\text{-box}} = -(15.7 \pm 0.2) \times 10^{-11} \quad \text{[BRL]},
\]

Analogous results for the \(K^\pm \) case yield:

\[
a_{\mu}^{K^+\text{-box}} = -(0.47 \pm 0.03) \times 10^{-11} \quad \text{[RL-direct]},
\]

\[
a_{\mu}^{K^+\text{-box}} = -(0.48 \pm 0.03) \times 10^{-11} \quad \text{[RL-PTIR]},
\]

\[
a_{\mu}^{K^+\text{-box}} = -(0.48 \pm 0.02) \times 10^{-11} \quad \text{[BRL]},
\]

From Fig. 2 and the above estimates, it is clear that the direct and PTIR approach are virtually indistinguishable; the BRL truncation also yields similar outcomes. Therefore, one can combine the estimates in Eqs. (28)–(29) to produce:

\[
a_{\mu}^{+\text{-box}} = -(15.6 \pm 0.2) \times 10^{-11},
\]

\[
a_{\mu}^{K^+\text{-box}} = -(0.48 \pm 0.02) \times 10^{-11},
\]

where the weighted errors have been added.

Our result for the \(\pi^\pm - \text{box} \) contribution agrees remarkably with the dispersive one, \(-15.9(2) \times 10^{-11} \) [22] and an earlier DSE evaluation, \(-15.7(2)(3) \times 10^{-11} \) [31] (see also Ref. [99]). In the case of the \(K^\pm \) contribution, we agree again with the previous DSE computation [31], \(-0.48(2)(4) \times 10^{-11} \), which yields \(-0.46(2) \times 10^{-11} \) once the integration error is improved [3]. We note that the \(K^0 \) box contribution is very much suppressed, as can be seen from its VMD description in the ideal \(\omega - \phi \) mixing case

\[
F_{K^0}^{\text{VMD}}(Q^2) = \frac{Q^2}{2} \left[-\frac{1}{m_\rho^2 + Q^2} + \frac{1}{3} \left(\frac{2}{m_\omega^2 + Q^2} \right) + \frac{2}{3} \left(\frac{1}{m_\phi^2 + Q^2} \right) \right],
\]

which yields the negligible result \(-1 \times 10^{-15} \) [3]. Consequently, we do not evaluate this contribution in our framework.

IV. CONCLUSIONS AND SCOPE

We describe the computation of the EFFs \(\gamma^* P \rightarrow P \) within the DSE approach to QCD, leading to the evaluation of their contributions to \(a_\mu \). The EFFs were obtained, firstly, in the RL truncation. Direct computations and the PTIR approach were shown to be fully compatible, while also being in agreement with the DSE results from Refs. [31,99]. Our previous calculation of the ground-state pseudoscalar pole contributions reinforces this finding [79]. It was confirmed that the BRL truncation, which incorporates meson cloud effects, \(^5\) produces similar EFFs in the relevant domain for \(a_\mu \); the value of the latter being barely affected by the new effects in the truncation.

In this way, we have highlighted how the DSE formalism is a robust approach for calculations of hadronic observables, including quantities of interest for the muon \(g - 2 \). We hope to continue developing calculations related to the subject; for instance, the importance of axial mesons has been discussed in [32], and the contribution coming from excited states might be relevant as well.

ACKNOWLEDGMENTS

The authors acknowledge support from CONACYT and Cátedras Marcos Moshinsky (Fundación Marcos Moshinsky). This research was also supported by CONACYT grant ‘Paradigmas y Controversias de la Ciencia 2022’ (Project No. 319395) and by Coordinación de la Investigación Científica (CIC) of the University of Michoacán, México, through Grant No. 4.10.

\(^5\) For spacelike EFFs, meson cloud effects take place in the neighborhood of \(Q^2 \approx 0 \) [112–114], such that, for increasing \(Q^2 \), BRL \(\rightarrow \) RL.
APPENDIX: BEYOND RAINBOW-LADDER TRUNCATION

In the RL truncation, the meson bound states appear as poles on the negative real axis on the Q^2 plane in the inhomogeneous BSE for the quark-photon vertex and, as a consequence, in the formulation of form factors in the timelike regime. In order to move the pole from the real axis to the complex plane and turn the bound state into a resonance state with a nonvanishing decay width, the interaction kernel K must allow virtual decays into suitable channels. In Refs. [102,103], pion cloud effects were investigated by the inclusion of pionic degrees of freedom in the quark propagator DSE and in the BSE interaction kernel. In such BRL truncation the quark propagator is modified by $(k = p - q$ and $\bar{k} = (p + q)/2)$:

$$S^{-1}_f(p) = S^{-1}_f(p)^{RL} - \frac{3}{2} Z_2 \int \Lambda q \gamma S(q) \Gamma_P(k, -k)$$

$$+ \gamma S(q) \Gamma_P(k, k) \frac{D_P(k)}{2}, \quad (A1)$$

with $S^{-1}(p)^{RL}$ being the right-hand side of Eq. (9) in the RL truncation, Eqs. (13), (14), and $D_P(k) = (k^2 + m^2_P)^{-1}$. The quark propagator in Eq. (A1) preserves the axial-vector WGTA identity in combination with the following interaction kernel for the $t-$channel pseudoscalar exchange [68,82]:

$$K_{ru}^m(q, p; P) = -\frac{3}{16} \left([\Gamma_P^m]_{ru}(\bar{k} - P/2, k) [Z_2 \gamma^5]_{is} + [\Gamma_P^m]_{ru}(\bar{k} - P/2, -k) [Z_2 \gamma^5]_{is} + [\Gamma_P^m]_{ru}(\bar{k} - P/2, k) [Z_2 \gamma^5]_{rs} + [\Gamma_P^m]_{ru}(\bar{k} - P/2, -k) [Z_2 \gamma^5]_{rs} \right) D_P(k).$$

Analogous expressions for the s and u channels might be found in [82]; beyond IA corrections to Eq. (7), K^m_{μ} are given in [68].

[15] Eigo Shintani and Yoshinobu Kuramashi, Hadronic vacuum polarization contribution to the muon $g - 2$ with 2 + 1 flavor lattice QCD on a larger than (10 fm)3 lattice at the physical point, Phys. Rev. D 100, 034517 (2019).
[17] Antoine Gérardin, Marco Cè, Georg von Hippel, Ben Hörz, Harvey B. Meyer, Daniel Mohler, Konstantin Ottnad, Jonas Wilhelm, and Hartmut Wittig, The leading hadronic contribution to \((g-2)_\mu\) from lattice QCD with \(N_f = 2 + 1\) flavours of \(O(a)\) improved Wilson quarks, Phys. Rev. D 100, 014510 (2019).

[44] Bai-Long Hoid, Martin Hoferichter, and Bastian Kubis, Hadronic vacuum polarization and vector-meson resonance parameters from \(e^+e^-\rightarrow \pi^0\gamma\), Eur. Phys. J. C 80, 988 (2020).

[50] Marvin Zanke, Martin Hoferichter, and Bastian Kubis, On the transition form factors of the axial-vector resonance $f_1(1285)$ and its decay into e^+e^-, J. High Energy Phys. 07 (2021) 106.

[56] Christopher L. James, Randy Lewis, and Kim Maltman, Constraints between $(g_\mu^2)_{\text{HLbL}}$ at short distances, J. High Energy Phys. 04 (2021) 240.

[62] Eduardo de Rafael, Constraints between $\Delta a_{\text{had}}(M_Z^2)$ and $(g_\mu^2)_{\text{HLbL}}$, Phys. Rev. D 102, 056025 (2020).

[95] Yin-Zhen Xu, Daniele Binosi, Zhu-Fang Cui, Bo-Lin Li, Craig D Roberts, Shu-Sheng Xu, and Hong Shi Zong, Elastic electromagnetic form factors of vector mesons, Phys. Rev. D 100, 114038 (2019).

[106] H. P. Blok et al., Charged pion form factor between \(Q^2 = 0.60\) and 2.45 \(\text{GeV}^2\). I. Measurements of the cross section for the \(^1\text{H}(e, e'\pi^\pm)n\) reaction, Phys. Rev. C 78, 045202 (2008).

