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A B S T R A C T   

The newly developed open-source Hydrological Pixel model, HyPix, written in the fast and flexible Julia lan-
guage, efficiently solves the mixed form of the Richardson–Richards’ equation (RRE). HyPix uses a cell-centred, 
finite-volume scheme for the spatial discretization, with an implicit Euler scheme for the temporal discretization, by 
using the weighted average inter-cell hydraulic conductivity. HyPix includes the following modules: (a) rainfall 
interception, (b) root water uptake with compensation algorithm and root growth, (c) soil evaporation, (d) ponding 
using a novel method for computing sorptivity, and (e) runoff. HyPix includes a wide range of top and boundary 
conditions (flux, pressure, free drainage). To control the Newton–Raphson iterations, HyPix incorporates a novel 
dynamic physical smoothing criterion, which improves not only the model performance but also its accuracy 
compared with using the traditional absolute convergence criterion. To control the time-step, the traditional 
physical time-step management based on changes in the soil water content was specifically designed to solve RRE 
based on soil water content. This work adapts the time-step management such that it is specifically designed to 
solve RRE based on soil water pressure without introducing further parameters. The novel time-step management 
also requires only one parameter and was found to be more efficient than the traditional time-step management. 
HyPix implements an option to solve the derivatives numerically, enabling the RRE to be modified and tested (e. 
g., the inter-cell hydraulic conductivity) by changing only a few lines of code. Numerically calculating de-
rivatives was found to be as accurate as deriving the derivatives analytically, and only 10–25% slower. 

The well-established hydrological model HYDRUS was used to validate HyPix without the sink term. The 
HyPix results show good agreement to HYDRUS, validating the algorithms implemented in HyPix. Even for 
challenging conditions, HyPix can provide accurate and reliable results using the recommended standard op-
tions. Moreover, the algorithm developed in HyPix is more efficient than the one used in HYDRUS, particularly 
for coarse texture soils. The recommended options were also tested by running HyPix with sink term using field 
data.   

1. Introduction 

Understanding and modelling processes within the critical zone, 
extending from the top of the vegetation canopy to the lower limit of 
groundwater, are of great importance for better managing and 

protecting water resources (e.g., Ranatunga et al., 2008) under 
increasing demands and changing climatic conditions (National 
Research Council, 2001). The vadose zone holds a central position in this 
complex system, governed by numerous interactions. As a result, the 
development of robust and efficient numerical solutions describing 
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water flows in unsaturated porous media remains a challenge that is 
relevant to a wide range of scientists, agricultural applications, and 
policy makers. 

The Richardson-Richards’ equation (RRE, Richardson, 1922; 
Richards, 1931), usually known as Richards’ equation, which combines 
the continuity equation with Darcy–Buckingham’s (DB) law, provides a 
physical basis for modelling the water movement through the unsatu-
rated zone (e.g., Farthing and Ogden, 2017; Raats, 2001). Hence, it is 
implemented in many distributed hydrological models at watershed or 
regional scales (e.g., Shen and Phanikumar, 2010), and also in land 
surface models that often represent the vertical water movement in the 
soil through the 1D-RRE (e.g., Bisht et al., 2018; Dai et al., 2019). A key 
condition to validate this approach remains the existence of a local scale 
for which DB law is valid and suitable physical parameters can be pro-
vided for the constitutive relationships describing the K(ψ), hydraulic 
conductivity [L T− 1], and θ(ψ), volumetric water content [L3 L− 3], 
functions of the soil water pressure ψ [L]. Since highly non-linear 
parametric models are generally used to describe these interdependent 
relationships, the RRE must be solved numerically because there is no 
exact analytical solution. This means that modellers are burdened with 
solving a non-linear partial differential equation potentially varying 
between a hyperbolic to a parabolic mathematical form depending on 
the soil condition. All things considered, the numerical solution of the 
RRE is one of the most challenging problems in earth sciences, with a 
high risk of non-convergence (e.g., Farthing and Ogden, 2017). 

Advanced numerical schemes well suited to handling complex 
spatial grids (e.g., Qi et al., 2018) and optimized time discretization 
procedures are available to solve the different forms of the RRE (Fahs 
et al., 2009; Farthing and Ogden, 2017; Maina and Ackerer, 2017). To 
briefly summarize the current situation, the θ-form of the RRE provides 
excellent mass balance but cannot handle water flows in saturated zones 
and exhibits discontinuities in the dependent variable across soil layer 
boundaries. On the other hand, the ψ-form is continuous in both satu-
rated and unsaturated zones but can suffer large mass balance errors 
(Celia et al., 1990; Hills et al., 1989). Finally, the RRE is often presented 
and solved using the mixed form, and the computational codes usually 
contain a step where the primary variable is chosen to linearize and 
solve the mathematical system, which then updates secondary variables. 
Very efficient results have been obtained with variable switching 
methods. These consist of selecting the primary variable to be computed 
(i.e., θ or ψ) for each node of the matrix system as a function of the 
saturation of the soil (Diersch and Perrochet, 1999; Forsyth et al., 1995; 
Wu and Forsyth, 2001). Improvements, especially for non-smooth 
transitions between alternative primary variables, have been devel-
oped to prevent unrealistic solutions or numerical difficulties (Krab-
benhøft, 2007; Lehmann and Ackerer, 1998; Zha et al., 2017). 

The temporal discretization usually proceeds with an implicit 
scheme, and the resulting non-linear algebraic system requires an effi-
cient and robust linearization technique that maintains mass conserva-
tion and accuracy of the solution. The Picard and Newton–Raphson (NR) 
iterative methods are the most widely used procedures for solving the 
RRE. Due to its robustness and simplicity, the Picard method is more 
widespread and has been, for instance, implemented in several popular 
numerical codes solving the RRE, such as the HYDRUS (Šimůnek et al., 
2016) and SWAP (van Dam et al., 2008) models. Nonetheless, slow or no 
convergence have been encountered with this technique for cases of 
saturated–unsaturated interfaces, gravity drainage, or complex 
time-varying boundary conditions (Paniconi et al., 1991). The NR 
method has been found to be more efficient than the Picard iteration 
method (Miller et al., 1998; Paniconi et al., 1991; Paniconi and Putti, 

1994), but it increases algebraic complexity and computational costs 
because of the Jacobian matrix containing some derivative terms and 
leading to a non-symmetric matrix system (Paniconi and Putti, 1994). 

Convergence failure of the NR method can occur in some unfav-
ourable flow conditions, especially when simulating infiltration into 
initially dry soils where the head gradient at the wetting front is 
extremely large. To solve this numerical difficulty, Zha et al. (2019) 
proposed an algorithm where the ψ before and after the iteration are 
examined. The proposed modifications do not degrade the simulated 
results, leading to more robust convergence performances and 
cost-effective simulations for this particularly challenging conditions. 
Alternatively, efficient non-iterative techniques can also be imple-
mented (Kavetski et al., 2002; Li et al., 2021). 

Finally, linked with the linearization technique and the spatial dis-
cretization scheme, the numerical solution of the RRE can be sensitive to 
the convergence-control strategies and the method to adapt the time- 
step size during the simulation. Compared to using a fixed time-step, 
adaptive time discretization is more efficient and has become quite 
common, ranging from heuristic to control-based-error methods. A large 
number of heuristic time-stepping methods have been proposed in the 
literature (e.g., Thomas and Gladwell, 1988; Kavetski et al., 2001; 
Kavetski and Binning, 2004; Miller et al., 2006; Belfort et al., 2007). 

A key aspect justifying ongoing research of improvements relies on 
the need to balance run time, robustness, accuracy, and flexibility. 
Despite numerous efforts over the last decade, algorithms to achieve fast 
and accurate solutions are still actively being researched (e.g., Zha et al., 
2019). Here, we propose improvements to the solution of the RRE and 
implement them in the novel Hydrological Pixel (HyPix) model using 
the mixed form of the RRE. The solution of the RRE is based on Maina 
and Ackerer (2017), for which the RRE partial differential equation is 
solved using a cell-centred finite-volume (implicit finite differences) 
scheme for the spatial discretization, with an implicit Euler scheme for the 
temporal discretization by using the weighted average inter-cell hydraulic 
conductivity. Then, HyPix solves the mixed form of the RRE using the 
NR method. 

To avoid overshooting and losing control of the NR step, we propose 
a new physical method which automatically controls the convergence 
rate depending on the difficulty to get the solution. As previously 
mentioned, the drawback of solving the RRE with the NR method is that 
it requires reprogramming the computation of the Jacobian matrices (i. 
e., the derivatives of the parameters with respect to ψ); hence for testing 
purposes, changing inter-cell hydraulic conductivities leads to a 
reprogramming of the derivatives. To overcome this limitation, HyPix 
takes advantage of the Julia language (Bezanson et al., 2017; Perkel, 
2019), which enables automatic resolution of derivatives (Revels et al., 
2016). 

An updated physical time-stepping scheme has been developed that 
is tailored to solve the RRE based on ψ (and not θ) without introducing 
additional parameters. The time-stepping management module opti-
mizes the size of the time-step, ΔT, such that HyPix uses the largest ΔT 
while meeting the targeted water balance and accuracy of the solution. 
Our technique is adapted from Kirkland et al. (1992) and Ross (2003), 
because their time-stepping management is physically based, such that 
ΔT is directly derived from the residuals of the water balance and re-
quires fitting of only one physical parameter. ΔT is calculated via a 
maximum increase or decrease of the degree of saturation for each cell; 
this ensures a higher time resolution when θ variations are large, which 
improves the convergence rate at the wetting front. 

The newly developed model has a reduced number of parameters to 
manage the solving of the RRE compared to other physically based 
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hydrological models. HyPix can (a) process a large number of soil layers 
described by the Kosugi (1994, 1996) unimodal and bimodal K(ψ) and 
θ(ψ) hydraulic parameters for each soil layer, (b) simulate for the top 
boundary condition realistic water ponding and runoff at the soil surface 
by using a novel approach for the computation of sorptivity, (c) compute 
root water uptake and evaporation, (d) apply a wide range of bottom 
boundary conditions such as prescribed bottom flux or pressure 
(i.e., water table), free drainage, and impermeable layer; and (e) model 
impermeable layers. 

This paper is organized as follows: section 2 presents the bimodal soil 
Kosugi hydraulic functions used in HyPix, to describe the RRE and the 
novel approaches to solve it; section 3 presents the five synthetic test 
cases used to validate HyPix with HYDRUS and the experimental data 
from five field sites; section 4 presents the results of comparing HYDRUS 
with HyPix and the performance of different HyPix option used with 
field experimental data; section 5 discusses the results of the best HyPix 
options based on synthetic and field experimental data; and section 6 
summarizes the main conclusions. 

2. Theory 

2.1. Bimodal Kosugi soil hydraulic functions 

HyPix uses the bimodal Kosugi (1994, 1996) soil hydraulic functions. 
The choice of the Kosugi soil hydraulic functions is based on the physical 
interpretation of their parameters in relation to the soil pore size dis-
tribution. The Kosugi hydraulic parameters can be physically inter-
preted and constrained by exploiting physical relationship between the 
parameters (Fernández-Gálvez et al., 2021; Pollacco et al., 2013b). 
Moreover, the selection of bimodal functions is based on the prevalence 
of soils with bimodal pore system (e.g., Jarvis, 2007; McLeod et al., 
2008), where macropores and micropores lead to two-stage drainage. 
Fast flow (macropore flow) can occur when the water pressure head 
exceeds the threshold needed to activate the macropore network, adding 
to the matrix flow. Below this threshold, only the matrix participates in 
the flow (Fernández-Gálvez et al., 2021). The representation of the θ(ψ) 
and K(ψ) functions is based on the dual porosity model of Pollacco et al. 
(2017): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(ψ) = θMat(ψ) + θMac(ψ)

if ψ ⩽ 0

θMat(ψ) =
1
2
[θsMacMat − θr]erfc

⎡

⎢
⎢
⎣

ln
(
− ψ/ψm

)

̅̅̅
2

√
σ

⎤

⎥
⎥
⎦+ θr

θMac(ψ) =
1
2
[θs − θsMacMat]erfc

⎡

⎢
⎢
⎣

ln
(
− ψ/ψmMac

)

̅̅̅
2

√
σMac

⎤

⎥
⎥
⎦

elseif ψ > 0

θMat(ψ) = θsMacMat

θMac(ψ) = θs − θsMacMat

(1)    

where erfc is the complementary error function; θ [L3 L− 3] represents 
the volumetric soil water content and ψ [L] the soil water pressure, 
considering ψ < 0 for unsaturated soils (i.e., matrix suction); θs [L3 L− 3] 
and θr [L3 L− 3] are the saturated and residual volumetric soil water content, 
respectively; ln ψm and σ [-] denote the mean and standard deviation of 
ln ψ , respectively, in the soil matrix domain; ln ψmMac and σMac [-] 
denote the mean and standard deviation of ln ψ, respectively, in the 
macropore soil domain (with the argument of ln in units of length, i.e., 
ψm, ψ , and ψmMac in [L]); θsMacMat [L3 L− 3] is the volumetric saturated 
water content that theoretically differentiates inter-aggregate pores 
(structural macropores) and matrix domains (intra-aggregate micro-
pores), defining the corresponding soil water pressure threshold be-
tween macropore and matrix ψMacMat [L]; Se(ψ) [-] denotes the effective 
saturation as a function of ψ with values between 0 and 1; Ks [L T-1] is the 
saturated hydraulic conductivity; and K(Se(ψ)) [L T-1] refers to the 

⎧
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2
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2

elseif ψ > 0

KMat(Se(ψ) ) = Ks
θsMacMat − θr

θs − θr

KMac(Se(ψ) ) = Ks
θs − θsMacMat

θs − θr

(2)   
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unsaturated hydraulic conductivity, written as a function of Se(ψ). For the 
case when θsMacMat = θs, Eq. (1) and Eq. (2) reduce to the unimodal 
Kosugi soil hydraulic functions. 

The soil water capacity of the bimodal Kosugi model is computed as 
follow:  

And the derivative of K(ψ) with respect to ψ of the bimodal Kosugi 
model is:  

2.2. Richardson–Richards’ equation of HyPix model 

Modelling unsaturated flow in highly heterogeneous soils can be 

if ψ⩽0

C(θ,ψ) = ∂θ
∂ψ =

∂θMat

∂ψ +
∂θMac

∂ψ = − [θsMatMac − θr]

exp

[
−

[

ln
(

− ψ/ψm

)]2

2σ2

⎤

⎥
⎦

̅̅̅̅̅
2π
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− [θs − θsMatMac]

exp

⎡

⎣
−

[
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)]2

2σ2
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⎤

⎥
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̅̅̅̅̅
2π

√
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(3)   

⎧
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⎥
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elseif ψ > 0
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∂ψ = 0

(4)   
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accurately performed by solving the RRE (Richardson, 1922; Richards, 
1931), which is commonly adopted by soil-vegetation-atmosphere 
transfer models (e.g., Jones et al., 2021). However, the RRE is highly 
non-linear, and despite numerous efforts over the last decade its solution 
using numerical methods is demanding, and algorithms to achieve fast 
and accurate solutions are still actively being researched (e.g., Zha et al., 
2019). Assuming a rigid solid matrix (Fig. 1), the mixed form of the RRE 
is written as: 

θi
(
ψt

i

)
− θi

(
ψt− 1

i

)

ΔTt − So
θi
(
ψt

i

)

θsi

ψt− 1
i − ψt

i

ΔTt =
Qt

i− 1 /

2
− Qt

i+1 /

2

ΔZi
− Sinki

(
ψt− 1

i

)
(5)  

where ΔTt [T] is the time-step at time t; ΔZi [L] is the mesh size of cell i, 
with the vertical coordinate positive downwards; θi [L3 L− 3] is the 
volumetric soil water content of cell i; θsi [L

3 L− 3] is the saturated volumetric 
soil water content of cell i; S0 [L− 1] is a parameter which ranges from 10− 7 

to 10− 10 that accounts for fluid compressibility, which is assumed to be 
constant with depth; ψ i [L] is the soil water pressure of cell i, considering 

ψ < 0 for unsaturated soils; Q [L T− 1] is the soil water flux based on the 
extended DB law, which is positive downward and negative when water 
moves upwards; Qt

i− 1 /

2 
[L T− 1] is the flux entering cell i and Qt

i+1 /

2 
[L T− 1] 

is the flux exiting cell i; and Sinki [L3 L− 3 T− 1], taken as positive, is the 
sink term defined as the volume of water per unit time removed from cell 
i by soil evaporation (section 7.6.1) and root water uptake (section 7.6.2). 

2.2.1. Water fluxes, Q 

2.2.1.1. Q below the top cell: 2 ≤ i ≤ Ni. The Darcian fluid flux, Qt
i− 1 /

2 
[L 

T− 1], is computed by using the inter-cell hydraulic conductivity between 
cell i and (i–1) as described in Fig. 1, as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qt
i− 1 /

2
= − Ki− 1 /

2(ψ)

⎡

⎢
⎢
⎢
⎣

ψt
i − ψt

i− 1

ΔZi− 1 /

2

− cos α

⎤

⎥
⎥
⎥
⎦

ΔZi− 1 /

2 =
ΔZi + ΔZi− 1

2

Ki− 1 /

2(ψ) =
[
wi
[
Ki
(
ψt

i

)]p
+ [1 − wi]

[
Ki− 1

(
ψt

i− 1

)]p]1/p

ωi =
ΔZi

ΔZi + ΔZi− 1

(6)  

where Qt
i− 1 /

2 
[L T− 1] is the flux entering cell i from the top, and Qt

i+1 /

2 
is 

the flux exiting cell i from the bottom; Ki− 1 /

2 [L T− 1] refers to the weighted 
average inter-cell hydraulic conductivity (e.g., Haverkamp and Vauclin, 
1979; Belfort et al., 2013), computed with ωi; ΔZi− 1 /

2 [L] is the distance 
between cell centres i and (i–1), as depicted in Fig. 1; α [radian] refers to 
the angle between the vertical axis and the slope of the soil’s surface; 
and p = 1 for weighted average intercell conductivity as in this paper. 

2.2.1.2. Top boundary conditions, i = 1: ponding and runoff. Two 
boundary conditions are currently available in HyPix: (a) novel flux 
boundary condition with infiltration driven by sorptivity (section 
2.2.1.2.1) and (b) prescribed top pressure boundary condition (section 
2.2.1.2.2). 

2.2.1.2.1. Novel top flux boundary condition driven by sorptivity. The 

nomenclature taken in this paper is that ΔX is defined as 
∑T

t=1
Xt −

∑T− 1

t=1
Xt. 

For the top flux boundary condition, HyPix checks if the top flux 
boundary condition imposed by the user (throughfall precipitation 
ΔPrt

through [L]) can infiltrate into the top layer; if it is not the case, the 
excess of precipitation ponds on top of the soil surface. If ponding depth 
exceed the maximum ponding depth the excess water will be lost to 
runoff. The amount of water infiltrating into the top cell, i = 1, for a 
period ΔT, is computed by ΔQt

1 /

2 
[L] (Fig. 1). As the RRE cannot compute 

the top air–soil boundary, we compute ΔQt
1 /

2 
using the two-term 

approximation of Haverkamp et al. (1994), as suggested by Fernán-
dez-Gálvez et al. (2019). The maximum infiltration depth for a given ΔT 
is ΔQmaxt

1 /

2 
[L], and is computed as: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B =
2 − β

3
+

1 + β
3

K
(
θt− 1

1

)

Ks1

ΔQmaxt
1 /

2
= Qmaxt

1 /

2
ΔTt =

[
Sorpt

(
θt− 1

1

) ̅̅̅̅̅̅̅̅
ΔTt

√
+ B Ks1 ΔTt

]
cos α

(7) 

Fig. 1. Diagram describing the 1D vertical discretization of the Richard-
son–Richards’ equation, where i is the cell number (cell 1 is the top cell and cell 
Ni is the bottom cell, therefore cell = i is below cell = i–1). Considering ΔX as 
∑T

t=1
Xt −

∑T − 1

t=1
Xt  

then: ΔPr [L] is the precipitation reaching the top of the canopy; 
ΔPrground [L] is the precipitation reaching the soil surface (cell = 1); 
Hpond [L] is the ponding water; ΔRunoff [L] is the runoff and ΔQi+1/2 =

Qi+1/2 ΔT [L] is the inter-cell water volume (positive downwards). Water 
is removed from the soil profile by transpiration, ΔTransp [L], and 
evaporation, ΔEvap [L], depending on θ and potential evapotranspira-
tion, ΔPet [L] (partitioned between potential evaporation, ΔPetevap [L], 
and potential transpiration, ΔPettransp [L]). 
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where Qmaxt
1 /

2 
[L T− 1] is the maximum soil water flux; Sorpt [L T− 1/2] is 

the soil sorptivity; β [-] is an integral shape parameter, typically fixed at 
0.6 (Haverkamp et al., 1994; Parlange et al., 1982); and the slope, α 
[radian], is the angle between the flow direction of recharge and the 
vertical axis (0 ≤ α ≤ π/2 for inclined flow). 

Sorptivity is computed using the mixed formulation proposed by 
Lassabatere et al. (2021, 2022). The novelty of this sorptivity model is 
that it is highly efficient and accurate in the computation of sorptivity 
for all soil types from oven dry to saturation. The sorptivity model is 
computed as:  

where D(θ) is the diffusivity function for which dψ/dθ is derived in Eq. 
(3). Eq. (8) splits the integral into two parts to allow the integration of 
continuous functions over closed intervals. In the regular expression, the 
D(θ) is infinite close to saturation, θ → θs. In the specific Eq. (8), the last 
part of the integration based on ψ is replaced with the integration of the 
hydraulic conductivity as a function of the water pressure, K(ψ), alle-
viating the problem of convergence. 

The maximum water infiltrating into the top cell, ΔQmaxt
1 /

2
, must be 

less than the maximum available pore volume of the top cell: 
⎧
⎪⎨

⎪⎩

ΔSink1
(
ψt− 1

1

)
= ΔZiΔTtSink1

(
ψt− 1

1

)

ΔQmaxt
1 /

2
= min

{

ΔQmaxt
1 /

2
; ΔZ1

[
θs1 − θt− 1

1

]
+ ΔSink1

(
ψt− 1

1

)
} (9)  

where θs1 [L3 L− 3] is the saturated volumetric soil water content and ΔSink1 
[L] the sink term of the top cell (i = 1). 

The amount of water that is not able to infiltrate into the soil can 
either run off laterally due to the slope or get ponded at the surface, 
where ponding Ht

pond, [L] is computed as: 

Ht
pond =max

{

ΔPrt
through +Ht− 1

pond − ΔQmaxt
1 /

2
; 0
}

(10)  

where ΔPrt
through [L] is the throughfall precipitation (i.e., the amount of 

water reaching the top cell; Appendix 7.5). 
It is to be noted that the novel top flux boundary condition driven by 

sorptivity does not require any additional HyPix parameters. 
Runoff, ΔRunoff t [L], is generated if Ht

pond exceeds a user defined 
maximum ponding depth Hpond max[L] as follow: 
⎧
⎪⎨

⎪⎩

ΔRunof f t = max
{

Ht
pond − Hpond maxcos α ; 0

}

Ht
pond = min

{
Ht

pond ; Hpond maxcos α
} (11)  

2.2.1.2.2. Prescribed top pressure boundary condition, ψ top. The pre-
scribed top water pressure boundary condition implies that ψ t

1 = ψ t
top. 

The flux at the surface boundary is computed as follows: 

Qt
1 /

2
= − K1

(
ψt

1

)

⎡

⎢
⎣

ψt− 1
1 − ψt

top

ΔZ1

/2
− cos α

⎤

⎥
⎦ (12)  

where ψ t
top [L] is a user-defined pressure. 

HyPix computes equivalent ΔPrt
through corresponding to ψ t

top ≃ ψ t− 1
1 . 

In future research, the top water pressure boundary condition can be 
used to fine-tune the sorptivity model [Eq. (8)] described above. 

2.2.1.3. Bottom boundary conditions, i = Ni. The bottom boundary 

conditions implemented in HyPix are special cases of the following Eq. 
(13) derived from Eq. (6), and include (a) free drainage (section 
2.2.1.3.1), (b) prescribed bottom pressure (section 2.2.1.3.2), and (c) 
prescribed bottom flux (section 2.2.1.3.3). The bottom boundary con-
dition is universally computed as follows: 

Qt
N+

1 /

2
= − KN

(
ψt

N

)

⎡

⎢
⎣

ψt
N+1 − ψt

N

ΔZN

/2
− cos α

⎤

⎥
⎦ (13)  

2.2.1.3.1. Free drainage. The free drainage boundary condition at 
the bottom of the soil profile occurs when ∂ψ t

N
∂ZN 

= 1 in Eq. (13), leading to: 

Qt
N+

1 /

2
=KN

(
ψt

N

)
cosα (14)  

2.2.1.3.2. Prescribed bottom pressure, ψbot. The prescribed bottom 
water pressure boundary condition, ψ t

bot [L], is a user-defined variable 
(positive for saturated and negative for unsaturated conditions) set at 
the bottom of cell N of the soil profile (ψ t

N+1), which is derived from Eq. 
(13) and results in the following flux: 

Qt
N+

1 /

2
= − KN

(
ψt

bot

)

⎡

⎢
⎣

ψt
bot − ψt

N

ΔZN

/2
− cos α

⎤

⎥
⎦ (15)  

2.2.1.3.3. Prescribed bottom flux, Qbot. The prescribed bottom flux 
boundary condition, Qt

bot [L], is a user-defined variable (positive as a 
sink and negative as a source) set at the bottom of cell N of the soil 
profile, which derived from Eq. (13) results in the following flux: 

Qt
N+

1 /

2
=Qt

bot (16)  

2.3. Solving the Richardson–Richards’ equation using the 
Newton–Raphson method 

The Picard and Newton–Raphson (NR) iterative methods are the 
most widely used procedures for solving the RRE. The NR method has 
been found to be more efficient than the Picard iteration method (Leh-
mann and Ackerer, 1998; Paniconi and Putti, 1994), so we solved the 
RRE using the NR algorithm. The NR method is used to solve ψ t

i such that 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(θ) = K(θ)
dψ
dθ

Sorpt2( θt− 1
1 , θs1

)
=

∫

θs1 − θt− 1
1

2

θt− 1
1

[
θs1 + θ − 2θt− 1

1

]
D(θ)dθ +

∫
ψ

(
θs1 − θt− 1

1

2

)

0

[
θs1 + θ(ψ) − 2θt− 1

1

]
K(ψ)dψ

(8)   
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the residuals of each cell, Rt
i [L], equal close to 0. Rt

i is derived from Eq. 
(5) as follow:  

where ΔSinki [L] is the sink computed for a given ΔT. To stabilize the 
numerical scheme, ΔSinki is computed with the ψ i values derived from 
the previous time-step. 

The NR method is computed using a first-order Taylor development 
by solving the Jacobian matrices of the residuals, R [Eq. (17)] in an 
iterative way that updates [ψ t,k+1

i − ψ t,k
i ] until convergence is achieved. 

The numerical discretization is a tridiagonal (Appendix 7.1), non-linear 
set of equations that needs to be solved for [ψ i

t,k+1 − ψ t,k
i ], and for every 

iteration, k as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

ψt,k=1
i = ψt− 1

i

− Ri
(
ψt,k

i
)
=
∑i+1

j=i− 1

∂Ri
(
ψt,k

j
)

∂ψt,k
j

(
ψt,k+1

j − ψt,k
j
) (18)  

where the derivatives are described in Appendices 7.2 and 7.3. The 
initial ψ t=0

i is derived either from measured θt =0 or from ψ t =0. 
The computation of ψmin [L], which is the minimum allowed value of 

ψ , is based on the assumption that θ(ψ) is log-normal distribution, and 
therefore, according to Fernández-Gálvez et al. (2021), ψmin can be 
computed as follows: 
{

ψt
i⩾ψmini

= − elnψmi +4σi

K(ψmini
) ≈ 0

(19) 

The computation of ψmax [L], which is the maximum allowed value 
of ψ , is more challenging to compute as it can be positive or negative. 
Therefore, during the iteration when the water pressure is close to 
saturation it may change sign causing numerical instability (Zha et al., 
2017). To increase numerical stability for soils close to saturation, ψmax 
switches depending on the value of ψ t− 1

i as follow: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if ψt− 1
i > −

ψMacMat

2
ψt

maxi
= ψmaxMax

elseif

ψt
maxi

= 0

(20)  

where ψMacMat [L] is the theoretical water pressure for which macropore 
starts to fill up, corresponding to the minimum water pressure for which 
a soil can be considered close to saturation, often taken as 100 mm (e.g., 
Jarvis, 2007); ψmaxMax is a parameter for which its feasible range is 

provided in Table 1. 
Table 1 shows the feasible range as well as the recommended values 

for the parameters required to solve the RRE with the HyPix model. 

2.3.1. Convergence criterion 
For a given time-step, the iteration of the NR method stops either 

when k = Nk, where Nk is a user-defined maximum number of iterations 
(Table 1), or when the overall water balance of the residuals, WBresidual 
[T− 1], is satisfied. The WBresidual convergence criterion for the NR 
method is based on the Euclidean norm of a vector R (e.g., Driscoll and 
Braun, 2017; Kochenderfer and Wheeler, 2019; Kelley, 2003): 

WBresidual⩾

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Ni

i=1

[
Rt

i
ΔTtΔZi

]2

Ni

√
√
√
√

(21)  

where Ni is the total number of cells, as described in Fig. 1. The residuals 
are normalized, such that WBresidual is independent of the cell size, ΔZ, 
and the time-step, ΔTt. The feasible range of WBresidual is provided in 
Table 1. 

2.3.2. Automatic differentiation of the Jacobian with Julia language 
One of the shortcomings of the NR solver is that it requires the 

mathematical derivatives of R (Eq. (18) and derivatives described in 
Appendices 7.2 and 7.3), the implementation of which can be compli-
cated and time consuming (e.g., modifying the inter-cell hydraulic 
conductivity [Eq. (6)] for testing purposes, requires recalculation of the 
derivatives). 

To address this shortcoming, HyPix implements an option whereby 
the derivatives are derived automatically by using the forward-mode 
automatic differentiation ForwardDiff in the Julia package (Revels 
et al., 2016) (https://github.com/JuliaDiff). ForwardDiff (version 
0.10.24) was found to be as accurate as using the mathematical de-
rivatives and only, on average, 16% slower compared with using the 
analytical derivatives. We tested that for every boundary condition 
(section 2.2.1.2 and section 2.2.1.3), the derivatives derived analytically 
(section 7.2) give the same results (accuracy 10− 8) to those derived by 
using the forward-mode automatic differentiation ForwardDiff. 

2.3.3. Adaptive time-stepping management 
The time-stepping management module optimizes the size of the 

time-step, ΔT, such that HyPix uses the largest ΔT while meeting the 
targeted water balance and accuracy of the solution. Among the heu-
ristic time-stepping methods in the literature, we selected and improved 
the adaptive time-stepping management of Kirkland et al. (1992) and 
Ross (2003). This method is physically based, such that ΔT is directly 
derived from the residuals of the water balance (Eq. (17)) and requires 

Table 1 
Minimum, maximum, and recommended values for the HyPix parameters required to solve the RRE.   

Δψactive ΔTmin ΔTmax Nk WBresidual Δθmax Ωmin ψmaxMax 

[mm] [s] [s] [-] [s− 1] [L3 L− 3] [-] [mm] 

Eq. (22) Eq. (22) Eq. (22) Section 2.3.1 Eq. (21) Eq. (22) Eq. (31) Eq. (20) 

Min 0.5 1 ΔTmin 10 10–8 10–2 0.1 104 

Max 10 ΔTmax 6000 100 10–20 10–6 0.5 106 

Recom. 1.0 30 5400 70 10–10 8.10− 3 0.2 105  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rt
i = ΔZi

[
θi
(
ψt

i

)
− θi

(
ψt− 1

i

)]
+ ΔZiSo

θi
(
ψt

i

)

θsi

[
ψt

i − ψt− 1
i

]
− ΔTt

⎡

⎢
⎣Qt

i− 1 /

2
− Qt

i+1 /

2

⎤

⎥
⎦+ ΔSinki

(
ψt− 1

i

)

ΔSinki
(
ψt− 1

i

)
= ΔZiΔTtSinki

(
ψt− 1

i

)

(17)   
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only one physical parameter. ΔT is calculated via a maximum increase 
or decrease of the degree of saturation for each cell. This ensures a 
higher time resolution when θ variations are large, which improves the 
convergence rate at the wetting front. 

Below we present three options to optimize the size of the time-step: 
(a) the traditional time-stepping management of Kirkland et al. (1992) 
and Ross (2003), developed specifically for the RRE and based on θ with 
a more realistic computation of average ΔTt (section 2.3.3.1), (b) a novel 
time-stepping management of Kirkland et al. (1992) and Ross (2003), 
adapted for RRE based on ψ and implemented in HyPix (section 2.3.3.2), 
and (c) a condition to rerun HyPix with the updated ψ and ΔTt (section 
2.3.3.3). 

2.3.3.1. Traditional adaptive time-stepping management: Time-stepping- 
Δθ. The time-stepping management of Kirkland et al. (1992) and Ross 
(2003) assures numerical stability and avoids oscillation in the solution. 
ΔT is derived by rearranging the terms of the residual (Eq. (17)) 
assuming that R ≈ 0 and S0 ≈ 0 (S0 is by definition small and strictly 0 for 
non-compressible fluids) and Δθmax ≈

⃒
⃒θi(ψ t

i) − θi(ψ t− 1
i )

⃒
⃒where Δθmax [L3 

L− 3] is a constant parameter describing the maximum change of θ for a 
given ΔT. The Δθmax feasible range is provided in Table 1. 

We improved the time-stepping computing ΔTt by putting more 
weight on cells that are dynamically active Qt

i− 1 /

2
∕= Qt

i+1 /

2 
with 

⃒
⃒ψ t

i −

ψ t
i− 1
⃒
⃒⩾Δψactive. In other words, HyPix computes ΔTt considering the cells 

that are wetting up due to, for example, a wetting front in an initially dry 
soil (bottom cells are inactive). Therefore ΔTt is computed as follows: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NiT = 1

for i = 1 : Ni

if
⃒
⃒ψt

i − ψt
i− 1

⃒
⃒⩾Δψactive

ΔTt
i =

ΔZiΔθmax + ΔSinki
(
ψt− 1

i

)

⃒
⃒
⃒Qt

i− 1 /

2

(
ψt− 1

i− 1

)
− Qt

i+1 /

2

(
ψt− 1

i

)⃒⃒
⃒

ΔTmin⩽ΔTt
i ⩽ΔTmax

NiT = NiT + 1

end

end

ΔTt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Ni

i=1

[
ΔTt

i

]2

NiT

√
√
√
√

(22)  

where ΔTmin [T] and ΔTmax [T] are user-defined minimum and 
maximum time-steps, described in Table 1, which are used for ‘safety’ in 
the code; Δψactive with a recommended constant value of 1.0 mm, also 
described in Table 1; and Ni is the total number of cells. 

The selected average ΔTt of a soil profile is computed from ΔTt
i which 

is derived from every cell using a modified Euclidean norm of a vector 
based on Driscoll and Braun (2017), Kochenderfer and Wheeler (2019), 
and Kelley (2003), as computed for WBresidual in section 2.3.1. 

As described in Eq. (22), the computational time in HyPix decreases 
as ΔT increases. ΔT increases when (a) the size of the cell, ΔZ, increases, 
(b) the hydraulic properties from one cell to another, depicted by Q, do 
not change dramatically, (c) there are small pressure gradients, ∂ψ/∂Z, 
(d) there are small differences in hydraulic properties, and (e) when 
Δθmax increases. 

2.3.3.2. Novel adaptive time-stepping management: Time-stepping-ψ . For 

the robustness of the solution of the RRE [Eq. (5)] based on ψ, changes of 
Δψ between two consecutive time-steps must be small. This is particu-
larly the case when simulating infiltration into dry soil, where the head 
gradient at the wetting front is extremely large, leading to large 
computational efforts, numerical instability, and inaccuracy (e.g., Zha 
et al., 2017). Nevertheless, describing a generic θ(ψ), a small change of 
Δθ could result in a large change in Δlnψ, particularly near saturation 
and at the dry end of the θ(ψ) curve. 

The traditional Ross (2003) time-stepping-Δθ (Eq. (22)) is modified 
by allowing Δθmax to vary as described by Δθt

maxi
(ψ) such that Δlnψ =

const. For this we introduce a temporary parameter, computed from and 
for every cell: 

Δlnψmaxi
⩾
⃒
⃒ln
(
1+ψt

i

)
− ln

(
1+ψt− 1

i

)⃒
⃒ (23) 

To avoid introducing a second parameter we derive Δlnψmax from 
Δθmax. For a given ψ(θ), the smallest Δlnψ occurs at (θr + θsMacMat)/2 (or 
at the Kosugi parameter ψ = ψm). Therefore, Δlnψmaxi

(Δθmax) is 
computed for every cell as follows: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ1 /

2 i =
θri + θsMacMati

2
= θ(ψm)

Δlnψmaxi
(Δθmax) =

ln
[
ψ
(

θ1 /

2 i −
Δθmax

2

)

+ 1
]

− ln
[

ψ
(

θ1 /

2 i +
Δθmax

2

)

+ 1
]

2

(24) 

Δθt
maxi

(ψ) is adjusted based on the maximum allowed change of 
Δlnψmaxi 

and ψ t
i : 

Δθt
maxi

(
ψt

i, Δψmaxi

)
= θieln(ψt

i+1)
(
e− Δlnψmaxi − eΔlnψmaxi

)
(25) 

The advantage of Δθt
maxi

(ψ)⩽Δθmax is that its ‘steps’ are smaller at the 
wet end of the θ(ψ) curve. ΔTt

i is computed by substituting Δθt
maxi

(ψ)
instead of Δθmax into Eq. (22). 

2.3.3.3. Condition to rerun the time-step. ΔTt is computed using the 
previous water pressure, ψ t− 1, which may not reflect, for example, the 
passage of a wetting front requiring a reduced ΔTt. Therefore, to assure 
accurate water balance and stability of the solution of the RRE, HyPix is 
rerun with the updated ΔTt if ΔTt(ψ t)≪ΔTt(ψ t− 1). Therefore, HyPix is 
rerun if the following condition is meet: 

ΔTt ( ψt− 1) <
ΔTmin + PΔT Rerun

2
(26)  

where ΔTmin is the minimum time-step described in Table 1. 
If the maximum number of iterations is reached, k = Nk and the 

condition Eq. (26) is not met, then HyPix is rerun with a reduced time- 
step as follows: 

ΔTt =
ΔTmin + PΔT Rerun

2
(27)  

2.3.4. Controlling Newton–Raphson step 
The following algorithms are strategies to control the size of the NR 

step, defined as: 

ΔNRstepi =
⃒
⃒ψt,k

i − ψt,k− 1
i

⃒
⃒ (28) 

NR steps are implemented to avoid numerical instability and ‘over-
shooting’ of the NR method. The following algorithms are implemented 
into HyPix: (a) absolute convergence criterion (section 2.3.4.1); (b) 
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traditional smoothing method (section 2.3.4.2); (c) novel dynamic 
smoothing method (section 2.3.4.3); and (d) modified iteration for 
initially dry conditions proposed by Zha et al. (2017) (section 2.3.4.4). 
The advantages of the different algorithms as well as the rationality of 
the recommended option in HyPix are presented in the discussion. 

2.3.4.1. Absolute convergence criterion: traditional absolute conver-
gence criterion to avoid overshooting of the NR step. In line with common 
practices of solving the RRE, the absolute convergence criterion constrains 
the NR step by using Δlnψmaxi 

[Eq. (24)]. In HyPix for every cell ΔNRstepi 

[Eq. (28)] is constrained as follows: 

eΔlnψmax + 1⩾max
{⃒
⃒ψt,k

i − ψt,k− 1
i

⃒
⃒i=Ni

i=1

}
(29) 

This absolute convergence criterion could be used in conjunction 
with other constraining methods described in the following sections. 

2.3.4.2. Constant Ω: traditional smoothing with constant Ω to avoid 
overshooting of the NR step. To reduce overshooting of the NR step be-
tween two iterations and increase the efficiency, we introduce a 
smoothening algorithm as follows: 

ψi
t,k+1 =Ωψi

t,k+1 + [1 − Ω]ψi
t,k (30)  

were Ω = 0.5 is a fixed parameter. 

2.3.4.3. Dynamic Ω: novel smoothing with dynamic Ω to avoid over-
shooting of the NR step. The introduction of Ω, such as constant Ω in 
section 2.3.4.2, was found to be highly successful in reducing conver-
gence failure. We therefore propose to improve the method such that Ω 
varies for every cell and iteration. The feasible range of Ω is [Ωmin,Ωmax]

where Ω = Ωmax = 1 means no reduction of the NR step and Ω = Ωmin >

0 corresponds to a maximum reduction in the NR step. A decrease of Ω 
causes a slower convergence rate but increases the success rate of 
convergence of the NR for challenging conditions. We therefore propose 
the following Ω algorithm: 
⎧
⎪⎪⎨

⎪⎪⎩

Ωt,k+1
i
(
ψt,k

i
)
= Ωmax − [Ωmax − Ωmin]

[

min

{⃒
⃒θ
(
ψt,k+1

i
)
− θ
(
ψt,k

i
)⃒
⃒

Δθt
maxi

(
ψt,k+1

i
) ; 1

}]2

ψt,k+1
i = Ωt,k+1

i
(
ψt,k

i
)
ψt,k+1,a

i +
[
1 − Ωt,k+1

i
(
ψt,k

i
)]

ψt,k
i

(31)  

where Δθt
maxi

(ψ t,k+1
i ) was derived from Eq. (25); Ωmax = 1; and the 

feasible range of Ωmin is provided in Table 1. 
At a given t, challenging situations for iteration k occur when 

⃒
⃒
⃒θ(ψ t,k+1

i ) − θ(ψ t,k
i )

⃒
⃒
⃒≪Δθt

maxi
(ψ t,k+1

i ), then the NR step is reduced. It will 

be shown that the dynamic Ω method is not only successful in increasing 
accuracy but also in increasing the speed of convergence. 

2.3.4.4. Dry method: modified iteration for initially dry conditions. 
Convergence failure normally occurs in some unfavourable flow con-
ditions, especially when simulating infiltration into initially dry soils. To 
overcome this numerical difficulty, we adopt the algorithm proposed by 
Zha et al. (2017) where the water pressure before (ψ t,k

i ) and after (ψ t,k+1
i ) 

the iteration is examined to determine if there is any oscillation at the 
dry end of the θ(ψ) curve. If ψ t,k

i is smaller than a user-specified threshold 
ψdry, and ψ t,k+1

i is greater than a user-specified threshold ψwet, the risk of 
numerical divergence for this node is deemed to be very high. Under this 
condition, ψ t,k+1

i is estimated from the derived θt,k+1
i (the soil water ca-

pacity of the Bimodal Kosugi model Eq. (3)): 
⎧
⎪⎪⎨

⎪⎪⎩

if ψt,k
i ⩽ψdry(σi) and ψt,k+1

i ⩾ψwet(σi)

ψt,k+1
i = ψ

(
θt,k+1

i
)
= ψ

(

θt,k
i +

∂θt,k
i

∂ψt,k
i

[
ψt,k+1

i − ψt,k
i
]
)

(32) 

The threshold values ψdry and ψwet depend on soil type, and because σ 
defines the slope of the θ(ψ) curve, we derived the following empirical 
expressions as a function of σ with the set of soils published by Zha et al. 
(2017) and shown in Fig. 2. 
{

ψweti = − max
{
− 2.312σ2

i − 2.937σi + 27.830 ; 0
}

ψdryi
= − exp[1.622 lnσi + 8.727]

(33)  

2.4. Accuracy and efficiency of simulations 

2.4.1. Water balance 
The overall water balance, WB [L], of the simulation is derived from 

the residuals, R [Eq. (17)], and is computed for every time-step as 
follows: 

Table 2 
Length of soil profile (L [mm]), total time of simulation (ΣT [days]), initial conditions (IC [mm]), boundary conditions at the surface (BCtop for prescribed ψ [mm] or 
prescribed flux Qt

1 /2 
Qt

1 /2 
[mm s− 1]), boundary condition at the bottom (BCbot for prescribed ψ [mm], prescribed flux Qt

N+ 1 /2 
[mm s− 1] or free drainage). The residual 

and saturated water contents (θr and θs), Kosugi shape parameters (ψm and σ), and saturated hydraulic conductivity (Ks) for the five different test cases.   

L [mm] ΣT [days] IC [mm] BCtop BCbot θr [m3 m− 3] θs [m3 m− 3] ψm [mm] σ [-] Ks [mm s-1] 

TC1 1000 2 104 ψ = 750 ψ = 104 0.097 0.368 602.64 1.137 0.09220 
TC2 1000 2 104 ψ = 750 Free 0.097 0.368 602.64 1.137 0.09220 
TC3 2000 30 Z-2000 Qt

1 /2 
= 3.75⋅10-5 ψ = 0 0.122 0.410 5201.72 2.085 0.00072 

TC4  600 30 1000 Qt
1 /2 

= 2.3⋅10-4 Free 0.024 0.366 588.42 0.981 0.06260 

600  1000   0.141 0.469 4524.09 1.933 0.00151 
600  1000   0.024 0.366 588.42 0.981 0.06260 

TC5  600 16 1000 Qt
1 /2 

= 2.3⋅10-4 Qt
N+ 1 /2 

= 0 0.024 0.366 588.42 0.981 0.06260 

600  1000   0.141 0.469 4524.09 1.933 0.00151 
600  1000   0.024 0.366 588.42 0.981 0.06260  

Fig. 2. ψdry and ψwet model as a function of σ derived for the set of soils used in 
Zha et al. (2017). 
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WBt =
∑Ni

i=1
ΔZi
[
θi
(
ψt

i

)
− θi

(
ψt=0

i

)]
−
∑Ni

i=1

∑Nt

t=1
ΔZiSo

θi
(
ψt

i

)

θsi

[⃒
⃒ψt

i

⃒
⃒ −
⃒
⃒ψt− 1

i

⃒
⃒
]

−
∑Nt

t=1
ΔTt

⎡

⎢
⎣Qt

1 /2
− Qt

N+
1 /2

⎤

⎥
⎦+

∑Ni

i=1

∑Nt

t=1
ΔSinki

(
ψt

i

)

(34)  

where Nt is the final time-step and Ni is the bottom cell. 
It is expected that the WB error increases with the length of the 

simulation; it is therefore normalized, WBη, to the cumulative 
infiltration: 

WBη =
WBt

∑Nt
t=1ΔTtQt

1 /

2

(35) 

An acceptable water balance at the end of the simulation occurs 
when WBη is smaller than the uncertainty of measuring precipitation. 

2.4.2. Efficiency 
The efficiency of a simulation, Eff [T− 1], is defined as the average 

number of iterations required to perform a day of simulation, computed 
as follows: 

Eff = ς
∑Nt

t=1k t

∑Nt
t=1ΔTt

(36)  

where k is the number of iterations per time-step, which includes 
repeated simulation (section 2.3.3.3); Nt is the number of time-steps; and 
ς = 86400 s (if the units are in seconds). Therefore, the smaller Eff, the 
faster HyPix would run for a given WBresidual [Eq. (21)]. 

2.5. Summary of HyPix algorithm 

Initialization.  

• Estimate the percentage of roots, ΔRdfi, per cell, derived from the 
vegetation parameters [Eq. (80)].  

• Compute initial soil water pressure, ψ ini [L], if required, derived from 
initial observed θ t = 1.  

• Compute Δψmaxi
(Δθmaxi ) for every cell, which will be used to compute 

the variable time-step [Eq. (25)] and the dynamic Ω [Eq. (31)]. 

Iteration of the NR, which solves ψ of the RRE for a given ΔT. 
Compute at the beginning of every time-step:  

• new time-step, ΔT, derived from ψ t− 1 (section 2.3.3.2)  
• sorptivity from ψ t− 1 to derive the maximum infiltration rate (section 

2.2.1.2.1)  
• interpolation of ΔPr and ΔPetevap for a given ΔT  
• vegetation parameters LAI and KC, which vary monthly (section 

3.2.2)  
• potential evapotranspiration: ΔPettransp and ΔPetevap (section 7.4)  
• precipitation not intercepted that reaches the ground surface, 

ΔPrground (section 7.5)  
• soil evaporation computed from ψ t− 1, ΔEvap (section 7.6.1)  
• root water uptake computed from ψ t− 1, ΔRwu (section 7.6.2). 

During each iteration:  

• compute the residuals [Eq. (17)] and derivatives [Eq. (18)] described 
in sections 7.2 and 7.3  

• compute Δθt
maxi

(ψ t,k+1
i ) [Eq. (25)] to manage the NR steps  

• compute dynamic Ωt,k+1
i (ψ t,k

i ) [Eq. (31)] to smoothen the Newton- 
Raphson step  

• continue the iteration loop of the NR until either the convergence 
criterion WBresidual is met Eq. (21) or the maximum allowed iteration 
is reached. 

After iteration is computed:  

• rerun the model if ΔTt(ψ t)≪ΔTt(ψ t− 1) with the new derived time- 
step (section 2.3.3.3). 

After the simulation is terminated.  

• Compute the soil water balance and efficiency of simulation (section 
2.4). 

Table 3 
For each of the test cases using the HYDRUS and HyPix models, WB [Eq. (35)] is the overall water balance and Eff [Eq. (36)] is the average number of iterations per day 
homogenised for an average period of 30 days. ΔQNiT

N+1/2 = ΔTNiT QNiT
N+1/2 is the drainage from the bottom cell during the total time of simulation. RMSE [Eq. (37)] and 

NSE [Eq. (38)] refer to the root mean square error and Nash–Sutcliffe efficiency coefficient, respectively, computed for simulated θ-profile derived with HYDRUS and 
HyPix models. HyPix simulations were derived using the dynamic Ω (section 2.3.4.3), the dry method (section 2.3.4.4) for controlling the NR steps, as well as the time- 
stepping management based on ψ for solving the RRE (section 2.3.3.2).   

WB [mm] Eff [day− 1] ΔQNiT

N+ 1 /2 
[mm] RMSE [mm] NSE [-] 

HYDRUS HyPix HYDRUS HyPix HYDRUS HyPix 

TC1 5.3 10− 5 1.5 10− 5 2374 73 15.9 13.5 4.1 10− 3 0.98 
TC2 3.8 10− 5 1.1 10− 6 84 55 6.8 6.2 3.9 10− 3 0.93 
TC3 2.1 10− 4 2.7 10− 5 50 34 26.7 26.7 1.0 10− 5 0.99 
TC4 8.2 10− 4 2.5 10− 5 50 34 483 485 5.3 10− 3 0.99 
TC5 1.4 10− 3 6.8 10− 7 61 221 5.10–4 0.0 1.8 10− 2 0.97  

Table 4 
Yearly average values of precipitation (ΔPr), potential evapotranspiration (ΔPet), simulated throughfall precipitation (ΔPrthrough), simulated drainage (ΔQ), simulated 
evapotranspiration (ΔSink), and computed normalized WBƞ for the five experimental sites.  

Site ΔPr ΔPet ΔPrthrough Interception loss ΔQ ΔSink WBη 

[mm] [mm] [mm] [%] [mm] [mm] [%] 

Waitoa 1028 910 823 20 392 388 4.4⋅10− 6 

Waihou 1217 761 1099 10 628 433 0.2⋅10− 6 

Taupō 1646 773 1489 10 1015 423 0.7⋅10− 6 

Otorohanga 1818 875 1581 14 1162 430 2.4⋅10− 6 

Hamilton 2487 413 2298 8 2020 100 0.2⋅10− 6  
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• Compute the outputs of interest at the time step of interest (e.g., θ, ψ , 
Q …). 

3. Material and methods 

Two independent sets of data are used in this study: (1) we describe 
five synthetic test cases for validating HyPix with HYDRUS without 
including the sink term in the RRE, and (2) we present the experimental 
data from five contrasting sites used for testing HyPix options under field 
conditions including the sink term. For all test cases considered in this 
work, we assumed that there is no runoff and therefore Hpond max = +

∞. 

3.1. Synthetic test cases for validating HyPix with HYDRUS without the 
sink term 

To assess the accuracy, efficiency, and computational costs of the 
different algorithms of HyPix, we compared the numerical solution of 
HYDRUS (version 4.17.0140) (Radcliffe and Simunek, 2010; Šimůnek 
et al., 2016) with HyPix by using five challenging published test cases. 
The algorithm of HyPix utilizes the recommended options and the rec-
ommended HyPix parameters (Table 1). The HYDRUS model utilizes the 
recommended parameters except for the maximum time step ΔTmax 
being reduced to 1 h and by increasing the maximum number of itera-
tions Nk to match that of HyPix described in Table 1. 

The reported test cases in the literature use the Mualem–van Gen-
uchten hydraulic functions (Mualem, 1976; van Genuchten, 1980), and 
we transformed them into the Kosugi (1994, 1996) hydraulic functions, 
ensuring the optimal ψm and σ Kosugi hydraulic parameters were 
physically sound by using the method described in Fernández-Gálvez 
et al. (2021). A description of the different test cases, which combine 
different soil profiles with contrasting initial and boundary conditions 
(TC1 to TC5), are summarized below.  

• TC1: infiltration in a homogeneous initially dry sandy loam soil with 
constant prescribed pressure at the surface and prescribed pressure 
at the bottom (Celia et al., 1990). This test case is challenging to 
converge because it models the passage of a wetting front in an 
initially very dry soil with sudden variation of ψ .  

• TC2: same as TC1 but with a free drainage bottom boundary 
condition. 

• TC3: infiltration in a homogeneous clay loam soil initially at hydro-
static equilibrium with a prescribed constant flux at the soil surface 
and prescribed water table at the bottom (Miller et al., 1998). The 
profile has linearly decreasing ψ initial conditions. This test case 
models slow-moving water in the presence of a water table.  

• TC4: infiltration at a constant rate into an initially dry heterogeneous 
soil with constant top flux at the surface and a free drainage bottom 
boundary condition (Zha et al., 2017). The soil profile consists of 
three layers of equal thickness with a clay loam layer sandwiched 
between two sandy loam layers (Lehmann and Ackerer, 1998). The 
challenge of this test case is to model the movement of water at the 
interface of very contrasting soils. 

• TC5: same as TC4 but with an impermeable bottom boundary con-
dition (Zha et al., 2017). This test case is even more challenging than 
TC4 as the bottom boundary condition implies a change in the di-
rection of the water fluxes when the wetting front reaches the 
impermeable bottom layer. 

The soil hydraulic parameters, boundary conditions, and initial 
conditions for the five test cases considered are listed in Table 2 The 
vertical discretization, used in the simulations for the test cases, was ΔZ 
= 10 mm. 

3.1.1. Goodness of fit between HYDRUS and HyPix 
The goodness of fit between the model outputs corresponding to the 

profile soil water content from HYDRUS and HyPix was assessed using 
the root mean-squared error, RMSE, and the Nash–Sutcliffe efficiency 
coefficient, NSE, during a particular period, as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nt

t=1

[∑Ni
i=1

[
ΔZi

[
θt

i HYDRUS
− θt

i HyPix

] ] ]2

Nt

√
√
√
√

(37)  

NSE = max

⎧
⎪⎨

⎪⎩
1 −

∑Nt
t=1
∑Ni

i=1

[
ΔZi

[
θt

i HYDRUS
− θt

i HyPix

] ]2

∑Nt
t=1

[∑Ni
i=1ΔZiθt

i HYDRUS
− ΔZiθt

i HYDRUS

]2 ; 0

⎫
⎪⎬

⎪⎭
(38)  

where θt
i HYDRUS 

and θt
i HyPix 

refer to simulated soil water content values at 
each cell computed with HYDRUS and HyPix, respectively, for which 
both models utilize the same vertical discretization (ΔZi = 10 mm). Note 
that ΔZiθt

i HYDRUS 
is the mean value for every cell i. 

3.2. Field experimental data for testing HyPix options with sink term 

3.2.1. Soils description 
The five sites used in this study are dairy-cattle-grazed pasture 

located in the Waikato region of New Zealand. All soils have formed 
from airfall volcanic tephra, but vary in their soil physical properties and 
heterogeneity, particularly their texture and profile drainage charac-
teristics. A brief description of the soils follows. 

The Taupō soil is a sandy-textured soil formed from volcanic airfall 
pumice material (New Zealand classification: Podzolic Orthic Pumice soil; 
USDA Soil Taxonomy classification: Orthod (Hewitt, 2010). The Otor-
ohanga and Waihou soils are also formed from airfall volcanic material, 
but with finer tephra material compared with the Taupō, resulting in 
silty loam topsoil textures grading to silty clay in the subsoil. They are 
classified in New Zealand as Typic Orthic Allophanic Soils, and in Soil 
Taxonomy as a Haplohumult (Hewitt, 2010). Based on the soil 
morphology, the Otorohanga and Waihou soils would be considered to 
have the least heterogeneous soil profiles of those used in this study 
since they have a reduced number of distinct layers. The Taupō site is 
expected to show more heterogeneity in water movement due to the 
stone content (Cichota et al., 2016). The Hamilton soil has a silt loam 
topsoil overlying clayey, textured subsoils, having formed into strongly 
weathered volcanic tephra. It is classified in New Zealand as a Typic 
Orthic Granular Soil, and in Soil Taxonomy as a Haplohumult (Hewitt, 
2010). The Waitoa soil is a silty-textured soil. It is classified in New 
Zealand as a Typic Orthic Gley Soil, and in Soil Taxonomy as a Hap-
lohumult (Hewitt, 2010). The soil morphology of Hamilton and Waitoa 
shows the greatest heterogeneity of the soils in this study, as reflected in 
previous studies of soils with impeded drainage features (McLeod et al., 
2008; Vogeler et al., 2019). 

3.2.2. Vegetation data 
Experimental sites are five mixed, non-irrigated pasture grass sites. 

The trapezoidal (Feddes et al., 1978) water stress response function 
(section 7.6.2) was used with parameters for mixed pasture grass in New 
Zealand derived from Wesseling (1991). For all sites, we used default 
values at four soil water pressures: ψFeddes1 = − 100 mm, ψFeddes2 =

− 250 mm, ψFeddes3 = − 5000 mm, and ψFeddes4 = − 80,000 mm, and the 
maximum root depth, ZNroot, was averaged to 800 mm (Vogeler and 
Cichota, 2019) and percentage of roots in the top 300 mm, ΔRdftop, was 
90% (Evans, 1978). The crop coefficient, KC, and the LAI (section 7.6.2) 
vary throughout the growing season. The range of KC, 0.8 to 0.95 was 
taken from rotated grazing pasture according to an FAO irrigation paper 
56 (Allen et al., 1998) and the range of the LAI, 0.19 to 5.10 was taken 
from Van Housen (2015). 

3.2.3. Climate and soil water content data 
Daily values of precipitation, ΔPr [L], were measured using a tipping 
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Fig. 3. Simulated θ-profile at selected periods using HYDRUS and HyPix models for the different test cases described in section 3.1.  
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Fig. 4. Simulated water balance components (precipitation, evaporation, and drainage) with HyPix for the experimental sites. ΔQ, ponding depth ΔHpond [Eq. (10)], 
throughfall precipitation ΔPrthrough [Eq. (75)], potential evapotranspiration ΔPet [Eq. (68)], sink term ΔSink [Eq. (80)], evaporation ΔEvap [Eq. (81)], and soil water 
content at depths incremented down the soil profile. 
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bucket rain gauge recording at 0.2 mm rain depth resolution. Potential 
evapotranspiration, ΔPet [L], was derived from the New Zealand Virtual 
Climate Stations (VCS) network (Tait et al., 2006; Tait, 2008), with es-
timates based on the spatial interpolation of actual data observations 
made at climate stations located around the country (Tait, 2010). Soil 
water content, θ [L3 L− 3], was monitored at five depth increments to 
1000 mm depth, with minor increment variation between soils to reflect 
soil layer differences. 

For the five sites, HyPix uses a 2-month period of warm up. The 
yearly average precipitation and potential evapotranspiration using 
representative wet and dry periods from 6 months’ data are shown in 
Table 4. 

4. Results 

The results are organized as follows. In section 4.1 we compare 
θ-profile computed with HyPix and HYDRUS by disabling the sink term 
for the five test cases described in section 3.1. Not including the sink 
term causes a sharper ψ wetting front and therefore is a more chal-
lenging problem for the solver of the RRE, since including the sink term 
attenuates the wetting front. Moreover, the sink terms computed in 
HYDRUS are different from the one computed in HyPix. In section 4.2 
we run HyPix using data from contrasting experimental sites (section 
3.2) and include the sink term to illustrate the benefits of the recom-
mended HyPix options derived in the test cases. In section 5.1 we 
recommend HyPix options such that, in order of priority, the results are 
stable (converge), are accurate, have a good water balance, and are 
efficient. 

4.1. Validation of HyPix with HYDRUS using synthetic test cases 

HyPix simulations were derived using the dynamic Ω (section 
2.3.4.3), the dry method (section 2.3.4.4) for controlling the NR steps, as 
well as the time-stepping management based on ψ for solving the RRE 
(section 2.3.3.2). The comparison of the θ-profiles at different times 
computed by HYDRUS (solid line) and HyPix (dashed line), respectively, 
for the five test cases described in section 3.1 are shown in Fig. 3. The 
different colours indicate the time since the beginning of each simula-
tion and are evenly spaced (red, purple, and yellow) until the total time 
of simulation (blue). As shown in Fig. 3, the matching in θ-profile be-
tween HYDRUS and HyPix is excellent, with almost indistinguishable 
θ-profiles throughout the time for each of the five test cases. This is also 
confirmed in Table 3, with RMSE [Eq. (37)] values very close to zero 
(RMSE ≤1.8 10− 2) and NSE [Eq. (38)] values close to 1 (NSE ≥ 0.93) 
computed between simulated θ-profiles with HYDRUS and HyPix 
models. The drainage from the bottom cell during the total time of 
simulation (ΔQNiT

N+1 /

2
) computed with HyPix and HYDRUS is similar, as 

shown in Table 3. Therefore, the algorithm implemented in HyPix is as 
robust as the one implemented in HYDRUS. 

4.2. HyPix tested with experimental sites 

In this section we run HyPix with experimental data (section 3.2) 

using time series of climatic variables, soil information from the five 
contrasting experimental sites, and the sink term of the RRE to illustrate 
the benefits of the recommended HyPix options. In the previous section 
it was shown that for the five test cases HyPix converged successfully 
using the physical time-stepping-ψ (section 2.3.3.2) and the dynamic Ω 
algorithm to control the NR step (section 2.3.4.3) in combination with 
the dry method derived from Zha et al. (2017) (section 2.3.4). 

In most applications solving the RRE for hydrological modelling, 
coarse vertical resolutions are used to decrease the computational 
burden. An essential element of the numerical solution of the RRE is that 
the solution converges as the spatial resolution increases. To simulate 
hydrological fluxes accurately, small vertical cell sizes, in the order of 
10 mm, are required near the soil surface but not throughout the soil 
column (Downer and Ogden, 2004). The performance of HyPix, which 
uses the NR algorithm, was tested using different discretization ranging 
from 10 to 100 mm (data not shown). To evaluate the model perfor-
mance using the different options implemented in HyPix we selected a 
vertical discretization of ΔZuz = 20 mm and ΔZlz = 50 mm, where ΔZuz is 
the discretization of the upper zone in the root zone, taken here as Z ≤
500 mm, and ΔZlz is the discretization of the lower zone below the root 
zone. The maximum errors of the water balance between the finest 
discretization (ΔZuz = 10 mm and ΔZlz = 10 mm) compared to a coarser 
discretization used to illustrate the model performance, with the 
different options (ΔZuz = 20 mm and ΔZlz = 50 mm) for ΔDrainage and 
ΔSink are below 0.03% for all sites described in section 3.2. 

The yearly water balance for the five experimental sites is shown in 
Table 4 and the plots are shown in Fig. 4. The rainfall interception al-
gorithm uses vegetation parameters (section 3.2.2), which are described 
in Appendix. The closure of the simulated water balance is shown by the 
normalized overall excellent water balance WBη < 10− 4 [Eq. (35)]. 

For each of the five experimental sites Table 5 evaluates HyPix 
performance through WBη and Eff of the simulations by (a) using/not 
using the dry method, and (b) using the smoothing criteria with Ω either 
constant or dynamic. With the recommended options described in the 
last row we obtain excellent results with WBη < 10− 4 [%] and Eff ≤ 66 
[day− 1]. The benefits of using the dry method and the dynamic smoothing 
criterion are discussed in section 5. 

5. Discussion 

To concisely interpret the significance of the algorithms imple-
mented in HyPix, we present in this section the recommended HyPix 
options as well as the pros and cons of each of them as evidenced by the 
results. 

5.1. Recommended HyPix options 

The results described in Fig. 3 and Table 5 were derived using the 
time-step controlled by using the physical time-stepping-ψ (section 
2.3.3.2), and the NR step is managed using the dynamic Ω (section 
2.3.4.3) in combination with the dry method derived from Zha et al. 
(2017) (section 2.3.4). We did not use the absolute convergence criterion 
(section 2.3.4.1) for reasons discussed in section 5.5. We discuss the 

Table 5 
Normalized overall water balance (WB* [%]) and efficiency (Eff [day− 1]) of simulations for the different options implemented in HyPix with a vertical discretization of 
20 mm in the root zone and 50 mm below the root zone. The novel adaptive time-stepping management based on ψ for solving the RRE is used. Options for controlling 
the Newton–Raphson step include: a modified iteration criterion for initially dry conditions from Zha et al. (2017) (Dry method), and the smoothing criteria with Ω 
(constant or dynamic).  

Dry method Ω Waitoa Waihou Taupō Otorohanga Hamilton 

WBη [%] Eff [day− 1] WBη [%] Eff [day− 1] WBη [%] Eff [day− 1] WBη [%] Eff [day− 1] WBη [%] Eff [day− 1] 

NO Const. 0.55 161 0.27 180 0.43 170 0.30 164 0.48 152 
YES Const. 0.55 161 0.27 180 0.43 170 0.30 164 0.48 152 
NO Dyna. <10− 4 45 <10− 4 49 <10− 4 50 <10− 4 49 <10− 4 51 
YES Dyna. <10− 4 45 <10− 4 49 <10− 4 50 <10− 4 49 <10− 4 51  
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recommended HyPix options derived from the synthetic test cases 
(section 4.1) and the experimental data set (section 4.2) having the 
greatest probability to be successful in most cases such that, in order of 
priority, the results are stable (successful converge), are accurate, have a 
good water balance, and are efficient. 

As described in Table 5, for the four test cases (except for TC5), the 
accuracy of the HyPix WB is greater than that for HYDRUS. The Eff of 
HyPix for TC1 (coarse soils) is 44 times more efficient due to the 
implementation of time-stepping-ψ , and the dynamic Ω in combination 
with the dry methods. HyPix was also slightly more efficient in TC2 using 
the same soils as in TC1. The Eff in TC3 with HYDRUS and HyPix are 
quite similar, but HyPix was slightly more efficient in TC4. For the 
modelling of impermeable layers, TC5, HYDRUS was five times more 
efficient than HyPix (this is further discussed in section 5.6). 

5.2. Benefits of time-stepping-ψ compared to time-stepping-θ 

By using the HyPix parameters described in Table 1, we found that 
for TC1 and TC2 (coarse texture soils), the model failed to converge 
when using as an option the traditional time-stepping-θ. Nonetheless, 
these cases were successful when using the time-stepping-ψ . For the other 
test cases the time-stepping-θ was successful and marginally more effi-
cient in the WB and Eff (results not shown) than the time-stepping-ψ . 

The time-stepping-ψ is more accurate than the time-stepping-θ, partic-
ularly for coarse texture soils, because, the time-stepping-ψ reduces ΔT 
when the soil is close to saturation by reducing Δθt

maxi 
[Eq. (25)]. This is 

important because close to saturation we have ∂θ/∂ψ ≃ 1, which could 

lead the NR step to go to infinity. 
Therefore, the adaptive time-stepping management for solving the 

RRE based on ψ is the recommended option for HyPix because it enables 
the success of convergence and accuracy for all soil types and boundary 
conditions. 

5.3. Benefits of the dry method 

The use of the modified iteration criterion for initially dry conditions 
from Zha et al. (2017) (section 2.3.4.4) enables TC1 and TC2 to 
converge using large Δθmax (Table 1). Nevertheless, the dry method had 
no effect for the other finer-texture test cases. Similar results were found 
in Table 5 by using real test cases with finer texture soils. The results are 
in line with those of Zha et al. (2017), who found that the dry methods 
only benefited coarse texture soils (with small σ) and when infiltration 
occurs into initially dry conditions. 

The dry method successfully detects if there is any oscillation at the 
dry end of the θ(ψ) curve caused by infiltration into dry soils. If this 
occurs, then the next iteration is computed from ∂θ/∂ψ [Eq. (3)]. In order 

to apply the dry method, ψdry(σ) and ψwet(σ) [Eq. (39)] need to be 
computed. We recommend applying the dry method for all soils because 
it gets activated only when oscillation occurs at the dry end of the θ(ψ) 
curve. 

5.4. Benefits of dynamic Ω 

The benefits of the novel physical dynamic Ω smoothing criterion 
(section 2.3.4.3) for controlling the NR steps compared to the traditional 
constant Ω (section 2.3.4.2) was evaluated with the experimental data 
(section 4.2) under variable fluxes and sink term using the universal 
HyPix parameters described in Table 1. The novel dynamic Ω smoothing 
criterion outperforms in accuracy and efficiency the smoothing criterion 
with constant Ω for all sites. The use of the dynamic Ω dramatically re-
duces WBη [Eq. (35)] by three orders of magnitude, and increases Eff 
threefold. 

This is because the NR step reduces automatically during iteration 

when large 
⃒
⃒
⃒θ(ψ t,k+1

i ) − θ(ψ t,k
i )

⃒
⃒
⃒ is encountered compared to Δθt,k

max (Eq. 

(25) computed from time-stepping-ψ). The convergence rate is slowed but 
the success rate of convergence is increased. The other benefit of the 
dynamic Ω is that it does not require any extra parameters. We therefore 
strongly recommend the dynamic Ω smoothing criterion. 

5.5. Non benefits of the absolute convergence criterion 

For TC1 and TC2 (sandy loam soils) there were some minor im-
provements in the WB and Eff using the absolute convergence criterion 
(section 2.3.4.1) to control the NR step (results not shown). Neverthe-
less, when using the absolute convergence criterion for finer texture soils 
such as TC3, TC4 and TC5, it failed to converge. 

The absolute convergence criterion, Δlnψmaxi
⩾
⃒
⃒
⃒ln(ψ t,k

i ) − ln(ψ t,k− 1
i )

⃒
⃒
⃒, 

fails to improve the results because the dynamic Ω accurately controls 
the NR step considering a smoother transition in the overall NR method. 
Therefore, the use of the absolute convergence criterion is not 
recommended. 

5.6. Impermeable layers 

In TC5 we model saturating a soil profile from the top with an 
impermeable layer at the bottom. HyPix is successful in obtaining 
excellent water balance, being four orders of magnitude more accurate 
that HYDRUS and null drainage at the bottom while HYDRUS has some 
drainage at the bottom. This would explain why HyPix is considerably 
less efficient for this case than HYDRUS, because with the selected pa-
rameters HyPix has higher accuracy. 

6. Conclusions 

The newly developed open-source Hydrological Pixel model, HyPix, 
written in the fast and flexible Julia language efficiently solves the 
mixed form of the RRE. HyPix uses a cell-centred, finite-volume scheme for 
the spatial discretization, with an implicit Euler scheme for the temporal 
discretization, by using the weighted average inter-cell hydraulic con-
ductivity. HyPix includes the following modules: (a) rainfall interception, 
(b) root water uptake with compensation algorithm and root growth, (c) 
soil evaporation, and (d) ponding, and (e) runoff using a novel method for 
computing sorptivity. HyPix includes a wide range of top and boundary 
conditions (flux, pressure, free). 

The drawback of using the NR method for solving the RRE is that 
every configuration (e.g., changing the inter-cell hydraulic conductiv-
ity) requires reprogramming the derivatives (Appendix). HyPix imple-
ments an option to solve the derivatives numerically (section 2.3.2), 
enabling the RRE to be modified by changing only a few lines of code. 
Numerically calculating derivatives was found to be as accurate as 
deriving the derivatives mathematically, and only 10–25% slower. 

For controlling the Newton–Raphson steps, HyPix incorporates 
several options where it is demonstrated that the recommended novel 
physical smoothing criterion for controlling the Newton–Raphson step 
with dynamic Ω improves not only the model performance but also its 
accuracy compared to using the traditional absolute convergence 
criterion. 

For controlling the time-step, the physical time-step management 
based on Δθ (Kirkland et al., 1992; Ross, 2003) was specifically designed 
to solve RRE based on θ. Therefore, we adapted the time-step manage-
ment so that it is specifically designed to solve RRE based on ψ without 
introducing further parameters. The novel time-step management re-
quires only one parameter and was found to be more efficient than the 
traditional time-step management. 

The well-established hydrological model HYDRUS was used to vali-
date HyPix. The comparison of both models shows a remarkable 
agreement, confirming the validity of the algorithms implemented in 
HyPix. Even for challenging conditions HyPix can provide accurate and 
reliable results using the recommended standard options. Moreover, the 
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algorithm developed in HyPix generates results more efficiently that the 
one used in HYDRUS, particularly for coarse texture soils. An additional 
benefit of HyPix is its simplicity to use because it requires only eight 
parameters (HYDRUS has 13 fitting parameters), and most of them can 
be safely kept to the recommended value described in Table 1. 

The stability and robustness of the solution of the RRE in HyPix 
enables it to be used for inverse modelling. 

Software/Data availability 

The HyPix model source code and the test cases can be downloaded 
from https://github.com/manaakiwhenua/SoilWater_ToolBox.jl and is 
open source under the GP-3.0 License. HyPix is written in the open- 
source Julia programming language and can be run under multiple 
platforms https://julialang.org/downloads. Access to the experimental 
field data require permission from Environment Canterbury (https: 
//www.ecan.govt.nz/) while the sites and the latest monitoring data 
can be viewed at https://www.waikatoregion.govt.nz/environment 
/envirohub/environmental-maps-and-data?dt=Soil+Moisture&af=lat 
estValue&a=latest. 

HyPix is part of a set of interlinked modules implemented into the 
SoilWater-ToolBox ecosystem led by J.A.P Pollacco from Manaaki 
Whenua – Landcare Research in New Zealand and J. Fernández-Gálvez 
from the University of Granada in Spain. The preliminary objective of 
the SoilWater-ToolBox is to derive the soil hydraulic parameters by 
using wide range of cost-effective methods. The estimated hydraulic 
parameters can be directly implemented into HyPix to compute the soil 
water budget. The SoilWater-ToolBox enables the comparison and 
sensitivity analyses of the hydraulic parameters computed from different 
methods on the soil water fluxes. The following modules are currently 
included into the SoilWater-ToolBox:  

• Intergranular Mixing Particle size distribution module: derives 
unimodal hydraulic parameters by using particle size distribution 
(Pollacco et al., 2020); 

• General Beerkan Estimation of Soil Transfer parameters mod-
ule: derives the unimodal hydraulic parameters from single ring 
infiltration experiments (Fernández-Gálvez et al., 2019);  

• Sorptivity module: a novel computation of sorptivity used in the 
General Beerkan Estimation of Soil Transfer parameters method 
(Lassabatere et al., 2021, 2022); 

• Saturated hydraulic conductivity module derived from unim-
odal and bimodal θ(ψ) (Pollacco et al., 2013b, 2017);  

• Inverse module which inverts hydraulic parameters from θ time 
series (Pollacco et al., 2022);  

• Reduce uniqueness module of a physical bimodal soil Kosugi 
hydraulic parameters from inverse modelling (Fernández-Gálvez 
et al., 2021) using water retention and/or unsaturated hydraulic 
conductivity data directly measured in the laboratory or indirectly 
obtained from inverting θ time series. 
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Appendix 

Jacobian matrices 

The Newton–Raphson solution requires the Jacobian matrix, which can be written in a matrix form as an example with NiZ depths. The numerical 
discretization is a tridiagonal non-linear set of equations, which needs to be solved for [ψ iZ

iT,k+1 − ψ iT,K
iZ ] for every time-step and for every iteration, k. 
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(40) 

The solution of these sets takes place by means of the tridiagonal function, which is an effective modification of the Gauss algorithm for the solution 
of a tridiagonal linear set of equations. In Julia we use the efficient tridiagonal function to solve the matrix. The derivatives of R are shown below. 

Derivatives of residuals 
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Julia  i = 1 Eq. 

∂R∂Ψ△ ∂Rt,k
1

∂ψ t
0 

Not applicable (41) 

∂R∂Ψ ∂Rt,k
1

∂ψ t
1 

Same as 2 ≤ i ≤ N − 1 (42) 

∂R∂Ψ▽ ∂Rt,k
1

∂ψ t
2 

Same as 2 ≤ i ≤ N − 1 (43)   

2 ≤ i ≤ N-1  

∂R∂Ψ△ ∂Rt,k
i

∂ψ t,1
i− 1 

− Δt
∂Qt

i
∂ψ t

i− 1 

(44) 

∂R∂Ψ ∂Rt,k
i

∂ψ t
i 

ΔZi
[

∂θi(ψ t
i )

∂ψ t
i

[

1 −
So

θs
(ψ t− 1

i − ψ t
i )
]
−

So

θs
θi(ψ t

i )

]

− Δt
(∂Qt

i− 1 /2
∂ψ t

i
−

∂Qt
i+ 1 /2
∂ψ t

i

) (45) 

∂R∂Ψ▽ ∂Rt,k
i

∂ψ t
i+1 

Δt
∂Qt

i+ 1 /2
∂ψ t

i+1 

(46)   

i = N  

∂R∂Ψ△ ∂Rt,k
N

∂ψ t
N− 1 

Same as 2 ≤ i ≤ N − 1 (47) 

∂R∂Ψ ∂Rt,k
N

∂ψ t
N 

Same as 2 ≤ i ≤ N − 1 (48) 

∂R∂Ψ▽ ∂Rt,k
N

∂ψ t
N+1 

Not applicable (49)  

Derivatives of Q  

Julia  i = 1 Eq. 

∂Q∂Ψ△ ∂Qt
1 /2

∂ψ t
0 

Not applicable (50) 

∂Q∂Ψ ∂Qt
1 /2

∂ψ t
1 

Flux top boundary condition  
= 0 

(51) 

Prescribed top pressure boundary condition 
[ψ t

top − ψ t
1

ΔZ1

2

+ cos α
]

∂K1(ψ t
1)

∂ψ t
1

−
K1(ψ t

1)

ΔZ1

2 

(52) 

∂Q▽∂Ψ ∂Qt
1+ 1 /2
∂ψ t

i 

Same as for 2 ≤ i ≤ N (53) 

∂Q▽∂Ψ▽ ∂Qt+1
1+ 1 /2

∂ψ t+1
2 

Same as for 2 ≤ i ≤ N (54) 

Julia  2 ≤ i ≤ N-1  

∂Q∂Ψ△ ∂Qt
i− 1 /2

∂ψ t
i− 1 

[1 − wi]

[
ψ t

i− 1 − ψ t
i

ΔZ
i− 1 /2

+ cos α
]

∂Ki− 1(ψ t
i− 1)

∂ψ t
i− 1

+
wi[Ki(ψ t

i )] + [1 − wi][Ki− 1(ψ t
i− 1)]

ΔZ
i− 1 /2 

(55) 

∂Q∂Ψ ∂Qt
i− 1 /2
∂ψ t

i 

wi

[
ψ t

i− 1 − ψ t
i

ΔZ
i− 1 /2

+ cos α
]

∂Ki(ψ t
i )

∂ψ t
i

−
wi[Ki(ψ t

i )] + [1 − wi][Ki− 1(ψ t
i− 1)]

ΔZ
i− 1 /2 

(56) 

∂Q▽∂Ψ ∂Qt
i+ 1 /2
∂ψ t

i 

[1 − wi+1 ]

[ψ t
i − ψ t

i+1
ΔZ

i+ 1 /2
+ cos α

]
∂Ki(ψ t

i )

∂ψ t
i

+
wi+1 [Ki+1(ψ t

i+1)] + [1 − wi+1 ][Ki(ψ t
i )]

ΔZ
i+ 1 /2 

(57) 

∂Q▽∂Ψ▽ ∂Qt
i+ 1 /2

∂ψ t
i+1 

wi+1

[ψ t
i − ψ t

i+1
ΔZ

i+ 1 /2
+ cos α

] ∂Ki+1(ψ t
i+1)

∂ψ t
i+1

−
wi+1 [Ki+1(ψ t

i+1)] + [1 − wi+1][Ki(ψ t
i )]

ΔZ
i+ 1 /2 

(58) 

Julia  i = N (recharge)  
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Potential evapotranspiration 

The potential evapotranspiration depth, ΔPet [L], for a time-step ΔT is computed using the Penman–Monteith equation. Input variables used the 
estimates derived from the New Zealand Virtual Climate Stations network (VCS), which are based on the spatial interpolation of actual data obser-
vations made at climate stations located around the country (Tait et al., 2006). We assume that: 

ΔPet =ΔPetint (65)  

where ΔPetint [L] is the interception potential evaporation depth, which is the potential evaporation from a wet canopy. The remaining energy that is not 
used to evaporate water from a wet canopy (e.g., periods with no rainfall) allows the potential evapotranspiration depth, ΔPetet [L], to be computed as: 

ΔPetet =ΔPet − ΔEvapint (66)  

where ΔEvapint [L] is derived from the actual energy used to evaporate water from a wet canopy. 
The potential transpiration depth of vegetation, ΔPettransp [L], and potential evaporation depth of soil, ΔPetevap [L], is partitioned from ΔPetet by using 

the Beer–Lambert law, which uses as parameters the leaf area index, LAI [-]. LAI can be derived from remote sensing (Béland et al., 2014). The 
Beer–Lambert law assumes that the net radiation inside the canopy decreases exponentially. Therefore, the partitioning of ΔPetet is given by: 

ΔPetevap =ΔPetete− KgLAI (67)  

ΔPettransp =ΔPetet − ΔPetevap (68)  

where the extinction coefficient for solar radiation, Kg [-], is set to 0.5 (e.g., Varado et al., 2006). 

Rainfall interception 

The parsimonious physically based interception model is an improvement made by Pollacco et al. (2013a). The following interception model uses 
potential evaporation of a wet canopy ΔPetint, [Eq. (65)], LAI [-], and extinction coefficient for solar radiation, Kg [-] set to 0.5. The gross precipitation depth 
that falls on top of a canopy, ΔPr [L], is partitioned following Rutter et al. (1971) as: 

ΔPr =ΔPrint + ΔPrground (69)  

where ΔPrground [L] is the fraction of precipitation reaching the soil surface through gaps in the canopy, and ΔPrint [L] is the intercepted precipitation 
depth. They are computed as: 
{

ΔPrground = GapFracΔPr
ΔPrint =

[
1 − GapFrac

]
ΔPr (70)  

where the gap fraction, GapFrac [-], is calculated similarly to Eq. (67): 

GapFrac = 1 − e− KgLAI (71) 

The foliage of the canopy is considered as water storage filled up to depth Sint [L], with a saturated storage capacity, Sintsat [L]. When the canopy is 
fully saturated (Sint = Sintsat), then any excess of ΔPrint overflows, ΔProver [L], to the soil surface. The amount of water that reaches the soil surface is 
the throughfall precipitation [L]: 

ΔPrthrough =ΔPrground + ΔProver (72) 

The water storage of the canopy is first computed as: 

Sintt = Sintt− 1 + ΔPrint (73) 

A fraction of the water from Sint will be evaporated at the rate of the actual evaporation depth, ΔEvapint [L], during and after a rainfall event. The 
maximum quantity of water that can be evaporated from a wet canopy during a time-step is computed according to Deardorff (1978), which assumes 
that ΔEvapint is proportional to the fraction of the canopy that is wet: 

ΔEvapint =ΔPetint

[
min{Sintt; Sintsat}

Sintsat

]Pevapint

(74)  

where Pevapint [-] is a constant parameter for which Deardorff (1978) gives a constant value of 2/3. 
ΔProver is computed as: 

{
ΔProver = min

{
Sintt− 1 + ΔPrint − ΔEvapint − Ssat; 0

}

Sintt = min
{

Sintt− 1 + ΔPrint − ΔEvapint − ΔProver; 0
} (75) 

Rainfall interception of gross rainfall loss, InterceptionLoss [0–1] is computed by: 

InterceptionLoss= 1 −

∑Nt
t=1ΔPrt

through
∑Nt

t=1ΔPrt
(76) 

In the HyPix model the rainfall interception module is run first, followed by the computation of ΔPettransp and ΔPetevap, as described in Appendix. 
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Sink term 

The sink term, ΔSink, described in Eq. (5) is a function of the soil evaporation depth, ΔEvap [L] [Eq. (78)], and the root water uptake depth of the 
vegetation, ΔRwu [L], [Eq. (79)]: 

ΔSink=ΔEvap + ΔRwu (77)  

evaporation: ΔEvap 

The evaporation model based on Romano and Giudici (2009) and adapted by Pollacco and Mohanty (2012) is computed as: 

ΔEvap=ΔPetevapSe1 (78)  

where Se1 [0–1] [-] refers to the effective soil water content defined in Eq. (1) for the top cell, and ΔPetevap [L] is the potential evaporation depth computed 
with the Beer–Lambert law [Eq. (67)]. 

Root water uptake: ΔRwu 

The root water uptake computes the volume of water removed per unit time from a unit volume of soil in the root zone and is computed for each 
cell i: 

ΔRwui =min
{

Kc ΔPettransp ΔRdfi FwaterStressi RootCompi ; ΔZ
[
θt

i − θrt
i

]}
(79)  

where ΔRwu [L] is the root water uptake depth; Kc [-] is the crop coefficient; ΔPettransp [L] corresponds to the potential transpiration depth [Eq. (68)]; ΔRdf 
[-] refers to the percentage of roots per cell; FwaterStress [-] is the water stress function per cell, which computes the reduction of transpiration based on 
ψ ; and RootComp [-] is the root compensation by enabling water uptake from deeper layers when the upper layers are depleted. 

Root density function: ΔRdf 

The percentage of roots per cell, i, is given by ΔRdfi, which defines the general shape of the roots, as given by the example provided in Fig. 5. The 
root distribution is based on an improved empirical function of Gale and Grigal (1987), which was modified by Pollacco et al. (2008). The model 
requires, as parameters, solely the maximum rooting depth, ZNroot [L] and the percentage of roots in the top 30 cm (other values can be taken), ΔRdfTop 
[%]. The model compared to Gale and Grigal (1987) guarantees that the sum of ΔRdfi = 1. 

The fraction of roots, ΔRdfi [-], for each cell, i, is computed as: 

ΔRdfi =
Rd

Z
i+1 /

2 − Rd
Z

i− 1 /

2

1 − Rd
ZNroot

with
∑i=Nroot

i=1
ΔRdfi = 1 (80)  

where Zi− 1 /

2 and Zi+1 /

2 [L] are respectively the depth of the top and the bottom of cell i, as described in Fig. 1; Rd [-] is the routing distribution parameter 
(computed numerically from ZNroot and ΔRdfTop). Rd varies between 0.7000 and 0.9999, such that when Rd is close to 0.7, all the roots are distributed 
at the top, and when Rd is close to 1, the roots are evenly distributed within the root zone. 

The value of Rd is computed by solving the following equation: 

ΔRdfTop =
Rd

0 − Rd
30

1 − Rd
|ZNroot |

=
1 − Rd

30

1 − Rd
|ZNroot |

(81) 

An example of ΔRdf is provided in Fig. 5a for a soil that has equal discretization. 

Fig. 5. Pasture grass models used for all field sites: (a) root density function plotted with depth and (b) schematic of the Feddes et al. (1978) plant water 
stress function. 
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Water stress response function: FWaterStress 

The water stress response function, FWaterStress [-] shown in Fig. 5b is a prescribed dimensionless function of ψ , where (0≤ FWaterStress ≤ 1). Following 
Feddes et al. (1978), FWaterStress is defined by using four soil water pressure values leading to a trapezoidal curve, so that:  

• FWaterStress = 0 close to saturation at a pressure greater than ψFeddes1 and also above the permanent wilting point soil water pressure, ψFeddes4  
• FWaterStress = 1 between soil water pressures ψFeddes2 and ψFeddes3  
• for soil water pressure between ψFeddes1 and ψFeddes2, FWaterStress increases linearly  
• for soil water pressure between ψFeddes3 andψFeddes4, FWaterStress decreases linearly. 

A schematic plot of this stress response function is depicted in Fig. 5b. 

Compensation mechanism: Rootcomp 

A root water uptake compensation mechanism is introduced to improve the prediction of transpiration by enabling water uptake from deeper layers 
when the upper layers are depleted, although the percentage of roots at deeper depth is limited. The compensation mechanism of Li et al. (2001), 
validated by Braud et al. (2005), is introduced. The model requires the compensation mechanism parameter C [-], which accounts for the general soil 
water content profile before computing the water uptake from individual cell i and is derived as: 

ΔRootCompi =
FWaterStressi ΔRdf C− 1

i
∑i=Nroot

i=1 FWaterStressi ΔRdfi
C (82)  

where ΔRdfi [Eq. (80)] is the vertical fraction of the root density function for each i cell [%]; FWaterStress is the reduction of root water uptake at pressure 
head ψ for every cell; and C is a parameter such that when C = 1 the model is not compensated, and when C = 0 the ΔRdfi becomes constant throughout 
the whole root-zone depth (I = Nroot). In HyPix, C = 0.5, as suggested by Li et al. (2001) and Braud et al. (2005). 
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