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A B S T R A C T   

The application of non-targeted analytical strategies such as instrumental chromatographic fingerprinting is 
commonly applied in the field of food authentication/food quality. Although the multivariate methods developed 
to date are able to solve any authenticity problem, they remain dependent on the instrument state where the 
signals were acquired, which difficult their transfer to other laboratories. The aim of this research is to develop 
multivariate models independent of both instrument state and time at which the signals were acquired. For this, 
chromatograms obtained from the polar fraction of different olive oil samples analysed by (NP)UHPLC-UV/Vis 
are transformed to instrument-agnostic fingerprints. Instrument independence is achieved by transferring the 
chromatographic behaviour of an ’ad-hoc’ external standards mixture solution analysed throughout an analysis 
sequence to the remaining analysed samples. 

The SIMCA models developed from the chromatographic fingerprint matrix before and after instrument- 
agnostizing showed significant differences in the number of samples classified as "inconclusive", with the after 
model showing the best results. Furthermore, the PLS-DA and SVM models obtained before and after signal 
instrument-agnostizing showed similar outcomes. The main conclusion of the work has been to verify that the 
instrument-agnostizing methodology could allow the building of multivariate classification models which could 
be transferred among different laboratories as they are not influenced by the signal acquisition time.   

1. Introduction 

The untargeted approach is an emergent approach which is 
increasingly used in the field of food authentication/food quality. 
Untargeted methodology is focused on the study of unspecific instru-
mental signals without taking on any previous knowledge of relevant/ 
irrelevant food components and it is mainly represented by finger-
printing methodology (Muñoz Olivas, 2004; Creydt & Fischer, 2020). In 
this sense, the instrumental fingerprint of a foodstuff can be defined as a 
non-specific signal that contains sufficient information about the 
chemical composition or structure of a food product or a food com-
modity to be able to unequivocally characterise and/or differentiate it 
from others similar foodstuffs (Cuadros Rodríguez et al., 2016a). 

The application of instrumental fingerprinting methodology involves 
resorting to advanced mathematical data processing methods to extract 
useful information which is not obvious and not explicitly shown, such 
as data mining/chemometric methods. Usually, the recorded analytical 

signal is subjected to a previous pre-processing in order to clean it before 
being used for the development of a multivariate model. The most 
commonly used pre-processing techniques are, autoscaling, mean cen-
tring, noise filtering, baseline correction and normalization (Jiménez 
Carvelo et al., 2020). In the case of chromatographic signals, it is also 
necessary to carry out a peak alignment. This last pre-processing step is 
probably the most important since retention times (RT) are often shifted 
among chromatographic analyses. There are different algorithms for 
peak alignment being COW (Tomasi et al., 2004) and icoshift (Tomasi 
et al., 2011) the most commonly used in chromatography. 

A large amount of literature is available on analytical methods using 
different analytical techniques together with data mining/chemometric 
methods in the food science field, which are focused on solving almost 
any authentication or quality problems (Boccard & Rudaz, 2020; 
Jiménez Carvelo & Cuadros Rodríguez, 2021; Oliveri et al., 2020; Tahir 
et al., 2022). Despite of, there is an important challenge still to be solved: 
reposted multivariate methods are based on the instrumental 
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fingerprints acquired by a single analytical instrument, at a specific time 
and under particular conditions; this are instrument-sensitive finger-
prints. This leads to multivariate models which are dependent of the 
analytical laboratory where the data have been acquired. The perfor-
mance of those models with samples analysed by different manufacturer 
instrument or by the same one but in different time periods is largely 
unknown and by experience unsuccessful. Focussing towards a global or 
universal model, more fundamental work is required. 

Despite of different attempts to create universal linear retention in-
dexes (LRI) in liquid chromatography (Rigano et al., 2021), such activity 
aims to identify the compounds of interest in the sample and not to 
standardize the instrumental fingerprint. In fact, a common occurrence 
is to find some non-negligible variations in retention times or even in 
peak intensities when carrying out replicate chromatographic analysis. 
These scrolling on the axes of the chromatographic intensity/time sig-
nals (or chromatograms) make it difficult to use the recorded signals to 
create a representative database capable of being used for reliable 
comparisons/identifications or for multivariate classification or quan-
titation model building. 

Some proposal regarding the standardization of spectroscopic sig-
nals, usually NIR and Raman for quality control purposes in the medical 
and pharmaceutical fields, have been reported (Fornasaro et al., 2020; 
Gou et al., 2018; Zhang et al., 2019). This methodological practice has 
been called ’instrument cloning’ and is applied in order to obtain a 
’transfer model’, mainly calibration models for analytical quantitation, 
was proposed by Wang et al. (1991). This procedure is based on the 
statement that the position coordinates of a spectrum are characteristic 
of each instrument and that they remain practically invariant over time. 
Generally, calibration transfer is implemented as follows: the spectrum 
of a sample obtained by the NIR or Raman equipment from which a 
particular multivariate calibration model has been developed (Master 
instrument) must have a similar spectral profile to the spectrum ob-
tained by the equipment to which the model is to be transferred (Sat-
ellite instrument) (Folch Fortuny et al., 2017). Despite the recent 
industrial and technological progress, the spectra obtained by different 
NIRS instruments differ for various reasons, among which the instru-
ment configuration and optics are the most common. Thus, each transfer 
model is only applicable to pairs of instruments. 

However, no equivalent strategy was suggested specifically for 
chromatographic signals. In this context, Cuadros Rodríguez et al. 
(2021a, 2021b) have recently proposed an innovative methodology to 
be followed in order to obtain standardized instrumental fingerprints 
when the gas and liquid chromatography are employed; this method-
ology has been termed by the authors as instrument-agnostizing (Cua-
dros Rodríguez et al., 2021a, 2021b). It was proof to be able to 
standardize conventional chromatograms so that the new 
instrument-agnostic signal (fingerprint) is independent of the chro-
matographic state or the date of analysis, so that chromatographic fin-
gerprints acquired from different instruments states (two or more) 
should have a high degree of similarity. For this purpose, both internal 
and external chemical standards series are used as instrumental refer-
ences. Briefly, this methodology is summarised below: firstly, it is per-
formed a stage for setting up an invariant set of standard retention scores 
(SRS) from the external standards, which is only applied once; then, the 
agnostizing step is performed in which both intensities and retention 
times of the signal is standardized using the previously established SRS. 
Note that this is the first methodology that attempt to obtain a database 
of EVOO instrumental fingerprints and, thus it can be employed as po-
tential tool to achieve multivariate ’instrument-agnostic’ models. 

Olive oil is one of the main vegetable oils chosen by consumers due to 
its nutritional characteristics and health benefits, being one of most 
regulated and controlled foodstuffs in the European Union (EU). It 
should be noted that EU legislation allows the blending of olive oil with 
other vegetable oils, however, some European producer countries, such 
as Spain or Italy, have specific legislation which forbids the blending of 
olive oil with other vegetable oils. There are three different European 

marketing quality categories of edible olive oil: (i) extra virgin olive oil 
(EVOO), (ii) virgin olive oil (VOO) and (iii) olive oil (OO), the latter 
being a blend of chemically refined olive oil and EVOO/VOO. These oils 
vary in price and quality, due to their organoleptic and physico-chemical 
properties. In fact, EVOO and VOO achieve much higher prices on in-
ternational markets than any other type of vegetable oil, which makes it 
potentially considered to be adulterated with lower quality edible veg-
etal oils, such as seed oils (e.g., sunflower oil), refined olive (ROO) oil 
and/or olive-pomace oil (OPO), in order to obtain a higher illicit profit. 
Currently, the European official method of analysis used to detect 
adulteration of EVOO/VOO with ROO or OPO involves carrying out 
several chemical analyses in order to determine specific analytical pa-
rameters such as ECN42 and to quantify some particular compounds 
(chemical markers) or family of compounds such as triterpene dia-
lcohols or waxes, among others, using different sample treatments and/ 
or analytical procedures for each one (Commission Regulation (EEC) No. 
2568/91). As an example, the triterpene dialcohols such as erythrodiol 
and uvaol are separated from the unsaponifiable matter by thin-layer 
chromatography on a basic silica gel plate. The fractions recovered 
from the silica gel are derivatised into trimethylsilyl ethers and then 
analysed by gas chromatography. Thus, this method is highly 
time-consuming and entails a large consumption of chemicals. 

Moreover, a wide number of different procedures for the adultera-
tion detection of EVOO/VOO with different edible oils (sunflower, 
soybean, peanut, corn, rapeseed, hazelnut oils, among the most com-
mon) have been proposed (Zhang et al., 2021; Meenu et al., 2019). 
Basically, two methodologies outstand for this purpose: i) the use of 
nontargeted spectroscopic approaches, such as Raman (Duraipandian 
et al., 2019) and Fourier transform infrared (FTIR) (Abdallah et al., 
2016; Karunathilaka et al., 2016); and ii) the use of high-performance 
liquid chromatography (HPLC) or gas chromatography (GC) for quan-
titative analysis of peculiar marker compounds (Mingchih et al., 2015; 
Jabeur et al., 2017). 

Nonetheless, the adulteration of EVOO/VOO with refined olive oil 
and/or olive-pomace oil by means of HPLC and chemometrics has been 
addressed to a lesser extent. In fact, it was possible to find only five 
research studies involving one or both of these topics which mainly mass 
spectrometry (MS) as detection system and targeted approach are 
employed on minor polar compounds (Carranco et al., 2018; Drira et al., 
2020; Li et al., 2021; Navratilova et al., 2022; Tata et al., 2022).It should 
be noted that all these studies were performed with non-standardized 
signals for the development of the multivariate models, what limit 
their implementation to routine analytical laboratory, being applicable 
only under the conditions of measurement under which they were car-
ried out. 

To date, the development of a single multivariate instrument- 
agnostic model has not been proposed in food authentication field 
using chromatographic signals. In this context, the current study pro-
poses a multivariate analytical method for the detection of olive oil 
adulteration with ROO or OPO using agnostic-instrument chromato-
graphic fingerprints for the first time. In this sense, this study proposes 
the use of the chromatographic fingerprints from the polar compounds 
fraction of the olive oils of different quality categories, acquired using 
normal phase ultra-high-performance liquid chromatographic coupled 
to an ultraviolet–visible molecular absorption detector ((NP)UHPLC- 
UV/Vis), as a source of analytical information to set up instrument- 
agnostic multivariate classification models. The discrimination results 
from each method and strategy were compared and ranked using several 
classification performance metrics, such as sensitivity, specificity, pre-
cision, efficiency (or accuracy), area under the receiver operative curve 
(AUC), among others. More details on the specific features of the clas-
sification strategies and the meaning of the classification metrics can be 
found in the tutorial published by Cuadros Rodríguez et al. (2016b). 
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2. Materials and methods 

2.1. Chemicals 

HPLC-grade solvents, such as n-hexane, 2-propanol and ethanol were 
employed within the study. N-Hexane was purchased from Panreac 
Quimica S.L.U. (Barcelona, Spain), 2-propanol from Honeywell 
(Deutschland, Germany) and ethanol from VWR (Darmstadt, Germany). 
Deionized water was obtained using a Milli-Q system (Millipore, Bed-
ford, MA). 

Chemical standards, such as 1,2,3-trimethyl benzene (TMB) pro-
vided by Sigma-Aldrich (St. Louis, USA), propiophenone (PROP) pro-
vided by AlfaAesar (Kandel, Germany), 2,5-dimetylphenol (2,5-DP) 
provided by Sigma-Aldrich (St. Louis, USA), 2-naftol (2-NAF) provided 
by ACROS (Geel, Belgium) and ethyl paraben (EPB) provided by Fluka 
Chemika (Buch, Germany) were employed to create the external stan-
dard mix (ESM) solution. Each of the chemicals were added into the mix 
at 12, 100, 16, 4 and 40 mg/L, respectively, using n-hexane/2-propanol 
99/1 (v/v) as solvent. 

2.2. Samples 

A total of 88 vegetables oils samples were analysed: 35 extra-virgin 
olive oil samples (EVOO) of different regions from Spain, 4 virgin 
olive oils (VOO), 4 olive oil (OO), 5 refined olive oil (ROO), 4 olive- 
pomace oil (OPO), and 36 blends (BLE) of EVOO or VOO with ROO or 
OPO. These blends represented adulterated olive oils with other olive 
oils of poorer quality in 20, 40 and 60%. 

2.3. Sample preparation 

1 g of oil was placed in a 10 Ml tube and 4 Ml of n-hexane were added 
into the tube for further agitation with vortex for 10 s. Then, 1 Ml of 
ethanol/water 87/13 (v/v) mixture was added and vortexed for another 
10 s. The polar fraction at the bottom of the tube was extracted and this 
step was repeated twice. Finally, the polar fraction was centrifuged for 3 
min at 1500 g and further filtered with 0.22 μm nylon filters. The polar 
fraction solutions were frozen (-4 ◦C) and kept in the dark until analysis. 

2.4. Chromatography 

(NP)UHPLC-UV/Vis analysis was performed with a Dionex Ultimate 
3000 UHPLC + Focused chromatography system (Thermo Scientific, 
Waltham, MA, USA) equipped with a RS autosampler and column 
compartment. Detection was performed with an RS variable wavelength 
detector. Chromeleon™ version 7.0 software was used to visualize and 
export data. A silica stationary phase column (ZORBAX RX-SIL, 150 ×
4.6 mm i.d, 5 μm) coupled to a pre-column with the same diameter 
(12.5 × 4.6 mm) were used through all the analysis. Both pre-column 
and column were kept at 35 ◦C during the experimental work. 

The chromatographic analysis of the ESM was performed 32 times 
along 6 days in order to considerer in the calculation of the SRS as much 
variability as possible. Additionally, the ESM was analysed at the 
beginning and at the end of each chromatographic run for further 
calculation of the SRS, and as quality control of the behaviour of the 
equipment. For this purpose, 1.5 Ml of the ESM were placed in a chro-
matographic glass vial for its corresponding analysis with a flow rate of 
0.8 Ml/min during the entire operation. The gradient mode of the mo-
bile phase was the following: the ESM was injected at time 0 and was 
eluted with hexane for 15 min. Then, solvent was changed to hexane- 
isopropanol 90/10 (v/v) for 2 min. Finally, from minute 17 to minute 
21, the chromatographic system came back to the initial conditions of 
hexane 100%. Note that during the second day, ESM from the first day 
was analysed together in the same batch with ESM of day two; for day 
three, ESM from day two was analysed with ESM from day three; the 
same process was followed for the remaining days. 

Just before the chromatographic analysis, 750 mL of the polar frac-
tion solution, previously thawed, were added into a 2 Ml chromato-
graphic glass vial, and then 180 Мl of TMB solution (100 mg/L in n- 
hexane/2-propanol 99/1, v/v) were added as an internal control stan-
dard. The vial was sealed and vortexed for 20 s and 5 mL of this solution 
were injected in the LC equipment. A flow rate of 1.2 Ml/min was kept 
during the entire operation. The gradient mode of the mobile phase was 
the following: the samples were injected at time 0 and were eluted with 
hexane for 1 min, at a flow rate of 1.2 mL/min. Then, solvent was 
changed to hexane-isopropanol 80/20 (v/v) for 3 min. Afterwards, the 
solvent was changed again to hexane/isopropanol 60/40 (v/v) for 4 
min, going back to 80/20 (v/v) after 2 min. Finally, from min 10 to 
minute 13, the system came back to the initial conditions of hexane 
100%. 

2.5. Methodology: development of a multivariate model from instrument- 
agnostic chromatographic fingerprints 

In order to be able to have multivariate models for common use, the 
chromatographic signals must be standardized, and then the multivar-
iable models are developed. In this regard, the following steps were 
needed to obtain the instrument-agnostic chromatograms. All data (88 
samples × 1950 variables) used in this study were exported from the 
instrument software to an Excel environment (.csv, comma separated 
values), and then converted to Matlab environment (.mat). In this way, 
each chromatogram was firstly turned into a data vector. 

The description of the process of standardization of signals as well as 
building of the multivariate model can be summarised in 6 major steps:  

1. Application of the automatic Whittaker filter to correct the baseline 
of raw chromatograms in which values of λ = 100 y p = 0.001 were 
selected. Λ indicates the baseline curvature to allow (the smaller this 
value, the more curved the baseline fit will be), whilst ’p’ (0 < p < 1) 
indicates the asymmetry to use in the Whittaker filter (the smaller 
this value, the smaller the allowed negative proportion of the result 
that has been adjusted) (Wise et al., 2006).  

2. Selection of the data to create the training and external validation 
data sets. The choice was performed through the Kennard-Stone al-
gorithm already implemented in Matlab. The proportion of samples 
to include in the training and validation data sets was 70 and 30%, 
respectively. At the end, the training data set was composed by 61 
samples, whilst the external validation set by 27.  

3. Intensity normalization of the chromatogram from the 88 oil samples 
to create a homogeneous intensity scale. All the chromatographic 
intensities (height) were normalized taking as a reference the 
maximum peak of the internal standard TMB, assigning an intensity 
value = 1 on the y-axis. The peak of TMB was found among variables 
number 224 and 250.  

4. Establishment of the standard retention scores (SRS) according to the 
protocol given by Cuadros et al. (2021b).  

5. Replacement of the retention time values for the calculated SRS in 
each sample signal, in order to unify the scale on the x-axis. 

6. Re-sampling to fix into a same number of variables all chromato-
grams. The specified range for the re-sampling function was from 1 to 
5.8 considering the SRS scale, obtaining a variable reduction from 
1256 to 575. 

Once the chromatograms were standardized, different multivariate 
models were developed. The corresponding information can be found in 
the following section. 

2.6. Multivariate analysis 

After performing the six major steps outlined in subsection 2.5, 
exploratory analysis using principal component analysis (PCA) was 
performed to detect possible natural grouping or outliers in the data. 
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Furthermore, soft independent modelling of class analogies (SIMCA), 
partial least squares - discriminant analysis (PLS-DA) and support vector 
machine (SVM) were used to create alternative classification models 
capable to identify EVOO and VOO, and detect blends of these olive oils 
adulterated with ROO and OPO). For this, PLS_Toolbox (version 8.6.1, 
2019, Eigenvector Research Inc., Manson, WA, USA) was used under 
Matlab (version R2013b, 8.2.0.701, The Mathworks Inc. MA, USA) 
environment. 

3. Results and discussion 

The raw chromatograms obtained can be observed in Fig. 1. The 
chromatograms from EVOO and VOO have some similarities around 
minutes 4.00–4.20 and 4.80–5.40 that are attributed to their chemical 
composition. However, these same two chromatograms also show dif-
ferences of intensity between minutes 4.30–4.70 and a lack of a small 
peak around minute 6.80. Such differences could be attributed to the 
presence of small concentrations of defective compounds of the VOO 
that diminish its category from EVOO to VOO. 

Additionally, in Fig. 1 B it can be appreciated that OO, ROO, OPO 
and BLE have similar fingerprints around times 4.70, 5.20 and 5.40 min. 
The pattern among the first three (OO, ROO and OPO) might be due to 
the similar chemical composition of these oils as they have all suffered a 
refining process to a greater or lesser extent. Moreover, the intense peak 
around at 1.40–1.60 min corresponds to the internal standard TMB 
added to each sample. In this regard, it can be observed that EVOO and 
VOO have a particular feature with respect to the chromatograms of the 
other oils, specifically, a bit more intense peaks around minutes 
4.20–4.60. 

In order to be able of agnostizing the raw chromatograms, the ESM 
was analysed before and after each analytical run (the corresponding 
chromatogram is shown in Fig. 2). The first eluted compound was the 
internal standard (TMB) around 2.30 min, then PROP, 2,5-DP and 2-NAF 
at 4.37, 8.47 and 9.46 min respectively. 

Then, the first step was to normalize the intensity of all chromato-
grams considering the most intense peak before minute 2, which was the 
internal standard TMB. Afterwards, an invariant reference chemical 
system for normalizing the retention values was established. For this 
purpose, the estimation of SRS values was performed (see subsection 
2.5). The second step focussed on the retention time normalization re-
mains on the transference of retention standard scores from the ESM to 
any intensity-normalized chromatogram and involves the trans-
formation of the chromatographic intensity-normalized vectors from the 
instrumental-dependent RT domain to an instrumental-agnostic SRS 
domain. Fig. 3 shows the overlapped chromatograms of the same six 
samples plotted in Fig. 1 after intensity normalization (time domain) 
and after agnostizing methodology on SRS domain. 

3.1. Exploratory analysis 

The raw chromatograms (which were conventionally aligned using 
icoshift algorithm) and the instrument-agnostic fingerprints were used 
to perform the different steps of this multivariate study. Note that when 
aligned raw chromatograms are used as input data to develop multi-
variate models, they will be referred to as before-agnostizing models. 
Conversely, if instrument-agnostic fingerprints are used, the after- 
agnostizing model term is then employed. 

First, an exploratory PCA was performed for both data sets and their 

Fig. 1. Overlapped raw chromatograms of six olive oils considering one representative sample per olive oil category: A) EVOO and VOO, and B) OO, ROO, OPO and 
BLE. EVOO: extra virgin olive oil, VOO: virgin olive oil, OO: olive oil, ROO: refined olive oil, olive-pomace oil (OPO) and BLE: blend of EVOO or VOO with ROO 
or OPO. 
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corresponding score plots can be observed in Fig. 4 A and B, respec-
tively. The before-agnostizing PCA model was built considering 3 prin-
cipal components (PCs) which explained 73% of the total variance with 
a root mean square error for cross validation (RMSECV) = 1.87, whilst 
after-agnostizing PCA model was developed with 4 PCs explaining 67% 
of the total variance with RMSECV = 0.03. Only PC1 vs PC2 were used to 
perform the score plots in both cases, since they provided the best 
grouping overview. The EVOO and VOO were grouped together in both 
PCA score plots; the same ensued for the OO, ROO and OPO samples, 
which could be attributed to the similar chemical composition. 

However, the different pattern in the two scores plots deserves 

further comment. Fig. 4A clearly shows the differentiation between the 
two groups mentioned above, but the same is not evident in the layout 
shown in Fig. 4B. This is because PCA is not a classification method, but 
outputs groups based on the variability observed in the corresponding 
input signals. These results in the BLE oils being further separated into 
three subgroups, possibly because the agnostizing of the signals en-
hances the dissimilarity amount blended oils. However, this fact does 
not hinder the aim of the exploratory analysis, which was to show that 
there is a difference between the two concerned groups, which is clearly 
evident. As a consequence, the application of appropriate classification 
methods should yield good results. 

Fig. 2. Chromatogram of the external standard mix (ESM) composed by five different chemical components: 1) 1,2,3-trimethyl benzene (TMB); 2) propiophenone 
(PROP); 3) 2,5-dimetylphenol (2,5-DP); 4) 2-naftol (2-NAF); and 5) ethyl paraben (EPB). 

Fig. 3. Overlapped chromatograms of the same six different olive oil samples as Fig. 1 A) after intensity normalization (time domain) and B) after retention time 
normalization (SRS domain). EVOO: extra virgin olive oil, VOO: virgin olive oil, OO: olive oil, ROO: refined olive oil, olive-pomace oil (OPO) and BLE: blend of EVOO 
or VOO with ROO or OPO. 
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In the same regard as the results presented in this study, Drira et al. 
(2020) could identify grouping trends applying PCA among the EVOO 
and the EVOO/OPO adulterated samples using the profile from the 
phenolic compounds, sterolic composition and antioxidants. Nonethe-
less, authors used only nine samples in total within the study, which is a 
very low number of samples to ensure that the used information of the 
chromatographic profiles is sufficient enough to discriminate between 
the different vegetable oils. Navratilova et al. (2022) could not observe 
clear groups of EVOO and EVOO/ROO analysing the polar fingerprints 
with PCA. Finally, Carranco et al., 2018 also used chromatographic 
polar fingerprints of different EVOO samples, and EVOO samples adul-
terated with ROO and sunflower oil as analytical signal for PCA. As a 
result, it was possible to find a tendency of the olive oils against the other 
vegetable oils samples, but authors do not mention if there was some 
pattern of EVOO against adulterated EVOO with ROO. 

On the contrary to these studies, the current study included a wide 
number of samples, the PCA displayed a better grouping of all samples 
and it was possible to distinguish EVOO and VOO from OO, OPO, ROO 
and adulterated samples with PCA. This demonstrates that the instru-
mental fingerprint of the polar fraction contains the information of in-
terest to authenticate the olive oil as discussed above. 

3.2. Authentication of olive oil – discrimination multivariate models 

For the sake of clarity, only the characteristics of each after- 
agnostizing model developed with instrument-agnostic fingerprints, as 
well as the classification plots, classification contingencies and classifi-
cation performance metrics tables for each one is presented here. In 
order to compare these outcomes with the results of the before- 
agnostizing multivariate models, classification plots, contingencies 

and metrics tables can be found in supplementary material. 
Several multivariate classification models were built using both data 

sets (before and after agnostizing) employing SIMCA, PLS-DA and SVM 
as data mining methods to find the best multivariate method capable to 
differentiate among EVOO, VOO or OO from ROO, OPO or BLE. For this, 
two classes were considered to build the models: class 1 (EVOO/VOO/ 
OO) and class 2 (ROO/OPO/BLE). The training was set of 61 samples (24 
EVOO, 2 VOO, 3 OO, 4 ROO, 3 OPO and 25 BLE) and further validated 
with a data set of 27 samples (11 EVOO, 2 VOO, 1 OO, 1 ROO, 1 OPO 
and 11 BLE), as outlined in subsection 2.5. 

Firstly, SIMCA was employed. It is a multivariate classification 
method that builds models based on PCA and considers the classes in-
dependent from each other. For this particular case, the model was 
performed using 3 PCs for class 1 and 4 PCs for class 2, which explained 
62.34% and 88.70% of the total variance, respectively. The classifica-
tion outcomes can be evaluated using the Cooman’s plot which is 
showed in Fig. 5. Coomans’ plot is a visual representation of the sepa-
ration between two classes, in which the two axes represent the 
normalized orthogonal distances of all the samples respect to each in-
dividual model. Optimally, the validation samples should be classified in 
the class 1 or class 2. In real conditions, some validation samples could 
be assigned to both classes simultaneously, in this case these samples are 
considered as inconclusive ones. In addition, some samples can be not 
recognized as belonging to any class. 

It can be observed in Fig. 5 that there are three validation samples 
placed in the ‘inconclusive’ quadrant (bottom-left quadrant) which are 
samples of OO, ROO and blend of VOO (80%) with OPO (20%), 
respectively. The classification contingency is shown in Fig. 6. 

When comparing these classification outcomes with those obtained 
from the after-agnostizing SIMCA model, it is shown that the agnostizing 

Fig. 4. Exploratory PCA score plots of 88 olive oil samples belonging to six different quality categories: A) before agnostizing, and B) after agnostizing. EVOO: extra 
virgin olive oil, VOO: virgin olive oil, OO: olive oil, ROO: refined olive oil, olive-pomace oil (OPO) and BLE: blend of EVOO or VOO with ROO or OPO. 
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step improved the results using the standard icoshift alignment, since 
the before-agnostizing SIMCA model placed in the ‘inconclusive’ quad-
rant 10 samples, providing worse classification results (see supplemen-
tary material, Figs. S1 and S2). 

The next multivariate method was PLS-DA, which was performed 
with 3 latent variables (LVs) that could explain 77.99% of the total 
variance. The classification results can be observed in Fig. 7 in which 
only one OO sample belonging to class 1 was classified in class 2, since it 
did not trespass the threshold of 0.5, associating it to be more similar to 
ROO and OPO BLE samples. The classification contingency can be 
observed in Fig. 8. Note that the performance of both before-agnostizing 
and after-agnostizing PLS-DA models was the same (see supplementary 
material, Figs. S3 and S4). 

The after-agnostizing SVM classification model was performed 
considering the same two classes. The Kernel type algorithm radial basis 
function (RBF) with gamma and cost values, established by default in 
the PLS_Toolbox software, was applied. As observed in Fig. 9, all samples 
were classified within their corresponding classes. In this case, the OO 
sample belonging to the class 1, previously misclassified by SIMCA and 
PLS-DA classification models, was classified correctly. The classification 
‘contingency chart’ can be observed in Fig. 10. 

The same classification performance results were found using raw 
chromatograms (before-agnostizing) and instrument-agnostic 

Fig. 5. Cooman’s classification plot of the validation 
set samples from the after-agnostizing SIMCA model. 
EVOO: extra virgin olive oil, VOO: virgin olive oil, 
OO: olive oil, ROO: refined olive oil, olive-pomace oil 
(OPO) and BLE: blend of EVOO or VOO with ROO or 
OPO. (Left upper quadrant ’Class 1′ includes EVOO, 
VOO, and OO samples; right upper quadrant is for not 
recognized samples; left bottom quadrant is for incon-
clusive samples; right bottom quadrant ’Class 2′ includes 
ROO, OPO and BLE samples; 3 samples were classified as 
’inconclusive’).   

Fig. 6. Validation contingencies from the after-agnostizing SIMCA classifica-
tion model. Class 1 (target class): EVOO: extra virgin olive oil, VOO: virgin olive 
oil, OO: olive oil) – Class 2 (non-target class): ROO: refined olive oil, OPO: 
olive-pomace oil, and BLE: blend of EVOO/VOO with ROO/OPO oils. 

Fig. 7. Classification plot of the validation set samples from the after-agnostizing PLS-DA model. EVOO: extra virgin olive oil; VOO: virgin olive oil, OO: olive oil; 
ROO: refined olive oils; OPO: olive-pomace oil and BLE: blend of EVOO/VOO with ROO/OPO oils. (The solid line signifies the threshold decision of 0.5; the circled sample 
from class 1 is the only misclassified in class 2). 
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fingerprints (after-agnostizing) (see supplementary material, Figs. S5 
and S6). This finding suggests that SVM is a data mining/chemometric 
classification method suitable to be applied for the authentication of 
olive oil evidencing the huge difference of EVOO and VOO from ROO of 
any other kind. In addition it is reaffirmed that the instrument- 
agnostizing methodology for the standardization of raw chromato-
grams yields equal or even better results than the conventional icoshift 
alignment but with the advantage that it results in single multivariate 
models without the need to repeat the data alignment step each time 
new samples are analysed. 

The contingency results were used to further calculate the classifi-
cation performance metrics, presented in Table 1. The model SVM ob-
tained the best results for sensitivity (SENS), specificity (SPEC), positive 
predictive value (PPV) and negative predictive value (NPV). For SIMCA 
and PLS-DA models, both of them obtained a SENS of 0.93, which in-
dicates the ratio of agreement of the class 1; SIMCA model obtained a 
SPEC of 0.85 and PLS-DA of 1.00 what indicates that the latter shows a 
better ratio of agreement of class 2. The PPV in both models was 1, 
indicating that the models are capable to correctly classify in all the 
cases the samples belonging to class 1, and that SIMCA model is better 
classifying the samples of class 2, since it obtained a NPV of 1.00 and 
PLS-DA of 0.93. 

In addition, Bayes’ conditional probabilities 1/1 and 2/2, which 
report good quality of the model and/good probability of classification, 

are equal or close to one. 
Note that, the parameters that indicate bad quality/probability of 

misclassification for the SVM model, like FPR, FNR, MR and Bayes’ 
conditional probabilities 1/2 and 2/1, are equal to zero. In this regard, 
the SVM is capable to avoid wrong assignations with an MR value of 0, 
whilst PLS-DA and SIMCA classification models can perform wrong as-
signations with 0.04 and 0.11, respectively. Another example can be 
observed in PROB (1/2) which indicates that the SVM will not classify a 
sample from class 1 to class 2. On the contrary, PLS-DA and SIMCA 
models can make that misclassification with 0.07 and 0.08, respectively. 
Such results reveal that PLS-DA and SVM are better in classifying the 
samples used within this study, providing good results among data 
before and after agnosticism. 

In this adulteration context, a similar study was performed by Tata 
et al. (2022) in which EVOO chromatographic polar fingerprints were 
analysed with PLS-DA and SVM to detect adulterations in EVOO with 
soft-refined olive oil. In this study, PLS-DA was used mainly as an 
exploratory technique, since authors declared to observe a good sepa-
ration between the different kinds of vegetable oils. Afterwards, authors 
performed a SVM model with values reported on the training set of 
SENS, SPEC and EFFIC of 0.94, 0.93 and 0.95, respectively. However, 
such model was further validated with only six correctly classified 
samples. It is important to note that, the SVM model developed within 
the present study performs better than the model developed by Tata 

Fig. 8. Validation contingencies from the after-agnostizing PLS-DA classifica-
tion model. Class 1 (target class): EVOO: extra virgin olive oil, VOO: virgin olive 
oil, OO: olive oil) – Class 2 (non-target class): ROO: refined olive oil, OPO: 
olive-pomace oil, and BLE: blend of EVOO/VOO with ROO/OPO oils. 

Fig. 9. Classification plot of the validation set samples from the after-agnostizing SVM model. EVOO: extra virgin olive oil; VOO: virgin olive oil, OO: olive oil; ROO: 
refined olive oils; OPO: olive-pomace oil and BLE: blend of EVOO/VOO with ROO/OPO oils. (The solid line signifies the threshold decision value of 0.5; all validation 
samples were rightly classified). 

Fig. 10. Validation contingencies of the after-agnostizing SVM classification 
model. Class 1 (target class): EVOO: extra virgin olive oil, VOO: virgin olive oil, 
OO: olive oil) – Class 2 (non-target class): ROO: refined olive oil, OPO: olive- 
pomace oil, and BLE: blend of EVOO/VOO with ROO/OPO oils. 
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et al. (2022), since it provides improved quality performance metrics 
considering a larger number of samples. Additionally, it is worth noting 
that such results were obtained with instrument-agnostic fingerprints of 
EVOO what leads to an important interlaboratory application as well as 
to the expansion and implementation of multivariate methods for the 
control of olive oil authenticity. 

4. Conclusions and future perspectives 

The main problem with the expansion of multivariate models is that 
they are very dependent on the alignment of the chromatographic sig-
nals and the application of alignment algorithms such as icoshift implies 
repeating the process of applying this algorithm each time a new chro-
matographic signal is obtained. This involves that multivariate classifi-
cation models must be retrained and validated with all chromatograms 
again. In this regard, due to the application of the instrument- 
agnostizing methodology this is not essential since the instrument 
dependence has been minimise and, once the model has been trained 
using instrument-agnostic fingerprints, it is not necessary to do it again. 
Therefore this model could be transferred to another laboratory for its 
application. In fact, the authors are currently carrying out more exper-
iments in collaboration with other laboratories in order to transfer and 
to implement a unique model. 

In this study, the advantage of the instrument-agnostizing method-
ology over the application of a conventional chromatographic signal 
alignment procedure applying the icoshift algorithm has been demon-
strated. Thus, we can conclude that the methodology for standardizing 
raw chromatograms have allowed to obtain instrument-agnostic fin-
gerprints of olive oil independent from the chromatographic state or 
date of chromatographic analysis. This offers an important advance in 
knowledge as it provides the opportunity to establish the first universal 
database of olive oil chromatographic fingerprints, generating from 
these instrument-agnostic fingerprints single multivariate models that 
could be universally implemented in routine laboratories in order to 
easily authenticate olive oil. 
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(2021b). Standardization of chromatographic signals – Part II: Expanding 
instrument-agnostic fingerprints to reverse phase liquid chromatography. Journal of 
Chromatography A, 1641, 461973. https://doi.org/10.1016/j.chroma.2021.461973 

Cuadros Rodríguez, L., Ortega Gavilán, F., Martín Torres, S., Medina Rodríguez, S., 
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Casado, A. (2016a). Chromatographic fingerprinting: An innovative approach for 
food ’identitation’ and food authentication – a tutorial. Analytica Chimica Acta, 909, 
9–23. https://doi.org/10.1016/j.aca.2015.12.042 

Drira, M., Kelebek, H., Guclu, G., Jabeur, H., Selli, S., & Bouaziz, M. (2020). Targeted 
analysis for detection the adulteration in extra virgin olive oil’s using LC-DAD/ESI- 
MS/MS and combined with chemometrics tools. European Food Research and 
Technology, 246, 1661–1677. https://doi.org/10.1007/s00217-020-03522-y 

Duraipandian, S., Petersen, J. C., & Lassen, M. (2019). Authenticity and concentration 
analysis of extra virgin olive oil using spontaneous Raman spectroscopy and 
multivariate data analysis. Applied Sciences, 9, 2433. https://doi.org/10.3390/ 
app9122433 

Folch Fortuny, A., Vitale, R., de Noord, O. E., & Ferrer, A. (2017). Calibration transfer 
between NIR spectrometers: New proposals and a comparative study. Journal of 
Chemometrics, 31, Article e2874. https://doi.org/10.1002/cem.2874 

Fornasaro, S., et al. (2020). Surface enhanced Raman spectroscopy for quantitative 
analysis: Results of a large-scale European multi-instrument interlaboratory study. 
Analytical Chemistry, 92, 4053–4064. https://doi.org/10.1021/acs. 
analchem.9b05658 

Table 1 
Summary of classification performance metrics of after-agnostizing SIMCA, PLS- 
DA and SVM models.  

Classification performance metrics SIMCA PLS-DA SVM 

Class 1 (EVOO/VOO/OO) 

Inconclusive rate (IR) 0.04 0.00 0.00 
Sensitivity (SENS) 0.93 0.93 1.00 
Specificity (SPEC) 0.85 1.00 1.00 
False positive rate (FPR) 0.15 0.00 0.00 
False negative rate (FNR) 0.07 0.07 0.00 
Positive predictive value (precision) (PPV) 1.00 1.00 1.00 
Negative predictive value (NPV) 1.00 0.93 1.00 
Youden index (YOUD) 0.77 0.93 1.00 
Positive likelihood rate (LR (+)) 6.04 – – 
Negative likelihood rate (LR (− )) 0.08 0.07 0.00 
Classification odds ratio (COR) 71.50 – – 
F-measure (F) 0.96 0.96 1.00 
Discriminant power (DP) 1.02 – – 
Efficiency (or accuracy) (EFFIC) 0.89 0.96 1.00 
Misclassification rate (MR) 0.11 0.04 0.00 
AUC (correctly classified rate) 0.89 0.96 1.00 
Gini coefficient (Gini) 0.77 0.93 1.00 
G-mean (GM) 0.89 0.96 1.00 
Matthew’s correlation coefficient (MCC) 0.89 0.93 1.00 
Chance agreement rate (CAR) 0.45 0.50 0.50 
Chance error rate (CER) 0.50 0.50 0.50 
Kappa coefficient (KAPPA) 0.80 0.93 1.00 
PROB (1/1) 0.87 1.00 1.00 
PROB (2/2) 0.92 0.93 1.00 
PROB (1/2) 0.08 0.07 0.00 
PROB (2/1) 0.13 0.00 0.00 

The hyphen "–" signifies that the performance feature cannot be determined 
since it involves a division between zero. 
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