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a b s t r a c t

Verbal instructions allow fast and optimal implementation of novel behaviors. Previous

research has shown that different control-related variables structure neural activity in

frontoparietal regions during the encoding of novel instructed tasks. However, it is un-

certain whether different task goals modulate the organizing effect of these variables. In

this study, we investigated whether the neural encoding of three task-relevant variables

(dimension integration, response set complexity and target category) is modulated by

implementation and memorization demands. To do so, we combined functional Magnetic

Resonance Imaging (fMRI), an instruction-following paradigm and multivariate analyses.

We addressed how and where distributed activity patterns encoded the instructions' var-

iables and the impact of the implementation and memorization demands on the fidelity of

these representations. We further explored the nature of the neural code underpinning this

process. Our results reveal, first, that the content of to-be-implemented and to-be-

memorized instructions is represented in overlapping brain regions, flexibly using a

common neural code across tasks. Importantly, they also suggest that preparing to

implement the instructions increases the decodability of task-relevant information in

frontoparietal areas, in comparison with memorization demands. Overall, our work em-

phasizes both similarities and differences in task coding under the two contextual de-

mands. These findings qualify the previous understanding of novel instruction processing,

suggesting that representing task attributes in a generalizable code, together with the in-

crease in encoding fidelity induced by the implementation goals, could be key mechanisms

for proactive control in novel scenarios.
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1. Introduction

Instruction following allows humans to implement novel

behaviors quickly without prior practice. Such enhanced ef-

ficiency frames this ability as a special instance of humans'
cognitive flexibility (Cole, Laurent, & Stocco, 2013). An

important yet unanswered question is how the brain rapidly

reformats and organizes the symbolic information conveyed

by instructions into efficient action (Brass, Liefooghe, Braem,

& De Houwer, 2017). Recent findings have shown that the

preparation to execute a novel instruction entails structured

activity patterns across fronto-parietal regions, where the

information encoding is organized by relevant dimensions of

the current instructed task (Palenciano, Gonz�alez-Garcı́a,

Arco, Pessoa, & Ruz, 2019). However, it remains unknown

whether this mechanism is triggered by the preparation to

implement the novel tasks, or alternatively, whether it re-

flects mere declarative maintenance of the instructed

content.

Prior studies have reported the pervasive effects of in-

struction following on behavioral and neural markers. The

intention to execute a recently encoded instruction induces

brain activation in areas associatedwith control and category-

selective perceptual processing (Gonz�alez-Garcı́a, Arco,

Palenciano, Ramı́rez, & Ruz, 2017; Gonz�alez-Garcı́a, Formica,

Wisniewski, & Brass, 2021) and impacts the neural patterns

representing the instructed content (Bourguignon, Braem,

Hartstra, De Houwer, & Brass, 2018; Muhle-Karbe, Duncan,

De Baene, Mitchell, & Brass, 2017; Ruge, Sch€afer, Zwosta,

Mohr, & Wolfensteller, 2019). In this line, a recent study

(Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019)

showed that, during implementation demands, neural pat-

terns in areas such as the inferior frontal gyrus (IFG) are

organized by the need to integrate information from different

dimensions of the instruction (e.g., color and size of the

stimuli), while patterns in the intraparietal sulcus (IPS) and

pre-supplementary motor area (pre-SMA) represent the

complexity of the newly instructed response sets (Palenciano,

Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019).

Another set of neuroimaging studies from the instruction

following literature has focused on how the declarative in-

formation of the instruction is transformed into a procedural

format, that is, into an action-oriented proactive binding of

relevant motor and perceptual codes (see Brass et al., 2017 for

a review). This transformation (often defined as procedurali-

zation) enables a highly accessible task model containing the

condition-action rules from the instruction ready to be

implemented, creating an optimal preparatory and reflexive-

like state that enables a fast and optimal execution (Brass

et al., 2017; but see Liefooghe & De Houwer, 2018). Interest-

ingly, brain areas linked to novel instruction processing (such

as the dorsal premotor cortex and middle frontal gyrus) seem

to be involved also when participants only need to declara-

tively memorize (but not execute) the content of the instruc-

tion. Critically, these areas show higher levels of activation or

information decodability under implementation demands

(Bourguignon et al., 2018; Muhle-Karbe et al., 2017). This raises

the question of how exactly declarative and procedural neural

states differ.
A prominent theoretical proposal of instruction processing

puts forward a three-step model of how the information

contained in verbal instructions is transformed into action

plans (Brass et al., 2017). First, the instruction content has to

be encoded, building the representation of the declarative

information and rules that specify the proper response

(Hartstra, Waszak, & Brass, 2012; Sakai, 2008). Afterward, a

preparation stage takes place before response execution

(Sakai, 2008), where the task set is assembled and its proactive

maintenance induces an adjustment of the features relevant

to achieve the task (Gonz�alez-Garcı́a et al., 2017; Muhle-Karbe

et al., 2017; Ruge &Wolfensteller, 2010). Finally, the task-set is

executed and the action conveyed by the instruction is carried

out (Stocco, Lebiere, O’Reilly, & Anderson, 2012). As

mentioned before, proactive control not only biases percep-

tual and motor systems to enhance processing of upcoming

stimuli and relevant responses, but it also organizes neural

activity according to control-related variables, such as the

need to integrate dimensions, or response complexity (Cole,

Patrick, Meiran, & Braver, 2018; Palenciano, Gonz�alez-Garcı́a,

Arco, Pessoa, Ruz, 2019). However, it remains unknown

whether the reported proactive pattern organization in

control-related areas enables the preparatory state that ulti-

mately leads to execution, or it underlies the declarative

memorization of the novel task demands.

The current study aimed to test the extent to which pro-

active pattern organization in cognitive control-related,

motor, and perceptual regions is specific to the procedurali-

zation of novel instructions. To that end, we adapted an

instruction-following functional Magnetic Resonance Imaging

(fMRI) paradigm (Gonz�alez-Garcı́a et al., 2017; Palenciano,

Gonz�alez-Garcı́a, Arco, & Ruz, 2019; Palenciano, Gonz�alez-

Garcı́a, Arco, Pessoa, & Ruz, 2019) in which novel verbal in-

structions had to be either implemented (proceduralized) or

memorized (non-proceduralized). As in Palenciano, Gonz�alez-

Garcı́a, Arco, Pessoa, et al. (2019), the instructions from both

conditions were manipulated according to three variables

related to proactive preparation: 1) the necessity to integrate

within or across stimuli dimensions, 2) the response set

complexity and 3) the relevant target category. Using multi-

variate pattern analysis (MVPA; Haxby, Connolly, &

Guntupalli, 2014) we aimed to explore the strength with

which control-related variables organize brain activity pat-

terns during both implementation and memorization de-

mands (Bourguignon et al., 2018; Muhle-Karbe et al., 2017;

Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019). We

expected, first, that the instruction structure would be repre-

sented, during task encoding, in several areas in both imple-

mentation and memorization conditions (Muhle-Karbe et al.,

2017). More specifically, and in line with previous findings

(Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019), we

predicted that activity patterns in the IFG would encode the

kind of dimension integration required by the instruction, in

the pre-SMA and IPS, the response complexity, and in the

ventral visual pathway, the relevant target category. Second,

and more importantly, we hypothesized that the effect of

these variables on activity patterns would be emphasized

under implementation demands e reflecting their role during

the proceduralization process. In consequence, we expected
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higher decoding accuracy of such variables in the imple-

mentation than in the memorization condition.
2. Methods

2.1. Participants

Thirty-seven students from the University of Granada (Spain)

took part in the study (29 females, 8 males, mean age ¼ 22.97,

SD ¼ 3.42). The participants were native Spanish speakers,

right-handed and with normal or corrected-to-normal vision.

They received economic compensation (20e35V, depending

on performance) for their participation. They all signed a

consent form approved by the Ethics Committee for Human

Research of the University of Granada. Two participants were

excluded due to excessive headmovement (>3mm) and other

three due to low performance (<75% of correct responses),

resulting in a final sample of 32 participants. The sample size

(N ¼ 32) was calculated a priori with the power analysis soft-

ware PANGEA (Westfall, 2016), to detect with 80% power a

smallemedium (Cohen's d ¼ .3) two-way interaction effect in

our behavioral analyses (see Section 3.1).

2.2. Stimuli, apparatus

The stimuli consisted of 192 different verbal instructions

(taken from Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al.,

2019). They all had the same “If … then …” structure and

were composed of two conditional statements and two re-

sponses (e. g.: “If there are two vegetables and one fruit, press A. If

not, press L”). “A” and “L” corresponded to a left- and a right-

hand response, respectively. Participants used their middle

fingers for one task (e.g., implementation) and the index fin-

gers for other (e.g., memorization). The finger assigned to each

task was counterbalanced across participants. All the in-

structions referred to different features of either human faces

or food items. The faces' features were their gender (male,

female), emotion (happy, sad), race (black, white), and size

(large, small). The food items' features were their type (vege-

table, fruit), color (green, yellow), shape (elongated, rounded),

and size (large, small). Equivalent face-related and food-

related instructions were created by equating the features

gender and food type, emotion and color, and race and shape

across the two categories. Given that targets consisted of a

grid of 8 stimuli (see below), instructions also specified the

number of items from the grid that had to be taken into

consideration to respond (one, two, or three).

Critically, wemanipulated the structure of the instructions

across three variables. First, the dimension integration, with

instructions requiring the integration of features from the

same dimension (e.g., “If there are two women and one man”,

the integration is within the gender dimension) or from

different dimensions (“If there are two women and one happy

person”, the integration is between the gender and the emotion

dimensions). Second, we manipulated the response set

complexity, as the responses required could be single (e.g.,

“press A. If not press L”) or sequential (e.g., “press AL. If not
press LA”). And third, the relevant target category, with in-

structions referring either to faces or to food items. These

three variables were orthogonally manipulated in a trial-by-

trial fashion. For instance, the instruction “If there are two

women and one happy person, press A. If not, press L.” would

belong to the between dimension integration, single response

set, face-related condition.

Additionally, we manipulated the task demands (imple-

mentation vs memorization) between blocks, similar to pre-

vious studies (e.g., Muhle-Karbe et al., 2017). In

implementation blocks, each instruction was associated with

a grid of target stimuli that either fulfilled the relevant con-

ditions (50% of trials) or not (50% of trials). All grids consisted

of combinations of 4 faces and 4 food items, drawn froma pool

of 16 stimuli: 8 faces (4 men, 4 women, 4 happy, 4 sad, 4 white

people, 4 black people, extracted from the NimStim database;

Tottenham et al., 2009) and 8 food items (4 vegetables, 4 fruits,

4 yellow, 4 green, 4 elongated, 4 rounded; extracted from

Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019). The 16

stimuli could appear in big or small size, generating a pool of

16 items per category (32 in total). All grids were createdwith a

specific combination of stimuli, and each one appeared only

once during the whole experiment.

Memorization blocks were identical to the implementation

ones concerning the instructions. However, instead of grids of

stimuli, targets consisted of another instruction that could be

the same (50% of trials) or different (50% of trials) from the one

encoded first. Different target instructions were created by

exchanging either one of the stimulus features (e.g., “If there

are two vegetables and one yellow food item” instead of “If

there are two vegetables and one green food item”, where the

feature color changed from yellow to green) or the response

(e.g., “press A. If not press L” instead of “press LA. If not press

AL”) from the original one. Target instructions also differed

from the first encoded ones in font size and case (lower and

uppercase for the encoded and target instruction, respec-

tively). This manipulation sought to avoid that participants

responded based on perceptual invariance or physical

changes between the two instructions. In the target screen,

the words “different” and “same” appeared at the right and the

left side on the bottom of the screen, indicating the trial's
relevantmapping (e.g., left middle finger if the instructionwas

the same, right middle finger if it was different). The response

mapping changed across trials to prevent any potential

response preparation before target onset as has been done in

preceding studies (Formica, Gonz�alez-Garcı́a, Senoussi, &

Brass, 2021). In the scanner, the main task was organized in

12 blocks (6 implementation and 6 memorization ones).

Implementation and memorization blocks were presented in

alternation, with order counterbalanced across participants.

Each block contained 16 trials (192 trials in total: 96 imple-

mentation and 96 memorization ones).

The task was presented through a screen connected to a

computer running Matlab with the Psychophysics Toolbox

(Brainard, 1997), with a set of mirrors mounted on the head

coil, allowing the participants to see the screen. Responses

were given through an MRI-compatible response pad with the

middle and index fingers of both hands.

https://doi.org/10.1016/j.cortex.2022.01.010
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2.3. Procedure

The day before the scanning session, participants completed a

practice where they were instructed about the tasks to be

performed and repeated implementation and memorization

blocks until they achieved 85% of accuracy. Participants

completed at least two block repetitions per task demand. If

they did not reach the established accuracy level after three

practice repetitions, they were not invited to the scanning

session (receiving an economic compensation for the time

spent, at an hourly rate of 5 Euros). Six participants were not

able to achieve 85% accuracy and therefore not further tested.

All materials employed in the practice blocks were different

from those used in the fMRI session.

In the scanner, at the beginning of each block, a verbal cue

indicated the task to be performed (implementation

vs memorization). All trials (see Fig. 1) began with an in-

struction (encoding stage; 2.5 sec; 25.75�), which needed to be

later executed (implementation) or remembered (memoriza-

tion). Then, a fixation point (.5�) was presented during a jit-

tered interval ranging from 4 to 7.5 sec in steps of 500 msec

(average duration ¼ 5.75 sec). This jitter was followed by a

target grid (2.5 sec; 21�) in implementation trials, and by

another instruction (2.5 sec; 28.5�) in memorization ones.

Participants responded with the middle fingers for one task

(e.g., implementation) and the index fingers for other (e.g.,

memorization), counterbalanced across runs. In both task

demands, trials ended with a jittered fixation with the same

characteristics as the previous one. In all cases, instructions

were always new and were presented only once during the

entire experiment.

Our four independent variables (task demands, dimension

integration, response set complexity and target category) fol-

lowed a within-subject design, with task demand being

manipulated between blocks, and the remaining variables,

randomizedwithin-blocks. The distribution of jitters' duration
Fig. 1 e Behavior
was equated across blocks. Participants spent ~90 min in the

scanner, with the main task lasting ~75 min.

2.4. fMRI: acquisition and preprocessing

Participants' MRI data were acquired with a 3T Siemens

Magneton Trio scanner located at the Mind, Brain, and

Behavior Research Center (University of Granada, Spain).

Functional images were collected using a T2*-weighted echo-

planar imaging (EPI) sequence [repetition time

(TR) ¼ 2000 msec, echo time (TE) ¼ 24 msec, flip angle ¼ 70�].
Each volume consisted of 34 slices, obtained in descending

order, with 3.0 mm thickness (gap 20%, voxel size ¼ 3 mm3).

For each participant, a total of 1740 volumes were obtained, in

12 runs of 145 volumes each. Additionally, we acquired a

structural image with a high-resolution anatomical T1-

weighted sequence [192 slices of 1 mm, TR ¼ 2500 msec,

TE ¼ 3.69 msec, flip angle ¼ 7�, voxel size ¼ 1 mm3].

We used SPM12 to preprocess and analyze the data. The

first 4 volumes of each run were discarded to allow stabiliza-

tion of the signal. The remaining volumes were spatially

realigned, unwarped and slice-time corrected. Then, the

anatomical T1 was coregistered to the realigned functional

images and segmented into different brain tissues. The

deformation fields thus obtained were used to normalize the

functional data to the Montreal Neurological Institute (MNI)

space (3 mm3 voxel size). Last, the images were smoothed

using an 8 mm Gaussian kernel. Multivariate analyses (see

below) were conducted with non-normalized and un-

smoothed images, normalizing and smoothing the output

maps before the group analyses.

2.5. fMRI: univariate analysis

For each participant, we estimated a General Linear Model

(GLM) with separate regressors for each experimental
al paradigm.

https://doi.org/10.1016/j.cortex.2022.01.010
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condition (32 in total, resulting when crossing all the manip-

ulation levels of our four independent variables). We defined

two events per trial: the instruction and grid, both modeled

with their duration (2.5 sec) and convolved with the canonical

hemodynamic response function. Every regressor was

modeled as a combination of the two trials of the same con-

dition per run. Jitters were not modeled and thus contributed

to the implicit baseline. As nuisance regressors, we included

the 6 motion parameters and errors trials (modeled with the

full duration of instruction, grid, and both jitters).

We focused on the trials' encoding stage, to avoid potential

confounds from perceptual (grid of stimuli vs instruction) or

motor differences (single or sequential responses vs fixed

single response) at the target stage between implementation

and memorization conditions. At the individual level, we ob-

tained maps contrasting the implementation and memoriza-

tion demands during instruction encoding in both directions

(implementation >memorization, and the other way around).

These images were then entered into group-level one-sample

t-tests, to identify brain regions with different mean activa-

tions depending on task demands. The results were corrected

for multiple comparisons using a Family-Wise Error (FWE)

cluster-level threshold of p < .05 (computed from an uncor-

rected p < .001).

2.6. fMRI: multivariate analyses

Our main goal was to explore how task demands modulated

the encoding of novel instructions' structure. First, we spe-

cifically addressed whether implementation demands

entailed stronger, more distinguishable neural representa-

tions of the instructions variables manipulated in our design.

Next, we further assessed if a generalizable neural code was

shared by both task demands. Finally, we explored whether

the encoding of to-be-implemented and to-be-memorized

instructions also involved different, non-overlapping brain

regions. It is important to stress that across all the analyses,

we decoded the three instruction's variables, instead of

directly classifying between task demands (i.e., between

implementation and memorization trials). This approach

ensured that our results were not contaminated by motor

confounds derived from the different responses required by

each task.

2.6.1. Whole-brain decoding analyses and regions of interest
(ROI) selection
Our first goal was to detect brain areas coding each in-

struction's variables (dimension integration, response set

complexity, target category) during the encoding stage. To do

so, we carried out three whole-brain MVPAs, one per manip-

ulated variable. Since both memorization and implementa-

tion tasks were identical at the instruction encoding event, we

collapsed across both demands (following a similar approach

as in Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019;

Palenciano, Gonz�alez-Garcı́a, Arco, & Ruz, 2019). This way, we

capitalized on the full dataset to maximize statistical power.

From these results, we created ROIs at the single-subject level,

where we assessed the effect of task demands (implementa-

tion, memorization) on the fidelity of instructions' variable
encoding (see Section 2.6.2).
To carry out this and the remaining multivariate analyses,

we estimated trial-by-trial GLMs with non-normalized and

unsmoothed data. A Least-Square Separate approach (LSS;

Arco, Gonz�alez-Garcı́a, Dı́az-Guti�errez, Ramı́rez, & Ruz, 2018;

Mumford, Davis, & Poldrack, 2014) was followed to gain

sensitivity and to reduce collinearity between regressors.

With the trial-wise beta coefficient maps from the encoding

stage, we trained three Support Vector Machine (SVM) clas-

sifiers to decode between the two levels of each of the three

instructions' variables. In the dimension integration MVPA,

we classified between instructions integrating within and

between dimensions. For the response set complexity, we

decoded between instruction requiring simple and sequential

responses. Finally, in the target category MVPA, we classified

between faces and food-related trials. The classification was

performed in every location of the brain, iterating a 4-voxel

radius searchlight sphere. We used a 6efold cross-validation

scheme, training the classifiers in 10 out of the 12 runs of

the experiment (five implementation and five memorization

blocks) and testing them in the remaining two runs (one per

task demand). We iterated this procedure until all runs were

used as test data once. To avoid a biased classification per-

formance, we ensured a balanced presence of implementation

andmemorization data across the cross-validation procedure.

After averaging across cross-validation folds, the resulting

subject-wise balanced accuracy maps were introduced into a

group-level one-sample t-test against chance. This way, we

obtained three group maps, each one displaying significant

above-chance decoding of a particular instructions' variable.
The results were corrected for multiple comparisons with a

cluster-wise FWE threshold at p < .05 (from an initial, uncor-

rected threshold at p < .001).

2.6.2. ROI-based decoding
Next, we used as candidate ROIs the areas identified with the

whole-brain classification, wherewe assessed the effect of the

task demands on novel instruction encoding. In particular, we

tested whether implementation demands increased the

decodability of the three instructions' variables. To avoid

circularity in this analysis, the ROIs were derived for each

participant using a Leave-On-Subject-Out (LOSO) approach

(Esterman, Tamber-Rosenau, Chiu, & Yantis, 2010). We

repeated the three group-level t-tests (decoding accuracy

against chance for dimension integration, response set

complexity, and target category) for each participant,

excluding their own data from the analyses. The significant

clusters from each LOSO map (thresholded at p < .001) that

matched the areas resulting at the group level were used as

ROIs for that particular participant. Since not all clusters ob-

tained at the group level were present across all the LOSO

estimations, we excluded from further analysis ROIs shared

by less than 25 participants (i.e., 80% of our sample). The

resulting subject-wise ROIs were inverse-normalized to the

participants' native space.

In each of these ROIs, we classified between the two levels

of the corresponding instruction variable, separately for

implementation and memorization data. As a result, we ob-

tained a decoding accuracy value per participant, ROI and task

demand. To compare the encoding strength between the

implementation and the memorization tasks, we carried out

https://doi.org/10.1016/j.cortex.2022.01.010
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paired-sample Wilcoxon signed-rank tests. As a sanity check,

we used one-sample Wilcoxon signed-rank tests to assess

above-chance decoding accuracy within each region. All re-

sults were corrected for multiple comparisons (i.e., the num-

ber of ROIs analyzed) using a p < .05 BonferronieHolm criteria

(Holm, 1979).

2.6.3. Whole-brain cross-classification
To have further insights on how novel instructions were

encoded under different demands, we explored whether the

same or different neural codes were recruited by imple-

mentation andmemorization tasks. To do so, we performed a

cross-classification analysis (Kaplan, Man, & Greening, 2015).

We trained classifiers to decode the instructions' variables
with one particular task (e.g., implementation) and assessed

its performance on the other (e.g., memorization). A suc-

cessful classification would be interpreted as evidence of

generalizability between demands, that is, a common neural

code underpinning instruction representation.

The cross-decoding followed the same logic and parame-

ters as the former whole-brain decoding. Using a searchlight

procedure, we trained separate SVM classifiers to decode the

three instructions' variables, following a 6-fold cross-

validation scheme. The algorithm was now trained on five

runs of one task (e.g., implementation) and tested on one run

of the other (e.g., memorization), until all the runs were used

as test data once. The process was then repeated with the

opposite cross-decoding direction (e.g., training in memori-

zation, testing in implementation). The resulting decoding

accuracy maps were averaged across cross-validation folds

and cross-decoding directions and introduced into group-

level one-sample t-tests against chance. The results were

corrected with a p < .05 cluster-wise FWE threshold (from an

uncorrected p < .001).

To compare the cross-decoding output with the more

general whole-brain decoding results (Section 2.6.1), we

additionally carried out a conjunction analysis, statistically

assessing the anatomical overlap between these two ap-

proaches for each instruction variable. To do so, we computed

the intersection of the thresholded group maps (cluster-wise

FWE threshold at p < .05) obtained from each variable's cross-

classification and whole-brain decoding.

2.6.4. Whole-brain within-task decoding
The former analyses addressed differences between imple-

mentation and memorization tasks on regions encoding in-

structions under both demands and which shared a common

neural code. However, it could also be the case that either the

neural populations or their underlying code were not shared

by the two task demands. To explore this possibility, we car-

ried out a final set of whole-brain MVPAs, decoding the three

instructions' variables separately for the implementation and

the memorization task. The resulting accuracy maps (one per

instruction variable and task) were contrasted against chance

using one-sample t-tests. Finally, we carried out paired-

sample t-tests contrasting the implementation and memori-

zation maps to detect regions differentially engaged by each

demand.
3. Results

3.1. Behavioral results

Accuracy and reaction times (RT) were analyzed separately

with repeated-measures ANOVAs using task demands

(implementation, memorization), dimension integration

(within, between dimensions), response set complexity (sim-

ple, sequential) and target category (faces, food items) as

within-subject factors (main effects and interaction terms of

interest for both ANOVAs are shown in Suppl. Table 1).

RT results evidenced the modulatory influence of the task

demands over the effect of the remaining instructions' vari-
ables. Specifically, task demands interacted significantly with

the dimension integration, F(1,31) ¼ 36.23, p < .001, hp
2 ¼ .54,

response set complexity, F(1,31) ¼ 17.02, p < .001, hp
2 ¼ .35, and

target category, F(1,31) ¼ 29.70, p < .001, hp
2 ¼ .49. We carried

out post-hoc paired-sample t-tests to further describe these

interactive patterns (Fig. 2). Regarding the dimension inte-

gration, participants responded generally slower when inte-

grating between than within dimensions. The significant

interaction showed that this effect was magnified under

implementation, t(31) ¼ 11.42, p < .001, than memorization

demands, t(31) ¼ 3.00, p ¼ .004. Regarding the interaction of

task demands with response set complexity, we found slower

responses to sequential than single responses in the memo-

rization task, t(31) ¼ 3.40, p ¼ .002, while smaller differences e

that went in the opposite direction e were found in the

implementation task, t(31) ¼ �2.47, p ¼ .016. Finally, regarding

target category, participants were faster to food-related than

to faces-related instructions in the implementation blocks,

t(31) ¼ 5.86, p < .001. This effect was not found in the memo-

rization task t(31) ¼ �1.09, p ¼ .281.

It is worth mentioning that responses were faster but also

less accurate in implementation than in memorization trials,

which could reflect a speed-accuracy trade-off induced by our

task demand manipulation. To explore this, we performed a

control analysis correlating differences in accuracy and RT

between task demands across our sample. A significant,

negative correlation would indicate that participants

responding faster when implementing instructions would do

so at the cost of more errors. Nonetheless, this analysis

showed a negative but non-significant correlation (r ¼ �.257,

p ¼ .15), arguing against a trade-off interpretation.

3.2. fMRI: univariate results

First, we aimed to identify mean activation differences during

instruction encoding under implementation and memoriza-

tion demands. The brain maps showing the results for both

tasks are displayed in Fig. 3. The implementation demands

induced greater activity than memorization ones in the

bilateral fusiform gyrus (left: [�33,�37,�31], k¼ 224; right: [33,

�37, �31], k ¼ 190), postcentral gyrus incurring into supra-

marginal and Rolandic operculum (right: [48, �19, 17], k ¼ 97;

left: [�54, �22, 14], k ¼ 86), right supplementary motor area

(SMA; [6, �4, 50], k ¼ 96), thalamus ([�3, �22, 11], k ¼ 187) and
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Fig. 2 e Mean RT for the two conditions of each instructions' variable, separately for the implementation and the

memorization tasks. Error bars depict standard errors. IMPL: Implementation; MEM: Memorization; Within: integration

within dimensions; Between: integration between dimensions; Single: single response; Sequential: sequential response.
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right primary motor cortex (M1; [36, �13, 62], k ¼ 186). The

memorization demands led to greater activity in comparison

with the implementation condition only in the right angular

gyrus ([24, �58, 44], k ¼ 225).

3.3. fMRI: multivariate results

3.3.1. Whole-brain decoding
As a first approach, we aimed to identify brain regions

encoding the instructions variables, irrespectively of the task

demand. Fig. 4A shows the above-chance decoding accuracy

maps for the three instructions' variables. The dimension

integration variable was successfully decoded only in the left

middle temporal gyrus (MTG; [�57, �58, �7], k ¼ 234). A less
Fig. 3 e Univariate results. Regions more activated in implemen

opposite contrast, in blue. The color shade indicates the t-value
strict statistical threshold (p < .001, uncorrected, see Suppl.

Fig. 1) revealed an additional cluster encoding this variable

in the left inferior frontal gyrus (IFG; [�57, 23, 17], k ¼ 112),

following our previous results (Palenciano, Gonz�alez-Garcı́a,

Arco, Pessoa, et al., 2019). The response set complexity could

be decoded from a wide cluster ([�45, �70, �1], k ¼ 4594)

spanning the bilateral premotor cortices (PMC), supplemen-

tary motor areas (SMA), and pre-SMA, and the left M1. The

same cluster also extended posteriorly into the left somato-

sensory cortex and inferior parietal lobe (IPL), and into the left

MTG and fusiform gyrus. Anteriorly, it also covered the left IFG

and frontal operculum. Significant above-chance decoding of

the response set complexity was also found in the left middle

frontal gyrus (MFG [�27, 56, 23], k ¼ 175), and the right
tation than memorization trials are shown in red, and the

s (p < .05, FWE corrected for multiple comparisons).
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Fig. 4 e (A) Results from the whole-brain decoding analysis for each instructions' variable. (B) Results from the whole-brain

cross-classification analysis for each instructions' variable. Color shades indicate t-values (p < .05, FWE corrected for

multiple comparisons).

Fig. 5 e Mean decoding accuracy for each ROI and

instruction' variable, separately for the implementation

and memorization conditions. The black dashed line

shows chance decoding performance. Asterisks indicate

significant results in the corresponding one-sample or

paired-sample Wilcoxon sign rank test. Results are

BonferronieHolm corrected for multiple comparisons.

Error bars depict standard error. DIM: ROI extracted from

the dimension integration decoding; RESP: ROI extracted

from the response set complexity decoding; CAT: ROI

extracted from the target category decoding.
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supramarginal gyrus (SMG, [54, �28, 38], k ¼ 170). Finally, the

target category was decoded from a large cluster in the left

hemisphere ([�42, �43, �25], k ¼ 2069) covering the left MTG

and the inferior temporal gyrus, the fusiform gyrus, and the

precuneus. The category was also decoded from the left IFG,

extending into the frontal operculum and anterior insula

([�51, 32, 14], k ¼ 1229), the dorsomedial prefrontal cortex

(dmPFC; [�6, 53, 32], k ¼ 455), and the ventromedial prefrontal

cortex (vmPFC; [�3, 50, �22], k ¼ 149).

3.3.2. ROI-based decoding
From the previous analyses, we extracted a series of ROIs

encoding the instructions' structure. Next, we investigated

whether the intention to implement an instruction increased

the fidelity (i.e., the decoding accuracy) of these representa-

tions, in comparison with memorization demands. After

performing a LOSO procedure, we ended up with five ROIs: a

left MTG ROI identified with the dimension integration

decoding, an ROI extracted from the response set complexity

decoding which covered the motor cortices together with the

IPL and left MTG, and three ROIs isolated with the target

category decoding and located in the left MTG, left IFG and

dmPFC. In each of these regions, we computed the classifica-

tion accuracy for the corresponding variable, separately for

implementation and memorization trials, and compared be-

tween task demands. Mean decoding accuracies per ROI and

task are shown in Fig. 5. In line with our hypothesis, we found

higher decoding accuracies under implementation demands

for the response set complexity variable across the motor

cortices, the IPL and the left MTG, and for the target category

variable, in the left MTG and IFG (see Table 1). No evidence in

favor of this pattern (nor the opposite) was found regarding

the integration of dimensions variable in the left MTG, nor the

target category decoding in the dmPFC.
As a sanity check, we also tested whether the decodability

found in these regions during the ROI-based analyses was

significantly above chance (see Fig. 5). Critically, we did not

find evidence supporting successful decoding of the dimen-

sion integration condition in the left MTG under neither

https://doi.org/10.1016/j.cortex.2022.01.010
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Table 1e Results of the paired-sampleWilcoxon sign-rank
test contrasting the decoding accuracy between
implementation and memorization conditions.

Instruction dimension and ROI z p pcorrected

Integration of dimensions

Left MTG �.55 .709 .709

Response set complexity

Bilateral motor cortices,

left IPL, left MTG

2.35 .009 .038

Target category

Left IFG 2.31 .010 .038

Left MTG 2.74 .003 .015

dmPFC .514 .304 .607
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demands. The same applied to the decoding of the target

category in the dmPFC.

3.3.3. Cross-classification
We further explored whether the neural code used to repre-

sent the different instructions' variables was shared across

task demands. To address that issue, we performed a cross-

decoding analysis, testing whether a classifier trained in one

task demand performed above chance in data from the other

task. The brain maps from Fig. 4B show significant cross-

classification performance (the two cross-classification di-

rections' results are displayed in Suppl. Fig. 2). The response

set complexity could be cross-decoded from the left PMC, M1

and IPL ([�34, �14, 68], k ¼ 2134). In the target category anal-

ysis, we found significant clusters on the left IFG, including

part of the frontal operculum and anterior insula ([�40, 38, 20],

k ¼ 3791) and the left MTG and fusiform gyrus ([�46, �56, �6],

k ¼ 3599). However, no evidence for above-chance cross-
Fig. 6 e Results of the whole-brain within-task classification ana

for multiple comparisons).
classification was found for the dimension integration

variable.

To estimate the prevalence of common neural patterns

between task demands, we carried out a conjunction analysis

using the maps from the cross-classification and the whole-

brain decoding analyses. Then, we computed the percentage

of voxels identifiedwith these two analyseswhich fell into the

conjunctionmaps. Almost all voxels identified with the cross-

classification analyses were captured by the conjunction

(91.6% in the case of the response set complexity, and 80.1%

for the target category), illustrating that the shared neural

code took place majorly in regions already identified as

encoding the instructions' variables. In the case of the general

decoding analyses, we found a 45.9% of overlap in the

response set complexity classification, showing that the

neural code generalized across demands in approximately

half of the identified voxels. For the target category, we found

a 12.1% of overlap between the general decoding and the

conjunction maps, showing a lower but still considerable

prevalence of shared neural code.

3.3.4. Whole-brain within-task decoding
To extend the ROI-based results, we ran further whole-brain

classification analyses separately for each task demand. We

followed this approach to identify regions encoding novel in-

structions exclusively in implementation or memorization

trials. This analysis also allowed us to detect differences in

regions where the neural code was not common across de-

mands (i.e., which were not captured by the cross-

classification). The accuracy maps showing significant

decoding of the three instruction variables for each task are

displayed in Fig. 6. While the necessity to integrate within or

between dimensions was encoded in the left IFG ([�60, 17, 14],
lyses. Color shades indicate t-values (p < .05, FWE corrected

https://doi.org/10.1016/j.cortex.2022.01.010
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k ¼ 168) in the implementation blocks, no significant clusters

were detected in the memorization ones. Regarding response

set complexity, we found significant above-chance decoding

during the implementations blocks in the bilateral M1, PMC,

and SMA extending into the bilateral intraparietal sulcus and

IPL (left: [�45,�31, 44], k ¼ 1424; right: [42,�34, 56], k ¼ 783), in

the left IFG and anterior insula ([�57, 5, 11], k ¼ 179), and the

left MTG ([�54,�61,�10], k ¼ 270). The same classification in

the memorization task showed significant clusters in the left

IFG ([�54, 8, 17], k ¼ 478), medial frontal cortex ([15, 38, �10],

k ¼ 399), and right cerebellum ([36, �76, �31], k ¼ 345). Finally,

during implementation blocks, the target category was enco-

ded in the left IFG extending into the MFG ([�42, 29, 11],

k ¼ 796), the left fusiform gyrus ([�54, �52, �10], k ¼ 533), and

the precuneus ([�27, �58, 26], k ¼ 630). No significant above-

chance category decoding was found in the memorization

blocks. Finally, we contrasted the implementation and

memorization accuracy maps for each instruction variable.

Nonetheless, no voxels survived in none of the comparisons.
4. Discussion

In the present study, we examined how task goals impact the

structure of the neural patterns associated with the encoding

of complex, novel instructions. Using multivariate analyses,

we explored brain regions encoding instructions' dimensions

related to anticipatory control. Critically, we assessed

whether the fidelity of the neural representations held in

these areas was modulated by specific implementation or

memorization demands. In addition, with cross-classification

analysis, we aimed to deepen the understanding of the neural

code supporting novel instruction processing across task de-

mands. Finally, further within-task classification analyses

explored whether the representation of the instructions' di-
mensions could also take place on distinct neural populations.

Our findings emphasize that both implementation and

memorization demands share similar neural mechanisms

during novel instruction encoding. Fronto-parietal, motor and

perceptual regions represented the novel task content across

both conditions, using a generalizable neural code. Nonethe-

less, our results also stress that to-be-implemented in-

structions induced more decodable representations of the

task's relevant variables, in comparison to memorization de-

mands. This finding was further supported by the within-task

classification results. Taken together, our work reveals a

complex picture where cognitive control and sensorimotor

areas process novel instructed content with a shared format

for implementation and memorization tasks, but with

different coding strengths.

The behavioral data already evidenced the impact of

implementation and memorization demands on instructed

task performance. The participants' response speed was sen-

sitive to the instructions' variables manipulated in our design

(dimension integration, response set complexity, and task

category), related to proactive task reconfiguration. Critically,

the three variables' effect was modulated by task demands.

Integrating stimuli features between dimensions had a cost

on performance in comparison with within-dimension inte-

gration. In line with our predictions, this cost was larger under
implementation demands. Similarly, the target category had a

larger effect on RTs in the implementation than in the

memorization task, where no differences were found between

faces and food-related instructions. This pattern may reflect

the involvement of category-specific preparatorymechanisms

on implementation trials, which would not be required when

instructions were merely remembered. Finally, the response

set complexity also interacted with task demands, this time

with a greater effect under memorization demands. While

longer RTs for sequential than single responseswere found for

the memorization task, an opposite, smaller effect was found

in implementation demands. Despite this pattern deviated

from our prediction, it converges with the remaining behav-

ioral results, supporting that the variables manipulated were

behaviorally relevant for instructed performance and showed

specificity regarding task demands.

The univariate fMRI results showed that the encoding of

to-be-implemented and to-be-memorized instructions

increased the activity in different sets of brain regions, in line

with previous research (Bourguignon et al., 2018; Muhle-Karbe

et al., 2017). Replicating findings from past studies (e.g.,

Gonz�alez-Garcı́a et al., 2017; Palenciano, Gonz�alez-Garcı́a,

Arco, & Ruz, 2019), the implementation condition entailed

greater pre-activation during the encoding stage in areas

associated with the proactive control-related instructions'
variables, as target category (fusiform gyrus) and response

preparation (along the motor cortices). This increased activity

may mediate the more effortful binding of perceptual and

motor task information during the assembly of procedural

task representations. Interestingly, we also found higher ac-

tivity in the thalamus for implementation than memorization

blocks. This finding could reflect the need to integrate across

multiple types of information (motor, perceptual, and ab-

stract) and the maintenance of task representations (Wolff &

Vann, 2019). Contrary, when instructions were encoded

under memorization demands, higher activity was found in

the angular gyrus. This area could participate in the elabora-

tion of declarative instructions representations. Although this

step is assumed to take place for both implementation and

memorization demands (Brass et al., 2017), the declarative

format would suffice to guide performance in the latter con-

dition. This interpretation would be in line with previous

research stressing the general role of the angular gyrus in

declarative memory (Noonan, Jefferies, Visser, & Lambon

Ralph, 2013; Seghier, 2013), and more in particular, with its

involvement during the retrieval of rule-based schemas and

their constituting components (Wagner et al., 2015). Alto-

gether, our results could tentatively reflect a complex pro-

cessing chain, in which the instructed task sets are built from

its simpler constituents (Deraeve, Vassena,&Alexander, 2019;

Reverberi, G€orgen, & Haynes, 2012), first giving rise to a

declarative memory trace, and if the current demands require

it, transforming it into a procedural code (Brass et al., 2017;

Cole et al., 2013).

Beyond activity mean differences, our main goal was to

explore the fine-grained instruction structure coded in

distributed activity patterns. Our findings replicated previous

literature (Gonz�alez-Garcı́a et al., 2017; Muhle-Karbe et al.,

2017; Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019),

showing how a wide set of frontoparietal and sensorimotor
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regions encode different task-relevant attributes in an antic-

ipatory fashion. Critically, our work extended these results,

directly investigating how these highly organized activity

patterns are modulated by task demands. In this sense, our

cross-classification analysis showed that prefrontal, motor

and ventral visual cortices use a common neural code (Kaplan

et al., 2015) to flexibly represent the instructions' dimensions

across tasks. In particular, significant generalization was

found for the response set complexity and target category

variables. That was not the case for the dimension integration

variable e although the inference approach followed here

does not enable the extraction of solid conclusions from these

null results. Having said that, we can confirm the presence of a

shared neural code at least regarding target stimuli and

response-related information. These commonalities between

the two task demands have been suggested in a previous

study, which showed that the representations of to-be-

implemented and to-be-memorized instructions are maxi-

mally similar during the encoding stage, when the decod-

ability of task information is also equivalent between

demands (Muhle-Karbe et al., 2017). Importantly, we further

qualified these results, evidencing for the first time a common

coding scheme in which novel instructions are represented

irrespectively of the relevant demands. Moreover, this across-

context generalizability has been proposed as an index of the

abstraction achieved at representing task variables (Bernardi

et al., 2020). Thus, the employment of abstract, shared task

representations may be a key aspect for our flexible adapta-

tion to novel demands (Badre, Bhandari, Keglovits, &

Kikumoto, 2021; Bernardi et al., 2020). This interpretation

also resonates with literature stressing the presence of com-

positionality underpinning complex task coding (Deraeve

et al., 2019; Reverberi et al., 2012).

Critically, we also evidenced differences induced by

implementation and memorization demands. We showed

that the implementation task led to stronger, more distin-

guishable representations of target and response information.

In our ROI analyses, we found this effect in three out of the five

regions examined. In a similar vein, the within-task classifi-

cations showed that the three instructions' variables could be

decoded from a wide set of frontoparietal regions when only

data from the implementation blocks were used, but not with

thememorization data.While these results are not conclusive

about differences between the two task demands (since no

significant clusters were found when the two conditions were

directly contrasted), they convergewith the ROI analyses. This

general pattern, which goes in line with previous results

(Muhle-Karbe et al., 2017), partially supports the hypothesis

that implementation demands induce a boost in representa-

tional fidelity, which could potentially trigger the preparatory

stage leading to efficient novel performance. As an alternative

interpretation, difficulty differences between task demands

could have also played a role in this pattern. In line with

previous evidence (e.g., Woolgar, Hampshire, Thompson, &

Duncan, 2011), a more difficult implementation task could

induce more decodable patterns in prefrontal and parietal

regions. However, although our behavioral results showed

more erroneous performance in the implementation task,

they also evidenced slower responses in the memorization

condition, leaving unclear which demand was more difficult
for our participants. Future studies explicitly manipulating

task difficulty would be enlightening on this regard.

Overall, our findings point towards both similarities and

distinctions during novel instruction coding depending on

task goals. These results can shed some light on how in-

structions' representations are quickly shifted from a declar-

ative to an action-based or procedural format (Demanet et al.,

2016; Hartstra, Kühn, Verguts, & Brass, 2011; Muhle-Karbe

et al., 2017). With our paradigm, we aimed to tap into these

two stages, emphasizing the declarative phase in the memo-

rization condition, and promoting the procedural reformat-

ting under implementation demands. This way, we aimed to

obtain new insights on how this transformation takes place.

Past studies have proposed that the two stages are driven by

distinguishable neurocognitive states, which in turn are re-

flected in representations of different nature (Gonz�alez-Garcı́a

et al., 2021; Muhle-Karbe et al., 2017). For instance, it has been

recently evidenced that non-overlapping declarative and

procedural formats are represented in fronto-parietal activity

patterns (Gonz�alez-Garcı́a et al., 2021). Our results highlight a

different, but not mutually exclusive pattern: a continuity

between declarative and procedural representations, with

implementation goals amplifying or intensifying the instruc-

ted content. While ours and previous findings seem in

contradiction, they could complement each other. For

instance, it could be the case that the implementation-related

boost in encoding strength (captured with our experiment)

corresponds to an initial stage of the proceduralization of

novel instructions. Later, it could lead to the clearer differen-

tiation between procedural and declarative task representa-

tions found in previous studies. Future investigation using

time-sensitive measures (as electroencephalography re-

cordings) would be crucial to reconcile these two sets of

results.

Even when the findings regarding the target category and

response complexity variables were, in general terms, in line

with our expectations, thatwas not the case for the dimension

integration manipulation. Based on a previous study

(Palenciano, Gonz�alez-Garcı́a, Arco, Pessoa, et al., 2019), we

predicted that neural patterns in the IFG would code the

integration of information within or between stimulus di-

mensions, with greater decoding accuracies for implemented

instructions. Instead, this region was not identified with our

general decoding analysis. One potential explanation relates

to our paradigm, which may have not generated enough

separation between the two dimension integration conditions

to engage the IFG. Nonetheless, and against that possibility,

our manipulation replicated the one employed in Palenciano,

Gonz�alez-Garcı́a, Arco, Pessoa, et al. (2019). Critically, when

only data from the implementation task were used, this var-

iable was indeed encoded in the left IFG. This result suggests

that the processes carried out in this prefrontal region are of

special relevance during the reformatting of the instruction

content for the implementation. However, not enough evi-

dence was obtained supporting specifically the link between

the dimension integration encoding on the IFG and imple-

mentation demands. While a lack of statistical power may be

the source of such null results, we still encourage caution

when interpreting this particular finding, which should be

confirmed in future research. Instead, our results highlighted
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the role of the MTG in encoding the dimension integration

irrespectively of task demands. Interestingly, prior studies

focusing on semantic retrieval had described a relationship

between the left IFG and the MTG, which work coordinately in

semantic demanding tasks (Davey et al., 2016). Taking that

into account, our results could reflect the role of the MTG in

the controlled retrieval of semantic information and its inte-

gration to correctly perform the action specified by the

instruction.

It is important to stress that, when taking together the

findings from the different analyses performed, we obtained a

mixed pattern of results that requires further attention. On

one hand, some of the regions encoding the instructions' di-
mensions across task demands, identified with whole-brain

decodings, were not significant in the ROI analysis. On the

other, despite the within-task classification yielded different

encoding maps when exploring the implementation and the

memorization tasks separately, no differences were detected

between both of them. This puzzling scenario could be the

result of a lack of statistical power. In this sense, training our

classifiers after splitting our data into implementation and

memorization blocks (as it happened in the ROI and the

whole-brain within-task analyses) could have hindered our

ability to successfully decode the instructions' content. That
would especially affect the memorization condition, where

smaller, more subtle effects would require more statistical

power to be detected. Moreover, in the within task classifica-

tion, a non-optimal statistical power could have interacted

with the more stringent statistical correction required for

whole-brain analyses, affecting the detection of significant

differences between tasks. While we acknowledge this po-

tential flaw, we encourage future, collaborative research ini-

tiatives which would provide wider datasets in which our

main findings can be further replicated.

It is also worth noting that in this study, both univariate

and multivariate analyses were performed at the encoding

stage, while the instructions were displayed on the screen.

That approach ensured avoiding possible confounds yielded

by perceptual and motor differences during the response

stage between the two task demands. This could be one key

point in explaining some of the observed differences with

prior studies characterizing the procedural and declarative

processing of instructions. Most of this research focused on

the preparation interval between the instruction coding and

themotor response (Bourguignon et al., 2018; Gonz�alez-Garcı́a

et al., 2017; Muhle-Karbe et al., 2017), where the differences

between both tasks are expected to be maximal (Brass et al.,

2017; Liefooghe, De Houwer, & Wenke, 2013). The nature of

our paradigm, however, did not allow us to focus our analyses

on this preparation stage. Follow-up studies with optimized

designs to extrapolate our findings to the preparatory stage

would provide further information on this issue.

In sum, the present work examined the impact of imple-

mentation and memorization demands on new instruction

processing, and in particular, how these two task goals

modulated the neural patterns encoding task-relevant di-

mensions. We showed for the first time how frontoparietal,

motor and perceptual brain regions represented novel target

and response information across the two task demands,

flexibly using shared coding schemes. Moreover, we
evidenced emphasized neural representations of the in-

structions' content under implementation demands. Alto-

gether, these findings help to further clarify the neural

mechanisms underlying task preparation in novel scenarios

and represent a step forward to better characterize the pro-

ceduralization process.
Funding

This work was supported by the Spanish Ministry of Science

and Innovation (PID2019-111187GB-I00 to M.R., and IJC2019-

040208-I to C.G.G), the European Union's Horizon 2020

research and innovation program under the Marie Sklo-

dowska-Curie (Ref. 835767, to C.G.G.), and the Spanish

Ministry of Education, Culture and Sports (FPU17/01627 to

A.S.). The open access charge was funded by the University

of Granada and the CBUA.
CRediT author statement

Alberto Sobrado: Methodology, Formal analysis, Investigation,

Visualization, Writing e original draft, Writing e review &

editing.

Ana F. Palenciano: Conceptualization, Methodology,

Formal analysis, Writing e review & editing, Software,

Resources.

Carlos Gonzalez-Garcı́a: Conceptualization, Methodology,

Writing e review & editing.

Marı́a Ruz: Conceptualization, Writing e original draft,

Writing e review & editing, Supervision, Project administra-

tion, Funding acquisition.
Data availability

Public archiving of individual data is not permitted by the

project's ethics approval. Readers seeking access to the data

should contact the corresponding author via email. Data will

be released to interested researchers with approval from the

local research ethics committee. Unthresholded maps corre-

sponding to group results are available at https://neurovault.

org/collections/ZGUQGAWH. Digital study materials are

available at https://osf.io/5yt4h. The analysis was carried out

with SPM, The Decoding Toolbox (Hebart, G€orgen, & Haynes,

2015) and JASP, with no custom code. No part of the study

procedures or analyses was preregistered prior to the research

being undertaken. We report how we determined our sample

size, all data exclusions, all inclusion/exclusion criteria,

whether inclusion/exclusion criteria were established prior to

data analysis, all manipulations, and all measures in the

study.
Open practices

The study in this article earned an Open Material badge for

transparent practices. Group data is available at https://

neurovault.org/collections/ZGUQGAWH/. We cannot share

https://neurovault.org/collections/ZGUQGAWH/
https://neurovault.org/collections/ZGUQGAWH/
https://osf.io/5yt4h
https://neurovault.org/collections/ZGUQGAWH/
https://neurovault.org/collections/ZGUQGAWH/
https://doi.org/10.1016/j.cortex.2022.01.010
https://doi.org/10.1016/j.cortex.2022.01.010


c o r t e x 1 4 9 ( 2 0 2 2 ) 5 9e7 2 71
individual data due restrictions on the project's ethics

approval.
Declaration of competing interest

The authors declare no competing financial interests.

Acknowledgments

This research was part of A.S.'s activities for the Psychology

Graduate Program of the University of Granada.
Supplementary data

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.cortex.2022.01.010.
r e f e r e n c e s

Arco, J. E., Gonz�alez-Garcı́a, C., Dı́az-Guti�errez, P., Ramı́rez, J., &
Ruz, M. (2018). Influence of activation pattern estimates and
statistical significance tests in fMRI decoding analysis. Journal
of Neuroscience Methods, 308, 248e260. https://doi.org/10.1016/
j.jneumeth.2018.06.017

Badre, D., Bhandari, A., Keglovits, H., & Kikumoto, A. (2021). The
dimensionality of neural representations for control. Current
Opinion in Behavioral Sciences, 38, 20e28. https://doi.org/10.1016/
j.cobeha.2020.07.002

Bernardi, S., Benna, M. K., Rigotti, M., Munuera, J., Fusi, S., &
Salzman, C. D. (2020). The geometry of abstraction in the
hippocampus and prefrontal cortex. Cell, 183(4), 954e967.
https://doi.org/10.1016/j.cell.2020.09.031, 954e967.e21.

Bourguignon, N. J., Braem, S., Hartstra, E., De Houwer, J., &
Brass, M. (2018). Encoding of novel verbal instructions for
prospective action in the lateral prefrontal cortex: Evidence
from univariate and multivariate functional magnetic
resonance imaging analysis. Journal of Cognitive Neuroscience,
30(8), 1170e1184. https://doi.org/10.1162/jocn

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision,
10(4), 433e436. https://doi.org/10.1163/156856897X00357

Brass, M., Liefooghe, B., Braem, S., & De Houwer, J. (2017).
Following new task instructions: Evidence for a dissociation
between knowing and doing. Neuroscience and Biobehavioral
Reviews, 81, 16e28. https://doi.org/10.1016/
j.neubiorev.2017.02.012

Cole, M. W., Patrick, L. M., Meiran, N., & Braver, T. S. (2018). A role
for proactive control in rapid instructed task learning. Acta
Psychologica, 184, 20e30. https://doi.org/10.1016/
j.actpsy.2017.06.004

Cole, M. W., Laurent, P., & Stocco, A. (2013). Rapid instructed task
learning: A new window into the human brain's unique
capacity for flexible cognitive control. Cognitive, Affective &
Behavioral Neuroscience, 13(1), 1e22. https://doi.org/10.3758/
s13415-012-0125-7

Davey, J., Thompson, H. E., Hallam, G., Karapanagiotidis, T.,
Murphy, C., De Caso, I., et al. (2016). Exploring the role of the
posterior middle temporal gyrus in semantic cognition:
Integration of anterior temporal lobe with executive
processes. NeuroImage, 137, 165e177. https://doi.org/10.1016/
j.neuroimage.2016.05.051
Demanet, J., Liefooghe, B., Hartstra, E., Wenke, D., De Houwer, J.,
& Brass, M. (2016). There is more into ‘doing’ than ‘knowing’:
The function of the right inferior frontal sulcus is specific for
implementing versus memorizing verbal instructions.
NeuroImage, 141, 350e356. https://doi.org/10.1016/
j.neuroimage.2016.07.059

Deraeve, J., Vassena, E., & Alexander, W. (2019). Conjunction or
co-activation? A multi-level MVPA approach to task set
representations. BioRxiv. , 521385. https://doi.org/10.1101/
521385

Esterman, M., Tamber-Rosenau, B. J., Chiu, Y.-C., & Yantis, S.
(2010). Avoiding non-independence in fMRI data analysis:
Leave one subject out. NeuroImage, 50(2), 572e576. https://
doi.org/10.1016/J.NEUROIMAGE.2009.10.092

Formica, S., Gonz�alez-Garcı́a, C., Senoussi, M., & Brass, M. (2021).
Neural oscillations track the maintenance and
proceduralization of novel instructions. Neuroimage, 232(15).
https://doi.org/10.1016/j.neuroimage.2021.117870

Gonz�alez-Garcı́a, C., Arco, J. E., Palenciano, A. F., Ramı́rez, J., &
Ruz, M. (2017). Encoding, preparation and implementation of
novel complex verbal instructions. NeuroImage, 148, 264e273.
https://doi.org/10.1016/J.NEUROIMAGE.2017.01.037

Gonz�alez-Garcı́a, C., Formica, S., Wisniewski, D., & Brass, M.
(2021). Frontoparietal action-oriented codes support novel
instruction implementation. NeuroImage, 226, 117608. https://
doi.org/10.1016/j.neuroimage.2020.117608
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