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A B S T R A C T

Due to the increasing importance of lithium-ion batteries in electric vehicle and renewable energy applications,
battery aging is a subject of intense research. Although many laboratory experiments are performed under well-
controlled static conditions, batteries are stored and operated under varying conditions of temperature and state
of charge in their real-life performance, so that a suitable model for predicting the effects of calendar aging
in lithium-ion batteries with dynamic conditions is highly desirable. In this paper, we review previous models
to calculate capacity loss due to calendar aging under variable temperature and state-of-charge conditions
according to experimentally observed power-law behavior, and propose a novel model based on fractional
calculus. To validate the new model, we compare its predictions with experimental results showing that it can
reproduce the non-monotonic behavior that is observed when the state of charge or the temperature change
significantly. This is an interesting application of fractional calculus since this characteristic is not obtained
with non-fractional models.
1. Introduction

Lithium-ion (Li-ion) batteries have been a major breakthrough in
electrochemical energy storage [1]. Given their importance in present
and future applications, the 2019 Nobel Chemistry Prize has been
awarded to some of their pioneers [2]. But despite these important
advances, the long-term health of a battery remains a concern [3],
and its aging characterization and understanding is a subject of intense
research [4–6]. Upon closer examination, two components are usually
distinguished in battery aging. One of them is the fading of battery
performance observed over time in the absence of electric current,
known as calendar aging [4,7,8]; the other one is the degradation that
occurs when a charge and discharge current is applied [9,10], known as
cycle aging. In a cycled operation, calendar aging mechanisms may also
be present, so that cycle and calendar aging are coupled and there may
be no simple way to quantify the contribution of each mechanism to
overall degradation [11]. One possibility is to switch between calendar
and cycle models [12]. Another option is to subtract the effects of
calendar from total aging to decouple them from pure cycling outcome
[13], but this requires modeling calendar aging under the dynamic
conditions that occur while the battery cell is cycled.

Calendar aging is known to be strongly influenced by temperature
and state of charge (SOC), as well as other factors such as the chemical
composition and structure of the positive and negative electrodes [4].
Its main effects are a loss of battery capacity and an increase in
the internal resistance. Capacity fade due to calendar aging is often
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attributed to losses of Li ions to the solid–electrolyte interphase (SEI)
of graphite anodes, and is mainly dependent on the electrochemical
potential of the anode at each state of charge. Resistance rise may also
be related to the increase in the width of the passivation layer [14]. As
these two effects, capacity fade and resistance increase, are assumed to
be correlated [15–17], this article focuses on modeling capacity loss.

Two types of models have previously been proposed to model
battery aging phenomena, known as physical models [18] and em-
pirical models [19], although sometimes the parameters used in the
empirical models have a physical justification [20] and are called
semiempirical [10,13,21,22]. Broussely et al. [19] experimentally ob-
served a quadratic dependence of the storage time on the capacity loss
in different types of Li-ion batteries, and Bloom et al. [8] fitted the
area specific impedance and power fade data to a general thermally
activated power-law equation proportional to 𝑡𝑧, with 𝑧 = 1∕2. This
power-law dependence has been used by many authors since then,
with an exponent equal to or close to 0.5 [8,12,13,21–27], although
other authors proposed 𝑧 = 0.75 or close to it [16,28,29]. These
time dependences have been reviewed by Gasper et al. [30]. The
power dependence is multiplied by a factor that depends on the state
of charge and the temperature. Schmalstieg et al. [16] proposed an
Arrhenius-based semiempirical model, and Petit et al. [12] developed
an empirical capacity loss model to evaluate the effects of SOC and
temperature. Redondo-Iglesias et al. [11,26] adopted a semiempirical
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approach based on the Eyring acceleration instead of using the Ar-
rhenius dependence. All these semiempirical models include functional
dependencies with physical justification and some free parameters to
be determined by fitting to experimental data.

In calendar aging laboratory experiments, ambient temperature and
state of charge are generally chosen and maintained except in brief
periods of time in which the capacity and resistance changes are
measured. This is repeated for several choices of these parameters in
order to obtain the functional dependence on them [13,16,24]. But
in normal operation a battery operates under dynamic conditions [4,
25]. Therefore, various models have been developed in an attempt to
forecast the calendar life of Li-ion batteries under varying storage con-
ditions. The model proposed in [7] allows to simulate the degradation
induced by storage under non-static conditions using the derivative
form. Refs. [12,13,17,21,22,31,32] also presented models to analyze
the impact of calendar aging under varying conditions. Data-based
models has also been developed to continuously learn from streaming
data [33]. The Gaussian process method was proposed and applied
for this purpose [5,34]. However semiempirical modeling is the most
widely used method for this goal and we will restrict ourselves to
analyzing and proposing semiempirical approaches based on power-law
dependency in this article.

Fractional calculus has been widely used to model the electric
behavior of batteries and supercapacitors, relating voltage and current
both in the frequency and time domains [35–37]. In a more general
way, physical systems described by a power law can be represented by
fractional order models [38]. In this article we make use of the fact
that calendar aging has shown a power law dependence with time to
propose a new fractional-order aging model. This new model has two
fundamental advantages. The first one is related to the behavior of the
calendar aging under dynamic conditions, as this new model produces
the same results than the other semiempirical models in the case of
static storage conditions but shows interesting quantitative and qual-
itative differences under dynamic storage conditions. The second one
is related to the dependence of the calendar aging on all the previous
history experienced by the battery. Previous works have highlighted the
dependence of calendar aging on its history, addressing it by making
use of Gaussian process regression since output can be predicted using
this method to learn the underlying mappings among all input terms
including the historical capacity data vector [34]. In the model we
present in this article, the known fact that the result of fractional-
order differential equations depends on the whole history [39,40] is
incorporated.

Our model will assume that calendar aging depends on the state
of charge and temperature during battery storage. These dependences
have been carefully studied by previous authors [8,13,22–24]. How-
ever, the goal of this article is not to study these dependences in
detail, but to discuss how to consider them when storage conditions are
changed dynamically. Some previously used models will be discussed,
and fractional calculus methods will be employed to propose a new one
that can account for experimental features not predicted by previous
models.

The outline of this article is as follows. Section 2 briefly reviews
some previous semiempirical models for predicting calendar aging
under dynamic conditions. The new fractional-order model is described
in Section 3. A comparison of both the non-fractional and the fractional-
order models with experimental results is shown in Section 4. The effect
of pre-aging due to storage before the measurement of capacity fade
is discussed in Section 5, and finally some conclusions are drawn in
Section 6.

2. Empirical calendar models under dynamic conditions

We start with the power-law dependence of the capacity loss pro-
posed by many authors [8,13,16,21,23–25,28]. If we define the capac-
ity loss as

𝐿(𝑡) =
𝑄0 −𝑄(𝑡)

, (1)
2

𝑄0
Fig. 1. Discretized time under varying storage conditions. Values of 𝐾(𝑆𝑂𝐶, 𝑇 ) are
assumed to be constant within each subinterval.

where 𝑄0 is the initial capacity and 𝑄(𝑡) is the capacity at time 𝑡, then
the semiempirical equation is written as

𝐿(𝑡) = 𝐾(𝑆𝑂𝐶, 𝑇 ) ⋅ 𝑡𝑧 , (2)

where the function 𝐾(𝑆𝑂𝐶, 𝑇 ) is actually assumed to be a constant in
the time interval (0, 𝑡). It can be factored into a function of temperature
multiplied by a function of the state of charge, where an Arrhenius-type
dependence is assumed for the temperature [8,23], and the state-of-
charge dependence has often been written in terms of the cell potential
as a Tafel-type function [13,22,24]. We assume in this section that
this function of 𝑆𝑂𝐶 and 𝑇 is known, since it has been obtained from
calendar aging experiments performed under static conditions in which
these magnitudes are well controlled, but its values can still be used
when the state of charge and the temperature change under dynamic
conditions.

We will discretize the time in a series of subintervals [0, 𝑡1], (𝑡1, 𝑡2],
(𝑡3, 𝑡2], . . . , (𝑡𝑘−1, 𝑡𝑘], and we will approximate the function 𝐾(𝑆𝑂𝐶, 𝑇 )
by a constant value within each of them, with values 𝐾1, 𝐾2, 𝐾3,… , 𝐾𝑘,
respectively, as shown in Fig. 1.

The length of the time subintervals can be arbitrary if the storage
conditions are changed in a stepwise form, but the procedure of this
section can also be applied in case of a continuous variation of the
storage conditions if the time step is small enough.

In order to extend the power-law result to the case of dynamic
operating conditions, a more general equation that gives Eq. (2) as its
solution under static conditions, but can also be used under dynamic
conditions, has been sought. For this, several authors have considered
Eq. (2) as the solution of
𝑑𝐿
𝑑𝑡

= 𝑧 𝐾(𝑆𝑂𝐶, 𝑇 ) 𝑡𝑧−1, (3)

and they have assumed that Eq. (3) can also be applied when function K
depends implicitly on time through 𝑆𝑂𝐶(𝑡) and 𝑇 (𝑡) [12,13,21,31,32].
This can be done in two ways, giving rise to the models we call Model
1 and Model 2, respectively.

2.1. Model 1

Eq. (3) can be integrated directly keeping the explicit dependence
on time in the right-hand side, as proposed by [31] and applied by
other authors [13,21]. The result is

𝐿(𝑡) = 𝑧∫

𝑡

0
𝐾[𝑆𝑂𝐶(𝜏), 𝑇 (𝜏)]𝜏𝑧−1𝑑𝜏 (4)

The capacity loss at time 𝑡𝑘, when dividing the interval [0, 𝑡𝑘] into
its subintervals according to Fig. 1, is

𝐿(𝑡𝑘) =
𝑘
∑

𝑗=1
𝐾𝑗 ⋅ (𝑡𝑧𝑗 − 𝑡𝑧𝑗−1), (5)

with 𝑡0 = 0.

2.2. Model 2

The second procedure was used by Petit et al. [12] and other
authors [32]. Before integrating Eq. (3), the explicit time dependence
can be eliminated by substituting it according to Eq. (2)

𝑡 =
( 𝐿 )

1
𝑧 , (6)
𝐾



Journal of Energy Storage 50 (2022) 104537J.A. López-Villanueva et al.

l

thus obtaining

𝐿
1
𝑧−1

𝑧
𝑑𝐿
𝑑𝑡

= 𝐾
1
𝑧 , (7)

which can be integrated arriving at

[𝐿(𝑡)]
1
𝑧 = ∫

𝑡

0
[𝐾(𝑆𝑂𝐶(𝜏), 𝑇 (𝜏))]

1
𝑧 𝑑𝜏. (8)

By dividing again the interval [0, 𝑡𝑘] into its subintervals according
to Fig. 1, the result for Model 2 is

𝐿(𝑡𝑘) =

[ 𝑘
∑

𝑗=1
𝐾

1
𝑧
𝑗 ⋅ (𝑡𝑗 − 𝑡𝑗−1)

]𝑧

(9)

This same result has been obtained by Hahn et al. [22] in a some-
what different way. If the value of 𝐾 in the interval (𝑡𝑘−1, 𝑡𝑘] is 𝐾𝑘, they
defined an ‘‘equivalent’’ time 𝑡∗𝑘−1 so that the capacity loss at 𝑡𝑘−1 could
be written as

𝐿(𝑡𝑘−1) = 𝐾𝑘 ⋅ (𝑡∗𝑘−1)
𝑧. (10)

Time 𝑡∗𝑘−1 therefore includes the effect of all previous values of 𝐾
different from 𝐾𝑘. The capacity loss at 𝑡𝑘, after adding the contribution
of the interval (𝑡𝑘−1, 𝑡𝑘], is

𝐿(𝑡𝑘) = 𝐾𝑘 ⋅ [𝑡∗𝑘−1 + (𝑡𝑘 − 𝑡𝑘−1)]𝑧 (11)

Substituting 𝑡∗𝑘−1 from Eq. (10) in Eq. (11), the result is

𝐿(𝑡𝑘) = [(𝐿(𝑡𝑘−1))
1
𝑧 +𝐾

1
𝑧
𝑘 ⋅ (𝑡𝑘 − 𝑡𝑘−1)]𝑧, (12)

Applying Eq. (12) to the successive subintervals, the result given
in Eq. (9) is also obtained.

3. Fractional-order model

Another possibility of eliminating the dependence on time in the
derivative of 𝐿(𝑡) is given by fractional calculus. The non-integer
derivative of order 𝑧 of the capacity loss, by assuming constant 𝐾
in Eq. (2), is [39,40]
𝑑𝑧𝐿(𝑡)
𝑑𝑡𝑧

= 𝛤 (𝑧 + 1)𝐾(𝑆𝑂𝐶, 𝑇 ), (13)

where 𝛤 (𝑧) is the Gamma function [40]. We propose to generalize
Eq. (13) to a case with variable 𝐾, and integrate it with the Riemann–
Liouville definition of the fractional integral of order z, 𝐷−𝑧𝑓 (𝑡), defined
as [40]

𝐷−𝑧𝑓 (𝑡) = 1
𝛤 (𝑧) ∫

𝑡

0

𝑓 (𝜏)
(𝑡 − 𝜏)1−𝑧

𝑑𝜏. (14)

Using definition (14), and the relationship
𝛤 (𝑧 + 1)
𝛤 (𝑧)

= 𝑧, (15)

the result is

𝐿(𝑡) = 𝑧∫

𝑡

0

𝐾[𝑆𝑂𝐶(𝜏), 𝑇 (𝜏)]
(𝑡 − 𝜏)1−𝑧

𝑑𝜏. (16)

The interval [0, 𝑡𝑘] can also be subdivided into its subintervals
according to Fig. 1, thus obtaining at time 𝑡𝑘

𝐿(𝑡𝑘) = 𝑧
𝑘
∑

𝑗=1
𝐾𝑗 ∫

𝑡𝑗

𝑡𝑗−1

𝑑𝜏
(𝑡𝑘 − 𝜏)1−𝑧

, (17)

and the final result for the fractional-order model is as follows

𝐿(𝑡𝑘) =
𝑘
∑

𝑗=1
𝐾𝑗 ⋅

[

(𝑡𝑘 − 𝑡𝑗−1)𝑧 − (𝑡𝑘 − 𝑡𝑗 )𝑧
]

. (18)

Now we have three different models to account for the capacity
loss produced by calendar aging with non-static storage conditions,
3

specifically the two models adapted from the previous literature, given
in Eqs. (5) and (9), and the model proposed in this article given
by Eq. (18). The three expressions will provide the same result if
𝑘 = 1 (static conditions). In case of varying conditions, they will result
in quantitative differences, but there is also a remarkable qualitative
distinction of the fractional-order model with respect to the other two.
Whereas in Eqs. (5) and (9) any new time interval produces an increase
in the capacity loss, and hence these models are monotonic, Eq. (18) is
not necessarily monotonic since the last time instant, 𝑡𝑘, appears in all
the terms of the sum so that there is an influence of all previous storage
conditions also in the contribution of the last interval. This memory of
the whole history is a feature of fractional calculus, and it has a relevant
impact on the results.

To illustrate the different behavior of the fractional and non-fractiona
models in a practical case, a model of the function 𝐾(𝑆𝑂𝐶, 𝑇 ) is
required. Since the aim of this article is to discuss how to deal with
non-static storage conditions and not to discuss different possibilities
for 𝐾(𝑆𝑂𝐶, 𝑇 ), we have chosen the semiempirical model by Schimpe
et al. [13], detailed in Appendix. As an example, we have compared
the three models of Eqs. (5), (9) and (18) by applying them to the
variable profiles used by Sarasketa-Zabala et al. in [25] with LFP li-
ion battery cells. The exponent 𝑧 = 0.5, the activation energy of the
Arrhenius term and the dependence on the state of charge expressed
in terms of the anode potential in [13] have been maintained. We
have also used the default values of the fit parameters in Appendix
with the exception of the constant 𝑘𝑐𝑎𝑙,𝑅𝑒𝑓 that has been chosen in the
range 4.6 ⋅ 10−4 − 6.6 ⋅ 10−4ℎ−0.5. The value of this constant in [13]
was obtained by fitting the experimental results of the capacity loss
measured under static conditions, but although a constant value can be
assumed for a given cell, results for the different cells fitted individually
may show some variations since they are not exactly identical. The
result for the temperature profiles of Fig. 14-(a) to (c) of [25] is shown
in Fig. 2. The different quantitative behavior of the three models can
be observed, and the non-monotonic behavior of the fractional-order
model is apparent in some cases, notably when the storage conditions
change from the more aggressive elevated temperatures maintained for
long times to significantly lower values, while a monotonic behavior is
observed with less abrupt changes. We will discuss this non-monotonic
behavior in next Section by fitting several experimental sets of results.

4. Comparison with experimental results

In order to analyze the behavior of the three semiempirical models
that we are considering in this paper and compare them with experi-
mental results, a set of experimental data taken at a variety of values
of state of charge and temperature, for the same cell, is desirable. We
have used in this article two recent sets of experimental data with
the required characteristics obtained from Refs. [5,32]. As mentioned
above, the semiempirical model by Schimpe et al. [13], detailed in
Appendix, which is quite similar to that used by other authors [22],

has been used to model the dependences of 𝐾(𝑆𝑂𝐶, 𝑇 ). However, we
have chosen now as fitting parameters the exponent 𝑧, and parameters
𝛼, 𝑘0, and 𝑘𝑐𝑎𝑙,𝑅𝑒𝑓 , described in Appendix, instead of using the default
values provided in Ref. [13].

In the search for the agreement with the experimental results, two
objective magnitudes will be minimized, (1) the average relative error
given by

𝜖𝑟𝑒𝑙 =
1
𝑁

𝑁
∑

𝑗=1

[

∣ 𝐿𝑚𝑜𝑑𝑒𝑙
𝑗 − 𝐿𝑒𝑥𝑝

𝑗 ∣

∣ 𝐿𝑒𝑥𝑝
𝑗 ∣

]

, (19)

and (2) the average root–mean–square error divided by the average of
the experimental set values, obtained according to

𝜖𝑟𝑚𝑠 =

√

∑𝑁
𝑗=1

[

𝐿𝑚𝑜𝑑𝑒𝑙
𝑗 − 𝐿𝑒𝑥𝑝

𝑗

]2

∑𝑁 𝑒𝑥𝑝 , (20)

𝑗=1 ∣ 𝐿𝑗 ∣
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Fig. 2. Temperature profile and capacity loss due to calendar aging predicted by
semiempirical power-law models under dynamic conditions for three different tests used
in Ref. [25]. A non-monotonic behavior is observed with the fractional-order model in
some cases.

where 𝐿𝑚𝑜𝑑𝑒𝑙
𝑗 are the values of capacity loss provided by the model, and

𝐿𝑒𝑥𝑝
𝑗 are the experimental capacity losses.

The two types of error provide different information. The average
relative error gives more weight to the points with the lowest denom-
inator, which are those measured at the beginning of the curve when
the capacity loss is closer to zero. The average root–mean–square error
is divided by the average capacity loss and is thus affected by the whole
curve, with no privilege to any part of it. This will have noticeable
consequences in the resulting fit.

4.1. Data from Lucu et al. [5]

The first data set has been provided by Lucu et al. [5]. These
data were measured in a 20 Ah Lithium Nickel–Manganese–Cobalt
(NMC 4:4:2) cathode-based pouch cell with a graphite anode and were
obtained under a wide variety of storage conditions that were changed
every month over three years. The state of charge and temperature
profiles taken from Ref. [5] are shown in Fig. 3.

Although Schimpe et al. [13] obtained their 𝐾(𝑆𝑂𝐶, 𝑇 ) model for
LFP cells, we have initially used it here with NMC cells since it is
expressed in terms of the negative electrode potential, which is graphite
in the two types of cells. However, the cell differences will provide
different parameter values. The result of the relative capacity with
4

Fig. 3. Profiles of 𝑆𝑂𝐶 and 𝑇 used by Lucu et al. [5], used in this article to
compare the experimental capacity loss due to calendar aging with results predicted
by semiempirical power-law models.

Fig. 4. Experimental results for the capacity from Lucu et al. [5] and approximations
with Models 1 and 2 obtained by minimizing 𝜖𝑟𝑒𝑙 and 𝜖𝑟𝑚𝑠.

respect to the initial capacity ((1−𝐿(𝑡))×100) obtained with the Models
1 and 2 is shown in Fig. 4 together with the experimental results. The
modeled curves correspond to the minimization of the two types of
errors defined in Eqs. (19) and (20), and show the expected behavior,
with the curve for minimum 𝜖𝑟𝑒𝑙 closer to the experimental data for low
storage times but more distant at high storage-time values. The values
of the parameters obtained in the fit are shown in Table 1.

The results obtained with Models 1 and 2 are almost coincident,
although they have been achieved with different parameters values
as observed in Table 1. The high value of the exponent 𝑧 obtained
in the minimization of 𝜖𝑟𝑚𝑠 is noteworthy, which shows that the time
dependence is almost linear for long storage times according to these
models.

The curves obtained with the fractional-order (FO) model, together
with the experimental data, are shown in Fig. 5, where the results for
the minimization of the two types of errors is also shown. The values
of the parameters obtained in the fit are shown in Table 1 as well.

Both quantitative and qualitative differences can be observed be-
tween FO model and Models 1 and 2. Both the average relative error
and the average root–mean–square error are smaller with the FO model
with a z value close to 0.5 in this case, but even more significant here
is that, although the experimental results are not exactly reproduced,
the fractional order model shows the fluctuations observed in the
experimental behavior, while the Models 1 and 2 are always monotonic
and cannot predict such experimental fluctuations.
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Fig. 5. Experimental results for the capacity from Lucu et al. [5] and approximations
with the fractional-order model obtained by minimizing 𝜖𝑟𝑒𝑙 and 𝜖𝑟𝑚𝑠.

Table 1
Values of the parameters for the best agreement with the experimental results of [5].

Objective z 𝛼 𝑘0 𝑘𝑐𝑎𝑙,𝑅𝑒𝑓 [ℎ−𝑧] 𝜖𝑟𝑒𝑙 [%] 𝜖𝑟𝑚𝑠 [%]

Model 1, 𝜖𝑟𝑒𝑙 0.58 0.042 0.13 9.1 ⋅ 10−5 36.5 –
Model 1, 𝜖𝑟𝑚𝑠 0.95 1.728 0.01 1.0 ⋅ 10−6 – 5.90
Model 2, 𝜖𝑟𝑒𝑙 0.63 0.036 0.04 6.0 ⋅ 10−5 35.9 –
Model 2, 𝜖𝑟𝑚𝑠 1.00 1.890 0.00 5.0 ⋅ 10−7 – 5.82
FO Model, 𝜖𝑟𝑒𝑙 0.50 0.540 0.06 1.82 ⋅ 10−4 31.4 –
FO Model, 𝜖𝑟𝑚𝑠 0.54 1.700 0.00 5.15 ⋅ 10−5 – 5.48

Table 2
Values of the parameters for the best agreement with the experimental results of [32].

Objective z 𝛼 𝑘0 𝑘𝑐𝑎𝑙,𝑅𝑒𝑓 [ℎ−𝑧] 𝜖𝑟𝑚𝑠 [%]

Model 1, 𝜖𝑟𝑚𝑠 0.54 1.146 0.097 1.09 ⋅ 10−4 2.68
Model 2, 𝜖𝑟𝑚𝑠 0.66 0.956 0.00 3.02 ⋅ 10−5 2.50
FO Model, 𝜖𝑟𝑚𝑠 0.69 0.573 0.046 3.61 ⋅ 10−5 1.49

4.2. Data from Mingant et al. [32]

The inability of Model 2 to represent the non-monotonic behavior
of the experimental data has been recognized by Mingant el al. [32].
They have also used NMC cells and have provided experimental results
obtained by alternating the SOC while storing the battery cells. The
experimental data have been obtained storing the battery cell at a
temperature of 45 ◦C and varying the state of charge in a sequence
30%, 80%, 80%, 30%, 80%, 80%, etc. They claim that the experimental
data show regeneration of the capacity at 30% of SoC after having
stored the battery cells at an SOC equal to 80%, and realized that
this phenomenon is not considered by Model 2, since it leads to a
monotonic equation. However, the fractional-order model proposed in
this article can actually account for this regeneration. We have also
compared the experimental data provided in Figure 9 of Ref. [32] with
the predictions of the three models. The result is shown in Figs. 6, for
Models 1 and 2, and in Fig. 7 for the fractional-order model. The values
of the parameters obtained in the fit to the experimental results are
shown in Table 2.

It can be observed that, once the suitable parameter values are
chosen for each model, the approximations obtained with Models 1
and 2 are reasonably satisfactory and almost coincident. However, none
of them is capable of predicting the non monotonic behavior. The
fractional-order model actually predicts the non-monotonic behavior
and produces a better agreement with a smaller error although we have
used the same fitting parameters with all three models.
5

Fig. 6. Experimental results for the capacity loss from Mingant et al. [32] and
approximations with models 1 and 2.

Fig. 7. Experimental results for the capacity loss from Mingant et al. [32] and
approximation with the fractional-order model.

5. Effect of initial aging

Finally, once we have demonstrated the good behavior of the
fractional-order model, as a corollary we will apply it in this Section to
the case of the existence of a storage period prior to the measurement of
the capacity fade. Since calendar aging depends on the whole history of
the battery cell, the storage-time interval from manufacture to the start
of measurement may have some influence on the results. To analyze
this, we now assume that the cell was manufactured at 𝑡 = 0, and the
capacity at the beginning of its life is 𝑄𝑏𝑜𝑙. We also assume that the
battery has been stored for a time 𝑡0 prior to the measurement with
an effective value of 𝐾 equal to 𝐾0, so that the capacity at 𝑡 = 𝑡0 is
𝑄0. After 𝑡0 the capacity fade is measured periodically with controlled
storage conditions up to time 𝑡, so that 𝐾 = 𝐾1 in the interval (𝑡0, 𝑡],
where the 𝐾1 value has been set up by the experimenter. Hence, the
capacity loss at time 𝑡 is

𝐿(𝑡) =
𝑄𝑏𝑜𝑙 −𝑄(𝑡)

𝑄𝑏𝑜𝑙
, (21)

so that

𝐿0 =
𝑄𝑏𝑜𝑙 −𝑄0

𝑄𝑏𝑜𝑙
, (22)

is the capacity loss at the start of the measurement.
But the experimenter has taken 𝑄0 as the initial capacity and

measures

𝐿∗(𝑡′) =
𝑄0 −𝑄(𝑡)

, (23)

𝑄0
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where

𝑡′ ≡ 𝑡 − 𝑡0, (24)

is the observation time.
By combining Eqs. (21) and (22) to eliminate 𝑄𝑏𝑜𝑙, and substituting

𝑄0 in Eq. (23), we obtain

𝐿∗(𝑡′) =
𝐿(𝑡) − 𝐿0
1 − 𝐿0

. (25)

We can calculate 𝐿∗(𝑡′) with the three models given in Eqs. (5), (9),
and (18), by considering only two time intervals, [0, 𝑡0] and (𝑡0, 𝑡]. The
result is

1. Model 1:

𝐿(𝑡) = 𝐾0 ⋅ 𝑡
𝑧
0 +𝐾1 ⋅ (𝑡𝑧 − 𝑡𝑧0) (26)

2. Model 2:

𝐿(𝑡) =
[

𝐾
1
𝑧
0 ⋅ 𝑡0 +𝐾

1
𝑧
1 ⋅ (𝑡 − 𝑡0)

]𝑧

(27)

3. Fractional-order model:

𝐿(𝑡) = 𝐾0 ⋅
[

𝑡𝑧 − (𝑡 − 𝑡0)𝑧
]

+𝐾1 ⋅ (𝑡 − 𝑡0)𝑧 (28)

And by using Eqs. (24), (25), and

𝐿0 = 𝐾0 ⋅ 𝑡
𝑧
0, (29)

we finally obtain:

1. Model 1:

𝐿∗(𝑡′) =
𝐾1 ⋅ [(𝑡0 + 𝑡′)𝑧 − 𝑡𝑧0]

1 − 𝐿0
(30)

2. Model 2:

𝐿∗(𝑡′) = 1
1 − 𝐿0

{[

𝐿
1
𝑧
0 +𝐾

1
𝑧
1 ⋅ 𝑡′

]𝑧

− 𝐿0

}

(31)

3. Fractional-order model:

𝐿∗(𝑡′) = 1
1 − 𝐿0

{

𝐿0

[(

1 + 𝑡′

𝑡0

)𝑧
−
(

𝑡′

𝑡0

)𝑧
− 1

]

+𝐾1 ⋅ (𝑡′)𝑧
}

(32)

The second term in Eqs. (28) and (32) follows the power-law for
the observation time, despite the previous aging, while the first term
in (28) corresponds to the initial capacity loss multiplied by a function
that decays with time. This decay function is similar to the one obtained
in the case of the initialization of constant-phase elements in circuit
models used to represent the electrical behavior of batteries [41].

The experimenter can evaluate whether Eq. (2) can fit the simulated
data. In fact, the results of Eqs. (30), (31), and (32) can be approxi-
mated by Eq. (2) with reasonable accuracy but different values of 𝐾
and 𝑧. To show this, we have simulated capacity-loss curves with the
three models (Model 1, Model 2, and FO model), by choosing 𝑧 = 0.5
and the 𝐾(𝑆𝑂𝐶, 𝑇 ) values provided by the model of Schimpe et al. [13]
with its default parameters detailed in Appendix. We have chosen an
initial capacity loss of 𝐿0 = 2.93%, which correspond to a pre-aging
time interval of 𝑡0 = 180 days of storage at 𝑆𝑂𝐶 = 60% and 𝑇 = 25 ◦C.
After that, the cell is stored for a measurement time of two years, at
𝑆𝑂𝐶 = 80% and 𝑇 = 45 ◦C which correspond to 𝐾1 = 1.05 ⋅ 10−3ℎ−0.5.
The results provided by Eqs. (30), (31), and (32) for 𝑡 > 𝑡0 (𝑡′ > 0) are
shown in Fig. 8 in symbols. Then, we have tried to fit the simulated
results to Eq. (2), obtaining the results shown in solid lines. However,
these fitted curves are obtained with 𝑧 = 0.79 and 𝐾 = 3.93 ⋅ 10−5ℎ−0.79

for the curve of Model 1, 𝑧 = 0.65 and 𝐾 = 2.02 ⋅ 10−4ℎ−0.65 for the
curve of Model 2, and 𝑧 = 0.58 and 𝐾1 = 4.13 ⋅ 10−4ℎ−0.58 for the curve
of the fractional-order model. We observe that the values of 𝐾 and 𝑧
are different from those used in the simulation. The fitted exponent 𝑧 is
6

Fig. 8. Capacity loss for a battery cell previously aged in a 2.93%, as a function of
time, according to the models in Eqs. (5), (9), and (18). Fit to Eq. (2) in solid lines,.

different from the assumed value, 𝑧 = 0.5, but the exponent achieved to
fit the result of the fractional-order model shows the smallest deviation.
Therefore, the fractional-order model seems to be the least affected by
the capacity loss prior to measurement in this respect.

6. Conclusions

A suitable model to predict the effects of calendar aging in lithium-
ion batteries under dynamic storage conditions is highly desirable.
Although many laboratory experiments are conducted under well-
controlled static conditions in order to analyze the SOC and 𝑇 de-
pendence of capacity fade and resistance increase, mainly with the
state of charge and temperature, these conditions are variable in real
life operation. Furthermore, calendar aging mechanisms may also act
during cycled operation so that it is necessary to model calendar aging
under the dynamic conditions that occur while cycling the battery cell
to separate their effects from pure cycle aging.

A model for the capacity fade due to calendar aging under dynamic
conditions, based on fractional calculus, has been proposed here. This
model is applicable with a suitable semiempirical function that ac-
counts for the dependencies on the state of charge and the temperature.
Although some models have been previously proposed in the literature,
these models are not totally satisfactory since they are not capable of
predicting features such as the non-monotonic behavior which has been
observed experimentally. The model proposed here not only provides
comparable, even better, accuracy than previous models, but is also
capable of predicting the non-monotonic behavior that is observed
when the state of charge or temperature are significantly changed. This
model has been compared with previous models and has been validated
by comparing its prediction with the experimental results. It has also
been used to analyze the effects of an aging period previous to the
experimental evaluation.

Although we have proposed the fractional-order model without
venturing any physical explanation of the application of fractional
calculus to this problem, it appears to be an interesting application of
fractional calculus, since it not only produces quantitative differences,
but also makes qualitatively different predictions than those of the non-
fractional models. We consider that its physical significance warrants
further investigation.
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Appendix. Calendar model by Schimpe et al. [13]

This calendar aging model uses the power law with exponent equal
to 0.5.

𝐿(𝑡) = 𝐾(𝑆𝑂𝐶, 𝑇 )
√

𝑡. (A.1)

However, sometimes we will leave the exponent as a fitting param-
ter and use Eq. (2) instead. The 𝐾 constant is modeled as

𝐾(𝑆𝑂𝐶, 𝑇 ) = 𝑘𝑐𝑎𝑙,𝑅𝑒𝑓𝑓𝑆 (𝑆𝑂𝐶)𝑓𝑇 (𝑇 ), (A.2)

with

𝑓𝑆 (𝑆𝑂𝐶) = 𝑒𝑥𝑝
(𝛼𝐹 (𝑈𝑎,𝑟𝑒𝑓 − 𝑈𝑎)

𝑅𝑔𝑇𝑟𝑒𝑓

)

+ 𝑘0 (A.3)

and

𝑓𝑇 (𝑇 ) = 𝑒𝑥𝑝
(

−
𝐸𝑎
𝑅𝑔

(

1
𝑇

− 1
𝑇𝑟𝑒𝑓

))

. (A.4)

𝐸𝑎 = 20592 J∕mol, 𝑅𝑔 = 8.314 J∕(molK) is the universal gas constant,
nd 𝐹 = 96485.3 C∕mol is the Faraday constant.
𝑈𝑎 is the anode voltage. Its values, taken from Safari et al. [42], are

btained according to next equation

𝑎 = 0.6379 + 0.5416 ⋅ 𝑒𝑥𝑝(−305.5309𝑥𝑎) + 0.044 ⋅ 𝑡𝑎𝑛ℎ
(

−
𝑥𝑎 − 0.1958

0.1088

)

−

0.1978 ⋅ 𝑡𝑎𝑛ℎ
(

𝑥𝑎 − 1.057
0.0854

)

− 0.6875 ⋅ 𝑡𝑎𝑛ℎ
(

𝑥𝑎 + 0.0117
0.0529

)

−

0.0175 ⋅ 𝑡𝑎𝑛ℎ
(

𝑥𝑎 − 0.5692
0.0875

)

𝑉

(A.5)

with 𝑥𝑎 = 8.5 ⋅ 10−3 + 𝑆𝑂𝐶 ⋅ 0.7715
The reference potential 𝑈𝑎,𝑅𝑒𝑓 is set to 𝑈𝑎(𝑆𝑂𝐶 = 50%) = 0.123 V.
Schimpe et al. fitted the equation parameters for their experimental

data at 𝑇𝑅𝑒𝑓 = 298.15 K obtaining
𝛼 = 0.384,
𝑘0 = 0.142, and
𝑘𝑐𝑎𝑙,𝑅𝑒𝑓 = 3.694 ⋅ 10−4ℎ−0.5

However, these parameter values are modified sometimes in this
article to better fit the experimental results.
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