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Recently, the Belle Collaboration reported the first measurements of the τ− → ντπ
−eþe− branching

fraction and the spectrum of the pion-dielectron system. In an analysis previous to Belle’s results, we
evaluated this branching fraction which turned out to be compatible with that reported by Belle, although
with a large uncertainty. This is the motivation to seek for improvement on our previous evaluation of
τ− → ντπ

−lþl− decays (l ¼ e, μ). In this paper we improve our calculation of the WP−γ� vertex by
including flavor-symmetry breaking effects in the framework of the resonance chiral theory. We impose
QCD short-distance behavior to constrain most parameters and data on the π−eþe− spectrum reported by
the Belle Collaboration to fix the remaining free ones. As a result, improved predictions for the branching
ratios and hadronic/leptonic spectra are reported, which are in good agreement with observations.
Analogous calculations for the strangeness-changing τ− → ντK−lþl− transitions are reported for the first
time. Albeit one expects themπμþμ− spectrum to be measured in Belle-II and the observables with l ¼ e can
be improved, it is rather unlikely that the K channels can be measured due to the suppression factor
jVud=Vusj2 ¼ 0.05.

DOI: 10.1103/PhysRevD.105.076007

I. INTRODUCTION

The search for signals of physics beyond the Standard
Model (SM) requires a good understanding of SM proc-
esses, either to discard possible backgrounds coming from
it such as large radiative corrections [1–3], or to have
hadronic contamination under control in precision tests of
the SM [4]. In addition to offering a clean laboratory to test
the hadronization of the weak currents, some semileptonic τ
lepton decays, such as τ → ντPðγÞ for P ¼ π, K, provide a
good example where SM effects can be reliably calculated
to disentangle possible new-physics signals hidden in
precision observables.
In Ref. [5] we reported the first prediction of Bðτ →

ντπll̄Þ and the corresponding dilepton spectrum, where
l ¼ e, μ (this can be viewed as the crossed channels of
lepton pairs produced in πl2 decays [6] in a larger
kinematical domain); later on the Belle Collaboration [7]
announced the first searches of these decays. Recently,

some of the authors have also reported similar studies of
τ− → ντπ

−π0ll̄ decays [8]. Together with the five lepton
decays of tau leptons [9], they provide a better description
of possible backgrounds in lepton-number or lepton-flavor
violation searches in τ decays. Motivated by the Belle
Collaboration studies [7], in this work we revisit our
predictions for τ → ντπll̄ decays with the aim of improv-
ing the theoretical description of structure-dependent
effects and to get reduced uncertainties. In addition, we
make an analogous analysis of the strangeness-changing
processes τ → ντKll̄ for the first time.
In these phenomena, theWγ⋆P vertex plays a central role

and its description is necessary to understand the radiative
corrections to the τ− → ντP− decays [10]. This vertex also
involves parameters which are needed to describe the pion
transition form factor (TFF), which is required to compute
the dominant piece (the pion pole) of the hadronic light-by-
light contribution to the anomalous magnetic moment of
the μ lepton, aμ; the TFF can be obtained by our vector
form factor (see Sec. III B) by considering Bose symmetry.
Although knowledge on these parameters could, in prin-
ciple, help reduce the uncertainty on the hadronic part of aμ
[11], the τ− → ντπ

−eþe− data does not (and is not foresee-
able to) have the necessary precision to improve actual
predictions on the π-pole contribution to aμ.
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The problem with the description of these effective
vertices arises when one tries to describe them in terms
of the fundamental fields of the Standard Model, since at
energies below the mτ scale, one can not give a proper
perturbative description of color interactions. However, the
decay amplitude involving these vertices can be, for the sake
of convenience, split into a part where the hadronic current
h0jūγμð1 − γ5Þdjπ−i ¼ −i

ffiffiffi
2

p
fπpμ and the electromagnetic

interactions are computed using scalar QED (sQED), which
we call structure independent, and a part where more
involved hadronic interactions are computed using an
effective field theory, called structure dependent. Thus,
we try to surpass the difficulties of calculating the struc-
ture-dependent part using resonance chiral theory (RχT)
[12,13], which is an extension of chiral perturbation theory
(χPT) [14–16] that includes resonances as active degrees
of freedom. χPT relies on the chiral symmetry group
G ¼ Uð3ÞL ⊗ Uð3ÞR of the massless QCD Lagrangian.
After it gets spontaneously broken,G → Uð3ÞV , the remain-
ing symmetry gets explicitly broken when the masses
of the light quarks are considered to be nonvanishing.
The Bðτ− → ντπ

−ll̄Þ and dilepton spectrum were com-
puted previously in Ref. [5] using such techniques; however,
the novelty in the present treatment is that we include the
effects of finite different light-quark masses as done for the
transition form factor of the pseudo-Goldstone bosons for
the hadronic light-by-light part of the aμ in Ref. [17] (over
[18], where these were neglected). We also give a more
thorough treatment of the uncertainties than those in
Ref. [5], thus obtaining consistent results comparing with
the corresponding form factors given in Ref. [19].
Furthermore, the recent measurement of the branching
fraction with a lower limit in the invariant mass of the pion
and dilepton pair [7], mπe−eþ , motivates this reanalysis
further, since in the mπe−eþ ≥ 1.05 GeV region the branch-
ing fraction gets saturated by the structure-dependent
contribution. While most of the parameters of the model
can be constrained by means of the high-energy behavior
of QCD, some of them remain loose. We fit these to
the measured invariant mass mπ−e−eþ spectra and also to
the measurement of the branching fraction Bðmπ−e−eþ ≥
1.05 GeVÞ ¼ ð5.90� 1.01Þ × 10−6 [7]. Despite the access
to the invariant mass spectra data for the τþ → ντπ

þl̄l
decay,wewill onlymake use of the data for the τ− decay. The
reason not to use both sets is that the spectra have
incompatibilities in several bins; also, when fitting indi-
vidually the πþ data set leads to unphysical conditions (see
discussion in Sec. IV B). As a result, we improve our
predictions, with correspondingly reduced uncertainties.
The outline of the paper is as follows. In Sec. II the

different contributions to the matrix element are collected.
In Sec. III we introduce the Lagrangian used for comput-
ing the structure-dependent corrections, calculate the
corresponding form factors (including flavor-breaking

corrections to our previous results) and derive the short-
distance constraints among resonance couplings. In Sec. IV
we carry out our phenomenological analysis, including a fit
to Belle τ− → π−eþe−ντ data and predicting the partner
ðπ ↔ K; e ↔ μÞ modes, yet to be discovered. We give our
conclusions in Sec. V.

II. AMPLITUDES

For convenience, we take three kinds of contributions to
the decay amplitude: the first called inner bremsstrahlung
(IB) or structure independent (SI). The other two are the
structure dependent (SD) ones, namely the polar (V) and
axial-vector (A) parts of the left-handed weak charged
current. The IB amplitude can be obtained using the sQED
Lagrangian, where the photon is either radiated by the τ
lepton, off the pseudo-Goldstone boson (π or K) or by the
longitudinal propagation mode of the W− boson, a con-
tribution which is needed to achieve gauge invariance of the
total IB amplitude. The total IB contribution is shown
in Eq. (1), along with the parametrization of the SD parts
as given in Ref. [5]. The momenta definition is given
in Fig. 1.
The different contributions to the matrix element are

(D ¼ d, s for P ¼ π, K)

MIB ¼ −iGFVuDfπmτ
e2

k2
Jνlūντð1þ γ5Þ

×

�
2pν

2p · kþ k2
þ 2pτν − =kγν
−2pτ · kþ k2

�
uτ; ð1aÞ

MV ¼ −GFVuD
e2

k2
JνlJ

μ
τFVðW2; k2Þεμναβkαpβ; ð1bÞ

FIG. 1. Feynman diagrams of the SI contributions (only scalar
QED is used for the radiation off the P− meson) to the τ−ðpτÞ →
ντðqÞP−ðpÞlðp−Þl̄ðpþÞ decay amplitude. The diamond vertex is
an effective vertex meaning theW boson has been integrated out.
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MA ¼ iGFVuD
e2

k2
JνlJ

μ
τfFAðW2; k2Þ½ðW2 þ k2 −m2

πÞgμν
− 2kμpν� − A2ðW2; k2Þk2gμν
þ A4ðW2; k2Þk2ðpþ kÞμpνg: ð1cÞ

Here, Jνl¼ ūðp−ÞγνvðpþÞ and Jμτ ¼ ūðqÞð1þγ5ÞγμuðpτÞ
are the lepton electromagnetic and τ weak charged currents,
respectively. We useW2 ≡ ðpτ − qÞ2 and k2 ≡ ðp− þ pþÞ2
as the two independent Lorentz-invariants upon which the
form factors (FV; FA; A2; A4) depend. In Ref. [5] the axial
amplitude was given only in terms of three form factors
(FV , FA, and a combination of A2 and A4 called B), since at
chiral order p4, the A2 and A4 form factors are linearly
dependent and can be written in terms of the pseudo-
Goldstone electromagnetic form factor FP

Vðk2Þ [6]. Here,
A2 and A4 cannot be recast in terms of FP

Vðk2Þ, since we are
considering contributions of chiral order p6. Furthermore,
including the complete set of leading-order chiral sym-
metry breaking contributions will change the pion pole for
the massive pion propagator. As a result, the A2 and A4

form factors become linearly independent and the
axial-vector part of the left hadronic current cannot be
expressed in terms of the two form factors F ðW2; k2; p2Þ
and GðW2; k2; p2Þ of Refs. [19–21] [see discussion
after Eq. (24)].

III. STRUCTURE DEPENDENT FORM FACTORS

A. The relevant operators

In this section we will present, for the sake of simplicity,
only the relevant operators in the RχT Lagrangian needed
to compute the form factors, which are given in the next
subsection. We will be concise here, for a more extended
discussion see e.g., Ref. [17]. RχT extends the domain of
applicability of chiral perturbation theory [14–16] (χPT) by
adding the light-flavored resonances as active degrees of
freedom.
We start with operators involving no resonances, these

being1

L0 Res ¼
f2

4
huμuμ þ χþi þ LWZW þ CW

7 O
W
7

þ CW
11O

W
11 þ CW

22O
W
22; ð2Þ

where the first term is given by the leading χPT Lagrangian
operators of chiral order p2 [14–16], the second one is the
anomalous Wess-Zumino-Witten Lagrangian of Oðp4Þ
[25,26] and the last three operators belong to the subleading
odd-intrinsic parity sector Oðp6Þ Lagrangian [27]. We

neglect operators not included in this Lagrangian.
Congruently with Refs. [19,21,28], we will not consider
any Oðp8Þ contribution whatsoever. In the first term, f is
the decay constant in the chiral limit, which we will set to
f ¼ fπ ∼ 92 MeV, uμ and χþ are chiral tensors [29], the
former containing derivatives of the π=K fields and external
spin-one currents and the latter scalar currents involving the
previous fields’ masses squared, m2

π=K, times even powers
of such fields.
The equations of motion of the resonances give their

classical fields in terms of series of chiral tensors of
different order. The resonances are said to be integrated
out (tree-level integration) when the classic fields are
substituted in favor of chiral tensors in the resonant
Lagrangian. Integrating the resonances out using the
leading-order terms of the equations of motion very
approximately saturates the Oðp4Þ [and leading Oðp6Þ]
contributions in the even-intrinsic parity sector [12,13,19];
therefore, we will not use the nonresonant Oðp4Þ set of
operators (for the sake of simplicity), since they are
considered to yield negligible contributions. Since we will
only consider leading-order terms in the resonances equa-
tions of motion, the Oðp6Þ chiral low-energy constants in
the odd-intrinsic parity sector cannot be saturated upon
resonance exchange [28]; therefore, we have to include the
three contributing CW

i O
W
i terms [27],

OW
7 ¼ iϵμναβhχ−fμνþ fαβþ i;

OW
11 ¼ iϵμναβhχþ½fμνþ ; fαβ− �i;

OW
22 ¼ iϵμναβhuμf∇ρf

ρν
þ ; fαβþ gi; ð3Þ

where the following chiral tensors [29] enter; χ− gives odd
powers of the π=K fields with factors involving m2

π or m2
K,∇μ is the covariant derivative and includes spin-one left and

vector external currents through the connection, and fμν�
yields the field-strength tensors of the charged-weak or
electromagnetic fields.
We turn next to those operators with one resonance field,

in either intrinsic parity sector,

L1Res ¼ Leven
1Res þ Lodd

1Res: ð4Þ

In turn, the first piece can be further divided according to
the quantum numbers of this resonance

Leven
1Res ¼

X
Ri¼V;A;P

Leven
1Ri

: ð5Þ

The contributions with one vector resonance read [12,19]2

1Although these terms also appear in the χPT Lagrangian, their
couplings get shifted in the presence of resonance contributions
(see for instance [22–24]).

2Vμν (analogously Aμν for axial resonances below) is a matrix
in flavor (u, d, s) space and we use the antisymmetric tensor
formalism for spin-one fields for convenience [12,13].
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Leven
1V ¼ FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ i

2
ffiffiffi
2

p GVhVμν½uμ; uν�i

þ λVffiffiffi
2

p hVμνffμνþ ; χþgi; ð6Þ

where the V field (we assume ideal mixing of neutral
mesons) has an analogous flavor structure as the pseudo-
Goldstone field ϕ, namely

Vμν ¼

0
BB@

1ffiffi
2

p ðρ0μν þ ωμνÞ ρþμν K⋆þ
μν

ρ−μν 1ffiffi
2

p ð−ρ0μν þ ωμνÞ K⋆0
μν

K⋆−
μν K⋆0

μν ϕμν

1
CCA: ð7Þ

In Eq. (6), the first two operators give the contribution from
the coupling of vector resonances to external fields in the
chiral limit and the last term gives the flavor-breaking
corrections to such couplings. Our λV ¼ ffiffiffi

2
p

λV6 , using the
notation in Ref. [19]. This last operator is the only one
included from the full basis of Oðp4Þ even-intrinsic parity
operators in Ref. [19] since it is the single one that can
contribute to the Uð3ÞV breaking in the V − γ coupling.
There are, however, two reason to disregard basis of
operators in the even-intrinsic parity sector: The operators
that are relevant to the process can be dismissed on the basis
of resonance field redefinitions;3 if we, however, keep such
operators, they will only give subleading contributions to
those from the first two operators in Eq. (6) with no
contribution to Uð3ÞV-breaking vertices.
The axial resonance operators present a similar feature

and an analogous flavor-space structure to that of the vector
mesons. This is, the Oðp4Þ one-resonance even-intrinsic
parity operators for axial resonances in Ref. [19] can be
absorbed through field redefinitions. We will therefore
disregard any contribution from this part of the
Lagrangian, including the Uð3ÞV breaking terms to the
axial-vector resonance coupling to external currents;
namely, the JA vertex. The remaining contributions with
one resonance field are [12]

Leven
1A=P ¼ FA

2
ffiffiffi
2

p hAμνfμν− i þ idmhPχ−i; ð8Þ

with P a matrix in three-flavor space containing the lightest
pseudoscalar resonances. The inclusion of the pseudoscalar
resonance is necessary in order to obtain consistent short-
distance constraints in hVAPi and hVJPi Green’s functions
[19,28,30,31]. All Feynman diagrams involving these

resonances will give Uð3Þ breaking contributions to the
amplitude due to the last term in Eq. (8). We have neglected
other spin-zero resonance contributions (scalar and heavier
pseudoscalar resonances [5]), which are not needed for
theoretical consistency and are irrelevant phenomenologi-
cally. The odd-intrinsic parity contributions toL1Res are [32]

4

Lodd
1Res ¼

X7
j¼1

cj
MV

Oj
V þ εμναβhκP5 ffμνþ ; fαβþ gPi; ð9Þ

with the operators

O1
V ¼ εμνρσhfVμν; fραþ g∇αuσi;

O2
V ¼ εμνρσhfVμα; fρσþ g∇αuνi;

O3
V ¼ iεμνρσhfVμν; fρσþ gχ−i;

O4
V ¼ iεμνρσhVμν½fρσ− ; χþ�i;

O5
V ¼ εμνρσhf∇αVμν; fραþ guσi;

O6
V ¼ εμνρσhf∇αVμα; fρσþ guνi;

O7
V ¼ εμνρσhf∇σVμν; fραþ guαi: ð10Þ

In the following, we quote those terms bilinear in
resonance fields (we do not display the kinetic terms for
the resonances, which can be found in Ref. [12], as they do
not contribute to the effective vertices).

L2Res ¼ Leven
2Res þ Lodd

2Res; ð11Þ

with [19,33–35]5

Leven
2Res ¼ −eVMhVμνVμνχþi þ λPV1 OPV

1 þ λPV2 OPV
2

þ λPA1 OPA
1 þ

X5
i¼1

λVAi OVA
i ; ð12Þ

and [28,32]

Lodd
2Res ¼

X3
i¼1

diOVV
i þ κPV3 OPV

3 : ð13Þ

The operators appearing in the two previous equations are
(hμν ¼ ∇μuν þ∇νuμ)

3Through the redefinition of the vector resonance field
V → V þ gfV; χþg it is possible to cancel the λV operator
[19]; however, we keep it in order to show the full basis of
possible Uð3ÞV breaking operators since we do not consider the
full even-intrinsic parity basis of Ref. [19]. Wewill show later that
this is consistent, since the short-distance constraints give λV ¼ 0.

4Since we are only considering operators with one π=K field,
these constitute a basis. In the general case, the basis is given in
Ref. [28]. The translation between them can be read in Ref. [30].

5The operator with coefficient eVM allows to account for Uð3Þ
breaking effects in the vector resonance masses, in agreement
with phenomenology.
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OPV
1 ¼ ih½∇μP; Vμν�uνi;

OPV
2 ¼ ih½P; Vμν�fμν− i;

OPA
1 ¼ ih½P; Aμν�fμνþ i;

OVA
1 ¼ h½Vμν; Aμν�χ−i;

OVA
2 ¼ ih½Vμν; Aνα�hαμi;

OVA
3 ¼ ih½∇μVμν; Aνα�uαi;

OVA
4 ¼ ih∇αVμν; Aα

ν�uμi;
OVA

5 ¼ ih½∇αVμν; Aμν�uαi;
OVV

1 ¼ εμνρσhfVμν; Vραg∇αuσi;
OVV

2 ¼ iεμνρσhfVμν; Vρσgχ−i;
OVV

3 ¼ εμνρσhf∇αVμν; Vραguσi;
OPV

3 ¼ εμναβhfVμν; fαβþ gPi: ð14Þ
There is only one relevant operator with three resonance
fields in either parity sector,

L3Res ¼ iλVAPh½Vμν; Aμν�Pi þ κPVVεμνρσhVμνVαβPi: ð15Þ

Operators with a higher number of resonant fields will
not be included, since then one has to include subleading
diagrams with loops where some of the internal lines are

given by resonances. The present analysis is restricted to
tree-level diagrams, which should already capture the
leading effects associated with resonance exchange. One-
loop diagrams with resonances are expected to be a
numerically small correction since these would be sub-
leading in the 1=NC expansion [4]. Such corrections will be
neglected due to the already sizeable number of parameters
involved in the tree-level analysis and the current precision
of the experimental data.

B. Form factors

In this section we quote our results for the different
contributions to the FV , FA, A2, and A4 form factors,
for P ¼ π, K. All resonance propagators are to be under-
stood as provided with an energy-dependent width
(M2

R − x → M2
R − x − iMRΓRðxÞ; x ¼ W2; k2) computed

within RχT, using those in Refs. [36] [ρð770Þ], [37]
[K�ð892Þ], and [38,39] [a1ð1260Þ�, including the KKπ
cuts [40]. A constant width will suffice for the very narrow
ωð782Þ and ϕð1020Þ mesons (their Particle Data Group
[PDG] [41] values will be taken). For the K1ð1270=1400Þ
states we will follow [42].
The Feynman diagrams contributing to the vector form

factors are shown in Fig. 2, these form factors are (NC ¼ 3
in QCD).

FðπÞ
V ðW2; k2Þ ¼ 1

3f

�
−
NC

8π2
þ 64m2

πCW⋆
7 − 8CW

22ðW2 þ k2Þ þ 4Fud
V

2

M2
ρ −W2

d3ðW2 þ k2Þ þ d⋆123m2
π

M2
ω − k2

þ 2
ffiffiffi
2

p
Fud
V

MV

c1256W2 − c⋆1235m2
π − c125k2

M2
ρ −W2

þ 2
ffiffiffi
2

p
Fud
V

MV

c1256k2 − c⋆1235m2
π − c125W2

M2
ω − k2

�
;

ð16Þ

FðKÞ
V ðW2; k2Þ ¼ 1

f

�
−

NC

24π2
þ 64

3
m2

KC
W⋆
7 þ 32CW

11Δ2
Kπ −

8

3
CW
22ðW2 þ k2Þ þ 2Fus

V ½d3ðW2 þ k2Þ þ d⋆123m2
K�

M2
K⋆ −W2

×

�
Fud
V

M2
ρ − k2

þ 1

3

Fud
V

M2
ω − k2

−
2

3

Fss
V

M2
ϕ − k2

�
þ 2

ffiffiffi
2

p
Fus
V

3MV

c1256W2 − c⋆1235m2
K − c125k2 þ 24c4Δ2

Kπ

M2
K⋆ −W2

þ
ffiffiffi
2

p ðc1256k2 − c⋆1235m2
K − c125W2Þ

MV

�
Fud
V

M2
ρ − k2

þ 1

3

Fud
V

M2
ω − k2

−
2

3

Fss
V

M2
ϕ − k2

��
; ð17Þ

FIG. 2. Feynman diagrams contributing to the vector part of the left hadronic current. The circled cross vertex indicates vector current.
The resonance P⋆ is the pseudoscalar resonance corresponding to πð1300Þ≡ π0 [Kð1460Þ≡ K0] for P ¼ πðKÞ. The resonance V0

means ω for P ¼ π and ρ0;ω;ϕ, for P ¼ K.
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whereΔ2
Kπ ¼ m2

K −m2
π and we have used the combinations

of coupling constants [43]

c125 ¼ c1 − c2 þ c5;

c1256 ¼ c1 − c2 − c5 þ 2c6;

c1235 ¼ c1 þ c2 þ 8c3 − c5;

d123 ¼ d1 þ 8d2 − d3: ð18Þ

FuD;ss
V and starred coefficients absorb Uð3Þ breaking

contributions induced by λV in Eq. (6) and pseudoscalar
resonances, respectively. Their expressions are given after
Eq. (24).

The Feynman diagrams contributing to the axial form
factors are shown in Fig. 3, these form factors are6

FðπÞ
A ðW2;k2Þ¼Fud

V

2f

Fud
V −2GV −m2

π
4
ffiffi
2

p
dm

M2

π0
ðλPV1 þ2λPV2 Þ

M2
ρ−k2

−
FA

2f

FA−2m2
π
4
ffiffi
2

p
dm

M2

π0
λPA1

M2
a1 −W2

þ
ffiffiffi
2

p

f
FAFud

V

M2
a1 −W2

λ⋆0m2
π−λ0k2−λ00W2

M2
ρ−k2

; ð19Þ

FðKÞ
A ðW2; k2Þ ¼ −

FA

2f

FA − 2m2
K

4
ffiffi
2

p
dm

M2

K0
λPA1

M2
K1

−W2
þ

2
64

ffiffiffi
2

p
FA

2f
λ⋆0m2

K − λ0k2 − λ00W2

M2
K1

−W2
þ
Fus
V ðFus

V − 2GV þm2
K

4
ffiffi
2

p
dm

M2

K0
ðλPV1 þ 2λPV2 ÞÞ

4f

3
75

×

�
Fud
V

M2
ρ − k2

þ 1

3

Fud
V

M2
ω − k2

þ 2

3

Fss
V

M2
ϕ − k2

�
; ð20Þ

AðπÞ
2 ðW2; k2Þ ¼ 2

f

�
GV þ 2

ffiffiffi
2

p
m2

πdm
M2

π0
λPV1 þ

ffiffiffi
2

p
FA

M2
a1 −W2

W2ðλ0 þ λ00Þ
�

Fud
V

M2
ρ − k2

; ð21Þ

AðKÞ
2 ðW2; k2Þ ¼

�
GV

f
þ 2

ffiffiffi
2

p
m2

Kdm
M2

K0

λPV1
f

þ
ffiffiffi
2

p
FA

M2
K1

−W2

W2ðλ0 þ λ00Þ
f

��
Fud
V

M2
ρ − k2

þ 1

3

Fud
V

M2
ω − k2

þ 2

3

Fss
V

M2
ϕ − k2

�
; ð22Þ

AðπÞ
4 ðW2; k2Þ ¼ 2

f
Fud
V

M2
ρ − k2

�
GV

W2 −m2
π
þ 2

ffiffiffi
2

p
dmm2

πλ
PV
1

M2
π0 ðW2 −m2

πÞ
þ

ffiffiffi
2

p
FAðλ0 þ λ00Þ
M2

a1 −W2

�
; ð23Þ

AðKÞ
4 ðW2; k2Þ ¼ 1

f

�
GV

W2 −m2
K
þ 2

ffiffiffi
2

p
dmm2

Kλ
PV
1

M2
K0 ðW2 −m2

πÞ
þ

ffiffiffi
2

p
FAðλ0 þ λ00Þ
M2

K1
−W2

��
Fud
V

M2
ρ − k2

þ 1

3

Fud
V

M2
ω − k2

þ 2

3

Fss
V

M2
ϕ − k2

�
: ð24Þ

It is worth noting that by replacing the P propagator in

AðPÞ
2 and AðPÞ

4 with the massless pole propagator, one

recovers the linear dependence between both form factors,
thus getting a congruent expression with those in Ref. [19].
Therefore, the short-distance constraints obtained in this
reference can be used as shown there if the Weinberg’s sum
rules are imposed. We, however, do not make use of these
sum rules, as FV=A are fitted to data (see discussion in
Secs. III C and IV B).

FIG. 3. Feynman diagrams contributing to the axial part of the left hadronic current. The circled cross vertex indicates axial current.
Conventions for P⋆ is the same as in the previous figure, the resonance V0 means ρ0 for P ¼ π and ρ0;ω;ϕ, for P ¼ K.

6We note two mistakes in writing FðπÞ
A in ref. [5], see the

Appendix. The result written here agrees with the one in Ref. [44]
for k2 → 0.
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We introduced the short-hand notation

Fud
V ≡ FV þ 8m2

πλV;

Fus
V ≡ FV þ 8m2

KλV;

Fss
V ≡ FV þ 8ð2m2

K −m2
πÞλV; ð25Þ

for the shifts appearing also in [17].7

We also used [33]

−
ffiffiffi
2

p
λ⋆0 ¼ 4λ⋆1 þ λ2 þ

λ4
2
þ λ5;

ffiffiffi
2

p
λ0 ¼ λ2 − λ3 þ

λ4
2
þ λ5; ð26Þ

and

ffiffiffi
2

p
λ00 ¼ λ2 −

λ4
2
− λ5:

We employed several starred coefficients includingUð3Þ
breaking contributions,

λ⋆1 ¼ λ1 −
λVAPdm
M2

P
;

CW⋆
7 ¼ CW

7 þ κP5dm
M2

P
;

c⋆3 ¼ c3 þ
κPV3 dmMV

M2
P

; ð27Þ

implying

c⋆1235 ¼ c1 þ c2 þ 8c⋆3 − c5; and ð28Þ

d⋆2 ¼ d2 þ
κVVPdm
2M2

P
; ð29Þ

yielding

d⋆123 ¼ d1 þ 8d⋆2 − d3: ð30Þ

We have first shown here the correction to λ1 appearing
in λ⋆1 , while the remaining starred couplings were already
introduced in Ref. [17].
We will follow the scheme explained in Ref. [42]

to account for the mixing between the K1ð1270Þ ¼ K1L
and the K1ð1400Þ ¼ K1H states. This amounts to replac-
ing, in eq. (20), ðM2

K1
−W2Þ−1→ cos2θAðM2

K1H
−W2Þ−1þ

sin2θAðM2
K1L

−W2Þ−1, with mixing angle θA ∈ ½37; 58�°.

C. Short-distance constraints

We will demand that the different form factors have an
asymptotic behavior in agreement with QCD [45,46].
Specifically, we will require their vanishing for large λ
in the limλ→∞ FVðλW2; 0Þ and limλ→∞ FVðλW2; λk2Þ cases.
We will do this first in the chiral limit and then at Oðm2

PÞ,8
paralleling the discussion in Ref. [17] for the neutral
pseudoscalar transition form factors. In this way, we find
the following relations:
(a) FðπÞ

V ðW2; k2Þ, Oðm0
PÞ:

CW
22 ¼ 0; ð31Þ

c125 ¼ 0; ð32Þ

c1256 ¼ −
NCMV

32
ffiffiffi
2

p
π2FV

; ð33Þ

d3 ¼ −
NCM2

V

64π2F2
V
: ð34Þ

(b) FðπÞ
V ðW2; k2Þ, Oðm2

PÞ:

λV ¼ −
64π2FV

NC
CW⋆
7 ; ð35Þ

c⋆1235 ¼
NCMVeVm
8

ffiffiffi
2

p
π2FV

þ NCM3
VλV

4
ffiffiffi
2

p
π2F2

V

: ð36Þ

(c) FðKÞ
V ðW2; k2Þ, Oðm0

PÞ: Same constraints as for the π
case, since both form factors9 are identical in the Uð3Þ
symmetry limit.

(d) FðKÞ
V ðW2; k2Þ, Oðm2

PÞ:

CW
11 ¼

NCλV
64π2FV

: ð37Þ

For the sake of predictability and in order to further
constrain the parameters in the form factor, we use the
Vector-Vector-Pseudoscalar (VVP) Green’s function,
ΠVVPðr2; p2; q2Þ, constraints [28] obtained from the
high-energy behavior when r2 → ∞, p2 → ∞, q2 → ∞,
and matching to the operator product expansion (OPE)
leading terms in the chiral and large-NC limits. These give

7As mentioned in Sec. III A, a similar shift can be introduced
in FA, however, the operator responsible for such shift can be
absorbed through axial resonance field redefinitions [19].

8Since we are considering a complete basis of chiral symmetry
breaking operators at order m2

P, we neglect higher-order chiral
corrections.

9FP
A and AP

2;4 form factors are also identical in this limit for
P ¼ π or K, obviously.
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c125 ¼ c1235 ¼ 0; c1256 ¼ −
NCMV

32
ffiffiffi
2

p
π2FV

;

κP5 ¼ 0; d3 ¼ −
NCM2

V

64π2F2
V
þ F2

8F2
V
þ 4

ffiffiffi
2

p
dmκPV3
FV

;

CW
7 ¼ CW

22 ¼ 0; d123 ¼
F2

8F2
V
: ð38Þ

Notice that these constraints coincide with our expres-
sions in Eqs. (31)–(34) and that they imply

CW
11 ¼ λV ¼ CW⋆

7 ¼ 0;

d123 ¼
F2

8F2
V
;

dmκPV3 ¼ NCM2
π0e

V
m

64
ffiffiffi
2

p
π2FV

: ð39Þ

One can see that from the definition of c⋆1235 [Eqs. (27)
and (28)] combined with the last expression and the short-
distance constraints Eqs. (34), (36), and (38) would imply a
relation of eVm in terms of F and Mπ0 , namely

eVm ¼ −
2π2F2

NCM2
π0
: ð40Þ

However, we do not rely on this relation since comparison
with previous phenomenology [34,35] shows that the
absolute value of Eq. (40) obtained for f ≈ 92 MeV and
Mπ0 ¼ 1.3 GeV is an order of magnitude smaller than
required by phenomenology.
On the other hand, no relation among parameters of the

axial form factors can be obtained by taking the infinite
virtualities limit, since it already has the right asymptotic
behavior. Instead, we will rely on the relations obtained
using the VAP Green function10 ΠVAPðp2; q2; ðpþ qÞ2Þ
[21] in an analogous manner to that done for the
ΠVVPðr2; p2; q2Þ Green function.
We recall that the simultaneous analysis of the scalar

form factor [49,50] and the SS-PP sum rules [51] yields

dm ¼ f=ð2 ffiffiffi
2

p Þ. Additionally, notice that AðPÞ
2;4 depend on

λPV1 . In turn, FðPÞ
A depends on λPA1 and λPV1 þ 2λPV2 . The

appropriate short-distance behavior of the VAP Green
function [21] fixes all of them but λ⋆0 or, in other words
λVAP, as noted in Ref. [19]

λ0¼
f2

4
ffiffiffi
2

p
FVFA

; λ0 ¼ f2þF2
A

2
ffiffiffi
2

p
FVFA

;

λ00 ¼−
f2þF2

A−2FVGV

2
ffiffiffi
2

p
FVFA

; dmλPV1 ¼−
f2

4
ffiffiffi
2

p
FV

;

dmλPV2 ¼3f2þ2F2
A−2F2

V

16
ffiffiffi
2

p
FV

; dmλPA1 ¼ f2

16
ffiffiffi
2

p
FA

: ð41Þ

Despite the relation for dm from the scalar form factor
and the SS-PP Green’s function, notice that there is no need
for one since dm always appears multiplied by one of the
other parameters to be constrained. We will also make use
of the constraint [12]

FVGV ¼ f2: ð42Þ

In order to gain predictability, we will use the values of
d⋆123,MV , and eVm given for the best fit of Ref. [17], namely
(their correlations are given in the quoted reference)

d⋆123 ¼ −ð2.3� 1.5Þ × 10−1;

MV ¼ ð791� 6Þ MeV;

eVm ¼ −ð0.36� 0.10Þ: ð43Þ

IV. PHENOMENOLOGICAL ANALYSIS

A. Phase space

In order to compare our results with those of Ref. [5] we
use the same phase space configuration. We recall that the
variables in Ref. [5] are the invariant mass squared of the
pseudo-Goldstone and the neutrino, s12 ¼ m2

Pντ
, the invari-

ant mass squared of the charged lepton pair, s34 ¼ m2
ll̄
, two

polar angles θ1, θ3, and one azimuthal angle ϕ3, with the
integration limits given by

ðm3 þm4Þ2 ≤ s34 ≤ ðM −m1 −m2Þ2; ð44aÞ

ðm1 þm2Þ2 ≤ s12 ≤ ðM −
ffiffiffiffiffiffi
s34

p Þ2; ð44bÞ

0 ≤ θ1;3 ≤ π; 0 ≤ ϕ3 ≤ 2π: ð44cÞ

If we identify the particle with tag 1 with ντ, the invariant
mass of the weak gauge boson can be related to the Lorentz
invariants of Eqs. (44) via

W2¼M2
234¼M2þm2

1−
ðM2þs12−s34Þðs12þm2

1−m2
2Þ

2s12
−Xβ12cosθ1; ð45Þ

where βij ¼ λ1=2ðsij; m2
i ; m

2
jÞ=sij and X ¼ λ1=2ðM2; s12;

s34Þ=2, being λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab −
2ac − 2bc, the Källén lambda function. Equation (45)

10See, however, the discussion in Sec. 6.2 of [47] comparing
these short-distance constraints to the results in Refs. [20,48].
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allows us to eliminate θ1 in favor of M234. The importance
of the phase space configuration with W2 instead of θ1
relies on the need to compute the mπeþe− spectrum in order
to fit unconstrained parameters to the Belle invariant mass
spectrum [7]. The kinematic limits on the nonangular
variables for this phase space configuration read

m2 þm3 þm4 ≤ M234 ≤ M; ð46aÞ

ðm3 þm4Þ2 ≤ s34 ≤ ðM234 −m2Þ2; ð46bÞ

s−12 ≤ s12 ≤ sþ12; ð46cÞ

where

s�12 ¼ M2 þm2
1 þm2

2 þ s34 −W2 þ ðM2 −m2
1Þðm2

2 − s34Þ
W2

� 1

2W2
λ1=2ðM2;W2; m2

1Þλ1=2ðW2; s34; m2
2Þ: ð47Þ

With this, the differential decay rate is given as

dΓðτ− → ντP−ll̄Þ

¼ Xβ12β34
4ð4πÞ6m3

τ
jMj2ds34ds12dðcos θ1Þdðcos θ3Þdϕ3

¼ β34
4ð4πÞ6m3

τ
jMj2dM2

Pll̄ds34ds12dðcos θ3Þdϕ3: ð48Þ

B. Fit to data

Short-distance QCD behavior [17,19] does not constrain
all parameters. Thus, we fit some of the remaining
unknowns (see Fig. 4) using the invariant mass spectra
of the W boson, mπ−eþe− , measured by the Belle
Collaboration [7]. We start with a four-parameters fit
(FV , FA, λ0, and B, the branching fraction, are floated).
Despite the fact that the whole mπ−eþe− spectrum has been
measured, not all the data is available for this minimization
since points below mπ−eþe− < 1.05 GeV were used as a
control region to validate the Monte Carlo simulation,
leaving the most sensitive part to SD contributions as the
signal region [7]; therefore, we use for the minimization the
data above the cut mπ−eþe− ¼ 1.05 GeV.
We use only the data set for the τ− → π−eþe−ντ mode.11

Comparison of this with the expected signal events dis-
tribution in this reference allows us to roughly quantify the
deconvolution of signal from detector, which we ignore.
We have assumed this to be an energy-independent effect
for simplicity, and taken it into account as a systematic

uncertainty in the data. This error turns out to be compa-
rable to the one reported by Belle for the branching fraction
measured above the cut. In addition to this, the Belle
Collaboration used the expressions of Ref. [5], which had
typos in some of the FAðt; k2Þ terms (see Appendix).
Besides, trying to keep our previous analysis as simple
as possible, it gave an incomplete result in the sense of
VAP Green’s function analysis,12 which could lead to
biased estimations of the decay observables. Both reasons
motivate our choice of fitting the total branching fraction,
B, as an additional parameter instead of simply computing
it from the decay width expression in Eq. (48).
We used the relation

Z
dmπ−eþe−

1

Γ
dΓ

dmπ−eþe−
¼ 1 ¼

Z
dmπ−eþe−

1

N
dN

dmπ−eþe−

¼
X
bins

1

N
Nbin

Δmπ−eþe−
; ð49Þ

whereN is the total number of events,Nbin is the number of
events in a given bin, and Δmπ−eþe− is the bin width. We
thus minimize the χ2 given by

χ2¼
�
NΔmπ−eþe−

Γεbin
dΓ

dmπ−eþe−
−
Nbin

εbin

�
2

þ
�
B−BR
εBR

�
2

; ð50Þ

FIG. 4. Normalized invariant mass spectra obtained with the
two sets of parameters obtained from fitting to the Belle data. The
purple line corresponds to the data with FA fixed, while the green
one stands for that with λ⋆0 fixed. The blue data corresponds to
measurements of τ− decays, which shows the best agreement
with our model. [7].

11This is the one shown in the plots of Ref. [7]. We have
checked better agreement with the Monte Carlo simulation (based
on our previous paper [5], see also [52,53]) for this mode with
respect to its charge-conjugated mode.

12Pseudoscalar resonance exchange and Oðp6Þ operators in
the AðπÞ

2 and AðπÞ
4 form factors are lacking in Ref. [5]. This leads

to relating both form factors to the π electromagnetic form
factor [6].
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where εbin is the experimental uncertainty in a given bin,
BR is the branching ratio for mπ−eþe− ≥ 1.05 GeV reported
by Belle [7], εBR its error and B the one obtained integrating
our differential decay width above this cut. We recall that
BRðτ− → ντπ

−eþe−Þ ¼ ð5.90� 0.53� 0.85� 0.11Þ× 10−6

[7], where the first uncertainty is statistical, the second is
systematic, and the third is due to the model dependence. In
our fits, we have first realized that, varying all four
parameters, there happen to be many quasidegenerate best
fits and that the correlations among the fit parameters (FV ,
FA, λ0, and B) are always large. We interpret this as the data
not being precise enough to disentangle the physical
solutions among all those close to the global minimum.
Then, we proceeded to simplify the fits further by making
one of these four parameters constant (not B, as our
systematic error due to unfolding is comparable to the
overall uncertainty of BR).
We present two sets of fits as our reference results. One

fixing FA ¼ 130 MeV (∼
ffiffiffi
2

p
F, in agreement with [30]),

and the other setting λ⋆0 ¼ 102 × 10−3 (which is in the
ballpark of previous estimates for λ0, and neglects the
contribution of pseudoscalar resonances to the starred
coupling, see [54] and Refs. therein). Considering the
πþ or π− sets individually we find that, apart from the
incompatibility among both sets in several bins, the πþ data
set leads to the unphysical condition FA > FV . Also, fixing
FV to its short-distance prediction FV ∼

ffiffiffi
3

p
F ∼ 159 MeV

[30], yields fits with larger χ2 that we disregard. One way of
interpreting this feature would be that excited resonances
(at least the ρð1450Þ state and its interference with the
ρð1700Þ resonance) are needed for an improved description
of the data. However, given the errors of the measurement
and the lack of meþe− invariant mass distribution data we
are not able to test such more sophisticated theory input,
which introduces several additional parameters that remain
unconstrained after applying the short-distance conditions
(see, e.g., Ref. [55]). We thus understand that our fitted
values of FV are effectively capturing missing dynamics in
our description [such as the ρð770Þ excitations].
Considering the Weinberg sum rules [56]

X
i

ðF2
Vi
− F2

Ai
Þ ¼ f2; ð51aÞ

X
i

ðF2
Vi
M2

Vi
− F2

Ai
M2

Ai
Þ ¼ 0; ð51bÞ

and taking only the contributions from the lightest nonet of
resonances (along with MA ¼ ffiffiffi

2
p

MV), one finds that the
fitted value for FV approaches the prediction from these
relations, namely that13 FV ¼ ffiffiffi

2
p

f. However, and as has
been stated above, the consistent short-distance limit when

operators contributing to two and three-point Green’s
functions are considered should be [30] FV ¼ ffiffiffi

3
p

f. This
makes us believe that the dynamics from heavier copies of
the ρ meson must be affecting the constraints on the decay
constant FV . Of course, these copies will undoubtedly
affect the contribution to the chiral-order p4. Low energy
constants (LECs) of the nonresonant Lagrangian when
integrating the resonances out; however, we still assume
they approximately saturate them and neglect the operators
of such Lagrangian.14

Our results are shown in Table I. The corresponding
χ2=dof ∼ 1.2 is reasonably good and B is in agreement with
the Belle data within less than 1 standard deviation in both
cases. According to these results, we cannot exclude that
pseudoscalar resonances give sizeable contributions to λ⋆0 .
We consider both fit results in Table I as benchmarks for
our predictions in the remainder of this work (we will refer
to them as ‘the two sets’). The difference among the
corresponding two results can be taken as a first, rough
estimate of our model-dependent error.

C. Predictions for the τ − → ντP−ll̄ decays

By generating 2400 points in the parameter space
making a Gaussian variation of parameters, taking into
account the correlations among them, we computed the
sum of the SD and the SD-SI interference contributions to
the branching fractions for the full phase space. We also

TABLE I. Our best fit results for FA, FV , λ�0 and B. For the fit
results shown on the left (right) columns we fix FA ¼ 130 MeV
(λ⋆0 ¼ 102 × 10−3), respectively. A 0 error means that the fit
uncertainty in the parameter is negligible with respect to its
central value.

set 1 set 2

FA ¼ 130 MeV λ⋆0 ¼ 102 × 10−3

FA 130 MeV ð122� 0Þ MeV
FV ð135.5� 1.1Þ MeV ð137.4� 1.6Þ MeV
λ⋆0 ð384� 0Þ × 10−3 102 × 10−3

B ð6.01� 0Þ × 10−6 ð6.36� 0.12Þ × 10−6

χ2=dof 31.1=26 31.4=26

13Also found from short distance constrictions of vector and
axial form factors considering only one multiplet [12,13].

14Since the copies of the ρ must have analogous dynamics, the
operators contributing to the LECs of Oðp4Þ must be the same
with the sustitution ρ → ρ0 (and so on for heavier copies). Thus,
their contributions must read

LV
1 ¼

X
i

G2
Vi

8M2
Vi

; LV
9 ¼

X
i

FVi
GVi

2M2
Vi

;

LV
10 ¼ −

X
i

F2
Vi

4M2
Vi

;

ð52Þ

with L2
2 ¼ 2LV

1 and LV
3 ¼ −6LV

1 .
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computed for the P ¼ π and l ¼ e channel the SI con-
tribution to B with the cut mπ−eþe− ≥ 1.05 GeV,

BðIBÞjmπ−eþe−≥1.05 GeV ¼ ð1.599� 0.003Þ × 10−7: ð53Þ

As expected, it is a factor ∼37 smaller than the Belle
measurement, which confirms mπ−eþe− ≥ 1.05 GeV is a
good cut to study structure-dependent effects.
Thus, the B adding the SI contribution gives the total

branching ratios shown in Table II, where the first (dom-
inant) error includes the uncertainty from unfolding and
from the difference between B and BR and the second error
was obtained from the Gaussian distribution of the fitted

parameters. Also, in the same table, we show the SI
contributions to the branching fractions for the different
decay channels in the complete phase space.
From the discussion at the beginning of Sec. IV B and

from the results shown in Table II, we take the B of each
decay channel to be within the range obtained from the
union of the intervals given by each set of fitted parameters,
the latter ranges defined as the intervals given by each
central value of Table II and its uncertainties. Also, we
computed the W2 spectra for the different decay channels
shown in Figs. 5 and 6 using both sets of fitted parameters,
where the error band was obtained by taking the difference
between them. The same was done for the dilepton spectra

TABLE II. Branching ratios for the different τ decay channels. In the middle columns, our prediction for the full
branching ratio accounting for both (dominant) systematic and statistical uncertainties (see main text). In the right
column we show the SI contribution with the error arising from numerical integration of the differential decay width.

Bðτ → ντPll̄Þ
P; l Set 1 Set 2 IB

π, e ð2.38� 0.28� 0.11Þ × 10−5 ð2.45� 0.45� 0.04Þ × 10−5 1.457ð5Þ × 10−5

π, μ ð8.45� 2.45� 1.09Þ × 10−6 ð9.15� 3.25� 0.25Þ × 10−6 1.5935ð4Þ × 10−7

K, e ð1.17� 0.26� 0.09Þ × 10−6 ð1.11� 0.28� 0.04Þ × 10−6 3.225ð5Þ × 10−7

K, μ ð6.4� 1.9� 0.8Þ × 10−7 ð5.85� 1.75� 0.20Þ × 10−7 3.4191ð8Þ × 10−9

FIG. 5. Invariant mass spectramπ−eþe− for P ¼ π, the thickness represents the error band obtained from the difference between the two
sets. The plot in the left is for l ¼ e, while the other is for l ¼ μ.

FIG. 6. Same as Fig. 5 for P ¼ K.
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in Figs. 7 and 8. Measurement of these observables at
Belle-II [57] will be crucial for further reducing the
uncertainties shown.

V. CONCLUSIONS

Motivated by recent measurements of the Belle
Collaboration [7], we present an improved prediction of
the τ− → π−eþe−ντ decay in this paper. This includes a
more accurate description of the structure-dependent parts
of the decay amplitudes, by taking into account the first
order flavor-breaking corrections to the form factors
involved in the Wπγ� vertex. As done for the VVP
Green’s function [30], we found that the inclusion of the
pseudoscalar resonance is needed in order to obtain com-
patible expressions between the VAP Green’s function and
the form factors. In the high-energy limit we find that these
expressions give the same constraints on the parameters of
the resonance Lagrangians, as happens in the VVP case.
We have obtained a reasonably good fit of the parameters

that remain unconstrained after applying the SD behavior to
the form factors. A better set of data for the invariant mass
spectrum of the hadronic current would allow to determine
physically meaningful parameters in a unique way. It is
worth to recall that despite the fact that we had access to the
τþ → ν̄τπ

þeþe− spectra obtained from Belle, we found
some inconsistencies that make the fits to data from both

positive and negative tau decays unreliable (see discussion
in Sec. IV B). Therefore, we have only considered the data
set of the τ− decays. From the results in Table II, we
conclude that our best result for the branching fractions is
the union of ranges given for both fitting sets. This is shown
in Table III, where the central value is the mean of the union
of these intervals. The results for the P ¼ π case agree with
those in Ref. [5], where ð1.7þ1.1

−0.3Þ × 10−5 for l ¼ e and
½3 × 10−7; 1 × 10−5� for l ¼ μ were predicted. Thus, we
have reached a more precise determination of the branching
ratios for the π decay channels than the previous ones in
Ref. [5]. Also, similar observables for the τ� → ντK�ll̄
channels are predicted for the first time.

FIG. 7. Invariant mass spectra ml̄l for P ¼ π, the thickness of the purple line represents the error band obtained from the difference
between the two sets. The green line is the prediction of Ref. [5]. The left-hand plot is for l ¼ e, while the other is for l ¼ μ.

FIG. 8. Invariant mass spectra mll̄ for P ¼ K, the thickness of the purple line represents the error band obtained from the difference
between the two sets. The plot on the left is for l ¼ e, while the other is for l ¼ μ.

TABLE III. Branching ratios for the different decay channels.
The central value is the mean of the union of intervals given in
both columns of Table II, the first error covers the width of such
union of ranges [see discussion below Eq. (53)] and the second
error is the quadratic mean of statistical uncertainties in Table II.

P;l Bðτ− → ντP−ll̄Þ
π, e ð2.41� 0.40� 0.12Þ × 10−5

π, μ ð9.15� 3.25� 1.12Þ × 10−6

K, e ð1.13� 0.30� 0.09Þ × 10−6

K, μ ð6.2� 2.1� 0.8Þ × 10−7
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Despite the great achievement of the Belle Collaboration
[7] discovering the τ− → ντπ

−eþe− decays, our study
shows the need for better data (hopefully from Belle-II
[57] and forthcoming facilities) in order to increase our
knowledge of these decay modes. The mπ−eþe− spectrum
shown in Fig. 4 is consistent with the destructive interfer-
ence of the ρð1450Þ and ρð1700Þ resonances; however,
current data uncertainties prevent investigating the dynam-
ics involved in the interplay of such resonances. However,
the effect of ρ excitations does not seem negligible, since by
imposing the known behavior [30] FV ¼ ffiffiffi

3
p

F to the fit
gives a far worse χ2 than those in Table I, which are closer
to FV ¼ ffiffiffi

2
p

F (which holds with a minimal resonance
Lagrangian beyond which we go in this and in our previous
work on the subject). We assume that the effect of these
heavier copies of the ρ meson are responsible for this shift
in the value of FV .
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APPENDIX: PREVIOUS AND CURRENT
EXPRESSIONS OF AXIAL FORM FACTORS

When we compare the expressions for the axial part of
the decay amplitude we see that the following relations
should be fulfilled

Fnew
A ðW2; k2Þ ¼ 1

2
Fold
A ðt; k2Þ; ðA1aÞ

Anew
2 ðW2; k2Þ ↔ 1

2
Aold
2 ðk2Þ; ðA1bÞ

Anew
4 ðW2; k2Þ ↔ 1

2
Aold
4 ðk2Þ; ðA1cÞ

where t ¼ W2. There is, however, some mistakes in the
form factors of Ref. [5]. There we have

Fold
A ðt; k2Þ ¼ F2

V

F

�
1 − 2

GV

FV

�
Dρðk2Þ −

F2
A

F
Da1ðtÞ

þ FAFVffiffiffi
2

p
F

Dρðk2ÞDa1ðtÞð−λ00tþ λ0m2
πÞ; ðA2Þ

where Dρ and Da1 are the propagators of the ρ and a1,
respectively. However, when we neglect the contributions
stemming from the Uð3ÞV-breaking contributions in
Eq. (19) we get

2Fnew
A ðt; k2Þ ¼ F2

V

F

�
1 − 2

GV

FV

�
Dρðk2Þ −

F2
A

F
Da1ðtÞ

þ 2
ffiffiffi
2

p FAFV

F
Dρðk2ÞDa1ðtÞ

× ð−λ00t − λ0k2 þ λ0m2
πÞ; ðA3Þ

where we show in bold the factors and terms missing in the
expression for Fold

A ðt; k2Þ of Ref. [5].
Furthermore, since Ref. [5] works in the chiral limit

Aold
2 ðt; k2Þ and Aold

4 ðt; k2Þ are linearly dependent and are
replace with the form factor B, such that

Aold
2 ðt; k2Þ → −2Bðk2Þ; ðA4aÞ

Aold
4 ðt; k2Þ → −

2Bðk2Þ
k2 þ 2p · k

: ðA4bÞ

As said previously, Ref. [5] works on the chiral limit,
therefore the λPV1 term in Eq. (21) and Eq. (23) do not
contribute. Nevertheless. and for the sake of simplicity,
Ref. [5] gives B in terms entirely of the I ¼ 1 part of the
πþπ− vector form factor. This means that the contribution
from the a1 meson is being neglected.
As a consequence of all this, we can see that the total

spectrum gets really affected by such differences.
We computed only the contribution of the axial amplitude
to the meþe− spectrum [i.e., turning off the SI and vector
contributions in Eqs. (1) and keeping only that
of Eq. (1c)], and computed the spectrum but with the
axial form factors of Ref. [5]. The complete spectrum is
shown in Fig. 9 with a double logarithmic scale and a
zoom with a logarithmic scale for the vertical axis
in Fig. 10.
As shown in Ref. [5], the importance of the SD

contributions start at m2
eþe− ∼ 0.1 GeV2. Thus, as shown

in Figs. 9 and 10, the total invariant mass spectrum (purple
band) gets almost completely saturated by the axial
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contribution15 (green band) at m2
eþe− ≳ 0.1 GeV2. In these

figures we also show the spectrum obtained with the
mistakes shown in Eq. (A3) (pale-blue band), keeping
our constrained couplings and values for fitted parameters.
We see that there is an important difference between the
spectrawith the new and old form factors. Their contribution
to the branching fraction of the τ− → ντπ

−eþe− decay
obtained from the spectra are an order of magnitude away

BjnewIB;V→0 ¼ 1.09 × 10−5; ðA5aÞ

BjoldIB;V→0 ¼ 1.66 × 10−6; ðA5bÞ

In contrast, we computed also the contribution from the axial
amplitude to the branching ratio of the τ− → ντπ

−eþe−
decay as done for the completeB in Table II for the new form
factors both, considering (fb) and neglecting (fc) the Uð3ÞV
breaking terms

BjfbIB;V→0 ¼ ð1.03� 0.10Þ × 10−5; ðA6aÞ

BjfcIB;V→0 ¼ ð1.02� 0.10Þ × 10−5; ðA6bÞ

showing thus that the difference between our results
and those in Ref. [5] stems from the differences between
Eqs. (A2) and (A3), and not from the Uð3ÞV breaking
terms.
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