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Vacuum stability requires that the scalar potential is bounded from below. Whether or not this is true
depends only on the scalar quartic interactions, but even so the analysis is arduous and has only been
carried out for a limited set of models. Complementing the existing literature, this work contains the
necessary and sufficient conditions for two SUðnÞ invariant potentials to be bounded from below. In
particular, expressions are given for models with the fundamental and the 2-index (anti)symmetric
representations of this group. A sufficient condition for vacuum stability is also provided for models with
the fundamental and the adjoint representations. Finally, some considerations are made concerning the
model with the gauge group SUð2Þ and the scalar representations 1, 2, and 3; such a setup is particularly
important for neutrino mass generation and lepton number violation.

DOI: 10.1103/PhysRevD.105.075014

I. INTRODUCTION

The study of scalar potentials can be a formidable
task given that these are quartic functions of several
variables. Despite the difficulty, their analysis is crucial
as the scalar minima correspond to the possible vacuum
configurations.
A given vacuum state cannot be absolutely stable if

the scalar potential acquires lower values for some other
choice of field values. Of particular concern are those cases
where the potential is not bounded from below (BFB),
meaning that it acquires arbitrarily large negative values.
If this were to happen it would be for field values far from
the origin, in which case quadratic and trilinear interactions
can be neglected. Even so, deriving the BFB conditions
quickly becomes a very complicated problem as the
number of scalar fields increases, so much so that in the
literature one can find the derivation of these conditions for
just a few models. Among the cases which were considered
is the two Higgs doublet model [1,2], the type-II seesaw
potential with the Higgs doublet plus an SUð2Þ triplet [3,4],
special three Higgs doublet models [5–7], and also an
SUð3Þ invariant potential with three triplets [8]. Several
other works have analyzed the vacuum stability of specific

models or discussed general techniques for doing so
[1,9–12].
Of particular relevance to the following discussion is the

analysis in Ref. [4] on the BFB conditions for the Standard
Model potential with the inclusion of a scalar triplet, which
refined the results in [3]. This corresponds to an SUð2Þ
invariant potential with the scalar representations 2 and 3.
Following up on that analysis, the aim of the present work
is threefold:
(1) Generalize the results of [4] to SUðnÞ invariant

potentials with the fundamental representation plus a
2-index representation—the symmetric, the antisym-
metric, or the adjoint. This last representation
presents a unique difficulty, hence I will only derive
a sufficient condition (which is not a necessary one)
for the potential to be bounded from below.

(2) A crucial step in the derivation of the BFB con-
ditions in [4]—namely the shape of Fig. 1—was not
demonstrated explicitly up to now, as it was obtained
via elaborate manipulations of expressions in a
computer. In this work I provide a fully analytical
understanding of these calculations.

(3) The Standard Model potential supplemented by a
scalar singlet and a scalar triplet (a 1-2-3 SUð2Þ
potential, in reference to the sizes of the irreducible
fields) is important in the context of neutrino mass
generation, and also lepton number violation [13].
For such a complicated potential, instead of provid-
ing in full generality the BFB conditions which are
both necessary and sufficient, I will derive them for
an important special case where one of the quartic
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couplings is neglected. Furthermore, a sufficient
condition will be given for the general case.

It is worth pointing out that extending the results of [4] to
SUðnÞ, with n > 2, is not a mere mathematical curiosity.
Indeed, it is plausible that the fundamental laws of physics
are symmetric under a group larger than the Standard
Model one, such as SUð3Þ × SUð3Þ ×Uð1Þ [14–17],
SUð4Þ × SUð2Þ × SUð2Þ [18], SUð5Þ [19], and even big-
ger special unitary groups (see for instance [20] and the
references contained therein). The viability of the associ-
ated models requires several irreducible scalar representa-
tions, in some cases coinciding with the ones analyzed in
this work [21]. In other cases, such as the Georgi-Glashow
SUð5Þ model [19], the field content studied in this work is
just part of the full scalar sector, and if so the conditions
presented here are still applicable—they are necessary (but
not sufficient) for the potential to be bounded from below.
The rest of this document is structured as follows.

Section II introduces and analyzes the SUðnÞ invariant
scalar potential with a fundamental and a 2-index sym-
metric representation. The BFB conditions depend on two
crucial parameters, α and β, which are considered in detail
in Sec. III and Appendix A. With a thorough understanding
of them, in Sec. IV I derive the BFB conditions for the
potential mentioned in Sec. II with a 2-index symmetric
representation. Some modifications are necessary in the
case of a 2-index antisymmetric representation, as
explained in Sec. V. One can also find there an analysis
of the more complicated setup where the 2-index repre-
sentation is the adjoint. The 1-2-3 model mentioned earlier
is considered in Sec. VI. Finally, for the reader’s conven-
ience, a summary of the results can be found at the very
end. Appendix B supplements the discussion in the
main text.

II. AN SUðnÞ INVARIANT POTENTIAL

Consider a scalar ϕi transforming under the funda-
mental representation of SUðnÞ as well as a Δij trans-
forming under the 2-index symmetric representation of
this group. These fields can be viewed as a vector and
a matrix, which change under an SUðnÞ transformation U
as follows:

ϕ → Uϕ; ð1Þ

Δ → UΔUT: ð2Þ

There are five quartic terms allowed by the symmetry,
which are

Vð4Þ ¼ λϕ
2
ðϕ†ϕÞ2 þ λΔ

2
½TrðΔΔ�Þ�2 þ λ0Δ

2
TrðΔΔ�ΔΔ�Þ

þ λϕΔðϕ†ϕÞTrðΔΔ�Þ þ λ0ϕΔϕ
†ΔΔ�ϕ: ð3Þ

The field Δ has nðnþ 1Þ=2 independent components, but it
is always possible to cast Δ in a diagonal form
diagðΔ1;Δ2;…;ΔnÞ with a gauge transformation. In this
basis,1 the quartic potential reads

Vð4Þ ¼ λϕ
2

�X
i
jϕij2

�
2

þ λΔ
2

�X
i
jΔij2

�
2

þ λ0Δ
2

X
i

jΔij4

þ λϕΔ

�X
i

jϕij2
��X

i

jΔij2
�
þ λ0ϕΔ

X
i

jϕij2jΔij2:

ð4Þ

The above expression depends only on the 2n non-negative
variables jϕij2 and jΔij2, and the dependence is quadratic.
Hence one can in principle use the copositivity2 conditions
[9] for a 2n-dimensional matrix to infer the values of the λ
parameters for which Vð4Þ is always positive. The problem
is that these conditions become quite complicated for
square matrices with 4 or more rows. I will therefore
follow an approach in line with [4] which is more readily
applicable to variable n’s.
Note that with a rescaling

jϕij2 →
1ffiffiffiffiffi
λϕ

p jϕ̃ij2; ð5Þ

jΔij2 →
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λΔ þ λ0Δ
p jΔ̃ij2; ð6Þ

one can deduce that whether or not the potential is bounded
from below must depend on the five λ’s only through the
three combinations

κ0Δ ≡ λ0Δ
λΔ þ λ0Δ

; κϕΔ ≡ λϕΔffiffiffiffiffi
λϕ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

p ;

κ0ϕΔ ≡ λ0ϕΔffiffiffiffiffi
λϕ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

p ; ð7Þ

plus the signs of λϕ and λΔ þ λ0Δ, which need to be positive.
Indeed, to check that this last statement is true it suffices to
consider the specific field directions where only ϕ1 is
nonzero, and also the case when only Δ1 is nonzero.
Despite the allure of working with only three κ’s, I will not
use them in the following discussion.

1One can also make all ϕi—or all Δi—real and non-negative.
I will nevertheless abstain from making this further simplification.

2A matrix M is copositive if for every vector x ≠ 0 with real
and non-negative entries it is true that xTMx > 0 (sometimes the
sign ≥ is considered instead). The fact that the entries of the
vector cannot be negative is crucial. While this might seem a
concept which is too specific to be useful in generic calculations,
its importance and usefulness in the assessment of the stability of
scalar potentials is well established.
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Let us now introduce the variables3

α≡
P

i jΔij4
ðPi jΔij2Þ2

and β≡
P

i jΔij2jϕij2
ðPi jΔij2Þð

P
i jϕij2Þ

; ð8Þ

so that

Vð4Þ ¼ 1

2

�P
i jϕij2P
i jΔij2

�T� λϕ λϕΔ þ βλ0ϕΔ
λϕΔ þ βλ0ϕΔ λΔ þ αλ0Δ

�

×

�P
i jϕij2P
i jΔij2

�
: ð9Þ

This expression is positive if and only if for all values
of α and β the 2 × 2 matrix above is copositive.4 In turn,
that is true if and only if

λϕ > 0 and λΔ þ αλ0Δ > 0 and

λϕΔ þ βλ0ϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕðλΔ þ αλ0ΔÞ

q
> 0; ð10Þ

for all values ofα and β.With rather straightforward steps,we
have reduced the initial problem, with nþ nðnþ 1Þ=2 field
directions, first down to 2n variables (the jϕij2 and the jΔij2)
and eventually down to just two (α and β).However, to get rid
of these remaining field-dependent quantities, we must first
understand what is the range of values they can take.

III. THE ALLOWED VALUES OF α AND β

The price to pay for reducing the 2n non-negative field
quantities jϕij2 and jΔij2 to justα andβ is that the range of the
new variable is not obvious. It is rather easy to see that
maxðαÞ ¼ 1when just one jΔij2 is different from zero, while
on the other hand minðαÞ ¼ 1=n is reached when all jΔij2
have a constant value. As for β, if just a single ϕi is different
from zero, and the same is true for the corresponding Δi
(Δj≠i ¼ 0) then we reach a maximum β value of 1. If on the
other hand a singleϕi is different fromzero andonly oneΔj≠i
is non-null, then β reaches a minimum of 0.
So α ∈ ½1=n; 1� and β ∈ ½0; 1�. Nevertheless, the allowed

region for ðα; βÞ is not a rectangle. For example, when α is
minimal (¼ 1=n), all the jΔij2 must have the same value c
which means that β is forced to be cðPi jϕij2Þ=
½ðPi jϕij2Þnc� ¼ 1=n as well.
The border of the allowed area for ðα; βÞ can be found

following a generic method proposed long ago in [22,23].

These two quantities can be seen as functions of the
variables jϕij2 plus the jΔij2, and at the border the vectors
ð∂α=∂jϕij2; ∂β=∂jϕij2ÞT and ð∂α=∂jΔjj2; ∂β=∂jΔjj2ÞT for
all i and j must be proportional to each other [the null
vector ð0; 0ÞT is allowed as well]. That is because at the
border of the allowed area for ðα; βÞ it should not be
possible to move in two independent directions in the ðα; βÞ
plane by making small variations of the jϕij2 and the jΔij2.
The only caveat is that these last variables cannot be
negative; hence, for jϕij2 ¼ 0 and for jΔij2 ¼ 0 the
previous restriction does not apply. Such nuance can be
taken into account by saying that the 2n vectors

jϕjj2ð∂α=∂jϕjj2; ∂β=∂jϕjj2ÞT ¼ xjð0; yj − βÞT; ð11Þ
and

jΔkj2ð∂α=∂jΔkj2; ∂β=∂jΔkj2ÞT ¼ ykð2ðyk − αÞ; xk − βÞT;
ð12Þ

must either be null or proportional to some constant vector.
The notation xj ≡ jϕjj2=

P
i jϕij2 and yj ≡ jΔjj2=

P
i jΔij2

was used to reduce the complexity of the expressions (note
that by definition

P
i xi ¼

P
i yi ¼ 1). It is straightforward

but tedious to carefully go through all cases in which the
above vectors are all aligned with each other, or null.
Therefore, a description of the various possibilities is
relegated to Appendix A.
The conclusion of the discussion contained therein is

that the allowed values of ðα; βÞ correspond to the shaded
area in Fig. 1, including the border lines. Note that—as
expected—this shape grows with n since the SUðnÞ-
invariant potential can be seen as a special case of the
SUðnþ 1Þ invariant where some field components are set
to zero (Appendix B discusses this topic in more detail). As
a consequence, the BFB conditions on the λ’s become more

FIG. 1. Allowed values of the important parameters α and β,
defined in Eq. (8), when Δ is symmetric.

3I am assuming that at least one jϕij and at least one jΔij is
nonzero. If

P
i jΔij2¼0 then Vð4Þ is positive if and only if λϕ > 0

(a condition which has already been mentioned), while ifP
i jϕij2 ¼ 0 it is required (and sufficient) that λΔ þ λ0Δ > 0

and also λΔ þ λ0Δ=n > 0. This last condition has not been
mentioned in the text yet, but it will appear eventually, so there
is no loss of generality in considering that

P
i jϕij2,

P
i jΔij2 ≠ 0.

4The case where all jϕij2 and all jΔij2 are simultaneously null
is known to lead to Vð4Þ ¼ 0, therefore it deserves no further
attention.
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stringent as n increases. Of particular relevance is the lower
part of this shape, which is defined by the quadratic relation

α ¼ 1 − 2β þ nβ2

n − 1
: ð13Þ

The Fig. 1 shown without proof in [4] corresponds to the
special situation where n ¼ 2, in which case the allowed
region for ðα; βÞ is symmetric under reflection around the
vertical axis β ¼ 1=2; for n > 2 there is a qualitative change
as the point ðβ;αÞ ¼ ð0; 1=ðn − 1ÞÞ becomes distinct
from (0,1).

IV. THE CONDITIONS FOR THE λ’S

We may now return to the inequalities in (10). Since they
must hold for all α and β, substituting α in λΔ þ αλ0Δ > 0 by
the smallest (1=n) and the largest (1) values this variable can
take, we conclude that this last inequality is equivalent to

nλΔ þ λ0Δ > 0 and λΔ þ λ0Δ > 0: ð14Þ
As observed already in [4], the left-hand side of λϕΔ þ
βλ0ϕΔ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λϕðλΔ þ αλ0ΔÞ
p

> 0 is a monotonic function of
both α and β, hence it is enough that this condition holds
on the border of the allowed αβ-region, which is convex. In
turn this is true if the inequality holds for the points
ðβ; αÞ ¼ ð0; 1=ðn − 1ÞÞ, (0,1), (1,1) and the parabolic lower
part of the shaded region in Fig. 1. From the points we get the
constraints

λϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

n − 1

�s
> 0 and

λϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕðλΔ þ λ0ΔÞ

q
> 0 and

λϕΔ þ λ0ϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕðλΔ þ λ0ΔÞ

q
> 0: ð15Þ

Five inequalities have so far been derived for the λ’s. The
second condition in Eq. (10) must also hold for the
parabolic lower part of the border, and that constitutes
the last problem to be dwelt with. In practice, we must
find the constraints on the quartic scalar couplings which
make

fðβÞ≡ λϕΔ þ βλ0ϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ 1 − 2β þ nβ2

n − 1
λ0Δ

�s
ð16Þ

positive for all β ∈ ½0; 1�. The sign of the second derivative
of this function does not change and in fact it is the same as
the one of λ0Δ,

sign½f00ðβÞ� ¼ signðλ0ΔÞ; ð17Þ
so f has a single stationary point (where f0ðβÞ ¼ 0) and it is
an absolute minimum if λ0Δ > 0. Note that if λ0Δ ≤ 0 the
value of λϕΔ þ βλ0ϕΔ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λϕðλΔ þ αλ0ΔÞ
p

is minimized
instead for ðβ; αÞ ¼ ð0; 1Þ or (1,1), and both of these cases
were already taken into account above.
The final condition is then

f0ð0Þ > 0 or f0ð1Þ < 0 or min ½fðβÞ� > 0; ð18Þ

where min ½fðβÞ� can be found by requiring that f0ðβÞ ¼ 0
without caring if the value of β is between 0 and 1. In fact,
the first two inequalities in the expression above are
necessary because if f0ð0Þ is positive or f0ð1Þ is negative
the derivative of fðβÞ is null outside the interval β ∈ ½0; 1�.5
It is then rather simple to resolve the logical condition (18)
is terms of λ’s.
In summary, the necessary and sufficient BFB condition

for the SUðnÞ invariant potential (3) which have been
derived over the previous paragraphs is the following:

λϕ > 0 and nλΔ þ λ0Δ > 0 and λΔ þ λ0Δ > 0 and

λϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

n − 1

�s
> 0 and λϕΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕðλΔ þ λ0ΔÞ

q
> 0 and

λϕΔ þ λ0ϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕðλΔ þ λ0ΔÞ

q
> 0 and

"
λ0ϕΔ −

1

n − 1

λ0Δ
ffiffiffiffiffi
λϕ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

n−1

q > 0 or

λ0ϕΔ þ λ0Δ
ffiffiffiffiffi
λϕ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

p < 0 or nλϕΔ þ λ0ϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n
λΔ
λ0Δ

þ 1

�
½nλ0Δλϕ − ðn − 1Þλ02ϕΔ�

s
> 0

#
: ð19Þ

5In that case, the minimum of fðβÞ in the [0, 1] interval is at one of the end-points (β ¼ 0 or 1). This corresponds to the points
ðβ; αÞ ¼ ð0; 1=ðn − 1ÞÞ and (1,1), which were already considered previously.
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This set of inequalities generalizes to any SUðnÞ the
somewhat more compact formulas given in [4] for
n ¼ 2. The expression inside the square brackets corre-
sponds to condition (18); the first two square roots
appearing in it must be positive due to the other constraints
[in particular (14)]. On the other hand, if the first two
conditions in the above OR expression are false, then the
argument of the last square root will always be positive
hence the full expression always makes sense.

V. OTHER SCALARS

A. The 2-index antisymmetric representation

Let us now consider what happens if Δ transforms as the
2-index antisymmetric representation. The gauge transfor-
mation is the same as inEq. (1), hence the relevant potential is
the one given in Eq. (3), but now Δ is to be viewed as a
generic n × n antisymmetric matrix. This feature makes it
impossible to diagonalize Δ with a gauge transformation.
One can however block diagonalize it into the form

Δ ¼ diag

��
0 Δ1

−Δ1 0

�
;

�
0 Δ2

−Δ2 0

�
;…;

�
0 Δbn=2c

−Δbn=2c 0

�
; ð0Þif n¼odd

�
; ð20Þ

where bn=2c stands for the greatest integer lesser than or
equal ton=2. Ifn is odd, theremust be an extra diagonal entry
equal to 0. Nevertheless, the potential (3) is only sensitive to
the matrix combination Δ�Δ which can be diagonalized,

Δ�Δ ¼ −diagðjΔ1j2; jΔ1j2; jΔ2j2; jΔ2j2;…;

jΔbn=2cj2; jΔbn=2cj2; 0if n¼oddÞ: ð21Þ

Two differences with the symmetric Δ can promptly be
discerned:
(1) There is an overall minus sign in Δ�Δ. This can be

taken into account by swapping λϕΔ and λ0ϕΔ by
−λϕΔ and −λ0ϕΔ in the BFB conditions. I will tacitly
assume that this change has been done from now on.

(2) The eigenvalues of Δ�Δ appear repeated, except a
zero when n is odd.

Let us then consider first the case when n is even. Using the
notation n≡ 2n0 and jΦij2 ≡ jϕ2i−1j2 þ jϕ2ij2 wemaywrite

α ¼
P

n0
i 2jΔij4

ðPn0
i 2jΔij2Þ2

¼ 1

2

P
n0
i jΔij4

ðPn0
i jΔij2Þ2

; ð22Þ

β ¼
P

n0
i jΔij2ðjϕ2i−1j2 þ jϕ2ij2Þ

ðPn0
i 2jΔij2Þ½

P
n0
i ðjϕ2i−1j2 þ jϕ2ij2Þ�

≡ 1

2

P
n0
i jΔij2jΦij2

ðPn0
i jΔij2Þð

P
n0
i jΦij2Þ

: ð23Þ

Apart from the 1=2 factors, these expressions are exactly
what one would have if Δ was a symmetric matrix with
dimension n0. Hence, the allowed αβ-region is as depicted in
Fig. 1, but shrunk by a factor of two in both axis, and using
n0 ¼ n=2 instead of n. That means that for SUðnÞ the border
of the figure goes through the points (0, 1=ðn − 2Þ), (1=n,
1=n), (0, 1=2), and (1=2, 1=2). Based on these comments, it is
rather straightforward to make the necessary changes to the
conditions (19) in order to obtain theBFB conditionswhenΔ
is antisymmetric and n is even (these are given explic-
itly below).
When n is odd, Δ�Δ contains an unpaired null eigen-

value, which is an important feature. If we were to define
n≡ 2n0 þ 1, then α is as given in Eq. (22). However, the
denominator of β now depends on jϕnj while the numerator
does not,

β ¼ 1

2

P
n0
i jΔij2jΦij2

ðPn0
i jΔij2Þð

P
n0
i jΦij2 þ jϕnj2Þ

: ð24Þ

This is a decreasing function of jϕnj, reaching a maximum
given by Eq. (23) (when jϕnj ¼ 0) and a minimum of 0
when jϕnj → ∞. Therefore, compared to Fig. 1, the
allowed αβ-region shrinks by a factor of two in both axes
and n0 replaces n. Furthermore, for all values of α (1=ð2n0Þ
to 1=2) β can be null, which means that in ðβ; αÞ
coordinates, a straight line connecting (0, 1=2n0) to
(1=2n0, 1=2n0) forms part of the border of the allowed
space. Figure 2 shows some examples.

FIG. 2. The allowed region for the parameters α and β, as
defined in Eqs. (22), (23), and (24), when Δ is antisymmetric.
The numbers shown refer to the SUðnÞ group under consider-
ation. The shape of the allowed region is markedly different for
odd n’s when compared to even n’s; nevertheless, the area always
increases with n.
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Note that the cases n ¼ 2, 3 are exceptional, since n0 is 1
and α has a fixed value of 1=2. In other words
TrðΔ�ΔΔ�ΔÞ ¼ ½TrðΔ�ΔÞ�2=2 and therefore Vð4Þ contains
only four independent coupling (it depends on λΔ and λ0Δ
only through the combination λΔ þ λ0Δ=2). For n ¼ 2, β
also has the fixed value 1=2, while for n ¼ 3 it can be any
number between 0 and 1=2.

Taking into account the above considerations, the BFB
condition in (19) for the symmetric representation is
modified to the following form, which is valid for all
values of n, regardless of its parity. First define ñ to be the
largest even integer smaller or equal to n: ñ ¼ n if n is even,
otherwise ñ ¼ n − 1. Then for n > 3 the BFB conditions
are the following:

λϕ > 0 and ñλΔ þ λ0Δ > 0 and 2λΔ þ λ0Δ > 0 and

− λϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

2n − ñ − 2

�s
> 0 and − λϕΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

2

�s
> 0 and

− λϕΔ −
λ0ϕΔ
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

2

�s
> 0 and

2
64−λ0ϕΔ −

1

ñ − 2

2λ0Δ
ffiffiffiffiffi
λϕ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

ñ−2

q > 0 or

−λ0ϕΔ þ λ0Δ
ffiffiffiffiffi
λϕ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΔ þ λ0Δ

2

q < 0 or − ñλϕΔ − λ0ϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ñ
λΔ
λ0Δ

þ 1

��
ñλ0Δλϕ −

�
ñ
2
− 1

�
λ02ϕΔ

�s
> 0

3
75: ð25Þ

For n ¼ 2 (Δ is an SUð2Þ singlet) the conditions are

λϕ > 0; and 2λΔ þ λ0Δ > 0 and

− λϕΔ −
λ0ϕΔ
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

2

�s
> 0; ð26Þ

while for n ¼ 3 [Δ� is an SUð3Þ triplet] it is additionally
necessary that

−λϕΔ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ

�
λΔ þ λ0Δ

2

�s
> 0: ð27Þ

B. The adjoint representation

Wemay move on to the significantly more elaborate case
where Δ transforms as an adjoint representation Δi

j,

Δ → UΔU†: ð28Þ

This Δ can be viewed as a traceless Hermitian matrix with
n2 − 1 real degrees of freedom. Reusing the same names for
the λ quartic couplings, the most general SUðnÞ invariant
potential can be written as

Vð4Þ ¼ λϕ
2
ðϕ†ϕÞ2 þ λΔ

2
½TrðΔ2Þ�2 þ λ0Δ

2
TrðΔ4Þ

þ λϕΔðϕ†ϕÞTrðΔ2Þ þ λ0ϕΔϕ
†ΔΔϕ; ð29Þ

which is an expression somewhat similar to the one in
Eq. (3). With a gauge transformation it is always possible to

diagonalize Δ, however unlike when Δ was symmetric, the
matrix must remain traceless,6

Δ ¼ diagðΔ1;Δ2;…;Δn−1;−Δ1 − Δ2 � � � − Δn−1Þ: ð30Þ

This leads to nontrivial complications in the analysis of
Vð4Þ, as was pointed out in [22]; Ref. [1] also consi-
dered this setup, arriving at necessary and sufficient
conditions for the potential to be bounded from below
when both λ0Δ and λ0ϕΔ are negative. We may define α and β
as before [see Eq. (8)], with the understanding that
Δn ¼ −Δ1 − Δ2 � � � − Δn−1, and try to find the allowed
values of these two variables. The authors of [22] con-
jectured that the configurations associated to the border of
the valid αβ-space are those of the form

ϕ ¼ ð0; 0;…; 0; 1ÞT; ð31Þ

6The reader might be puzzled by the fact that in the case of
SUð2Þ, the adjoint and the 2-index symmetric representations are
the same. Yet the text implies that if we treat Δ as a symmetric
matrix (let us call it ΔS), the best that can be done with the gauge
symmetry is to cast it in a diagonal form (two real degrees of
freedom), while Δ seen as a traceless Hermitian matrix (ΔH) can
be reduced to a real traceless diagonal matrix, with only one real
degree of freedom. The reason behind this apparent contradiction
is that ΔS may represent a complex triplet, while ΔH must stand
for a real triplet, with half of the degrees of freedom to start with.
Even if we takeΔS to be a real matrix, the two cases would still be
inequivalent due to a different choice of basis (as can be seen
from the fact that ΔSϵ is not Hermitian, with ϵ being the Levi-
Civita matrix).
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Δ ¼ diagða;…; a|fflfflffl{zfflfflffl}
m1

; b;…; b|fflfflffl{zfflfflffl}
m2

;−am1 − bm2Þ; ð32Þ

plus some lesser important cases to be discussed later.7

Note that n ¼ m1 þm2 þ 1, so for a fixed n only one of the
integers m1;2 can be picked freely (for definiteness I take
m1 as the independent variable). We get the following
relation between α and β for this particular VEV configu-
ration, with a and b eliminated,

α¼ β2ð1þAþ 2BþCÞ− 2βðAþBÞ þA

� 4ðm1 −m2Þ
ðm1 þm2Þ3

ffiffiffiffiffiffiffiffiffiffiffiffi
β

m1m2

s
½m1 þm2 − ð1þm1 þm2Þβ�3=2;

ð33Þ

with

A≡m2
1 −m1m2 þm2

2

m1m2ðm1 þm2Þ
; B≡m2

1 − 4m1m2 þm2
2

m1m2ðm1 þm2Þ2
;

C≡m2
1 − 6m1m2 þm2

2

m1m2ðm1 þm2Þ3
: ð34Þ

There are two choices for each choice of m1, depending on
the sign selected for the last term in the α expression, but
it is sufficient to always pick the plus sign, as the minus

sign can be replicated by swapping m1 and m2

(m1 → n − 1 −m1). Unlike when Δ was symmetric (or
skew-symmetric), the border of the αβ-space is no longer
composed exclusively of straight lines and a parabola; now
the relation between α and β is significantly more com-
plicated and furthermore one should consider more than a
single curve, since m1 can take values from 1 to n − 2. One
might have hoped that a single m1 is relevant for the
demarcation of the border line, but this is not the case;
several of them contribute, each for some specific range
of β.
Figure 3 illustrates what happens for SUð7Þ (that

is n ¼ 7). One can see there that the border line is
also made-up of horizontal and vertical straight lines
(see [22]); nevertheless, they are irrelevant for the stability
of the vacuum.8 Noting that β ∈ ½0; ðn − 1Þ=n� and α ∈
½αmin; αmax� with

αmin ¼
(

1
n n even
n2þ3

nðn2−1Þ n odd
; ð35Þ

FIG. 3. Demarcation lines of the allowed αβ-space (shaded area) for an SUð7Þ invariant potential with a fundamental and an adjoint
representation. The curved lines (in color) follow Eq. (33), while the straight ones (in black) are described by the expressions (37)–(39),
obtained in Ref. [22]. The inlet clarifies what is happening on the right side of the plot, with the m1 ¼ 1, 2, 3 curves all being important
for the demarcation of the bottom border line.

7Numerical scans suggest that this conjecture is true.

8The reason is as follows. We need to find the minimum of the
expressions appearing in the inequalities (10) however, since
these expressions are monotonous functions of α and β, one can
disregard straight portions of the αβ-border line (it is enough to
consider their endpoints where the expressions will always reach
a minimum).
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αmax ¼
ðn − 1Þ3 þ 1

ðn − 1Þn2 ; ð36Þ

there are the following straight lines,

α ¼ αmin and β ∈
�

n − 1

nðnþ 1Þ ;
nþ 1

nðn − 1Þ
�

ðline exists only for even nÞ; ð37Þ

α ¼ αmax and β ∈
�

1

nðn − 1Þ ;
n − 1

n

�
; ð38Þ

β ¼ 0 and α ∈

( ½ n2−2nþ4
n3−3n2þ2n ;

n2−5nþ7
ðn−2Þðn−1Þ� n even

½ 1
n−1 ;

n2−5nþ7
ðn−2Þðn−1Þ� n odd

: ð39Þ

Since the shape of the αβ-space is quite elaborate, we
may focus instead on the rectangle containing it and derive
the following simple but potentially useful BFB condition
—which is sufficient but not necessary for vacuum stabil-
ity. It consists on demanding that all the following
expressions are positive,

λϕ; λΔ þ αmin =maxλ
0
Δ;

λϕΔ þ βmin =maxλ
0
ϕΔ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕðλΔ þ αmin =maxλ

0
ΔÞ

q
: ð40Þ

One should take every combination of α and β at their
minimum and maximum values (see Eqs. (35), (36), and
the text immediately preceding them), hence there is a total
of 1þ 2þ 4 ¼ 7 quantities to be checked.

VI. THE 1-2-3 SUð2Þ POTENTIAL

Neutrino masses can be generated at tree level by
introducing in the Standard Model a scalar Δ with the
SUð2ÞL ×Uð1ÞY quantum numbers (3, 1). Via the seesaw
type-II mechanism, neutrinos acquire a mass mν ¼
Yνμhϕi2=m2

Δ0 where
(i) Yν is the Yukawa coupling matrix regulating the

interaction LT
i CLjΔ between left-handed leptons

and Δ;
(ii) mΔ0 stands for the mass of the neutral component Δ;
(iii) μ is a mass which controls the strength of the

trilinear interaction ϕ†Δϕ� between Δ and the Higgs
doublet ϕ.

Note that lepton number is restored in the limit where μ
vanishes, so this symmetry protects μ from big radiative
corrections, and that is why the smallness of mν is usually
attributed to the tiny value of this mass parameter.
As an alternative, lepton number might be spontaneously

violated. To that end one can introduce a scalar singlet with
no hypercharge and two units of lepton number [13], so that

an interaction λσϕΔ
2
σϕ†Δϕ� þ H:c: is allowed by all sym-

metries; once this scalar acquires a vacuum expectation
value, an effective μ equal to λσϕΔhσi is generated (see
Fig. 4). With a singlet σ (1), a doublet ϕ (2), and a triplet Δ
(3), this setup is sometimes called the 1-2-3 model. The full
scalar potential reads

Vð4Þðϕ;Δ; σÞ ¼ Vð4Þðϕ;ΔÞ þ λσ
2
jσj4

þ λσϕjσj2ϕ†ϕþ λσΔjσj2TrðΔΔ�Þ

þ
�
λσϕΔ
2

σϕ†Δϕ� þ H:c:

�
; ð41Þ

where Vð4Þðϕ;ΔÞ contains only terms with ϕ and Δ
and was given previously in Eq. (3). Once again a
gauge transformation can be used to diagonalize Δ
[→ diagðΔ1;Δ2Þ], in which case we may make the replace-
ments ϕ†ϕ → jϕ1j2 þ jϕ2j2, TrðΔΔ�Þ → jΔ1j2 þ jΔ2j2 and
ϕ†Δϕ� → ðϕ�

1Þ2Δ1 þ ðϕ�
2Þ2Δ2. This last expression is the

only one sensitive to the phases of the fields, so the
potential above is minimal when

λσϕΔ
2

σϕ†Δϕ� þ H:c: ¼ −jλσϕΔjjσjðjϕ1j2jΔ1j þ jϕ2j2jΔ2jÞ:
ð42Þ

We have seen that Vð4Þðϕ;ΔÞ depends only on four
field components—jϕ1;2j and jΔ1;2j—or equivalently
jϕ1j2 þ jϕ2j2, jΔ1j2 þ jΔ2j2, α and β [see Eq. (8)]. With
the introduction of σ, the minimum of the potential will
depend only on one extra field jσj,9 nevertheless the
potential itself becomes significantly more complicated,
with four new λ’s. In fact, to find the BFB conditions of the
1-2-3 potential it would be necessary to minimize a

FIG. 4. Neutrino mass diagram in the 1-2-3 model. When σ
acquires a nonzero vacuum expectation value, the LLϕϕ Wein-
berg operator [25] is generated (L and ϕ represent the left-handed
leptons and the Higgs doublet).

9In analogy with α and β, we may define the variable

γ ≡ jϕ1j2jΔ1j þ jϕ2j2jΔ2j
ðjϕ1j2 þ jϕ2j2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ1j2 þ jΔ2j2

p :

Nevertheless, γ can be written as a function of α and β so it does
not constitute an independent degree of freedom.
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polynomial with a quadratic dependence on the jϕij2 and,
crucially, a quartic dependence on the variables jσj and jΔij.
The results on the copositivity of quadratic functions
cannot be used here, and one can appreciate from
[10,24] that handling multivariable quartic functions is
very complicated, hence it seems unwise to try to find the
necessary and sufficient BFB of the potential in Eq. (41).10

However, for the study of neutrino masses in the 1-2-3
model it might be good enough to find some acceptable
values of the λ’s (not necessarily all of them).
One important case is when the coupling λσϕΔ is too

small to be relevant for the stability of the vacuum.
The neutrino mass matrix is given by the formula
Yνλ

�
σϕΔhσihϕi2=m2

Δ0 with mΔ0 often taken to be quite
low—of the TeV order11—in which case the product
Yνλ

�
σϕΔhσi would need to be tiny. Furthermore, without

the coupling λσϕΔ the model becomes invariant under and
extra Uð1Þ symmetry which acts only on σ, hence radiative
corrections to this parameter became vanishingly small
when λσϕΔ ≈ 0; this is therefore an important and well-
motivated approximation.
In the absence of this coupling, the 1-2-3 potential

becomes a quadratic function of the non-negative variables
jϕ1;2j2, jΔ1;2j2, and jσj2, hence the potential is bounded
from below if and only if the symmetric matrix0

BBBBBB@

λϕ λϕ λϕΔ þ λ0ϕΔ λϕΔ λσϕ

· λϕ λϕΔ λϕΔ þ λ0ϕΔ λσϕ

· · λΔ þ λ0Δ λΔ λσΔ

· · · λΔ þ λ0Δ λσΔ

· · · · λσ

1
CCCCCCA ð43Þ

is copositive. It is straightforward to obtain the explicit set
of inequalities which the λ’s must obey (for example with
the method described in [26]; see also [9]), however I will
not reproduce the expressions here since they are long and
not very instructive.
If jλσϕΔj is sizable one might consider the following

strategy. For any scalar field configuration, it is either true
that jσj ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔ1j2 þ jΔ2j2

p
or the opposite, hence

− jσjðjϕ1j2jΔ1j þ jϕ2j2jΔ2jÞ ≤ −jσj2ðjϕ1j2 þ jϕ2j2Þ or

− ðjΔ1j2 þ jΔ2j2Þðjϕ1j2 þ jϕ2j2Þ: ð44Þ

By replacing in the potential Vð4Þðϕ;Δ; σÞ the left term
with the terms on the right, we get two potentials, both of
which depend only on jϕ1;2j2, jΔ1;2j2, and jσj2. Therefore,
the 1-2-3 potential is bounded from below if both the
following symmetric matrices are copositive,

0
BBBBBB@

λϕ λϕ λϕΔ þ λ0ϕΔ λϕΔ λσϕ − jλσϕΔj
· λϕ λϕΔ λϕΔ þ λ0ϕΔ λσϕ − jλσϕΔj
· · λΔ þ λ0Δ λΔ λσΔ

· · · λΔ þ λ0Δ λσΔ

· · · · λσ

1
CCCCCCA; ð45Þ

0
BBBBBB@

λϕ λϕ λϕΔ þ λ0ϕΔ − jλσϕΔj λϕΔ − jλσϕΔj λσϕ

· λϕ λϕΔ − jλσϕΔj λϕΔ þ λ0ϕΔ − jλσϕΔj λσϕ

· · λΔ þ λ0Δ λΔ λσΔ

· · · λΔ þ λ0Δ λσΔ

· · · · λσ

1
CCCCCCA:

ð46Þ

Note however that this is not a necessary condition; the
1-2-3 potential might be bounded from below even if it fails
to pass this test.

VII. CONCLUSIONS

Scalar potentials are quartic functions of several field
components, hence their analysis can be quite complicated.
That is why it is only possible to write down the necessary
and sufficient conditions for these functions to be bounded
from below in simple cases, when the number of scalar
representations is small. In this work, I have derived these
constraints for SUðnÞ invariants potentials with two fields;
one transforming under the fundamental representation and
the other as a 2-index representation (the symmetric or the
anti-symmetric one). The case where the 2-index repre-
sentation is the adjoint is substantially more complicated;
hence, I have only provided in a closed form a sufficient
condition for the potential to be stable.
The combination of fields above mentioned appears in

several models extending the Standard Model gauge group.
The special case where n ¼ 2 and the scalars are a doublet
and a triplet is particularly important because these fields
participate in the seesaw type-II mechanism which might
be responsible for neutrino mass generation. The BFB
conditions for this scenario were already presented in [4],
although a crucial step necessary to derive this result was
not shown explicitly, as the relevant calculations were
performed with a computer algebra system. In this work

10Neglecting the special case when σ ¼ 0 (which was already
addressed), one can make the variable substitution jΔij → jσjjΔ0

ij,
turning the potential into a quadratic function of jϕ1j2, jϕ2j2 and
jσj2, hence the known copositivity results can be applied to these
three variables. The result is a complicated system of inequalities
involving jΔ0

1j and jΔ0
2j which would still need to be resolved for

all values of these variables. Nevertheless, for a numerical check
of whether or not a specific potential is bounded from below,
those inequalities might be of some use since for each set of λ’s
one only has to sample a 2-dimensional field space rather
the original 12-dimensional one.

11This is a possibility rather than a requirement. Indeed the
mass of Δmight as well be several orders of magnitude above the
electroweak symmetry breaking scale.
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I have provided a fully analytical proof of this result, which
is valid for any SUðnÞ group.
One can also add a scalar singlet to the Standard

Model on top of the triplet used in the type-II seesaw
mechanism. With the introduction of the singlet, lepton
number can be broken spontaneously rather than explic-
itly, leading to important phenomenological conse-
quences. Yet the scalar potential of this so-called 1-2-3
model contains nine quartic couplings, making it hard to
derive necessary and sufficient BFB conditions in full
generality. Therefore, I considered the physically well-
motivated approximation where one of the interactions is
negligible, in which case one can use well-known results
on the copositivity of matrices to derive the relevant
conditions. For those cases where all quartic couplings
are relevant, we also derived a sufficient (but not
necessary) condition which can be used to pick accept-
able coupling constants.
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APPENDIX A: THE BORDER OF THE
VALID αβ-REGION

As discussed in the main text, the 2n vectors in Eqs. (11)
and (12) can be used to identify the allowed values of the α
and β variables defined in Eq. (8). In particular, at the
border of the valid αβ-region, these vectors must either be
null or point in a single direction. By carefully considering
the right-hand side of the expressions (11) and (12), one of
the following possibilities must be true.
(1) For all i such that xi ≠ 0 (there must be at least one

such case since
P

i xi ¼ 1) we have yi ¼ β. We can
further divide this possibility in three cases.
(a) β ¼ 0. This means that xi ≠ 0 implies yi ¼ 0. So

we can have at most n − 1 nonzero yi which in
turn means that α ∈ ½1=ðn − 1Þ; 1�.

(b) β ¼ α ≠ 0. In this scenario, the vectors (11) and
(12) are aligned only if the value of all nonzero
xi or all nonzero yi is βð¼ α). So, we conclude
that α ¼ β ¼ 1=m where m is the number of xi
or yi ≠ 0.

(c) β ≠ 0; α. This is undoubtedly the most important
case.By assumption, ifxi ≠ 0 thenyi ¼ β, and for
all such cases the vectors ð2ðβ − αÞ; xi − βÞT are
proportional to each other only if the xi take a
constant value. In other words, there are m non-
zero xi and they all have the same value 1=m

(because
P

i xi ¼ 1), plus the corresponding yi
are equal to β. Any additional nonzero yi must
be paired with a null xi, and in all such cases
the alignment of the vectors ð2ðyi − αÞ; βÞT and
ð2ðβ − αÞ; 1=m − βÞT requires that those yi also
have a constant value given by the expression
yi ¼ ðmβ2 − αÞ=ðmβ − 1Þ≡ ω. Let us assume
that there are m0 such occurrences; the overall
picture is this; there are m cases ðxi; yiÞ ¼
ð1=m; βÞ, m0 occurrences of ðxi; yiÞ ¼ ð0;ωÞ
and all other ðxi; yiÞ are equal to (0,0). From
the relation 1 ¼ P

i yi ¼ mβ þm0ωwe conclude
that

α ¼ 1 − 2mβ þ ðm2 þmm0Þβ2
m0 : ðA1Þ

The non-negative integers m and m0 can take
any values as long as m ≥ 1 and mþm0 ≤ n.
However, note that the case m ¼ 1 and m0 ¼
n − 1 leads to the smallest value of α (for any
fixed β). This important setup corresponds to
the quadratic dependence of α on β shown in
Eq. (13) which defines a line of utmost
importance for the extraction of the bounded-
ness from below condition of the scalar poten-
tial given in (3).

(2) There is at least one i such that xi ≠ 0 and the
corresponding yi ≠ β. If this is the case, then all yi
must either be 0 or α in order for the vectors
yiðyi − α; xi − βÞT to be collinear with ð0; 1ÞT . If
we were to call m to the number of yi different from
zero (this must be an integer between 1 and n − 1

12),
then we conclude from

P
i yi ¼ 1 that α ¼ 1=m.

The xi are unconstrained in this scenario, so it
follows that β can be anywhere in the range ½0; α�
(the value β ¼ 0 is reached for example when a
single xi ¼ 1 is paired with a null yi; on the other
hand when all null yi have an associated xi ¼ 0
then β ¼ α).

The four cases above (1a, 1b, 1c, and 2) correspond only
to potential fragments of the border of the αβ-region.
In fact, some of them are in the interior of this space.
Figure 1 depicts the actual border: the vertical line with
β ¼ 0 and α ∈ ½1=ðn − 1Þ; 1� (case 1.a), the horizontal line
α ¼ 1 and β ∈ ½0; 1� (case 2 with m ¼ 1) and the parabola
(13) with β ∈ ½0; 1� (case 1c).
Note that for a fixed value of α, if we manage to find

two valid values of β then all values in between them
are equally achievable.13 Using this fact, we conclude that

12At least one yi must be null. Otherwise, if m ¼ n then all the
yi would have the value α and it would follow that
β ¼ P

i xiyi ¼ α, in contradiction with the assumption that some
yi ≠ β.
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all the space inside the border (shaded area in Fig. 1) is
allowed as well.

APPENDIX B: ON THE n-DEPENDENCE
OF THE BFB CONDITIONS

The scalar potentials discussed in this work are bounded
from below only in part of the parameter space, with the
volume of this space becoming smaller for larger SUðnÞ
groups. This is unlike other models, such as the one with
two scalars in the fundamental representations of SUðnÞ.
In order to simplify the discussion of this feature, let us

henceforth consider the case where there is a fundamental
representation ϕ and a 2-index symmetric one Δ, leading to
the quartic potential shown in Eq. (3); I will call it Vn if it is
invariant under SUðnÞ. First, one should note that—for the
same λ couplings—the potential Vnþ1 takes the same value
as Vn when the (nþ 1)th entries of ϕ and Δ are null. As
such, ifΛn is the λ-space where Vn is bounded from below, it
is quite obvious that Λnþ1 ⊆ Λn. To exclude the possibility
that these two spaces are one and the same, it suffices to
consider the special setup where λϕ ¼ λϕΔ ¼ λ0ϕΔ ¼ 0

14 in
which case

Vn

ðPijΔij2Þ2
¼ λΔ

2
þ λ0Δ

2

P
ijΔij4

ðPijΔij2Þ2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
≡α

: ðB1Þ

This expression depends only on α, whose range ½1=n; 1�
increases with n. Therefore one concludes that Λnþ1 is not
the same as Λn, i.e., Λnþ1 ⊂ Λn.
As mentioned earlier, the decrease with n of the

stable parameter space of the ϕΔ-model contrasts with
the situation in other setups. For example, take two
scalars ϕ1 and ϕ2 transforming under the fundamental
representations of SUðnÞ and, for simplicity, that they
have some common charge under an extra Uð1Þ
symmetry. The potential depends on ϕ†

1ϕ1, ϕ†
1ϕ2, and

ϕ†
2ϕ2 but crucially the range of values which these

quantities can have is the same for any n ≥ 2.
Therefore, the BFB conditions do not depend on the
SUðnÞ group under consideration. Nevertheless, this is
an exceptional case, as we will now see by considering
the generic scenario where there are m scalars ϕ1;…;m

transforming under the fundamental representation of
SUðnÞ. If there is an extra Uð1Þ acting equally on all
fields, the potential can only depend on the scalars
through the inner products

Xij ≡ ϕ†
iϕj: ðB2Þ

With the help of an orthogonal basis ei for the
irreducible n-dimensional vector space where SUðnÞ
acts on (e†i ej ¼ δij), we may write ϕi ≡P

j Bijej so that
B can be any m × n dimensional matrix. It follows that
X ¼ B�BT . From linear algebra (and the Cholesky
decomposition in particular) we conclude that any
m ×m Hermitian matrix X can be formed from a
suitably chosen matrix B with a rank equal or larger
than m; this is possible if and only if n ≥ m. As such,
for a fixed m the set of all possible values for X stays
unchanged once n is made equal or larger than m, and
therefore the analysis of the stability of a model with m
scalars ϕ is the same for all n ≥ m. For instance, with
m ¼ 2 scalars the stability conditions are the same for
all SUðn ≥ 2Þ, while for m ¼ 3 scalars the BFB con-
ditions depend on whether we consider the group SUð2Þ
or SUðn ≥ 3Þ.
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