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Abstract: Background and Aims: Common variable immunodeficiency (CVID) comprises a group of
diseases with heterogeneous clinical and immunological manifestations. Several mutations have been
identified in genes encoding proteins essential for immune function. Our aim was to phenotypically
and genotypically characterize a patient diagnosed with CVID and study his response to the SARS-
CoV-2 vaccine. Methods: We performed a next-generation sequencing analysis, a CMIA, and an
ELISA to analyze the humoral and cellular response to the SARS-CoV-2 vaccine, respectively. We
also employed flow cytometry and immunoturbidimetry to assess the patient’s global immune
status. Results: We found a low humoral but positive cellular response to the SARS-CoV-2 vaccine.
NGS screening revealed a transition from guanine to adenine at position c.485 of the IKZF1 gene in
heterozygosity, giving rise to the R162Q variant, which was not present in his parents. Conclusions:
The R162Q variant of the IKZF1 gene has been associated with CVID type 13, but always with an
autosomal dominant inheritance with high penetrance. Therefore, we present for the first time a case
of CVID associated with a de novo heterozygous R162Q variant in the IKZF1 gene in a patient with a
low humoral immune response to the complete COVID-19 vaccination program.

Keywords: CVID; IKZF1; IKAROS; de novo mutation; R162Q; immune response; SARS-CoV-2;
heterologous vaccine; humoral response; T-cell response

1. Introduction

Common variable immunodeficiency (CVID) is the most prevalent symptomatic
primary immunodeficiency in the Caucasian population [1]. It comprises a heterogeneous
group of diseases whose common characteristic is the inability to produce antibodies due
to a defect in the development or function of B lymphocytes. The age of onset is very
heterogeneous, ranging from childhood to the second and third decade of life [2]. Clinical
and immunological manifestations vary between affected individuals, but the principal
manifestations of CVID are increased susceptibility to recurrent infections, mainly of the
respiratory tract, hypogammaglobulinemia, and low antibody response to vaccine antigens,
which cannot be explained by previous exposures, treatments, or infections. In addition,
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some patients also have autoimmune diseases, alteration in lymphocyte populations,
or cancer [3].

Currently, its diagnosis is complicated by the lack of standardized diagnostic criteria
due to its great clinical and analytical heterogeneity, low awareness on the part of clinicians,
and the similarity of the disease with other immune disorders. Even so, several guidelines
have emerged that help in the diagnosis of CVID, including the International Consensus
Document (ICON) guidelines from 2015 [4] and the European Society for Immunodefi-
ciencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors
of Immunity from 2019, with several updates [5]. In the laboratory, determinations of
serum levels of immunoglobulin (Ig)G, IgA, and IgM antibodies, the study of lympho-
cyte populations, and B-cell immunophenotyping are useful in evaluating the patient’s
condition [2].

It is well known that CVID patients present suboptimal responses to vaccines, some of
them being potentially dangerous and even contraindicated (such as live vaccines). In fact,
the current ESID guideline for CVID includes a poor antibody response to vaccines as a
criterion [5], although several studies show that the response to vaccines is not uniform in
patients with mild hypogammaglobulinemia [6]. Very few studies exist on humoral and
cellular responses to COVID-19 vaccines in patients with CVID [7–9]. This is due, on the one
hand, to the fact that SARS-CoV-2 infection is very recent and, on the other hand, because
the response to immunization depends on the type of vaccine, the patient’s immune defect,
and the type of antigen studied [7]. Looking at the humoral and cellular response to other
vaccines not related to SARS-CoV-2 in patients with CVID, we find studies that suggest
that these patients have a lower humoral response to the vaccines compared to the control
group while maintaining a good cellular response [10,11].

Regarding the etiology, most cases of CVID are idiopathic, but to date, between 10
and 35% of CVID patients present monogenic defects, predominantly autosomal dominant
with incomplete penetrance or with late onset of symptoms. The development of high-
throughput sequencing technologies has allowed the identification of several mutations in
genes encoding proteins essential for immune function that could be involved in the devel-
opment of CVID. Thus, panels of primary immunodeficiency-associated genes have been
created, allowing rapid screening of identified mutations using genetic techniques. Some of
the CVID-associated genes include: ICOS (OMIM: #604558), CD19 (OMIM: #107265), CD81
(OMIM: #186845), MS4A1 (OMIM: #112210), CR2 (OMIM: #120650), TNFSF12 (OMIM:
#602695), CTLA4 (OMIM: #123890), LRBA (OMIM: #606453) TNFRSF13B (OMIM: #60907),
TNFRSF13C (OMIM#606269), NFKB1 (OMIM: #164011), NFKB2 (OMIM: #164012), IL21
(OMIM: #605384), IRF2BP2 (OMIM: #615332), PIK3CD (OMIM: #602839), STAT3 (OMIM:
#102582), and others [3]. Alteration in any of these genes can cause perturbations of specific
immune pathways, resulting in “unique phenotypes” that can aid in the diagnosis of
CVID [2]. In fact, in the 2019 update of the classification of primary immunodeficiencies
(PID) by the expert committee of the International Union of Immunological Societies (IUIS),
CVID is included within the group of PID with a predominance of antibody deficiencies.
Furthermore, information regarding clinical, analytical, and molecular tests is provided
and that could help clinicians in the diagnosis and management of these patients and their
relatives [12].

Here, we report a case of a 46-year-old patient diagnosed with CVID in current
treatment with intravenous immunoglobulins and clinically stable. Because of his negative
family history of primary immunodeficiencies and in the context of the SARS-CoV-2
pandemic, we reassessed the patient immunologically, employing an NGS analysis to try to
clarify the genetic cause of his disease, and analyzed his serological and cellular response
to the COVID-19 vaccine. We identified a heterozygous R162Q variant of the IKZF1 gene in
our patient that was not present in his parents. This variant was previously described as
pathogenic, associated with CVID type 13 following an autosomal dominant inheritance
and high penetrance. Therefore, we present for the first time a case of CVID associated
with a de novo heterozygous R162Q variant in the IKZF1 gene in a patient with a low
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antibody immune response and a positive cellular response to the complete COVID-19
vaccination program.

2. Materials and Methods
2.1. Subjects and Study Design

The family (2 parents and the proband) was recruited at the Clinical Immunological
Department of the University Hospital Virgen de las Nieves, Granada, Spain, as part of a
continuous and systematic program of phenotyping and genotyping focused on CVID. The
patient was diagnosed with CVID at the age of 25 due to recurrent episodes of bronchiectasis
and respiratory infections. Since then, he has been under treatment with intravenous im-
munoglobulins with a good response and is currently clinically stable. His phenotype was
evaluated with blood tests such as cytometry, immunoturbidimetry, chemiluminescence
microparticle immunoassay (CMIA), and enzyme-linked immunosorbent assay (ELISA), as
well as genetic studies of the patient and, subsequently, his parents.

The timeline of the study design is represented in Figure 1. All family members
provided their written informed consent. The study was approved by the ethics committee,
via the Portal de Ética de la Investigación Biomédica de Andalucía, Junta de Andalucía
(Code: 0297-N-21).

Figure 1. Study design. Timeline of the experimental plan and the schedule of the SARS-CoV-2
vaccine doses. CVID: common variable immunodeficiency; NSG: next-generation sequencing; IVIg:
intravenous immunoglobulin treatment; Igs: immunoglobulins.

2.2. Blood Collection

Blood samples were obtained from the antecubital vein after an overnight fast of 12 h
and under resting conditions (at least 10 min before) in the supine position and collected in
Vacutainer SST 16 mm × 100 mm tubes for serum (Becton Dickinson, NJ, USA), Vacutainer
ethylenediaminetetraacetic acid (EDTA K2) 13 mm × 75 mm tubes for anticoagulated whole
blood, and Vacutainer lithium-heparin 16 mm × 100 mm tubes for plasma. Serum was ob-
tained by centrifugation (4 min at 3000× g), aliquoted, and processed immediately. Plasma
was obtained after pipetting the heparinized whole blood sample into the stimulation tubes,
incubating them, and centrifuging for 10 min at 1300× g.

2.3. Serum Immunoturbidimetry

To assess the overall immune status of the patient, in addition to the study of lym-
phocyte subpopulations, we quantified the total IgG, IgA, and IgM antibody levels in the
patient’s serum by immunoturbidimetry using the automatic analyzer Alinity c system
(Abbott Laboratories, Chicago, IL, USA). This procedure measures the increase in sample
turbidity caused by the formation of insoluble immune complexes when the antibody is
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added to the sample. This antibody (reagent) consists of goat anti-human IgG, IgM, or IgA
serum. Results are expressed in milligrams per deciliter (mg/dL).

2.4. Whole Blood Cytometry

To assess different lymphocyte subpopulations and perform the B-cell immunopheno-
typing, we used fresh whole blood. Both analyses were performed using the BD FACSCanto
II Flow Cytometer (BD Biosciences, San Diego, CA, USA).

For the lymphocyte subpopulations, we used BD Trucount tubes and the BD Mul-
titest 6 Color BTNK kit (BD Biosciences, San Diego, CA, USA), which included the fol-
lowing mixtures of fluorophore-conjugated monoclonal antibodies (mAb): anti-CD45-
PerCP-Cy5.5, anti-CD3-FITC, anti-CD8-APC-Cy7, anti-CD4-PECy7, anti-CD19-APC, and
anti-CD16+CD56-PE. Pre-sample preparation included the following steps: 20 µL of the
antibody mix was added to a Trucount tube with 50 µL of patient blood. The tube was
vortexed and incubated for 15 min at room temperature. Subsequently, 450 µL of FACS
lysing solution (BD Biosciences) was added and left to act for 10 min. Finally, the cells were
acquired on the flow cytometer and analyzed with the BD FACSCanto Clinical software
(BD Biosciences, San Diego, CA, USA).

For B-cell immunophenotyping, we use an eight-color panel of the following mAb:
anti-CD45-APH-7, anti-CD19-V500, anti-CD10-V450, anti-CD38-PECy7, anti-CD21-PE, anti-
CD27-PerCP-Cy5, anti-IgD-FITC, and anti-IgM-APC (BD Biosciences, San Diego, CA, USA).
The blood sample was stained with the mAb mixture in a test tube for 20 min at room
temperature in the dark. After incubation, red cells were lysed with 1 mL of lysing solution
(BD Pharm Lyse) for 10 min. Cells were then washed twice with PBA (1% bovine serum
albumin in PBS) and fixed using 1% formalin in PBS. Finally, the cells were acquired on
the flow cytometer, analyzed with the BD FACSDiva software (BD Biosciences, San Diego,
CA, USA), and read with Infinicyt software (Cytognos, Salamanca, Spain).

2.5. Next-Generation Sequencing (NGS) and Sanger Validation

EDTA blood samples were subjected to an automated extraction and purification
process to obtain genomic DNA using the QIAsymphony SP (Qiagen, Hilden, Germany).
The proband sample was prepared for an NGS study. We performed targeted sequencing
using a designed panel of 41 genes associated with primary antibody immunodeficiency
(AICDA, ATP6AP1, BLNK, BTK, CARD11, CD19, CD40, CD40LG, CD79A, CD79B, CD81,
CR2, CTLA4, CXCR4, ICOS, IGLL1, IKZF1, IL21, INO80, IRF2BP2, LRBA, LRRC8A, MOGS,
MS4A1, MSH6, NFKB1, NFKB2, PIK3CD, PIK3R1, PLCG2, PMS2, PTEN, SEC61A1, TCF3,
TNFRSF13B, TNFRSF13C, TNFSF12, TNFSF13, TRNT1, TTC37, UNG). The library was
created using the SureSelect XT Reagent library preparation kit (Agilent Technologies, Inc.,
Santa Clara, CA, USA) for paired-end multiplexed sequencing of Illumina (Inc., San Diego,
CA, USA). Target regions were enriched with the Custom SureSelect probe kit (Agilent).
Cluster preparation was performed using the cBot device, and library sequencing was
performed using the Illumina HiSeq1500 platform (Illumina, Inc., San Diego, CA, USA).
Bioinformatic analysis was applied through an end-to-end in-house pipeline developed
by Health in Code (A Coruña, Spain), in accordance with the best WES analysis practices.
The identified pathogenic variant in the proband was confirmed by Sanger sequencing,
by sequencing exon 5 of the IKZF1 gene bidirectionally, with its intronic flanking regions.
Sanger sequencing was also performed in the patient’s parents.

2.6. SARS-CoV-2 Serological Study

In the context of the SARS-CoV-2 pandemic, the patient received the complete vacci-
nation program against COVID-19: the first and second dose with the vector SARS-CoV-2
vaccine (Oxford-AstraZeneca AZD1222, ChAdOx1 nCoV-19, Vaxzevria) and the third dose
(booster dose) with the messenger RNA SARS-CoV-2 vaccine (mRNA-1273, Moderna).

We analyzed the humoral immune response against the SARS-CoV-2 Spike (S) protein
one and three months after the second dose with AstraZeneca and one month after the
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third dose with Moderna to ensure complete vaccination and subsequent booster. Quanti-
tative determination of IgG against protein S was performed using the chemiluminescent
microparticle immunoassay (CMIA) in the Alinity autoanalyzer (Abbott) following the
manufacturer’s instructions with the SARS-CoV-2 IgG II Quant Assay kit. Results were
expressed in binding antibody units per milliliter (BAU/mL). A test was determined as
positive if the signal was >7.5 BAU/mL.

2.7. SARS-CoV-2 Cellular Immunity Study

Cellular immunity was assessed by quantifying SARS-CoV-2-specific IFN-γ using the
SARS-CoV-2 IGRA stimulation tube set (Euroimmun, Lüebeck, Germany), following the
manufacturer’s instructions. This stimulation is used for the treatment of whole blood
to obtain plasma and contains: (1) CoV-2 IGRA BLANK (no activating component for T
cells, used for the determination of the individual’s INF-γ background); (2) CoV-2 IGRA
TUBE (with components of the S1 domain of the SARS-CoV-2 Spike protein); and (3) CoV-2
IGRA STIM (coated with a mitogen to verify the sample quality). A 500 µL volume of
heparinized whole blood was pipetted into each tube and incubated for 20–24 h at 37 ◦C.
Subsequently, the concentration of the released interferon-gamma was measured in the
plasma by enzyme-linked immunosorbent assay (ELISA) using the Interferon-Gamma
ELISA kit (Euroimmun, Lüebeck, Germany, EQ 6841-9601).

Cellular response assays to the vaccine were performed at the same time as post-
vaccination SARS-CoV-2 serology. The results were expressed in mUI/mL (milli-international
unit per milliliter). The cutoff point for positivity was set at >200 mIU/mL for either of the
two tubes (IGRA TUBE and IGRA STIM) of the technique. The mIU/mL value of each tube
was calculated by subtracting the value obtained in IGRA TUBE and IGRA STIM minus
the IGRA BLANK.

3. Results
3.1. Immunological Studies

The immunological features of the patient are shown in Table 1. The serum level of
IgM was normal, whereas no IgA was detected. The IgG level was normal due to the
immunoglobulin treatment. However, in the diagnostic sample, IgG was absent. The study
of lymphocyte subpopulations showed a marked reduction in B cells, a reversed CD4/CD8
T-cell ratio, and normal NK cell levels. The B-cell immunophenotyping highlighted the
absence of transitional B cells, plasmatocytes, and switched-memory B cells, whereas the
percentages of unswitched-memory B cells, marginal-zone B cells, and CD21low B cells
were elevated.

The study of the complete COVID-19 vaccination program showed a very low antibody
response after the second dose of the AstraZeneca vaccine, with a decrease in antibody
level of −23% at 3 months and a stronger response after the booster dose with the Moderna
vaccine. The cellular immunity study by the quantification of the SARS-CoV-2-specific
IFN-γ production showed a positive cellular response one month after the second dose,
which, as in the case of antibodies, was lost at 3 months, with subsequent recovery of
T-cell-mediated responses after the booster dose. All immunological values of the humoral
and cellular responses are shown in Table 2. After the booster dose of the vaccine, the
lymphocyte subpopulations remained stable, but we detected an increase in the percentage
of switched-memory B cells (5.8%) and a decrease in unswitched-memory B cells (17%) in
the immunophenotyping of B cells.
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Table 1. Immunological features of the CVID patient in current treatment with intravenous im-
munoglobulins previous to the SARS-CoV-2 vaccination. Ig: immunoglobulin.

Patient Reference Values

Total serum immunoglobulins (mg/dL)
IgM 79 22–240
IgA <5 65–470
IgG 977 540–1822

Lymphocyte subsets (cells/µL—%)
CD3+ 1825 (82%) 960–2600 (61–84%)

CD3+CD4+ 611 (27%) 540–1660 (32–60%)
CD3+CD8+ 1164 (52%) 270–930 (13–40%)

CD4+/CD8+ ratio 0.53 0.9–4.5
CD19+ 24 (1%) 122–632 (6–27%)

CD3−CD56+CD16+ 358 (16%) 127–509 (10.1–20.9%)

B-cell immunophenotyping (%)
Naive B cells (CD27−, IgD+, IgM+) 54.40% 53–86

Memory B cells (CD27+) 35.90% 9.1–33
Switched-memory B cells

(CD21+, CD27+, IgM−, IgD−) 0% 4–22

Unswitched-memory B cells and
marginal-zone B cells

(CD21+, CD27+, IgM+, IgD+)
29.50% 3.3–12.8

Transitional B cells
(CD38high, IgMhigh, CD21low) 0% 0.9–6.3

CD21low B cells
(IgM+, CD38low, CD21low) 7.70% 0.4–4.5

Plasmatocytes (CD38+, CD138+) 0% 0.1–1.5

Table 2. Humoral and cellular responses to the SARS-CoV-2 vaccine in the CVID patient. We made
the measurements one month and three months after the second dose of the vaccine and one month
after the booster dose.

Patient Cut Off Values

Anti-S SARS-CoV-2 protein IgG (BAU/mL)
After 2nd dose (1 month) 55.85
After 2nd dose (3 month) 12.91 0–7.5
After 3rd dose (1 month) 180.03

SARS-CoV-2-specific IFN-γ (mUI/mL)
After 2nd dose (1 month) 420 Negative < 100
After 2nd dose (3 month) 14 Borderline 100–200
After 3rd dose (1 month) 638 Positive > 200

3.2. Genetic Study

The NGS test revealed a heterozygous substitution of guanine to adenine at position
485 of exon 5 of the IKZF1 gene (chromosome 7p12.2) in the patient (c.485G>A) that causes
a codon change of “CGG” to “CAG”, which mean a non-synonymous switch from arginine
to glutamine in the 162 protein residue (Arg162Gln). This variant was not identified in the
DNA of the blood samples from the patient’s parents by Sanger sequencing (Figure 2A–C).

3.3. Bioinformatic Studies

The heterozygous mutation (c.485G>A) causes a change in the physical–chemical
properties of the protein because of the substitution of the amino acid arginine for glutamine
(Arg162Gln). This variant affects the second C2H2 domain with the zinc-finger structure
of IKAROS protein (ZF2, amino acids 145–167), a residue essential for DNA binding. All
evaluated in silico predictors of protein damage determined a deleterious effect for the
IKAROS protein (Table 3).
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Figure 2. Genetic analysis of the IKZF1 gene. (A) Next-generation sequencing of the patient revealed
a heterozygous missense variant (c.485G>A) in exon 5 of the IKZF1 gene, in chromosome 7p12.2, that
results in a substitution of arginine to glutamine (p.Arg162Gln). Electropherograms of the Sanger
sequencing performed in the patient’s father (B) and mother (C) demonstrated homozygosity for G
at position c.485 of exon 5 of IKZF1.

Table 3. Results of the in silico predictors of the effect of the variant. MutationTaster (values range
from 0 to 1): probability close to 1 indicates greater confidence in the prediction. DANN (Deleterious
Annotation of Genetic Variants using Neural Networks; values range from 0 to 1): the highest values
are potentially the most pathogenic. FATHMM MKL (Functional Analysis through Hidden Markov
Models; values range from 0 to 1): the highest values are potentially the most pathogenic. Coding
and non-coding variants are scored independently.

Prediction Score

MutationTaster Pathogenic 1
DANN 0.999552

FATHMM MKL Coding 0.98952
FATHMM MKL Non-Coding 0.99606

4. Discussion

The IKZF1 gene (OMIM: #603023) encodes the IKAROS zinc-finger transcription factor.
It is located on chromosome 7 (7q12.2) and has eight exons. The IKZF1 gene can produce
different isoforms due to alternative splicing, but the main “DNA-binding” form of IKAROS
is isoform 1, whose structure is composed of an N-terminal DNA-binding domain, which is
made up of four zinc-finger motifs (ZF1–ZF4), a central activation/repression domain, and
a C-terminal dimerization domain (ZF5–ZF6) (Figure 3). IKAROS binds as homodimers or
heterodimers to pericentric heterochromatin regions, promoting the expression of target
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genes that play important roles in lymphocyte development, differentiation and function,
and myeloid cell development [13].

Figure 3. Schematic representation of the structure of human IKAROS protein encoded by the IKZF1
gene. The DNA-binding domain consists of four zinc-finger motifs (ZF1–ZF4) and the dimerization
domain of two (ZF5–ZF6). The p.Arg162Gln variant found in our patient is highlighted in red and
affects the ZF2 domain. Other amino acid positions of IKAROS variants identified in CVID patients
are indicated. ZF: zinc-finger.

The first IKZF1 mutations that were linked to human pathologies were somatic and
associated with a worse prognosis in B-cell acute lymphoblastic leukemia (B-ALL). How-
ever, more recently, heterozygous germline mutations have also been related to B-ALL
development [14]. On the other hand, germline heterozygous mutations in the IKZF1
gene have been detected in patients with primary immune deficiency or inborn errors
of immunity. The first de novo heterozygous missense mutation in the IKZF1 gene was
described by Goldman et al. in 2012, in a 33-week preterm infant with pancytopenia and
loss of B cells, which shared phenotypic similarities with the IKZF1-null mouse animal
model and that affected the ZF4 domain of IKAROS [15].

Subsequently, various types of germline mutations in the IKZF1 gene have been iden-
tified in patients with a CVID-like phenotype, including missense mutations (all of which
have been classified as pathogenic or probably pathogenic), frame-shift mutations, non-
sense mutations, and intragenic deletions of IKZF1 [15–22] (Figure 3). These mutations can
act in different ways, giving rise to haploinsufficiency (HI), dominant-negative (DN), or
dimerization-defective (DD) effects. However, most patients carrying germline heterozy-
gous missense mutations that act in a HI manner and affect the DNA binding domain
manifest CVID when they have symptoms [23,24].

The heterozygous missense R162Q variant of the IKZF1 gene present in our patient
was discovered for the first time in 2016 by Kuehn et al., in a European family composed of
three generations of affected individuals, where the variant cosegregated with the disease
in seven of the twelve members of the family [17]. Later, in 2017, Hoshino et al. also
reported the R162Q variant in three generations of a family with two affected individuals
from three carriers [20]. Both studies revealed an autosomal dominant inheritance with
incomplete but high penetrance. However, in our patient, it appears for the first time as a
de novo mutation.

The pathogenicity of the variant was demonstrated by Kuehn et al. [17], through
functional analysis and subsequently corroborated by Hoshino et al. [20]. Flow cytometry
data of the Kuehn et al. study showed that the amount of IKAROS in the T and B cells
of the patient with the R162Q mutation in IKZF1 was equal to controls. To determine the
effect of the R162Q mutation, they used transfected cells. They noticed that the R162Q
variant produced stable proteins, which could dimerize with wild-type (WT) protein forms
and migrate to the nucleus, but they were not capable of binding to the pericentromeric



J. Clin. Med. 2022, 11, 2303 9 of 12

target DNA region. To mimic the heterozygous state, Kuehn et al. used transfected cells
with vectors expressing 100% WT IKAROS and transfected cells with vectors expressing
50% WT and 50% mutant IKAROS. They found that DNA binding was reduced by 38–74%
in cells transfected with 50% mutant vectors, compared to cells transfected with 100% WT
vectors. The heterozygous state and the haploinsufficiency mechanism explain the high
but incomplete penetrance of this mutation. Finally, based on our in silico analysis using
MutationTaster and other prediction methods, the R162Q variant causes a deleterious effect
on the mutated IKAROS protein, supporting the previous results.

In the Kuehn study, individuals with the heterozygous R162Q variant were character-
ized by recurrent infections, mainly respiratory tract infections or otitis, and hypogamma-
globulinemia. The age onset was before the age of ten in most of them. One of the patients
died of pneumonia at the age of 74 and another patient developed B-ALL and died from
a relapse at the age of 5. All of the patients presented a reduction in B cells and most of
them a reversed CD4/CD8 T-cell ratio [17]. In the Hoshino study, one of the symptomatic
patients, at seven years of age, had bacterial pneumonia with agammaglobulinemia and
IgA vasculitis and analytically low levels of B cells, normal NK cells, and low CD8+ T cells.
The other symptomatic patient had a history of thrombocytopenic thrombotic purpura
(ITP) without dysgammaglobulinemia, with normal levels of B and NK cells, an increase
in T follicular helper cells, and a reduction in CD4/CD8 T-cell ratio [20]. Our patient was
diagnosed at an older age compared to the patients previously described with this variant.
Analytically, he is also characterized by recurrent infections, a marked reduction in B cells,
a reversed CD4/CD8 T-cell ratio, and very low immunoglobulins levels at the diagnosis,
except for IgM.

The humoral response to the complete vaccination schedule with AstraZeneca and
the booster with Moderna in our patient is considered very low. The study carried out by
Atmar et al. showed circulating antibody levels against the Spike protein of SARS-CoV-2
after 1, 15, and 29 days of the booster dose in healthy individuals. This study showed that
there are no major differences between homologous booster vaccination and heterologous
booster. The normal humoral response after the regimen of two doses of Janssen (viral
vector) and the booster of Moderna is estimated at 4560 BAU/mL of circulating antibodies,
which is much higher than our patient [25]. In the same way, Munro et al. published an
article that compared the immunogenicity of seven booster vaccines after the two doses
from AstraZeneca and Pfizer-BioNTech (COV-BOOST) by means of, among others, the
levels of anti-spike IgG measured by ELISA [26]. In the 98 healthy cases studied that
were vaccinated with two doses of AstraZeneca and subsequent booster with Moderna,
a mean of 31,111 ELISA laboratory units per milliliter (ELU/mL) was found at day 29
post-boost. According to the WHO international standard for COVID-19 serological tests
to harmonize anti-spike SARS-CoV-2 assays [27], taking as reference the ELISA technique,
BAU/mL = 0.142 × AU/mL. Thus, the results obtained by Munro are similar to those
obtained by Atmar (4417 BAU/mL) and are higher compared to our patient. On the other
hand, Amodio et al. conducted the first study in a cohort of 21 European patients with
CVID. They evaluated the humoral response 21 days after the first dose and 7 days after
the second dose with the Pfizer-BioNTech vaccine and found that patients with CVID
could generate an antibody response, but at a lower magnitude than healthy controls [8].
It should be noted that some of these patients had a genetic alteration, but none with a
mutation in the IKZF1 gene. In the same way, Hagin et al. observed a positive response,
but at lower levels than healthy controls in a cohort of 13 CVID patients treated with
immunoglobulins, measuring the SARS-CoV-2 anti-protein S antibody response 2 weeks
after the second dose of the Pfizer-BioNTech vaccine [9]. In addition, in the group of patients
with CVID, they found a greater response in patients under 50 years of age. Bergman
et al. showed that CVID patients with a lower percentage of switched-memory B cells or
an increased percentage of CD21low B cells have a poor response to the Pfizer-BioNTech
mRNA vaccine [28]. These immunophenotypic characteristics and results were obtained
in our patient, although after the booster dose of the SARS-CoV-2 vaccine, he generated
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a small increase in switched-memory B cells, coinciding with his greater production of
antibodies after vaccination.

The T-cell response after the booster dose in our patient, despite being positive, is
far from those found in the healthy population used as a control group in other studies
and is similar to that of vulnerable and immunocompromised patients in whom the SARS-
CoV-2-specific IFN-γ were quantified using the same commercial kits (Euroimmun) and
techniques as in our case. Schwarz et al. quantified SARS-CoV-2-specific IFN-γ 7 days
after the second dose of the Pfizer-BioNTech vaccine, finding that the mean concentra-
tion in people >70 years old was 707.3 mIU/mL, while in healthy young adults it was
2184 mIU/mL [29]. Ruether et al. compared the levels of SARS-CoV-2-specific IFN-γ 29
days after the second dose of the mRNA vaccine (Pfizer-BioNTech or Moderna) or vector-
based vaccine (AstraZeneca) in 3 groups: 19 healthy controls (mean around 1000 mIU/mL),
26 patients with liver cirrhosis (mean between 100 and 200 mIU/mL or borderline), and
82 liver transplant patients (mean below 100 mIU/mL or negative response) [30]. Our
patient presents a loss of cellular response 3 months after the second dose with the As-
traZeneca vaccine, and although the response is good after the booster dose with Moderna,
it is presumably lower than in the healthy population and will be lost over time. This
hypothesis may be demonstrated in subsequent controls on the patient and corroborated
by different studies that are still underway.

The molecular heterogeneity of patients with CVID, the use of different techniques to
measure the immune response to SARS-CoV-2 vaccines, and the use of different vaccines
and vaccine regimens make it difficult to compare the results between studies, but reinforces
the importance of vaccinating this vulnerable population, emphasizing the need to measure
not only the humoral response but also the cellular response in these patients [7–9].

5. Conclusions

We report a patient diagnosed with CVID due to his phenotypic and immunological
features in which, among other findings, we found a positive cellular response to the
complete COVID-19 vaccination schedule with a very low humoral response. In summary,
vaccination against SARS-CoV-2 activates the adaptive immune response by inducing both
the humoral response (specific antibodies against SARS-CoV-2) and the cellular response
(specific T cells against SARS-CoV-2). However, in our patient, as well as in other im-
munosuppressed or vulnerable patients, we observed a low and less sustained immune
response to the COVID-19 vaccines. Although there are not many studies on the effects of
vaccines against SARS-CoV-2 in vulnerable patients (CVID, elderly, immunosuppression),
it seems advisable to routinely include serological and/or cellular tests of response to
vaccination, since this is usually suboptimal, and it would be necessary to implement addi-
tional booster doses (as many as necessary) in these patients with low or no response. The
vaccine-induced T-cell response has a greater effect than the humoral response mediated by
B cells, in addition to having a protective effect even in the absence of a humoral response
by limiting the viral replication and supporting immunological memory in the timing of
long-term vaccination. What is clear is that these patients require more research on the
effects of vaccination in the short and medium term and closer monitoring to try to keep
them adequately treated and protected.

Targeted sequencing using a panel of genes associated with primary antibody immun-
odeficiency was performed on our patient to elucidate the underlying cause of his disease.
Our analysis revealed an R162Q variant, a heterozygous IKZF1 mutation, which was not
present in his parents. Importantly, this is the first time this variant is described as a de novo
mutation. The p.Arg162Gln variant has a deleterious effect on the IKAROS transcription
factor, which in heterozygosity, generates a reduction of the binding affinity for DNA,
altering the regulation of the targeted genes involved in lymphocyte differentiation, which
supports the CVID phenotype of the patient. Despite all the studies carried out to date,
it is still not fully understood how mutations in the IKZF1 gene influence the etiopatho-
genesis of CVID. It is necessary to further investigate possible factors that could influence
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the clinical–immunological heterogeneity between patients, particularly in individuals
with de novo mutations, exemplified by our patient, and asymptomatic patients. Genetic
studies of these patients and their relatives must be included in the diagnostic algorithm
for these pathologies in order to better understand the development of CVID, to find new
pathological variants in IKZF1 or other genes, or even in novel genes not yet described
that could produce CVID and, perhaps in the future, to find a more effective and targeted
treatment than the basic intravenous administration of immunoglobulins.
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