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Abstract: This study entailed an in-depth exploration of the meanings identified by a group of
105 fourth year primary schoolchildren when solving a task involving partitioning. The research was
based on a semantic triangle consisting of a conceptual structure, representation systems, and sense.
The content of children’s answers was analysed qualitatively. One of the most prominent findings
was that purposes or usages were recognised based on multiple strategies, new categories of which,
not envisaged in earlier research, were defined. Most of the students deployed graphic, verbal, and
numerical representation and established relationships among them. Concepts such as the part-whole
relationship and fractioning appeared in their description of conceptual structure, although errors
were detected in terms of inequities and confusion between numerator and denominator.
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1. Introduction

Problems involving equitable partitioning are normally introduced as classroom tasks
beginning in pre-school, for the notion is familiar to children and the tasks where it appears
can be modelled with manipulatives [1,2]. These kinds of tasks are intended either to
divide or develop equal sized parts from continuous wholes, or equal sized groups from
discrete collections, as fair shares. The importance of solving tasks involving partitioning
is attested to by the growing number of studies on the subject. Much of the research on
partitioning has focused on the strategies adopted by schoolchildren [3–6]. The findings
show that young students tend to use a variety of intuitive strategies when confronted with
such tasks [2,5,7–10], although some fail to bear in mind the total number of parts (lack of
exhaustivity) or their size (misunderstanding of fractions) [5,11]. Such studies have also
found the choice of partitioning strategies to depend on prior knowledge and experience,
the situation involved, the type and number of objects partitioned, and the number of
partitions [3,9,10,12]. Ever fuller understanding of young children’s partitioning strategies
has spawned taxonomies that have been steadily refined with advances in research over
the years [3,12]. Taxonomies afford teachers and researchers a framework for assessing
children’s progress toward abstraction of the idea of partitioning as well as for planning
and delivering classroom lessons commensurate with that progress.

Students’ ability to solve routine tasks involving mathematical content in certain situa-
tions does not necessarily denote their understanding of the meaning of such content [13].
Thompson [14] contended that the primary reason students have difficulties in problem
solving is their failure to understand the concepts involved, the meaning of which should
be the key to future learning in the discipline. Although many studies have focused on
children’s understanding of fractions [7–12], none detected in a review of the literature
broached the issue from the perspective of meanings. Since ‘the meaning of a concept
can, therefore, be associated with what the person can do by means of the concept’ [15]
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(p. 85), here the elements characterising meaning, as expressed by a group of primary
schoolchildren when solving a partitioning task, are explored in depth. In the approach
adopted here, meaning is interpreted around the semantic triangle defined by structure,
representation, and sense or usage [13]. Establishing partitioning as the sense, the study
consisted in describing the elements of conceptual structure and the representation systems
stated by students.

2. Meaning in Mathematics Classroom Content

The notion of meaning is often used informally in education research [15,16]. Recent
studies on the meaning of mathematics classroom concepts show that semantics constitute
a sound approach to exploring mathematics teaching and learning [13]. That premise
is firmly supported by the idea that the meaning of mathematical content is essential to
explaining the fundamentals of students’ mathematical knowledge, as well as to describing
their understanding and adopting decisions for teaching design [14]. Since for the learner
‘meaning . . . refers to a complex pattern’ [15] (p. 97), here the meaning of mathematics
classroom content is broached in terms of a semantic triangle.

A number of semantic triangles have been put forward in mathematics education re-
search, including interpretation–objectification–generalization [17]; mathematics–learners
of mathematics–signs [18]; reference situations–operational invariants–symbolic repre-
sentations [19]; sign/symbol–object/reference context–mathematical concept [20]; and
conceptual structure–domains of applications–representation tools [21]. Such proposals
build on three categories to endow mathematical content with meaning. In this study
conceptualisation draws essentially from Rico’s approach [13]. Borrowing from Frege [22],
he suggested that the meaning of classroom mathematics content is determined by three
inter-related components: conceptual structure, representation systems, and sense or usage.
That system of components helps teachers and researchers determine how students under-
stand content. The framework chosen to attain such understanding identifies, organises,
synthesises, analyses, and interprets the elements of content, their interrelationships, and
processing and conversion rules, all of which have a significant impact on the aforemen-
tioned components [23].

2.1. Conceptual Structure

In mathematics the term structure generally refers to a set of elements and an associ-
ated series of finite operations and relationships. The structure of the natural numbers, for
instance, comprises a set accommodating the arithmetic operations and characterised by
specific properties such as order or sequence.

According to Rico [13], conceptual structure is based on a network of conceits and
relationships and each concept learnt forms part of a pre-existing structure. Delimiting the
conceptual structure of a mathematical matter delimits concepts and procedures and the
connections between them.

Along the lines defined by both Bell et al. and Hiebert and Lefevre [24,25], here
conceptual structure is understood to be organised into two dimensions, conceptual and
procedural. Specifically, content is deemed to lie within the conceptual dimension whilst
strategies, defined as processes relating content and reasoning and expressed as a series of
arguments, form part of the procedural dimension.

2.2. Representation Systems

For mathematical ideas to be communicated and applied they must be represented in
some way, whilst to be pondered in any depth they must be represented in a number of
ways. Generally speaking, the term (external) representation refers to physically embodied,
observable expressions such as written symbols, diagrams, pictures, spoken language, or
computer microworlds [26]. According to Kaput [27], any discussion of representation
must distinguish between the representing and the represented worlds. Representing an
idea converts a mentally pictured concept into a physical presence.
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Morgan and Kynigos [28] equated representation to the expression of meaning. The
way representation is arranged also denotes meaning. In the semantic triangle proposed
here, representation is a tool for establishing meaning. In mathematics education certain
words, diagrams, algebraic notations, etc. are used in keeping with convention. Deploying
various types of representation entails the use of several forms of communication that
differ in their potential for building meaning. Each representation system has specific rules
that describe mathematical concepts in specific ways, emphasising and delimiting certain
important properties while blurring or masking others [29].

2.3. Sense

This component relates to the purpose attributed to mathematics. Freudenthal [30]
noted that mathematical concepts and structures are linked to specific developments. The
expression ‘sense or usage’ refers here to developments or matters that translate into the
applicability of mathematical concepts, which derive their meaning from developments and
matters transpiring in the physical, social, and cultural worlds [31] (p. 175). In mathematics
classrooms they are introduced in the form of tasks closely associated with the meaning of
the concept at hand. To acquire a command of such meanings, children must engage in
solving a variety of tasks of this nature.

The three components of the semantic triangle proposed determine a way to broach
the meaning of mathematical concepts, an approach that serves a dual purpose. On the
one hand it constitutes a tool for analysing the topics addressed in classroom mathematics,
describing and establishing the meanings of topics in terms of conceptual structure, rep-
resentation systems, and sense. On the other, it can be deployed to analyse and describe
meanings as expressed by students. The present study focuses on the latter, establishing
a component of the semantic triangle (the sense of partitioning), and exploring the other
components (conceptual structures and representation systems) stated by students.

3. Methodology

The approach adopted in this qualitative-descriptive study was interpretational [32].
The subjects were 105 fourth year primary school (9- to 10-year old) students enrolled

in three schools, each in a different Spanish city (Table 1). All featured similar characteristics
and a middle-class socio-economic background.

Table 1. Schools and students participating in the study.

School Type Group Participants

1 Public
A 16

B 15

2 Partnership C 26

3 Partnership
D 25

F 23

The task they were assigned (Figure 1), drawn from studies conducted by Lamon
([7,33], p. 140), has also been used in earlier studies such as [34], where it provided
successful results in relation to the analysis of strategies and performance of schoolchildren.
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Figure 1. Task.

It was presented verbally only to ensure students would feel free to use whatever
representation system they preferred in their solutions.
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The students received the exercise in writing during a normal classroom session. They
were then given as much time as needed to solve the task individually on paper. One of the
researchers was present during the session.

Data Analysis

We performed a content analysis of the students’ written answers [35], with a focus on
the meanings expressed. Since sense was established by the task, partitioning, the analysis
categories were established for each of the other two semantic components: representation
systems and conceptual structure.

Mathematical content and strategies were the items addressed under conceptual
structure [25]. The categories used to analyse the mathematical content (Table 2) arose
inductively from the students’ exercises. The basis used for analysing the strategies was
Lamon’s categories [33], established on the grounds of the relationship existing between
quantities. As a result of the analysis of the students’ replies, the list of categories was
lengthened to include labelled pieces, where subjects divided pizzas into the same number
of pieces and calculated the number of pieces boys and girls would eat once they were
distributed. Further additions to the system included the strategies pre-within, incomplete
between or incomplete pieces as variations on the strategies within, between, and pieces. A
description of the categories and their variations is provided in Table 3.

Table 2. Categories obtained after analysing contents.

Content Description

Part-whole (equal parts) Students use of pictures of pizzas divided into equal pieces

Part-whole (inequal parts) Students use of pictures of pizzas divided in pieces of
diferent size

Fraction Students express fractions in their simbolic form (for
example, 1/3)

Multiplication Students multiply natural numbers to solve the task

Division Students use division of natural numbers to solve the task

Addition Students include additions in their procedure of solving the
task

Decimal numbers Students use decimal numbers to express the quantity of
pizza who eat each boy or girl

Comparison of natural numbers Students compare natural numbers (usually the number of
pieces made) to solve the task

Grouping Students perform distributions

Table 3. Categories used to analyse strategies.

Category Description Variation Description

Within

Students relate the respective
quantities (number of girls’
pizzas to number of boys’
pizzas and number of boys to
number of girls) and
subsequently compare the
results

Pre-within

Students compare the
quantities of a given
feature or magnitude, but
fail to compare the results
to solve the task posed

Between

Students relate non-uniform
quantities (number of pizzas to
number of people) and
subsequently compare the
results.

Incomplete
between

Students relate
non-uniform quantities
while failing to compare
the results to reach a
solution



Mathematics 2022, 10, 1339 5 of 13

Table 3. Cont.

Category Description Variation Description

Unitisa-tion

Students identify four units
(seven girls, three boys, three
pizzas, one pizza) and create a
new unit, the ratio for the
comparison.

Use of written language to
explain the procedure
deployed

Pieces

Students divide the pizzas into
the same number of pieces,
calculate the number of pieces
for the girls and the number for
the boys and compare those
quantities.

Incomplete
pieces

Students divide the pizzas
into the same number of
pieces but take the
procedure no further

Other Students use a procedure not classifiable under any of the categories established

In keeping with Castro and Castro [36] and Lupiáñez [37,38], three categories were
defined for the representation systems used: graphic, symbolic-numerical, and verbal
(Table 4). When students used more than one type of representation, their replies were
analysed to determine whether or not they associated the systems used to one another.

Table 4. Categories used to analyse representations.

Representation Description

Graphic Use of pictures or charts

Symbolic-numerical Use of numerical or algebraic symbols

Verbal Use of written language to explain the procedure followed

In some cases, students used more than one representation system, strategy, or mathe-
matical content in their answers. In the next section, some examples of students’ resolutions
are described, so pronouns are gendered indiscriminately throughout the text to protect
students’ identity.

4. Results

The present study establishes the sense (partitioning) and explores the conceptual
structures (strategies and contents) and representation systems observed in students. For
this reason, findings are discussed under three subsections, two of them referring to
conceptual structure (strategies and contents) and the last one, referring to representations.

4.1. Conceptual Structure: Strategies

The frequency of use of each strategy is given in Table 5.

Table 5. Frequency of use of each strategy.

Strategy No. Students

One strategy only
Within 0
Pre-within 12
Between 12
Incomplete between 13
Unitisation 6
Pieces 17
Incomplete pieces 7
Other 15
Combination of strategies
Pre-within and incomplete between 10
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Table 5. Cont.

Strategy No. Students

Pre-within and unitisation 2
Pre-within and pieces 2
Pre-within and incomplete pieces 3
Pre-within and other 1
Incomplete between and incomplete pieces 2

A total of 78.1% of the students broached the task with just one strategy, whilst 19%
deployed two. The most prevalent category among the latter was pre-within, with 18 of the
20 students involved using it. Two students used incomplete pieces in combination with the
incomplete between strategy. The former constituted a first approach to the within strategy.
In it, students compared quantities of the same nature (number of boys to number of girls
and number of pizzas for one to number of pizzas for the other), although they failed to
compare the results to respond to the question posed. This strategy was, significantly, one
of the ones used by most of the students who combined two. An example of its application
in combination with pieces is reproduced in Figure 2, in which the student divides each
pizza into eight pieces and shares them among the members of each group. The girls get
3.5 pieces and boys get 2.5 pieces. Although the decimal part of these numbers does not
exactly match the decimal part of the divisions 24:7 and 8:3, we interpret that the respondent
student means that the girls and the boys eat a whole of a piece plus a small portion (not
necessarily a half). This part of the task corresponds to the “pieces” strategy. However, in
the solution the respondent indicates that the girls eat more because they have more pizzas,
that is, he compares the number of pizzas for each group (girls-boys), independently of the
number of people in each group (n. of girl vs n. of boys). That is a “pre-within” strategy.
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Figure 2. Example of application of the pre-within combined with the pieces strategy. Figure 2. Example of application of the pre-within combined with the pieces strategy.

The pieces strategy was also prominently used, specifically by 19 students, two of
whom applied it in combination with the pre-within strategy. A further 11 students tried to
deploy it but failed to complete the procedure, for they only divided the pizza into pieces:
i.e., they used the pieces strategy incompletely. The answer given by one student who
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applied the pieces strategy is depicted in Figure 3, left, whilst an example of the incomplete
use of the strategy is shown on the right.
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In the between strategy, another way to broach the task, relationships were estab-
lished between the number of pizzas and the number of students to compare them and
find the answer. That strategy was used by 12 students. The other 24 who began to
apply it but failed to complete the comparison were coded as using the incomplete
between strategy. Figure 4 shows how one student related the number of girls’ pizzas
to the number of girls (7/3) and the number of boys’ pizzas to the number of boys (1/3)
but failed to find or therefore compare the results. She also confounded numerator and
denominator in the first fraction.
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An example of unitizing strategy is reproduced in Figure 5, where the pizzas were
divided into thirds and one-third of a pizza used as the unit of comparison. This student
consequently drew a pizza divided into thirds for the boys and three divided into thirds
for the girls, noting that two-thirds would be left over for the girls.

In addition, 16 students used strategies that could not be classified under any of
the established categories and three showed none at all in their replies. In the answer
reproduced in Figure 6 the student divided one pizza into fourths and one in half while
leaving the third undivided to provide one piece for each girl, albeit of unequal sizes. He
also divided the pizza for the boys into different sized pieces.

4.2. Conceptual Structure: Contents

The students used different mathematical contents to solve the task posed. The fre-
quency of use of each content graphed in Figure 7 indicates that the part-whole relationship
was a key component in the task posed, as it appeared in 80 of the 105 solutions. That
notwithstanding, 44 of the students exhibited difficulties in partitioning the units, failing
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to bear in mind that the parts were to be equal, as observed in the exercise depicted in
Figure 6.
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Figure 7. Frequency of use of each content.

Other notions that appeared frequently were division and fractioning, although in the
latter students found it difficult to determine quantities for the numerator and denominator,
as illustrated in Figure 4.

Lastly, although less frequently, other mathematical contents were found, such as
multiplication, addition, decimals, comparison of natural numbers, or grouping.

Figure 8 provides an example of a solution that combines the whole-part relationship
with unequal parts, multiplication, division, and decimals to solve the task posed. The
student first divided each unit into seven pieces, obviating the need for equality among the
parts. She then multiplied or divided to find the number of parts each girl and boy would
get, finding a decimal number in one of the results. Lastly, she compared the results and
found the greater of the quantities.
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4.3. Representation Systems

As the examples illustrated above show, the students used a number of representation
systems to find the answer to the task. A total of 80% of the participants used more
than one system, with graphic and verbal representation prevailing. The graphic system
was used by 85 students, most of whom drew circles to represent the pizzas, although
some represented the number of girls and boys involved in each case (Figure 5). Verbal
representation was used by 86 students to answer the question posed and explain their
reasoning. Symbolic-numerical representation was present in 43 exercises, mostly in the
form of natural numbers.

The fact that students were able to use more than one system informed a study of
whether they established relationships between the types of representation used. The
frequency of use of each type when multiple systems were used is given in Table 6, along
with the number of times two or more were interrelated.

Table 6. Frequency of use of each strategy.

Graphic Symbolic-
Numerical Verbal All Three

Graphic 12 -
Symbolic-numerical 4 (4) 3 -
Verbal 43 (28) 10 (10) 7

26 (6)
Total 85 39 33

In brackets, the number of students establishing relationships between representation systems.

As Table 5 shows, of the 83 participants who used more than one type of representation,
only 48 established interrelationships between them. In Figure 3, left, the student related
the graphic, numerical, and verbal systems, whereas the participant on the right used but
failed to interrelate graphic and verbal representation. More specifically, in the former the
participant drew the pizzas and divided each into eight parts, using graphic representation.
She then determined the number of pieces each girl and each boy would get using symbols
and numbers. Lastly, she answered the question verbally. The latter student used the
combination of representation systems most frequently observed in this sample: graphic
and verbal.

The graphic and symbolic and symbolic and verbal systems were combined less
frequently: an example of the former is given in Figure 4 and of the latter in Figure 9.
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5. Discussion and Conclusions

The aim of this study was to conduct an in-depth analysis of the characteristics of the
meanings identified by a group of primary schoolchildren when solving a partitioning task.
That entailed interpreting meaning in terms of a semantic triangle—conceptual structure,
representation systems, and sense [13], particularly, we established a sense (partitioning)
and describing the elements of conceptual structure (strategies and contents) and the
representations stated by the students.

In relation to the procedural dimension of the conceptual structure, the strategies,
the subjects in this study, like those participating in earlier research [5], used a variety of
intuitive strategies to solve the task posed. In light of their responses the list of strategies
categories proposed in [12] had to be lengthened. More specifically, the additions included
approaches such as pieces and several more elementary strategies: pre-within, incomplete
between, and incomplete pieces. In the latter three, students attempted to apply a strategy
but failed to use the information found to answer the question posed. The strategies most
frequently used were pre-within, between, incomplete between, and pieces, whilst the
strategy within was not deployed by any of the students. Most of the students using more
than one strategy (20%) combined pre-within with some other of the remaining strategies.
One question that might be posed is whether our participants did not use the strategy
within because they are not mature enough to perform this strategy.

On the conceptual dimension of the conceptual structure, the content, we observed
that the part-whole relationship was the most prevalent category in students’ replies. The
difficulties encountered by a substantial 49.1% of the students to divide the whole into
equal parts denotes a need to broach equity-related issues from the earliest years of primary
education. Those findings corroborate the results on partitioning and fractions reported
by Dávila [11], whose students identified the number of parts but not their size. The
primary school participants in this study supplemented the procedures initially applied
with operations such as division (22.85%) and fractioning (14.28%). Those who used
division exhibited difficulties in the use of the algorithm, whilst fractions were not always
correctly represented, with some students confounding numerator and denominator. Much
as the participants in the Lamon [7] study, here most the students compared natural
numbers only.

Finally, concerning the last component of the semantic triangle, representation sys-
tems, we found that most prevalently used to solve the task was graphic representation
in the form of circles divided into (on occasion unequal) pieces (81.9% of participants).
Similar findings were observed in a study with pre-service primary school teachers [39].
Verbal representation was applied by 81.9% of the students to explain processes, describe
details of the task and reply to the question posed, whilst 40.1% used numerical-symbolic
representation in the form of numbers, fractions, or operations. A full 80% of the students
used more than one type of representation, although only 46% established a relationship
between the systems deployed.

In general, these results corroborate other authors’ [1,2] recommendation to introduce
tasks involving partitioning or sharing in primary school. In addition to affording a
context familiar to schoolchildren, when properly chosen for a given level of schooling their
solutions are neither immediate nor foreseeable. This encourages schoolchildren to apply
a variety of representations, strategies, and contents, providing teachers with relevant
information about their students’ approach to such tasks.
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