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Abstract: SARS-CoV-2 virus infects organs other than the lung, such as mediastinal lymph nodes,
spleen, and liver, but, to date, metabolic imaging studies obtained in short-term follow-ups of patients
hospitalized with severe COVID-19 infection are rare. Our objective was to evaluate the usefulness
of [18F]FDG-PET/CT in the short-term follow-up of patients admitted for COVID-19 pneumonia
and to explore the association of the findings with clinical prognostic markers. The prospective
study included 20 patients with COVID-19 pneumonia (November 2020–March 2021). Clinical
and laboratory test findings were gathered at admission, 48–72 h post-admission, and 2–3 months
post-discharge, when [18F]FDG-PET/CT and respiratory function tests were performed. Lung
volumes, spirometry, lung diffusion capacity for carbon monoxide (DLCO), and respiratory muscle
strength were measured. Volumetric [18F]FDG-PET/CT results were correlated with laboratory
and respiratory parameters. Eleven [18F]FDG-PET/CT (55%) were positive, with hypermetabolic
mediastinal lymphadenopathy in 90.9%. Mediastinal lesion’s SUVpeak was correlated with white
cells’ count. Eleven (55%) patients had impaired respiratory function, including reduced DLCO (35%).
SUVpeak was correlated with %predicted-DLCO. TLG was negatively correlated with %predicted-
DLCO and TLC. In the short-term follow-up of patients hospitalized for COVID-19 pneumonia,
[18F]FDG-PET/CT findings revealed significant detectable inflammation in lungs and mediastinal
lymph nodes that correlated with pulmonary function impairment in more than half of the patients.

Keywords: COVID-19; [18F]FDG-PET/CT; respiratory function test; inflammatory; complications;
SARS-CoV-2

1. Introduction

There is growing interest in the diagnosis, prognosis, and optimal clinical management
of the sequelae of acute COVID-19 infection.

In the acute phase of infection, the epidemiology, clinical characteristics, results of
standard clinical laboratory tests, lung CT appearance, treatment strategies, and outcomes
in patients with COVID-19 have been reported in previous studies [1]. Imaging techniques,
especially high-resolution computed tomography (HRCT), have demonstrated a relevant
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diagnostic role [2], and multiple studies have been published on radiological findings in
patients with COVID-19 pneumonia, especially during the acute phase and, more recently,
over the short and medium terms [2,3].

The SARS-CoV-2 virus has been shown to infect organs other than the lung, such
as the mediastinal lymph nodes, spleen, and liver, quantitative case studies in patients
with COVID-19 are rare [3,4]. Such information can be obtained through the use of
[18F]- 2-Fluoro-2-Deoxy-Glucose ([18F]FDG) positron emission tomography/computed to-
mography (PET/CT), which is commonly used to assess inflammatory and infectious
lung diseases [5].

The complementary functional information provided by [18F]FDG-PET/CT, which has
been shown to be useful for diagnosing inflammatory and infectious lung diseases, estimat-
ing their severity, monitoring their evolution, and evaluating therapeutic response [4,5], can
help elucidate the pathophysiological mechanisms of COVID-19. The value of [18F]FDG-
PET/CT has been reported in patients with respiratory infections caused by other coro-
naviruses, such as MERS-CoV and SARS-CoV [6,7], as well as in patients with acute
COVID-19 infection [4,8].

The [18F]FDG-PET/CT studies of asymptomatic cancer patients described the inci-
dental detection of interstitial pneumonia compatible with possible acute SARS-CoV-2
infection [7], and researchers have begun to examine the potential role of [18F]FDG-PET/CT
in its diagnosis and treatment [8]. As well as visual interpretation by an experienced special-
ist, [18F]FDG-PET/CT also offers a semiquantitative approach to glycemic metabolism and,
therefore, the intensity of inflammatory activity. Besides the standardized uptake value
(SUV), recent studies in oncology have yielded additional parameters such as the metabolic
tumor volume (MTV) and total lesion glycolysis (TLG) [9], which could be used to estimate
inflammatory activity in lungs or extrapulmonary organs, especially lymph nodes. Studies
of noncritical hospitalized patients have highlighted the possible relevance of lymph node
hypermetabolism, quantified by the maximum SUV (SUVmax) in PET images, proposing
that the highest SUVmax values for lesions and lymph nodes may indicate an increased
severity of the infection and may predict a poor prognosis [3,4].

With this background, we hypothesized that [18F]FDG-PET/CT could be useful to
characterize pulmonary sequelae of COVID-19 infection. The objective of this study was
to evaluate the usefulness of [18F]FDG-PET/CT in the short-term follow-up of patients
admitted for COVID-19 pneumonia and to explore the association of findings with clinical
prognostic markers

2. Materials and Methods
2.1. Patients

This prospective, longitudinal, observational study enrolled consecutive COVID-19
patients at their follow-up visit 1–2 months after discharge from a third-level hospital
between 27 November 2020 to 1 March 2021.

Study inclusion criteria were confirmation of COVID-19 in accordance with WHO
guidelines [10] by a positive RT-PCR result for nasopharyngeal swabs, hospital admission
between November 2020 to March 2021 (dates of “third wave” in Spain), and findings of
ground-glass opacity or consolidation on chest HRCT scan or X-ray at admission. Exclusion
criteria were age under 18 years, absence of microbiological confirmation of COVID-19
infection, history or presence of pulmonary fibrosis, active or uncontrolled COVID-19
infection at the time of the [18F]FDG-PET/CT study, history or suspicion of oncological
disease, pregnancy, and inability to sign informed consent.

The study was approved by the local Research Ethics Committee, and written, in-
formed consent was obtained from all participants. Personal protective equipment was
available for all staff, and COVID-19 infection prevention guidelines were always rigor-
ously followed [11].
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2.2. Clinical Information and Laboratory Test Results

For all patients, data were gathered from electronic medical records, including the
results of clinical and laboratory tests at admission, at 48–72 h post-admission, and at
the follow-up PET/CT examination. Analytical data included complete blood count,
standard blood biochemistry, acute phase reactants, coagulation status [12], and neu-
trophil/lymphocyte ratios (NLRs). All patients underwent RT-PCR for nucleic acid testing
of SARS-CoV-2.

2.3. Respiratory Function Tests

Respiratory function tests were performed at 2–3 months after hospital discharge.
Spirometry results (in mL and % predicted) were obtained for forced vital capacity (FVC),
forced expiratory volume in 1 s (FEV1), and FEV1/FVC ratio. Body plethysmography was
used to measure the residual volume (RV, in mL and % predicted), and total lung capacity
(TLC, in mL and % predicted). The diffusing capacity of the lungs for carbon monoxide
(DLCO) and the CO transfer coefficient (KCO) were expressed in absolute numbers and
as % predicted. The results of the 6-min walk test (TM6M) were expressed as distance
(in m) and % oxygen saturation at start and finish. Specifically trained personnel carried
out functional tests using MasterScreen Body equipment (Jaeger, Hoechberg, Germany),
considering reference values for the Mediterranean population and acceptability criteria
established by European and Spanish regulations [13,14].

2.4. PET/CT Data Acquisition

After two consecutive negative RT-PCR test results for SARS-CoV-2 nucleic acid,
confirming that patients were no longer infected, patients underwent [18F]FDG-PET/CT
imaging (Siemens Biograph Vision 600 PET/CT, Siemens Healthcare, Erlangen, Germany),
always performed within 2–3 months after discharge from hospital. The test protocol was
based on international recommendations [15]. Patients were administered intravenously
with the radiopharmaceutical (3.7–4.81 MBq/kg) at rest after fasting for at least 6 h with
adequate hydration as long as their capillary blood glucose level was below 6.8 mmol/L.
Image acquisition (whole body in 3D) started at 50–60 min post-injection with the acqui-
sition of a topogram (50 mA, 120 kV), followed by helical CT without contrast (170 mA,
120 kV) and the acquisition of PET images with coverage from skull base to mid-thigh.

2.5. PET/CT Image Interpretation

The [18F]FDG-PET/CT and chest CT images were independently analyzed by two
nuclear medicine physicians (E.M.T.I. and M.G.M.) with a great deal of experience in the
interpretation of cardiothoracic images, using syngo.via version VB40B software (Siemens
Healthcare, Erlangen, Germany). They were blinded to the biological and clinical data of
patients. Discrepancies in interpretations were resolved by consensus with a third expert
nuclear medicine physician (A.R.F.).

The [18F]PET/CT data were transferred to a computer workstation (syngo.via) for
the co-registration of PET and CT images. Regions of interest (ROIs) were drawn on CT
images of lungs around areas with evident loss of aeration and adjacent areas of normal
appearance. ROIs were also drawn on CT images of mediastinal lymph nodes. The ROIs
drawn on the CT images of each patient were transferred to the co-registered PET images
and the amount of [18F]FDG pathological uptake was calculated for each ROI, determining
maximum, peak, and minimum SUVs, normalized by body weight (SUVmax, SUVpeak,
and SUVmin, respectively) and lean body mass (SUL); metabolic tumoral volume (MTV;
volume of pixels in the ROI with SUVmax >40%); and total lesion glycolysis (TLG; MTV
multiplied by SUVmean).

2.6. Chest CT and X-ray Image Interpretation

Upon their diagnosis, all patients underwent chest X-ray in posterior-anterior and
lateral projections, reported by specialist radiologists according to current recommenda-
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tions [16,17]. They characterized the density (alveolar, ground glass, or mixed), distribution
(central, peripheral, or diffuse), location (unilateral or bilateral), and extent (unilobar
or multilobar).

2.7. Statistical Analysis

All measurements for each participant were independently conducted by two nuclear
medicine physicians, considering the mean value in statistical analyses. Absolute num-
bers and percentages were calculated for categorical variables and means with standard
deviation (SD) for continuous variables. For comparisons of quantitative data between the
positive and negative PET groups, the Student’s t-test was applied when the distribution
was normal and the Mann–Whitney U test when it was not. Associations with categorical
variables were evaluated by constructing contingency tables, applying the chi-square test
for individual comparisons and Fisher’s exact test for multiple comparisons. Volumet-
ric [18F]FDG-PET/CT results were correlated with laboratory test results and respiratory
function parameters by using Spearman’s rank correlation coefficient. IBM SPSS version
15.0 (IBM Corp, Armonk, NY, USA) and R software were used for statistical analyses. A
p ≤ 0.05 was considered significant in all tests.

3. Results

The study included 20 patients (60% males) with a mean age of 55.85 ± 9.28 years
admitted for pneumonia and/or respiratory failure between 27 November 2020 and
1 March 2021 (during the “third wave” of COVID-19 in Spain). The mean hospital stay was
16.70 ± 11.99 days. Table 1 summarizes the baseline characteristics of the patients.

Table 1. Baseline clinical characteristics and risk factors of patients.

Clinical Characteristics (n) Mean ± SD or n (%)

Age (years) 55.85 ± 9.28

Gender (Male) 12 (60)

BMI (kg/m2) 34.11 ± 7.23

Comorbidities

Former or current smoking habit 2 (10)

Hypertension 5 (25)

Diabetes 3 (15)

Hyperlipidemia 2 (10)

Atrial fibrillation 2 (10)

Asthma 3 (15)

Charlson Comorbidity index 1.60 ± 1.14

Charlson Comorbidity index ≥ 2 9 (45)

Clinical characteristics at admission

Fever 17 (85)

Dyspnea 15 (75)

Irritative cough 16 (80)

Fatigue 14 (70)

Myalgia 11 (55)

Anosmia/Ageusia 2 (10)

Digestive symptoms 9 (45)

Headache 3 (15)

ARDS (PaO2/FIO2 < 300 mmHg) 14 (70)

Blood oxygen saturation 90.90 ± 5.33
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Table 1. Cont.

Clinical Characteristics (n) Mean ± SD or n (%)

Laboratory test results at admission

Hemoglobin (g/dL) 14.86 ± 1.84

White blood cell (count ×103/µL) 7.68 ± 3.11

Neutrophil (count ×103/µL) 6.28 ± 3.16

Lymphocyte (count ×103/µL) 0.99 ± 0.57

NLR 8.36 ± 5.86

Platelet (count ×103/µL) 206.65 ± 54.49

Ferritin (ng/mL) 1327.81 ± 1402.58

C-reactive protein (mg/L) 81.20 ± 54.61

LDH (U/L) 398.15 ± 113.80

AST(U/L) 49.25 ± 38.60

ALT(U/L) 48.30 ± 46.36

Albumin (g/dL) 3.92 ± 0.50

D-dimer (mg/L) 0.73 ± 0.52

Characteristics of Hospitalization

Hospital stay (days) 16.70 ± 11.99

Pneumonia (chest X-ray) 19 (95)

ICU admission 10 (50)

Invasive mechanical ventilation 5 (25)

Bolus therapy with glucocorticoid 14 (60)

Antiviral therapy 5 (25)

Selective inhibitors of pro-inflammatory cytokines 6 (30)
Continuous variables are presented as means ± standard deviation (SD) and categorical variables as frequencies
(percentages). ARDS: acute respiratory distress syndrome; AST: aspartate aminotransferase; ALT: alanine transam-
inase; NLR: neutrophil/lymphocyte ratio; PCT: procalcitonin; NT-proBNP: N terminal pro-B-type natriuretic
peptide; LDH: lactate dehydrogenase; ICU: intensive care unit.

The main symptom at admission was fever in 17/20 patients (85%), followed by
irritative cough in 16 (80%), dyspnea in 15 (75%), fatigue in 14 (70%), and ageusia and/or
anosmia in 2 patients (10%). Chest X-ray findings compatible with pneumonia were
observed in 19 patients (95%), being multilobar in 18 (97.4%) and unilobar in 1 (5.3%).
The radiological pattern was alveolar in three patients (15.8%), ground glass in seven
(36.8%), and mixed in the remaining nine (47.4%). The main associated complication during
hospitalization was respiratory distress in 14 (70%) patients; admission to the intensive
care unit (ICU) was required for seven (35%) of these patients and invasive mechanical
ventilation in five (25%). All patients were treated with corticosteroids, administered as a
bolus in 14 patients (70%). Five patients (25%) received antiviral treatment and another
six (30%) were treated with selective inhibitors of pro-inflammatory cytokines (five with
tocilizumab and one with anakinra). Finally, three patients (15%) required home oxygen
therapy at discharge.

3.1. The [18F]FDG-PET/CT Findings

The mean time from hospital discharge to [18F]FDG-PET/CT study was 58.85 ± 13.67 days.
The result was positive in 11 patients (55%) and negative in 9 (45%). The main finding
was hypermetabolic lymphadenopathy in the mediastinum, observed in 10 (90.9%) of the
[18F]FDG-PET/CT-positive patients (Figure 1).
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Figure 1. A 64-year man admitted for multilobar pneumonia caused by SARS-Cov-2. The [18F]FDG-
PET/CT at 3 months after symptom onset shows increased [18F]FDG uptake in residual pulmonary 
lesions (TLG 124,11) and mediastinum lymph node (SUVpeak 1,73). Pulmonary function tests evi-
denced severe pulmonary diffusion impairment, with a diffusing capacity of the lungs for carbon 
monoxide 41% of the predicted value. Left: (a) CT transverse slice, (b) [18F]FDG-PET slice, and (c) 
fused [18F]FDG-PET and CT images. Right: whole-body, maximal intensity projection image, dis-
playing mediastinal lymph nodes with [18F]FDG uptake. 

Patients with positive and negative [18F]FDG-PET/CT results significantly differed in 
age (59.82 ± 8.52 vs. 51.00 ± 8.09 years, respectively, p = 0.03), Charlson index score ≥1 (66.7 
vs. 100%, p = 0.038), presence of fatigue (90.9 vs. 44.4%, p = 0.024) and respiratory distress 
(90.9 vs. 44.4%, p = 0.024), hemoglobin levels (13.41 ± 1.91 vs. 15.24 ± 1.58 g/dL, p = 0.041), 
and lymphocyte count (1.78 ± 0.53 vs. 2.47 ± 0.49 × 103 /µL, p = 0.011) at 2–3 months post-
discharge (Figure 2). 

 

Figure 1. A 64-year man admitted for multilobar pneumonia caused by SARS-CoV-2. The [18F]FDG-
PET/CT at 3 months after symptom onset shows increased [18F]FDG uptake in residual pulmonary
lesions (TLG 124,11) and mediastinum lymph node (SUVpeak 1,73). Pulmonary function tests
evidenced severe pulmonary diffusion impairment, with a diffusing capacity of the lungs for carbon
monoxide 41% of the predicted value. Left: (a) CT transverse slice, (b) [18F]FDG-PET slice, and
(c) fused [18F]FDG-PET and CT images. Right: whole-body, maximal intensity projection image,
displaying mediastinal lymph nodes with [18F]FDG uptake.

Patients with positive and negative [18F]FDG-PET/CT results significantly differed in
age (59.82 ± 8.52 vs. 51.00 ± 8.09 years, respectively, p = 0.03), Charlson index score ≥1
(66.7 vs. 100%, p = 0.038), presence of fatigue (90.9 vs. 44.4%, p = 0.024) and respiratory
distress (90.9 vs. 44.4%, p = 0.024), hemoglobin levels (13.41 ± 1.91 vs. 15.24 ± 1.58 g/dL,
p = 0.041), and lymphocyte count (1.78 ± 0.53 vs. 2.47 ± 0.49 × 103/µL, p = 0.011) at
2–3 months post-discharge (Figure 2).

Diagnostics 2022, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 2. Factors associated with [18F]FDG-PET/CT positive. Forest plot with odds ratios shown by 
closed circles and 95% confidence intervals by whiskers. 

3.2. Correlation of Volumetric [18F]FDG-PET/CT Parameters with Laboratory Test Results 
Table 2 exhibits associations observed between volumetric [18F]FDG-PET/CT results 

and analytical findings at admission, during the hospital stay, and at 2–3 months post-
discharge. 

Table 2. Bivariate correlations of volumetric [18F]FDG PET/CT parameters with laboratory parame-
ters at admission, during hospital stay, and at 2–3 months post-discharge (short-term follow-up). 

Variable 
SUVPeak Pulmonary TLG 

Spearman’s 
rho  p-Value 

Spearman’s 
rho p-Value 

Admission 

Hemoglobin 
(g/dL) −0.664 0.026   

Neutrophil count −0.764 0.006   
Lymphocyte 

count 0.636 0.035   

NLR −0.664 0.026   

Hospital stay 

Neutrophil count −0.700 0.016   
Lymphocyte 

count 
0.618 0.043   

NLR −0.627 0.039   
IL-6   0.624 0.010 

C-reactive protein   0.618 0.004 
PCT   0.570 0.049 
LDH   0.445 0.049 

Troponin   0.883 0.002 
Fibrinogen   0.635 0.015 

D-dimer   0.674 0.001 
Neutrophil count −0.679 0.022   

Figure 2. Factors associated with [18F]FDG-PET/CT positive. Forest plot with odds ratios shown by
closed circles and 95% confidence intervals by whiskers.
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3.2. Correlation of Volumetric [18F]FDG-PET/CT Parameters with Laboratory Test Results

Table 2 exhibits associations observed between volumetric [18F]FDG-PET/CT results and
analytical findings at admission, during the hospital stay, and at 2–3 months post-discharge.

Table 2. Bivariate correlations of volumetric [18F]FDG PET/CT parameters with laboratory parame-
ters at admission, during hospital stay, and at 2–3 months post-discharge (short-term follow-up).

Variable
SUVPeak Pulmonary TLG

Spearman’s rho p-Value Spearman’s rho p-Value

Admission

Hemoglobin (g/dL) −0.664 0.026

Neutrophil count −0.764 0.006

Lymphocyte count 0.636 0.035

NLR −0.664 0.026

Hospital stay

Neutrophil count −0.700 0.016

Lymphocyte count 0.618 0.043

NLR −0.627 0.039

IL-6 0.624 0.010

C-reactive protein 0.618 0.004

PCT 0.570 0.049

LDH 0.445 0.049

Troponin 0.883 0.002

Fibrinogen 0.635 0.015

D-dimer 0.674 0.001

Short-term
follow-up

Neutrophil count −0.679 0.022

Lymphocyte count 0.791 0.004

NLR −0.727 0.011
IL-6: interleukin 6; LDH: lactate dehydrogenase; NLR: neutrophil/lymphocyte ratio; PCT: procalcitonin.

At admission, a significant correlation was found between the SUVpeak of the target
lesion in the mediastinum and the hemoglobin level (r = 0.615, p = 0.044), leukocyte count
(rho = −0.664, p = 0.026), neutrophil count (rho = −0.764, p = 0.006), lymphocyte count
(rho = 0.636, p = 0.035), and NLR (rho = −0.664, p = 0.026). In addition, the TLG in
lung parenchyma was significantly correlated with C-reactive protein (CRP) (rho = 0.558,
p = 0.011), procalcitonin (rho = 0.611, p = 0.035), fibrinogen (rho = 0.472, p = 0.041), and
blood glucose (rho = 0.517, p = 0.020) levels at hospital admission.

During hospitalization, the SUVpeak of the target lesion was again significantly cor-
related with neutrophil count (rho = −0.700, p = 0.016), lymphocyte count (rho = 0.618,
p = 0.043), and NLR (rho = −0.627, p = 0.039). Furthermore, pulmonary TLG was signifi-
cantly correlated with IL-6 (rho = 0.624, p = 0.010), CRP (rho = 0.618, p = 0.004), procalcitonin
(rho = 0.570, p = 0.042), LDH (rho = 0.445, p = 0.049), troponin (rho = 0.883, p = 0.002),
fibrinogen (rho = 0.635, p = 0.015), and D-dimer (rho = 0.674, p = 0.001) levels and with the
neutrophil count (rho = 0.615, p = 0.044), lymphocyte count (rho = −0.615, p = 0.004), and
NLR (rho = 0.558, p = 0.011) during the hospital stay.

At the follow-up at 2–3 months, the SUVpeak was significantly correlated with neu-
trophil count (rho = −0.679, p = 0.022), lymphocyte count (rho = 0.791, p = 0.004), and NLR
(rho = −0.727, p = 0.011). No significant correlation was found between pulmonary TLG
and any analytical parameter under study (Figure 3).
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3.3. Correlation of Volumetric [18F]FDG-PET/CT Parameters with Respiratory Function Parameters

Eleven (55%) of the 20 patients had impaired respiratory function. Percentage pre-
dicted values were <80% for FVC in 20% of patients, <80% for FEV1 in 15%, <70% for
FEV1/FVC in 5%, <80% for TLC in 20%, <80 for DLCO in 35%, <80% for KCO in 25%, and
<65% for VR in 5%. Saturation was ≥4% lower at the finish versus start of the walk test in
four patients (20%), and the distance was <400 m in three (15%).

Volumetric [18F]FDG-PET/CT parameters were related to respiratory function test
results obtained at 2–3 months post-discharge (Figure 4). The SUVpeak of the target lesion
in the mediastinum was significantly and positively correlated with % predicted DLCO
(rho = 0.782, p = 0.008), KCO (rho = 0.721, p = 0.019), and RV (rho = 0.636, p = 0.048) values.
Pulmonary TLG was significantly and negatively correlated with % predicted DLCO
(rho = −0.628, p = 0.005), KCO (rho = −0.564, p = 0.014), TLC (rho = −0.532, p = 0.023), and
RV (rho = −0.554, p = 0.017) values. (Table 3).

Table 3. Bivariate correlations of volumetric [18F]FDG PET/CT parameters and respiratory function
parameters in the short-term follow-up.

Variable
SUVpeak Pulmonary TLG

Spearman’s rho p-Value Spearman’s rho p-Value

DLCO% pred 0.782 0.008 −0.628 0.005

KCO% pred 0.721 0.019 −0.564 0.014

TLC% pred 0.467 0.174 −0.532 0.023

RV% pred 0.636 0.048 −0.554 0.017
DLCO: diffusing capacity of the lungs for carbon monoxide; KCO: CO transfer coefficient; RV: residual volume;
TLC: total lung capacity.
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4. Discussion

In this study, [18F]FDG-PET/CT was used to measure the metabolism of lungs and
other organs in the short–medium follow-up of patients admitted to hospital for pneumonia
or respiratory failure due to COVID-19 infection. Despite testing negative for the infection in
two successive RT-PCR tests of nasopharyngeal swabs, more than half of the patients showed
increased metabolic activity (i.e., persistent inflammation) on [18F]FDG-PET/CT images in
lung tissue of normal appearance and in mediastinal lymph nodes. To our best knowledge,
[18F]FDG-PET/CT has not previously been used to detect residual inflammatory processes
after COVID-19 infection. These findings contribute evidence on the pathophysiological
processes in patients who survive hospital admission for COVID-19 pneumonia.

The [18F]FDG-PET/CT has been employed in patients with influenza A, aspiration
pneumonia, and organized pneumonia to assess the extent and severity of the disease,
to follow its course, and to evaluate the response to therapy [5,18,19]. Research on the
role of [18F]FDG-PET/CT in COVID-19 infection has generally focused on the acute phase.
In this regard, Qin et al. reported high [18F]FDG uptake in lung lesions and mediastinal
lymph nodes of four patients strongly suspected of the infection [4], and Colandrea et al.
described elevated [18F]FDG uptake in lung lesions in 80% of a series of symptom-free
oncology patients diagnosed with COVID-19 [20]. However, few studies have addressed
the short- or medium-term consequences of COVID-19 infection. Dietz et al. recently
reported increased [18F]FDG uptake in lung lesions and mediastinal lymph nodes of
13 non-critically ill COVID-19 patients at days 6–14 after symptom onset, although the
short-axis diameter of mediastinal lymph nodes was always < 1 cm [3]. Johnson et al.
proposed that high [18F]FDG uptake in mediastinal lymph nodes might be secondary to
lung involvement in COVID-19 [21]. Bai et al. found elevated metabolic activity in residual
lung lesions in COVID-19 survivors after two successive negative results in the RT-PCR
test [22], and Scarlattei et al. reported that this metabolic activity remained high many
weeks after the disappearance of symptoms and a negative RT-PCR test result [23]. The
present results are in line with the above findings and contribute novel data on increased
metabolic activity in lung tissue of normal appearance and in mediastinal lymph nodes
of normal size. In this context, Xu et al. described lymphocyte-dominated interstitial
mononuclear inflammatory infiltrates in both lungs of a patient with COVID-19 and
reported that substantial inflammation may persist in the lungs after the disappearance
of the infection [24]. The elevated [18F]FDG uptake would reflect increased glycolytic
activity due to infiltration and inflammation of the lung, even in normally aerated areas
that show no morphological alterations on CT images, demonstrating the greater capacity
of [18F]FDG-PET/CT to detect inflamed lung areas in comparison to CT alone [8,22], which
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may persist long after the disappearance of COVID-19 infection. The possible duration of
the post-COVID-19 inflammatory response in lungs and extrapulmonary sites has yet to be
established and warrants further research.

At 2–3 months post-discharge, patients with elevated chest [18F]FDG uptake were
older and characterized by a higher Charlson index, more frequent fatigue and respiratory
distress, and lower hemoglobin and lymphocyte counts in comparison to those with normal
[18F]FDG uptake. The SUVpeak of the target lesion and pulmonary TLG were significantly
correlated with acute phase reactants and white blood cell counts at admission, during
the hospital stay, and at 2–3 months post-discharge. Although there is a lack of similar
studies in severely ill COVID-19 survivors for comparison with these results, they are
consistent with previous findings on risk factors for more severe infection, including old
age, underlying comorbidities [12,25], and similar changes in white blood cell counts,
lymphocyte counts, procalcitonin and CRP levels, and NLR [26,27]. The [18F]FDG-PET/CT
findings were correlated with the NLR in all studied phases of COVID-19 disease. The
persistence over time of increased [18F]FDG uptake intensity may reflect a more severe
acute phase of the disease.

The lung appears to be the most frequently involved organ in COVID-19, with reports
of diffuse alveolar epithelium destruction, capillary damage/bleeding, hyaline membrane
formation, alveolar septal fibrous proliferation, and/or pulmonary consolidation, among
others [12,24]. Long-term follow-up studies of survivors of other coronavirus infections
found that respiratory function limitations frequently last for months or even years, in-
cluding impaired DLCO (in 15.5–43.6% of patients) and decreased TLC (5.2–10.9%) [28–30].
Various authors have addressed short- and medium-term respiratory function outcomes
in survivors of COVID-19 infection, usually at hospital discharge [31,32]. In a study at
2–3 months post-discharge of 55 COVID-19 survivors who had not required mechanical ven-
tilation, Zhao et al. described residual pulmonary function in 14 patients (25.45%), mainly
impaired DLCO (in 13.6%) [33]. In a study at 6 weeks post-discharge of 124 COVID-19
survivors, van den Borst et al. [34] described an improvement in radiological images
for almost all patients (99%) but observed residual lung parenchymal alterations in 91%
of the patients and reduced lung diffusion capacity in 42%. Likewise, in their study at
3 months post-discharge of 76 healthcare workers who recovered from COVID-19, Liang
et al. reported normal FEV1, FVC, FEV1/FVC, TLC, and DLCO values (>80% predicted)
in 82% of the patients but the persistence of mild pulmonary function abnormalities in
42% [35]. The proportion of the present patients with impaired pulmonary function at
2–3 months was in line with previous findings on the short- to medium-term effects of
COVID-19 infection [33,34].

The most frequent respiratory sequela of COVID-19 was DLCO alteration, as re-
ported in previous studies, which may indicate the presence of pulmonary fibrosis [12,24].
DLCO and other respiratory function parameters were negatively correlated with the lung
[18F]FDG uptake as quantified by TLG. Although only a small proportion of the present
patients had severe airway dysfunction, the results suggest that COVID-19 produces diffuse
pulmonary epithelial damage and mild congestion of the airway mediated by lymphocyte-
dominated interstitial inflammatory infiltrates. No published data appear to be available
on the association between respiratory function test results and pulmonary TLG. The
majority of the present patients showed no lung lesions on CT scans at 2–3 months after
discharge; however, pulmonary function was impaired in more than half of the patients
with a normal lung CT scan. Hence, pulmonary function and [18F]FDG-PET/CT testing is
more sensitive than CT alone for identifying candidates for pulmonary rehabilitation after
SARS-CoV-2 pneumonia [22].

High [18F]FDG uptake may be related to increased anaerobic glycolysis caused by a
cascade of reactions involving inflammatory cells [7,36]. In this way, the uptake of [18F]FDG
by lung lesions and lymph nodes observed in this study may be due to nonspecific immune
or inflammatory activation, similar to the high [18F]FDG uptake observed in lung lesions
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caused by the Middle East respiratory syndrome, pandemic H1N1 influenza virus, and
organized pneumonia [18,19,37].

The [18F]FDG-PET/CT offers a complementary approach to other imaging modalities
by providing metabolic information. Although not currently recommended for the diagno-
sis of COVID-19 in the acute phase [8], it can yield relevant information for the diagnosis of
short- and medium-term complications, including the chronic damage to the lungs and
extrapulmonary sites that can follow acute infection [6,22]. However, radiologists and
nuclear physicians need to develop a thorough understanding of the cellular mechanisms
that underlie the pathophysiology of COVID-19 in the clinical settings of lung and extra-
pulmonary malignancies and inflammatory diseases in order to avoid misinterpretation of
[18F]FDG-PET/CT images [31].

Besides the small sample size, the main limitation of this study was the absence of a
control group, hampering the possibility to detect causal relationships between the findings
and COVID-19 infection. The epidemiological environment in which this study was carried
out determined strict, restrictive conditions for access to hospital centers in our center and
population. Evidently, the performance of [18F]PET/CT in healthy collaborating patients
was obviously not authorized. In addition, no test results were available for the baseline
respiratory function of patients before COVID-19, although the presence of chronic lung
disease was an exclusion criterion. Further research is required to fully elucidate the
impact of COVID-19 on pulmonary function. In this regard, the present results cannot
be extrapolated to patients with chronic lung disease. Another study limitation was the
absence of a follow-up period to explore the long-term clinical relevance of the respiratory
function impairment. Finally, biopsy specimens were not available for the studied organs.
Nevertheless, the present findings contribute to laying the foundations for future studies
with larger series on the potential role of [18F]FDG-PET/CT in evaluating the sequelae
of COVID-19 infection. These should have prolonged follow-up periods to explore the
possible relationship between initial lung inflammation and long-term sequelae such as
residual lung fibrosis and respiratory failure.

5. Conclusions

In conclusion, at 2–3 months after the acute phase of SARS-CoV-2 infection, almost
half of the patients evidenced an impairment of pulmonary function that was correlated
with [18F]FDG-PET/CT findings. In addition, the increased metabolic activity observed in
the lung and mediastinal lymph node was associated with clinical and laboratory markers
of disease severity. The [18F]FDG-PET/CT is useful to obtain novel information on the
pathogenesis of COVID-19 and on the diagnostic and evaluation of short- and medium-term
sequelae, contributing to their management.
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