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Abstract—Support vector machines are popular
learning algorithms to deal with binary classification
problems. They traditionally assume equal misclassifi-
cation costs for each class; however, real-world prob-
lems may have an uneven class distribution. This pa-
per introduces EBCS-SVM: Evolutionary Bilevel Cost-
sensitive Support Vector Machines. EBCS-SVM han-
dles imbalanced classification problems by simultane-
ously learning the support vectors and optimizing the
SVM hyper-parameters, which comprise the kernel
parameter and misclassification costs. The resulting
optimization problem is a bilevel problem, where the
lower-level determines the support vectors and the
upper-level the hyper-parameters. This optimization
problem is solved using an evolutionary algorithm at
the upper-level and Sequential Minimal Optimization
at the lower-level. These two methods work in a nested
fashion, i.e., the optimal support vectors help guide
the search of the hyper-parameters, and the lower-level
is initialized based on previous successful solutions.
The proposed method is assessed using 70 datasets of
imbalanced classification and compared with several
state-of-the-art methods. The experimental results,
supported by a Bayesian test, provided evidence of the
effectiveness of EBCS-SVM when working with highly
imbalanced datasets.

Index Terms—Support Vector Machines, Imbalanced
Classification, Data Preprocessing, Evolutionary Algo-
rithms, Bilevel Optimization.

I. Introduction

SUPPORT vector machines (SVMs) [1] are among the
most popular supervised learning algorithms, with

strong theoretical foundations and high effectiveness in
real-world problems. The idea behind SVMs is to find
the hyper-plane that maximizes the separation margin
between two categories. In their canonical form, SVMs
assume an equal cost for each class. This assumption
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A. Rosales-Pérez (alejandro.rosales@cimat.mx) is with the Centro
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works well when the number of instances for each class
is roughly similar. However, real-world problems seldom
have a balanced class distribution.

The imbalanced classification problem refers to an
uneven class distribution [2]–[4], i.e., there is an over-
represented class, known as the majority class, and an
under-represented class, known as the minority class. Im-
balanced classification problems further have the charac-
teristic that the minority class is the one of interest. There-
fore, accurately recognizing the minority class becomes
crucial in several applications, such as medical diagnosis,
fraud detection, and face recognition.

There are two main approaches to deal with imbal-
anced classification problems with SVMs: data-level and
algorithm-level methods [5]. The first approach aims to
balance the dataset through oversampling the minority
class [3], [6]–[8] or undersampling the majority class [3],
[9]–[11]. Then, SVM learns from the edited dataset [12].
Although data-level methods are flexible, they ignore
the particularities of learning algorithms. Conversely,
algorithm-level methods modify the learning algorithm to
be robust to uneven class distributions. For SVMs, com-
mon modifications comprise hyper-plane shifting [13], [14],
kernel adaptation [15], and cost-sensitive [16]. Algorithm-
level methods often offer better performance than data-
level ones [16]; however, they need to define a set of hyper-
parameters, such as the extent of shifting compensation
or the correct costs1 for each class. Therefore, methods
for imbalanced classification must not only learn when
class distributions are unequal, but their hyper-parameters
must also be tuned to get peak performance.

Bilevel optimization (BLO) arises as an alternative for
hyper-parameter optimization. BLO differs from tradi-
tional optimization in that the optimization problem has
as part of its constraints a second optimization problem.
In our context, the principal optimization or upper-level
problem is the hyper-parameter optimization, and the
second or lower-level problem is the learning of support
vectors. These two problems interplay, i.e., the definition of
the hyper-parameters influences the optimal set of support
vectors, and this set of support vectors defines the model
to predict unseen cases. However, BLO problems are com-
putationally challenging because of their non-convexity

1The misclassification costs are the weights applied to errors
incurred by classifying positive or negative samples.
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and non-linearity [17], [18].
Evolutionary algorithms (EAs) are powerful search tools

capable of solving complex optimization problems, such
as BLO problems. Recently, the interest in using EAs to
address machine learning problems is growing fastly [19]–
[29]. For imbalanced learning, EAs have been used for
data sampling [30], [31] and cost-sensitive learning [32].
Although recent studies address the problem of determin-
ing the optimal misclassification costs [32], [33], they have
paid little attention to considering the hyper-parameters
of the learning algorithm, along with exploiting the hierar-
chical nature of parameter and hyper-parameter learning
to guide search. Furthermore, taking advantage of the
properties of the learning algorithm to estimate the clas-
sification performance efficiently in imbalanced problems
is almost unexplored.

In the light of the above mentioned, this paper in-
troduces EBCS-SVM: Evolutionary Bilevel Cost-Sensitive
Support Vector Machines. EBCS-SVM combines an EA
and the Sequential Minimal Optimization (SMO) algo-
rithm in a nested manner. The EA optimizes the cost of
hyper-parameters, which are the costs of each class and
the kernel parameters, and the SMO learns the optimal
support vectors. These two optimizers interact such that
information from one level is used by the other to improve
search and convergence capabilities. We summarize the
main contributions of this paper as follows:

• We propose EBCS-SVM, which allows learning SVMs
in imbalanced classification problems and automati-
cally sets the misclassification costs and kernel pa-
rameter.

• EBCS-SVM uses the information from the lower-level
to guide the search to the upper-level and takes ad-
vantage of the previous successful hyper-parameters
to initialize the set of support vectors.

• The bilevel formulation that jointly learns parameters
and hyper-parameters.

• The definition of the upper-level objective function
that allows estimating the performance of the SVM
without performing cross-validation.

The performance of EBCS-SVM was assessed using a
suite of 70 benchmark datasets of imbalanced classification
and compared with the state-of-the-art methods. The
experimental evaluation revealed an outstanding efficacy
of EBCS-SVM when faced with problems with a high
disproportion of classes. The hierarchical Bayesian test
supported the main findings.

The rest of this paper is organized as follows. Section II
introduces the related works on imbalanced classification
problems, hyper-parameter optimization, and bilevel op-
timization. Section III describes the general bilevel for-
mulation for cost-sensitive SVM. Next, Section IV de-
scribes the proposed EBCS-SVM. Section V details the
datasets, reference methods, and performance measures,
while Section VI presents the experimental results. Finally,
Section VII discusses the main conclusions.

II. Related Work
This section presents the preliminaries. Section II-A

describes the main approaches for imbalanced classifica-
tion. Then, Section II-B describes the hyper-parameter
optimization problem, and Section II-C presents the main
concepts related to bilevel optimization.

A. Methods for Imbalance Classification
Most learning algorithms may face difficulties when

dealing with imbalanced classification problems, as they
can favor the majority class, leading to an ineffective
classification model. Two main approaches to dealing with
imbalanced datasets are sampling strategies and algorithm
adaptation [2]–[4]. The former works with training data by
modifying its class distribution, while the latter adjusts
the training algorithm or inference process to consider the
imbalance. We describe these two approaches below.

1) Data-Level Preprocessing Methods: This approach
aims to reduce the effect of class imbalance by adding
or removing samples from training data to balance the
class distribution [34]. There are two primary sampling
strategies:
• Oversampling methods attempt to balance the

dataset by replicating or creating samples from the
minority class. Random oversampling (ROS) [3] is the
simplest method for data balancing that replicates
samples from the minority class. SMOTE [6] is a pop-
ular method for generating artificial samples through
a linear interpolation of samples from the minority
class. Variants of SMOTE include SVMSMOTE [7]
and ADASYN [8].
The major criticism of oversampling methods is that
the synthetic samples can cause overfitting of the
classification model.

• Undersampling methods balance the dataset by
removing instances from the majority class. Random
undersampling (RUS) [3] is an uninformed method
that removes instances from the majority class at
random. The condensed nearest neighbor (CNN) [9] is
an informed method that eliminates examples distant
from the boundary decision.
The major criticism of undersampling methods is that
they can discard meaningful instances and lead to loss
of information.

It is unclear whether oversampling is better than under-
sampling or vice versa [35], [36]. Both methods are effective
in handling imbalanced classification problems.

2) Algorithm-Level Methods: This approach aims to
adapt the way a particular classifier learns in such a
manner that it can deal with imbalanced problems. For
SVMs, there are three main approaches of adaptation:
• Cost-sensitive methods consider different costs to

each class during learning, such that minority class
errors have a higher penalization than those of the
majority class. SVMs can work in a cost-sensitive
framework by using different regularization parame-
ters for positive and negative samples [37]. Also, an
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instance can be weighted based on the density of its
neighborhood [38]. However, the proper setting of the
costs is unknown.

• Kernel adaptation methods adapt the kernel func-
tion or kernel matrix to reduce the bias towards
the majority class. For example, WK-SMOTE [15]
expands the kernel matrix by incorporating the dot
products of artificial samples generated in the feature
space. Then, the SVM training algorithm uses the
modified kernel matrix to learn a model.

• Hyper-plane shifting methods shift the separating
hyper-plane to enlarge the margin around minority
class [14].

The major criticism of the algorithm-level methods
is that they are algorithm-specific and require in-depth
knowledge of the classifier. However, these methods are
more accurate than data-level methods [2].

B. Hyper-Parameter Optimization
Hyper-parameter optimization refers to the problem of

automatically setting the hyper-parameter configuration
of a learning algorithm to optimize the performance.
Hyper-parameter optimization is a complicated problem
with several challenges. The challenges include computa-
tionally expensive evaluations of the objective function, a
complex and non-convex search space, hyper-parameters
that cannot be differentiable, and a finite amount of data
that may limit the estimation of the generalization perfor-
mance [39]. Formally, the hyper-parameter optimization
problem can be stated as follows [39]:

θ∗ = arg min
θ∈Θ

EDtrain,Dval
L (Aθ, Dtrain, Dval) (1)

where L (Aθ, Dtrain, Dval) is a loss function that measures
the loss of the model learned by algorithm A with hyper-
parameters θ that is trained with Dtrain and is validated
with Dval.

Global optimization techniques are commonly adopted
to face the non-convex nature of the hyper-parameter
optimization problem. For SVMs, the works on hyper-
parameter optimization can be categorized into:
• Model-free optimization includes classical tech-

niques such as Grid Search [40], Random Search [40],
Evolutionary Algorithms [41], [42], and Particle
Swarm Optimization [21].

• Model-based optimization includes Bayesian op-
timization [43], [44] and surrogate-assisted optimiza-
tion [27].

Works on SVMs hyper-parameter optimization have
also considered the optimization of the model pipeline
(data preprocessing + learning algorithm) [42], [45], the
training set selection problem [28], [46], [47], or more
recently a combination of feature and training set selection
together with hyper-parameter optimization [48]. How-
ever, these studies neglected the imbalanced classification
problem.

C. Evolutionary Bilevel Optimization
Bilevel optimization is a hierarchical optimization prob-

lem with two levels: the upper-level, also known as the
leader, and the lower-level, also called the follower. For-
mally, a bilevel optimization problem is stated as fol-
lows [17], [18]:

minfu (vu,vl)
s.t. vl ∈ {arg min fl (vu,vl : gl (vu,vl) ≤ 0)}

gu (vu,vl) ≤ 0
(2)

where vu and vl are the upper-level and the lower-level
variables, respectively, fu and fl represent the objective
functions for the upper-level and lower-level, and gu and
gl are the set of constraints for upper-level and lower-level,
respectively.

The lower-level is a constraint to the upper-level op-
timization problem. Therefore, the lower-level solution
partially determines the upper-level solution. The nested
structure leads to several difficulties, such as non-linearity,
non-convexity, and disconnectedness. These difficulties can
be present even for the simplest bilevel problems [17], [18],
[49].

EAs have shown success when dealing with complex
optimization problems. Thus, EAs emerge as an alterna-
tive to deal with bilevel optimization problems. Most of
the current EAs proposed to handle these problems are
nested in nature. These approaches have two optimization
algorithms, where one algorithm runs within the other.
Overviews of evolutionary bilevel algorithms can be found
in [17], [18].

Supervised learning can be treated as a bilevel problem,
in which the upper-level optimizes the hyperparameters
that minimize the expected generalization error, and the
lower-level learns the parameters [50]. Next, we explain
the bilevel formulation for learning parameters and hyper-
parameters for an SVM with cost-sensitive.

III. Bilevel Cost-Sensitive Support Vector
Machine: Optimization Problem

The bilevel formulation breaks the problem down into
two levels: the upper-level concerned with the hyper-
parameters configuration and the lower-level with the
SVM training. In this section, we explain the optimization
objectives at each level. First, Section III-A defines the
lower-level that finds the optimal separating hyper-plane
when training the SVM. Next, Section III-B explains the
objective function for the upper-level, which optimizes
the classification performance considering the uneven class
distributions for a given hyper-parameter configuration.

A. Lower-Level – Optimizing Parameters
The lower-level problem focuses on finding the support

vectors that define the hyper-plane for an imbalanced
classification problem. A cost-sensitive SVM penalizes the
errors differently for positive and negative classes. This is
formulated as follows [37]:
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min1
2 ‖ w ‖2 +C+

∑
i:y=1

ξi + C−
∑

i:y=−1
ξi

subject to yi (〈w,xi〉+ b) ≥ 1− ξi
ξi ≥ 0

(3)

where 〈·, ·〉 represents the dot product, w is the separating
hyper-plane, and C+ and C− are the costs for the positive
and negative samples, respectively.

The dual problem obtained through Lagrange multipli-
ers is as follows:

max
n∑
i=1

αi −
1
2

n∑
i,j

αiαjyiyj 〈xi,xj〉

subject to
n∑
i=1

yiαi = 0

0 ≤ αi ≤ C+, i : y = +1
0 ≤ αi ≤ C−, i : y = −1

(4)

For learning nonlinear functions, the dot product
〈xi,xj〉 is replaced by a kernel function K (xi,xj). The
Radial basis function (RBF) is a kernel function that is
highly effective and theoretically supported [51], [52]. The
RBF kernel is defined as:

K (xi,xj) = e−γ‖xi−xj‖2
(5)

where γ is an adjustable parameter given by the upper-
level.

Section III-B explains the upper-level optimization
problem that optimizes the hyper-parameters C+, C−,
and the γ value for the RBF kernel.

B. Upper-Level – Optimizing Hyper-Parameters
The upper-level optimizes the hyper-parameters used in

the lower-level to learn the support vectors. Let λ be a
vector that encodes the hyper-parameters C+, C−, and γ.
The goal of the upper-level is to find the set of hyper-
parameters that gets the minimum generalization error
on imbalanced classification problems, which is estimated
using the balanced error rate (BER) score. The BER is
defined as:

BER (λ, α∗, b) = 1
2

(
FN

TP + FN
+ FP

FP + TN

)
(6)

where TP and TN are, respectively, the number of positive
and negative samples correctly classified; and FN and
FP are, respectively, the number of positive and negative
samples incorrectly classified.

Computing BER using the training set can lead to over-
fitting. K-fold cross-validation is commonly used to assess
the expected performance and to reduce the risk of overfit-
ting. However, this procedure can become computationally
inefficient, as it implies solving the lower-level problem K
times for each configuration of hyper-parameters λ. We
face that disadvantage by approximating the bound on the

leave-one-out cross-validation for the upper-level. Based
on the lower-level solution α∗, the predicted value for the
jth training sample is given by:

f (xj) =
n∑
i=1

α∗i yiK (xj ,xi) + b (7)

where b is the bias term and is set to satisfy the Karush-
Kuhn-Tucker condition.

Eliminating a non-support vector from the training set
does not affect the model; therefore, we focus on support
vectors, as they can contribute to the error. Assuming that
the set of support vectors remains the same during the
leave-one-out procedure, we can approximate the output
when removing the jth support vector from the training
set as:

f̂ (xj) =
n∑
i=1

α∗i yiK (xj ,xi) + b− α∗jyjK (xj ,xj) (8)

In the case of the RBF kernel, the term K (xj ,xj) equals
one. Simplifying (8) and multiplying it by yj , an instance
xj is incorrectly classified if:

yj

(
n∑
i=1

α∗i yiK (xi,xj) + b− α∗jyj

)
< 0 (9)

After determining the incorrectly classified instances
with (9), the BER of each individual at the upper-level
is determined using (6).

After solving the bilevel optimization problem, the op-
timal support vectors are used to classify a new instance
using (7).

IV. EBCS-SVM: Evolutionary Bilevel
Cost-Sensitive Support Vector Machines

EBCS-SVM aims to build an optimal SVM model
for handling imbalanced classification problems through
bilevel optimization. EBCS-SVM determines the hyper-
parameters values, i.e., the costs of each class and the
kernel parameters that minimize BER at the upper-level,
and the lower-level finds the optimal separating hyper-
plane. Fig. 1 graphically depicts the bilevel interaction
between the lower-level and upper-level in EBCS-SVM.

Algorithm 1 describes EBCS-SVM, and it works as
follows:

1) In line 1, a population for the upper-level is ran-
domly created with us individuals and three vari-
ables representing the costs for the positive and the
negative class, and the γ value for RBF kernel, based
on the bounds given in Section IV-B.

2) In lines 2–5, each upper-level solution is evaluated.
To this end, the following steps are carried out:

a) The lower-level problem described in Sec-
tion III-A is solved using the SMO algorithm
and the given hyper-parameters.

b) The resulting SVM model is evaluated by com-
puting the BER, as described in Section III-B.
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Upper-level:
Hyper-parameters

Lower-level: SVM training

C+, C−, γ w, b

Maximize margin

Minimize BER

Fig. 1: Bilevel scheme to learn support vectors machine in a cost-sensitive approach. The figure depicts the dependency
between hyper-parameters and support vectors, optimizing the margin with different penalties.

Algorithm 1 EBCS-SVM
Require: X , the set of samples,

y, the set of classes labels,
us, upper population size,
me, maximum number of evaluations at the upper-level,
τ , tolerance threshold for lower-level,
m, maximum number of iterations for lower-level.

Ensure: The set of support vectors
1: Generate randomly an initial population of hyper-

parameters, Pu, with us individuals
2: for each individual pu in Pu do
3: Use SMO with the hyper-parameters defined in pu to

find the optimal support vectors.
4: Compute the BER for the upper-level individual using

the optimal support vectors.
5: end for
6: while a stopping criterion is not met do
7: Apply evolutionary operator to produce an upper-level

offspring population, Ou.
8: for each individual ou in Ou do
9: Find the nearest neighbors of ou in Pu.

10: Warm starting the set of support vectors of the lower-
level based on the nearest neighbors.

11: Use SMO with the hyper-parameters defined in ou to
find the optimal support vectors.

12: Compute the BER for the upper-level offspring using
the optimal support vectors.

13: end for
14: end while
15: Choose the solution with the lowest BER as the optimal

SVM for handling imbalanced datasets. If there are more
than one solution with similar BER to the lowest one,
choose the one with the lower number of support vectors.

3) In lines 6–14, the evolutionary process takes place.
a) In line 7, a new population of hyper-parameters

is created by applying evolutionary operators
over Pu using the adaptation of DE operators
proposed by SHADE [53].

b) In line 9, the nearest neighbors in Pu are found

for each individual in Ou. In line 10, the set
of support vectors for the lower-level is warm
started by considering the nearest neighbors of
the upper-level to determine how probable an
instance is a support vector, as described in
Section IV-A.

c) Line 11 solves the lower-level optimization
problem with the SMO algorithm and, line 12
computes the BER score for the given hyper-
parameters.

A. Lower-level Initialization

When solving the lower-level using the hyper-parameter
of the initial upper-level population, all training instances
are initially assumed to be a support vector, and the SMO
solves the lower-level problem. The solutions obtained by
the initial configuration of hyper-parameters are stored to
perform a warm starting of the lower-level.

The warm starting takes place after the first genera-
tion of the upper-level and works as follows. First, for a
new given hyper-parameters configuration, its m nearest-
neighbors are found among the hyper-parameters from the
current population. After, the set of support vectors is
retrieved and used to determine the chance of an instance
becoming a support vector, based on the relative frequency
of its m nearest-neighbors. Finally, the SMO algorithm
solves the lower-level based on previous initialization.
The premise for using this initialization is that similar
configurations of hyper-parameters lead to a similar set
of support vectors.

The value of m is determined during the search. For
doing so, the number of neighbors is randomly selected be-
tween [1, us] with uniform probability. Then, the probabil-
ity of each value of m is updated based on the normalized
frequency of success of such value, i.e., an improvement in
the BER score.
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B. Representation and Evolutionary Operators
At the upper-level, individuals encode the hyper-

parameters as a real-value vector. Initially, C+ and C− are
randomly generated in the range

[
2−5, 210] and γ between[

2−10, 25]. Individuals at this level are then evolved using
DE [54], [55]. However, the classical DE requires the
definition of two parameters: the differential weights (F )
and the crossover rate (CR). For this reason, we adopt
a self-adaptative variant called SHADE [53], which uses
history information to adapt the values of F and CR
during the search and a greedy current-to-best mutation
strategy. Therefore, these parameters are learned during
the search.

After a child solution of hyper-parameters is created and
its BER value is computed, it competes with the current
individual to determine which one is better and therefore
survives. A child solution is better if its BER value is lower
than the BER value of the current individual, or if the
BER values of both solutions are equivalent, but the child
has fewer support vectors.

V. Experimental Settings

In this section, we describe the configuration setup for
our experimental study. In Section V-A, we present the
set of benchmark datasets considered for experimentation.
Section V-B provides the metrics used to assess the perfor-
mance of all methods and the test to analyze them. Finally,
Section V-C details the state-of-the-art techniques used to
compare the performance and their respective tuning of
hyper-parameters.

A. Datasets
The performance of EBCS-SVM is assessed using a

benchmark of 70 datasets from the KEEL repository [56].
Table I details the characteristics of the datasets, including
the number of instances (Inst.), the number of features
(Feat.), and the imbalance ratio (IR)2. These datasets
are diverse in the IR, number of samples, and number of
features. Thus, the performance is assessed using problems
with different characteristics. We divided the datasets into
three groups based on the degree of IR: ten datasets with
small IR, i.e., the IR is less than or equal to three; 35
datasets with medium IR, that is an IR higher than three
and less than or equal to 20; and 25 datasets with high
IR, i.e., the IR is higher than 20.

Datasets were partitioned using the 10 × 5-fold cross-
validation. In the 5-fold cross-validation, the dataset is
randomly split into five disjoint subsets. In each fold, a
subset is used as the test set and the remaining as the
training set. Then, 5-fold cross-validation is repeated ten
times, with a different split each time. Thus, each dataset
is tested 50 times.

2IR is defined as the ratio between the number of samples in the
majority class and the number of samples in the minority. Therefore,
the higher the IR, the greater the imbalance.

TABLE I: Description of datasets based on the number
of instances (Inst.), number of features (Feat.), and the
imbalance ratio (IR).

ID Dataset Inst. Feat. IR
Small IR

1 ecoli-0 vs 1 220 7 1.857
2 glass0 214 9 2.057
3 glass1 214 9 1.816
4 haberman 306 3 2.778
5 iris0 150 4 2.000
6 pima 768 8 1.866
7 vehicle1 846 18 1.029
8 vehicle2 846 18 2.881
9 vehicle3 846 18 1.029
10 wisconsin 683 9 1.858

Medium IR
11 abalone9-18 731 8 16.405
12 cleveland-0 vs 4 173 13 12.308
13 dermatology-6 358 34 16.900
14 ecoli-0-1-4-6 vs 5 280 6 13.000
15 ecoli-0-1-4-7 vs 2-3-5-6 336 7 10.586
16 ecoli-0-1-4-7 vs 5-6 332 6 12.280
17 ecoli-0-1 vs 2-3-5 244 7 9.167
18 ecoli-0-3-4-7 vs 5-6 257 7 9.280
19 ecoli-0-3-4 vs 5 200 7 9.000
20 ecoli-0-6-7 vs 5 220 6 10.000
21 ecoli1 336 7 3.364
22 ecoli2 336 7 5.462
23 ecoli3 336 7 8.600
24 ecoli4 336 7 15.800
25 glass-0-1-2-3 vs 4-5-6 214 9 3.196
26 glass-0-1-5 vs 2 172 9 9.118
27 glass-0-1-6 vs 5 184 9 19.444
28 glass-0-4 vs 5 92 9 9.222
29 glass-0-6 vs 5 108 9 11.000
30 glass2 214 9 11.588
31 glass4 214 9 15.462
32 glass6 214 9 6.379
33 led7digit-0-2-4-5-6-7-8-9 vs 1 443 7 8.630
34 new-thyroid1 215 5 5.143
35 newthyroid2 215 5 5.143
36 page-blocks-1-3 vs 4 472 10 15.857
37 segment0 2308 19 6.015
38 shuttle-c0-vs-c4 1829 9 13.870
39 vehicle0 846 18 3.251
40 vowel0 988 13 9.978
41 yeast-0-3-5-9 vs 7-8 506 8 9.120
42 yeast-0-5-6-7-9 vs 4 528 8 9.353
43 yeast-1 vs 7 459 7 14.300
44 yeast-2 vs 4 514 8 9.078
45 yeast3 1484 8 8.104

High IR
46 abalone-17 vs 7-8-9-10 2338 8 39.310
47 abalone-20 vs 8-9-10 1916 8 72.692
48 abalone-21 vs 8 581 8 40.500
49 abalone-3 vs 11 502 8 32.467
50 abalone19 4174 8 129.438
51 car-good 1728 6 24.043
52 flare-F 1066 11 23.791
53 glass5 214 9 22.778
54 poker-8-9 vs 5 2075 10 82.000
55 poker-8-9 vs 6 1485 10 58.400
56 poker-8 vs 6 1477 10 85.882
57 poker-9 vs 7 244 10 29.500
58 shuttle-6 vs 2-3 230 9 22.000
59 winequality-red-3 vs 5 691 11 68.100
60 winequality-red-4 1599 11 29.170
61 winequality-red-8 vs 6-7 855 11 46.500
62 winequality-red-8 vs 6 656 11 35.444
63 winequality-white-3-9 vs 5 1482 11 58.280
64 winequality-white-3 vs 7 900 11 44.000
65 yeast-1-2-8-9 vs 7 947 8 30.567
66 yeast-1-4-5-8 vs 7 693 8 22.100
67 yeast-2 vs 8 482 8 23.100
68 yeast4 1484 8 28.098
69 yeast5 1484 8 32.727
70 yeast6 1484 8 41.400
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B. Performance Metrics and Statistical Tests

We assessed the performance of the methods using
a set of metrics well-suited for imbalanced classification
problems [57]. Let sensitivity (sen) and specificity (spe)
be defined as:

sen = TP

TP + FN

spe = TN

TN + FP

(10)

where TP and TN are, respectively, the number of positive
and negative samples correctly classified; and FN and
FP are, respectively, the number of positive and negative
samples incorrectly classified.

The metrics described in [57] can be defined in terms of
specificity and sensitivity. These metrics are listed below:
• BAR, the balanced accuracy rate is equivalent to 1-

BER and is defined as the average between sensitivity
and specificity, i.e.,

BAR = 1
2 (sen+ spe) (11)

• BMI, the bookmarker informedness is defined as the
sum of sensitivity and specificity minus one, i.e.,

BMI = sen+ spe− 1 (12)

• GM indicates the geometric mean between sensitivity
and specificity, i.e.,

GM = √sen · spe (13)

• uF1 [57] is the unbiased version of the F1 score and is
defined as two times the sensitivity between the sum
of two plus sensitivity minus specificity, i.e.,

uF1 = 2 · sen
2 + sen− spe

(14)

• uMCC [57] is the unbiased version of the Matthews
correlation coefficient, and is defined as follows:

uMCC = sen · spe− 1√
1− (sen− spe)2

(15)

The Bayesian hypothesis tests are used to analyze
EBCS-SVM regarding reference methods. They allow com-
paring the difference in the results achieved by two al-
gorithms, estimating the posterior probabilities that one
algorithm is better than the other and that both are
practically equivalent. These tests are not affected by the
number of datasets. Moreover, they can provide more
information than the null hypothesis significance test, even
when the latter does not reject the null hypothesis [58],
[59]. We used the hierarchical Bayesian test to analyze the
results, as it considers both the mean and the variance
through the cross-validation partitions for each dataset.
In the analysis, we considered that two methods are
equivalent if the difference is below 0.01.

C. Reference Methods
We compared EBCS-SVM with several state-of-the-

art techniques for imbalanced classification. To this end,
we considered methods for both data-level preprocessing
and algorithm-level. Specifically, the comparative study
considers the following methods.
• SVM. The standard SVM (BL) is used on the dataset

without preprocessing or modification to weight the
class distributions.

• Data-level methods (DL). The methods in this
group are used to preprocess the data. Then, the
edited dataset is used to train an SVM. This group
consists of ROS [3], SMOTE [6], SVMSMOTE [7],
RUS [3], and CNN [9].

• Algorithm-level methods (AL). This group
encompasses SVMDC [37], uNBSVM [14], WK-
SMOTE [15], CSSVM [60], and RBI-LP-SVM [16].

Reference methods require defining a set of hyper-
parameters to use in training. Properly selecting hyper-
parameters is a crucial step to compare classification algo-
rithms [51], [61]. We adopted the RBF kernel because of its
effectiveness with SVM. For the sake of a fair comparison,
the hyper-parameters of each method were optimized for
each dataset independently by optimizing the BER, com-
puted through an internal stratified 5-fold cross-validation
on the training set. The set of hyper-parameters includes:
the γ value optimized in the range of

[
2−10, 25] for all

methods; the regularization parameter C in the range of[
2−5, 210] for SVM, data-level methods, and CSSVM; the

regularization parameter for positive (C+) and negative
(C−) class optimized between

[
2−5, 210] for both WK-

SMOTE and SVMDC; the regularization parameter for
synthetic samples (Cs) optimized between

[
2−5, 210] for

WK-SMOTE; the weight factor for positive (ωp) and
negative (ωn) class in the range of [0, 1] for uNBSVM; the
cost-sensitive parameter (κ) ranges from zero to one and
the margin violation weight (C1) is the range of [1, 10] for
CSSVM; the amount of sampling is searched in the range
of
[
nm+1
nM

, 1
]
, with nm and nM as the number of samples in

the minority and majority class, respectively, for data-level
methods and WK-SMOTE, and the number of neighbors
is between

[
1, nm

2
]

for SMOTE, SVMSMOTE, and WK-
SMOTE. SHADE was also used to optimize the hyper-
parameters, which ran with a population size equals to
30 and the stopping criteria considered performing 1,000
fitness function evaluations or that the standard deviation
of fitness values of the population is below 0.001.

We provide the implementation of EBCS-SVM,
datasets, splits, and detailed results in each partition
as supplementary material. The supplementary material
can be downloaded at www.cimat.mx/∼alejandro.rosales/
resources/EBCSSVM.tar.gz.

VI. Experimental Results and Discussion
This section presents the experimental results reported

by EBCS-SVM and reference methods. Section VI-A
shows the results obtained with datasets with small IR.

www.cimat.mx/~alejandro.rosales/resources/EBCSSVM.tar.gz
www.cimat.mx/~alejandro.rosales/resources/EBCSSVM.tar.gz
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Next, Section VI-B considers the 35 datasets with medium
IR, and Section VI-C presents the results using the 25
datasets with high IR. Finally, Section VI-D compares the
training time required by each method.

A. Experiments on Small Imbalance Ratio
In this section, we focused on comparing the perfor-

mance of EBCS-SVM against reference methods. Table I
shows the results on the ten datasets with a small IR. The
reported results correspond to the average and standard
deviations for BAR, BMI, GM, uF1, and uMCC scores.
Fig. 2 graphically depicts barycenter plots for the posterior
probabilities reported by the hierarchical Bayesian test
for the BAR score. Each point on the barycenter plot
represents an estimate of the probability that it belongs
to each region. Based on the results and the analysis
carried out by the hierarchical Bayesian test, the following
observations are highlighted:
• Most methods showed a competitive performance

when dealing with small IR.
• For metrics BAR, GM, and uF1, most methods re-

ported scores above 0.820. The exceptions were WK-
SMOTE and RBI-LP-SVM, which obtained perfor-
mances below 0.800. On the other hand, for metrics
BMI and MCC, most methods reported scores above
0.710, except for WK-SMOTE, nNBSVM, and RBI-
LP-SVM.

• CSSVM obtained the highest performance in all met-
rics. SVMDC was the second-best position for BAR,
BMI, GM, and uMCC, and the third-best for uF1.
On the other hand, EBCS-SVM ranked second-best
for uF1; it was in the seventh position for BAR, BMI,
and uMCC; and in the eighth position for GM.

• The hierarchical Bayesian tests provided strong evi-
dence on the practical equivalence between CSSVM
and EBC-SVM. We can observe similar behavior
when EBCS-SVM is compared with SVM, ROS,
SMOTE, SVMSMOTE, RUS, CNN, and SVMDC.
Thus, EBCS-SVM exhibited a performance practi-
cally similar to that of CSSVM, the best-ranked
method.

• Among data-level methods, ROS had the best average
performance over the ten datasets with a small IR for
BAR, BMI, GM, and uMCC, while for uF1 CNN was
the best data-level approach. Conversely, CNN was
the worst data-level method for BAR, DMI, GM, and
uMCC, while SVMSMOTE was the worst for uF1.

• RBI-LP-SVM showed the lowest performance among
algorithm-level methods. The hierarchical Bayesian
test reported probabilities above 0.999 in the region
of EBCS-SVM for all metrics.

• Algorithm-level methods generally reported better
performance than data-level methods.

EBCS-SVM, uNBSVM, CSSVM, and ROS were highly
effective methods to classify problems with a small IR. In
the next section, we delved into our analysis when the IR
increases.

B. Experiments with Medium Imbalance Ratio
In this section, we analyzed the performance of EBCS-

SVM and reference methods when using the 35 benchmark
datasets with medium IR. Table II presents the average
results obtained by each method, and Fig. 3 shows the
posterior plots for the BAR score when EBCS-SVM is
compared with reference methods. From these, the follow-
ing is pointed out:
• Most methods reported results above 0.800 for BAR,

GM, and uF1 scores, except for SVM for GM and uF1;
WK-SMOTE for BAR, GM, and uF1; uNBSVM for
GM and uF1; and RBI-LP-SVM for BAR, GM, and
uF1.

• Regarding BMI and uMCC, most methods reported
performances above 0.700. The exceptions were SVM
for BMI and WK-SMOTE, uNBSVM, and RBI-LP-
SVM for BMI and uMCC.

• ROS achieved the highest performance for BAR, BMI,
GM, and uMCC and the second-best performance
for uF1. RUS achieved the best performance for uF1
and the second-best performance for BAR, BMI, GM,
and MCC. EBCS-SVM ranked the third-best for all
metrics.

• The hierarchical Bayesian analysis revealed a prob-
ability above 0.900 in the region of practical equiv-
alence when EBCS-SVM was compared with ROS,
SMOTE, SVMSMOTE, and RUS for all metrics.
Thus, there is evidence in favor of the competitiveness
of these methods for handling medium IR problems.
We can observe this behavior in Fig. 3, where we can
note that the center mass is in the region of practical
equivalence. Although for CNN and SVMDC, the
center mass fell in the practically equivalent region,
the posterior plot distribution was spread throughout
the area of EBCS-SVM, providing at some extent
evidence in favor of EBCS-SVM.

• ROS stood out as the most effective data-level
method.

• Among algorithm-level methods, EBCS-SVM ob-
tained the best performance, and CSSVM was the
second-best. Conversely, RBI-LP-SVM ranked in the
last position.

For datasets with a medium IR, EBCS-SVM, ROS, and
RUS were the most superior methods. ROS is highlighted
as a prominent method for problems with medium IR.
CSSVM remained a competitive method. In the next
section, methods are evaluated when handling datasets
with a high IR.

C. Experiments with High Imbalance Ratio
In this section, we considered the 25 datasets with an IR

above 20 to analyze the performance of EBCS-SVM and
reference methods. Table III reports the average results for
all metrics, and Fig. 4 shows the posterior probabilities
obtained with the hierarchical Bayesian test. Based on
these results, we remark the following:
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TABLE I: Obtained results on small IR datasets for BAR, BMI, GM, uF1, and uMCC scores.
Fam. Method BAR BMI GM uF1 uMCC
BL SVM 0.8626 ± 0.1461 0.7251 ± 0.2922 0.8494 ± 0.1651 0.8312 ± 0.1904 0.7343 ± 0.2831
DL ROS 0.8726 ± 0.1321 0.7452 ± 0.2643 0.8643 ± 0.1430 0.8515 ± 0.1600 0.7528 ± 0.2554
DL SMOTE 0.8719 ± 0.1328 0.7439 ± 0.2656 0.8632 ± 0.1447 0.8502 ± 0.1628 0.7512 ± 0.2569
DL SVMSMOTE 0.8723 ± 0.1345 0.7447 ± 0.2690 0.8627 ± 0.1487 0.8499 ± 0.1681 0.7519 ± 0.2601
DL RUS 0.8712 ± 0.1335 0.7424 ± 0.2670 0.8636 ± 0.1442 0.8548 ± 0.1560 0.7489 ± 0.2593
DL CNN 0.8688 ± 0.1345 0.7377 ± 0.2690 0.8616 ± 0.1448 0.8586 ± 0.1506 0.7441 ± 0.2613
AL SVMDC 0.8730 ± 0.1324 0.7460 ± 0.2649 0.8644 ± 0.1446 0.8552 ± 0.1570 0.7529 ± 0.2569
AL CSSVM 0.8740 ± 0.1267 0.7480 ± 0.2533 0.8689 ± 0.1327 0.8674 ± 0.1357 0.7535 ± 0.2481
AL WK-SMOTE 0.7322 ± 0.1137 0.4643 ± 0.2275 0.6194 ± 0.1743 0.5753 ± 0.1930 0.5069 ± 0.2181
AL uNBSVM 0.8419 ± 0.1325 0.6839 ± 0.2650 0.8257 ± 0.1479 0.8415 ± 0.1310 0.6960 ± 0.2582
AL RBI-LP-SVM 0.5293 ± 0.0568 0.0587 ± 0.1136 0.0676 ± 0.1136 0.6724 ± 0.0474 0.0604 ± 0.1135
AL EBCS-SVM 0.8696 ± 0.1310 0.7391 ± 0.2619 0.8585 ± 0.1473 0.8622 ± 0.1419 0.7468 ± 0.2536
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(h) CSSVM – EBC-SVM
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(i) uNBSVM
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(j) WK-SMOTE – EBC-SVM
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(k) RBI-LP-SVM – EBC-SVM

Fig. 2: Posterior distribution for BAR when comparing EBCS-SVM with the reference methods on small IR datasets.
The region of the bottom-left represents EBCS-SVM, the region at the top is for rope, and the region in the bottom-right
represents the reference method.

• EBCS-SVM excelled in dealing effectively with highly
imbalanced datasets in all metrics. Ergo, the superior-
ity of EBCS-SVM is stressed when the IR is increased.

• Among data-level methods, RUS had the best score
in all metrics and ranked second-best position glob-
ally. ROS was the second-best data-level method and
ranked third-best position globally.

• Among algorithm-level methods, EBCS-SVM was the
best one, followed by SVMDC. However, when ob-
serving the posterior probabilities reported by the
hierarchical Bayesian test, we noted that the center
mass is in the region of EBCS-SVM. Furthermore,
the posterior odds revealed strong evidence in favor
of EBCS-SVM. We observed this behavior for all
metrics.

• Posterior probabilities plots also showed that, for
most reference methods, the center mass fell in the
region of EBCS-SVM. The exception was RUS, whose
center mass is in the region of practical equivalence;

however, its distribution spreads in the regions of both
EBCS-SVM and RUS.

As the IR increased, the performance of EBCS-SVM
stood out over the reference methods, regardless of the
adopted metric. The hierarchical Bayesian test reported
high probabilities in favor of EBCS-SVM that supported
these observations.

D. Computational Time
In this section, we analyze the training time for each

method. We used the performance profile [62], which
represents the cumulative distribution on a performance
metric. The performance profile is constructed for the
necessary training time required by each method to op-
timize the hyper-parameters and learn the classification
model. Fig. 5 depicts the performance profile for all meth-
ods. The y−axis represents the probability (ρ (τ)) that a
method can learn a model within a factor τ times the
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TABLE II: Obtained results on medium IR datasets for BAR, BMI, GM, uF1, and uMCC scores.
Fam. Method BAR BMI GM uF1 uMCC
BL SVM 0.8420 ± 0.1226 0.6841 ± 0.2453 0.7931 ± 0.1929 0.7724 ± 0.2107 0.7090 ± 0.2314
DL ROS 0.8832 ± 0.0728 0.7664 ± 0.1457 0.8693 ± 0.0808 0.8579 ± 0.0892 0.7813 ± 0.1395
DL SMOTE 0.8738 ± 0.0974 0.7475 ± 0.1948 0.8455 ± 0.1656 0.8345 ± 0.1687 0.7613 ± 0.1921
DL SVMSMOTE 0.8678 ± 0.0942 0.7356 ± 0.1884 0.8329 ± 0.1549 0.8216 ± 0.1599 0.7496 ± 0.1845
DL RUS 0.8793 ± 0.0858 0.7586 ± 0.1716 0.8652 ± 0.1025 0.8603 ± 0.1073 0.7690 ± 0.1672
DL CNN 0.8626 ± 0.0974 0.7252 ± 0.1948 0.8388 ± 0.1262 0.8254 ± 0.1395 0.7395 ± 0.1894
AL SVMDC 0.8635 ± 0.0808 0.7271 ± 0.1616 0.8334 ± 0.1181 0.8198 ± 0.1244 0.7454 ± 0.1558
AL CSSVM 0.8689 ± 0.0795 0.7378 ± 0.1590 0.8435 ± 0.1141 0.8307 ± 0.1207 0.7548 ± 0.1536
AL WK-SMOTE 0.7651 ± 0.1131 0.5302 ± 0.2263 0.6523 ± 0.2231 0.6250 ± 0.2274 0.5646 ± 0.2269
AL uNBSVM 0.8315 ± 0.0856 0.6629 ± 0.1712 0.7927 ± 0.1216 0.7884 ± 0.1253 0.6852 ± 0.1664
AL RBI-LP-SVM 0.5427 ± 0.1139 0.0855 ± 0.2278 0.0923 ± 0.2294 0.6926 ± 0.0752 0.0870 ± 0.2279
AL EBCS-SVM 0.8784 ± 0.1051 0.7569 ± 0.2102 0.8581 ± 0.1440 0.8522 ± 0.1502 0.7671 ± 0.2052

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100
prope = 0.5160

pC1 = 0.4840 pC2 = 0.0000

(a) SVM – EBC-SVM

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100
prope = 0.9995

pC1 = 0.0005 pC2 = 0.0000

(b) ROS – EBC-SVM

0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100
prope = 0.9990

pC1 = 0.0010 pC2 = 0.0000

(c) SMOTE – EBC-SVM
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(d) SVMSMOTE – EBC-SVM
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(h) CSSVM – EBC-SVM
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(j) WK-SMOTE – EBC-SVM
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(k) RBI-LP-SVM – EBC-SVM

Fig. 3: Posterior distribution for BAR when comparing EBCS-SVM with the reference methods on medium IR datasetss.
The region of the bottom-left represents EBCS-SVM, the region at the top is for rope, and the region in the bottom-right
represents the reference method.

fastest method, and the x−axis represents the τ factor.
Thus, ρ (1) indicates the probability where a given method
achieves the lowest training time among all methods.

From Fig. 5, we can observe that both RUS and EBCS-
SVM exhibited the best training times. From the value of
ρ (1), it is observed that EBCS-SVM had the highest prob-
ability (0.58) of being the fastest one, while RUS had the
second-highest probability (0.30). Furthermore, algorithm-
level methods generally required less training time than
data-level methods, which can be observed in the near-
zero probability of oversampling techniques with a value
of τ equals one. The outstanding performance of RUS in
training time is because by removing training instances,
the SVM algorithm works with a reduced number of sam-
ples and reduces the computational time. Although CNN
is also an undersampling method, the way in how instances
to remove are selected slows down the training time. On
the other hand, EBCS-SVM exploits the information of
both levels to feedback with the information of previous

support vectors of similar solutions and improving the
convergence in solving the lower-level. Finally, RBI-LP-
SVM showed the worst performance profile.

VII. Conclusions

This paper introduced EBCS-SVM for learning an SVM
in imbalanced scenarios. EBCS-SVM formulated the op-
timization of hyperparameters and support vectors as a
bilevel optimization problem and showed to be able to
handle imbalanced classification problems effectively and
freed practitioners from defining the optimal cost to each
class. To this end, an EA at the upper-level and the SMO
at the lower-level interplay, such that lower-level solutions
impact the BER of the upper-level solutions, and previous
hyper-parameters help initialize the set of support vectors.
Thus, there is a dual enrichment in the two levels.

The efficacy of EBCS-SVM was assessed using 70 bench-
mark datasets and compared with those of state-of-the-art
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TABLE III: Obtained results on high IR datasets for BAR, BMI, GM, uF1, and uMCC scores.
Fam. Method BAR BMI GM uF1 uMCC
BL SVM 0.6712 ± 0.1557 0.3423 ± 0.3114 0.4413 ± 0.3099 0.4087 ± 0.3149 0.3725 ± 0.3105
DL ROS 0.7754 ± 0.1119 0.5508 ± 0.2239 0.6984 ± 0.1770 0.6762 ± 0.1844 0.5665 ± 0.2244
DL SMOTE 0.7644 ± 0.1315 0.5288 ± 0.2629 0.6665 ± 0.2387 0.6452 ± 0.2426 0.5436 ± 0.2649
DL SVMSMOTE 0.7331 ± 0.1437 0.4661 ± 0.2873 0.5907 ± 0.2766 0.5652 ± 0.2811 0.4856 ± 0.2880
DL RUS 0.7803 ± 0.1132 0.5606 ± 0.2264 0.7220 ± 0.1726 0.7113 ± 0.1716 0.5692 ± 0.2274
DL CNN 0.7203 ± 0.1412 0.4406 ± 0.2824 0.6030 ± 0.2297 0.5740 ± 0.2391 0.4535 ± 0.2899
AL SVMDC 0.7340 ± 0.1500 0.4680 ± 0.3000 0.5825 ± 0.3144 0.5655 ± 0.3118 0.4849 ± 0.3037
AL CSSVM 0.7031 ± 0.1640 0.4062 ± 0.3280 0.5003 ± 0.3371 0.4773 ± 0.3394 0.4257 ± 0.3309
AL WK-SMOTE 0.6604 ± 0.1415 0.3208 ± 0.2830 0.4119 ± 0.3016 0.3964 ± 0.3024 0.3392 ± 0.2877
AL uNBSVM 0.7054 ± 0.1321 0.4108 ± 0.2642 0.5492 ± 0.2659 0.5410 ± 0.2642 0.4278 ± 0.2678
AL RBI-LP-SVM 0.5470 ± 0.1034 0.0940 ± 0.2069 0.1440 ± 0.2709 0.6410 ± 0.1298 0.0977 ± 0.2153
AL EBCS-SVM 0.7972 ± 0.1234 0.5944 ± 0.2468 0.7482 ± 0.1732 0.7430 ± 0.1757 0.6079 ± 0.2431
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(d) SVMSMOTE – EBC-SVM
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(e) RUS – EBC-SVM
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(f) CNN – EBC-SVM
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Fig. 4: Posterior distribution for BAR when comparing EBCS-SVM with the reference methods on high IR datasetss.
The region of the bottom-left represents EBCS-SVM, the region at the top is for rope, and the region in the bottom-right
represents the reference method.

techniques. Experimental results revealed a leading perfor-
mance of EBCS-SVM. The traditional SVM was unable
to deal effectively with imbalanced datasets. On the other
hand, data-level methods showed excellent performance,
although in most cases required larger training times than
algorithm-level methods. SVMSMOTE and CNN were the
worst among data-level methods. The low performance of
both can be because the implicit mapping of the kernel
function is not taken into account to select boundary
instances when sampling. EBCS-SVM considered the par-
ticularities of SVM to learn a model.

The most competitive method was RUS, a data-level
technique that randomly subsamples the majority class.
Since it does not require further information, RUS is fast.
However, this method was outperformed by EBCS-SVM as
the imbalanced ratio increased and EBCS-SVM required
lower training time. Moreover, EBCS-SVM employed a
self-adapted EA to adjust the evolutionary parameters
during the learning. Therefore, EBCS-SVM is accurate

and does not require fine-tuning of the SVM hyperparam-
eters.
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