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AREA-MINIMIZING PROPERTIES OF PANSU SPHERES

IN THE SUB-RIEMANNIAN 3-SPHERE

ANA HURTADO AND CÉSAR ROSALES

Abstract. We consider the sub-Riemannian 3-sphere (S3, gh) obtained by restriction of

the Riemannian metric of constant curvature 1 to the planar distribution orthogonal to
the vertical Hopf vector field. It was shown in [9] that (S3, gh) contains a family of spheri-
cal surfaces {Sλ}λ>0 with constant mean curvature λ. In this work we first prove that the

two closed half-spheres of S0 with boundary C0 = {0}×S1 minimize the sub-Riemannian
area among compact C1 surfaces with the same boundary. We also see that the only C2

solutions to this Plateau problem are vertical translations of such half-spheres. Second,
we establish that the closed 3-ball enclosed by a sphere Sλ with λ > 0 uniquely solves the
isoperimetric problem in (S3, gh) for C1 sets inside a vertical solid tube and containing a
horizontal section of the tube. The proofs mainly rely on calibration arguments.

1. Introduction

The study of variational questions related to the area in sub-Riemannian spaces has been
focus of attention in the last years, especially in the Heisenberg group, which is the sim-
plest non-trivial flat sub-Riemannian manifold. Our aim in this work is to investigate area-
minimizing surfaces in the most relevant 3-dimensional sub-Riemannian model of positive
curvature, namely the 3-sphere (S3, gh). Here the sub-Riemannian structure comes from
the restriction of the Riemannian metric of constant curvature 1 to the horizontal planar
distribution orthogonal to the fibers of the Hopf fibration, see Sections 2.1 and 2.2. In this
setting we will analyze the Plateau problem and the isoperimetric problem, where we seek
minimizers of the area with a boundary or volume constraint, respectively. More precisely,
we will show that the Pansu spherical surfaces in (S3, gh) provide solutions to these problems
under certain conditions.

In the first Heisenberg group, Pansu [16] employed a Santaló formula to derive an isoperi-
metric inequality. He also explained in [17] how to construct constant mean curvature spheres
with rotational symmetry around the center of the group, and conjectured that the isoperi-
metric regions are, up to congruence, the topological 3-balls enclosed by these spheres. This
conjecture has been supported by several statements where additional geometric and regu-
larity conditions are assumed, see [3, Ch. 8] and the introductions in [23, 12] for more details
and references. In the sub-Riemannian sphere (S3, gh) an isoperimetric inequality was proved
by Chanillo and Yang [4] by means of a sub-Riemannian Santaló formula, see also the paper
of Prandi, Rizzi and Seri [20]. In this context the existence of isoperimetric regions is guar-
anteed by compactness, see for instance [13] and [3, Ch. 5]. In [9] the authors discovered
a one-parameter family {Sλ}λ>0 of spherical surfaces of revolution having constant mean
curvature λ in (S3, gh). In later works we established some results concerning the spherical
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Pansu conjecture [10, Sect. 6] saying that, up to congruence, any isoperimetric region in
(S3, gh) is bounded by some sphere Sλ. Let us describe these results.

In [10, Sect. 4] we derived an Alexandrov-type theorem stating that the unique compact
C2 critical points for the isoperimetric problem in (S3, gh), and contained within an open
hemisphere, are congruent to a sphere Sλ. This was obtained by using the first variation
formulas for sub-Riemannian area and volume [9], the ruling property of C2 surfaces with
constant mean curvature [6, 9] and the local behaviour of such surfaces around the singu-
lar set -where the tangent plane is horizontal- studied by Cheng, Hwang, Malchiodi and
Yang [6, Sect. 3]. This theorem does not hold if the surface is not contained inside an open
hemisphere since it is possible to find critical points for the isoperimetric problem in (S3, gh)
with the topology of the 2-torus S1 × S1, see [6, 9, 11]. This phenomenon is coherent with
the topological restriction in [6, Thm. E] that any compact constant mean curvature C2

surface in (S3, gh) is homeomorphic to the sphere S2 or the torus S1 × S1. With the aim
of discarding toroidal surfaces as boundaries of isoperimetric regions we considered stable
surfaces, i.e., those minimizing the area up to second order for volume-preserving variations.
In this direction, we showed in [10, Sect. 5] that the spheres Sλ are stable surfaces in (S3, gh).
As a matter of fact, in the recent work [12, Sect. 5] we have characterized the spheres Sλ as
the unique complete, embedded and stable C2 surfaces in (S3, gh). This implies in particu-
lar that the aforementioned Pansu conjecture in (S3, gh) is true under C2 regularity of the
isoperimetric solutions, see [12, Sect. 6]. Unfortunately, though the spheres Sλ with λ > 0 are
C2 smooth (but not C3 around the poles), the C2 regularity of isoperimetric boundaries in
sub-Riemannian 3-manifolds is a difficult open question, even in the first Heisenberg group.

Our objective in these notes is to provide a new evidence supporting Pansu’s conjecture
in (S3, gh), as that as an area-minimizing property for the closed half-spheres of S0 spanned
by a vertical great circle. Let us give a detailed description of our motivations, results and
techniques.

The surface S0 is a totally geodesic 2-sphere of S3 which is critical for the sub-Riemannian
area but does not minimize since its deformation by Riemannian equidistants decreases the
area [10, Re. 5.8]. However, the sphere S0 is a second order minimum of the area under
variations fixing the equator C0 := {0} × S

1, see [10, Prop. 5.5]. Thus, it is natural to ask if
the corresponding half-spheres S+

0 and S−
0 with boundary C0 solve the Plateau problem in

(S3, gh) of minimizing the area among compact surfaces with the same boundary. In The-
orem 4.1 we answer positively this question for C1 competitors and prove the uniqueness
statement that, up to vertical translations, S+

0 is the only minimizer of class C2 for this
problem. We remark that existence and uniqueness of solutions for the sub-Riemannian
mean curvature operator with Dirichlet boundary condition have been analyzed in previous
works, see for instance [6, 8, 5].

As to our isoperimetric result, the motivation comes from a previous theorem in the
Heisenberg group, where Ritoré [23, Sect. 3] deduced that the Pansu spheres minimize the
perimeter for fixed volume among those sets inside a vertical right cylinder that contain a
horizontal disk. In a recent work, Pozuelo and Ritoré [19, Sect. 6] have generalized this
property for Pansu-Wulff shapes in the Heisenberg group. In Theorem 5.1 we establish that
the topological 3-balls Bλ enclosed by the spherical surfaces Sλ with λ > 0 uniquely solve
the isoperimetric problem in (S3, gh) in the family of C1 sets within a vertical solid tube and
containing a horizontal section of the tube. Here, a vertical solid tube Wµ is a metric tube
around the great circle L := S1 × {0}, see equation (3.3); in particular, the boundary ∂Wµ

is the Clifford torus of points in S3 at Riemannian distance arccos(1/µ) from L.

The proofs of our area comparisons in Theorems 4.1 and 5.1 rely on calibration arguments.
These have been extensively employed in the Calculus of Variations and provide a powerful
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tool to derive area-minimizing properties of minimal and constant mean curvature surfaces,
see for example [22, Sect. 1.3.1] and the references therein. In sub-Riemannian geometry,
the use of calibrations have appeared in different contexts, see for instance the works of
Cheng, Hwang, Malchiodi and Yang [6, Sect. 6], Barone Adesi, Serra Cassano and Vittone
[1, Sect. 2], Ritoré and the second author [24, Sect. 5], Ritoré [21, Sect. 3], [23, Sect. 3] and
Pozuelo and Ritoré [19, Sect. 6].

To construct calibrations in our setting we proceed as follows, see Proposition 3.2 for the
details. For a given half-sphere S+

λ we use translations along the fibers of the Hopf fibration

to produce a family {S+
λ (t)}t∈[0,2π) of surfaces with constant mean curvature λ that foliates

the vertical solid tube Wλ (this one coincides with S3 −C0 for λ = 0). Then, the calibration
vector field X+

λ is defined on Wλ − L as the horizontal Gauss map along the leaves of the
foliation, so that its Riemannian divergence equals −2λ. By repeating this construction with
the half-spheres S−

λ we obtain another calibration vector field X−
λ . It is worth mentioning

that X+
λ and X−

λ cannot be extended continuously to L when λ > 0 nor to C0 ∪ L when
λ = 0. This difficulty is overcome by means of an approximation argument so that, after
some estimates, we deduce our area comparisons by applying the divergence theorem to these
vector fields over suitable regions and passing to the limit.

On the other hand, the characterization of equality cases is considerably easier in The-
orem 5.1. The main reason is that the boundary Σ of any set Ω in the conditions of the
statement is tangent to a spherical surface Sλ along a circle Cλ of non-singular points. By
using this, we can conclude from the equality case that Σ and Sλ coincide in a small neigh-
borhood of Cλ in Σ. From here, a completeness argument shows that Σ = Sλ, as desired.
The discussion of equality in Theorem 4.1 is more difficult because the hypotheses are less
rigid. Indeed, if Σ is a C1 solution to the Plateau problem in (S3, gh) with boundary C0

then, locally around C0, the surface Σ is union of small geodesic segments that leave from C0

in the horizontal direction determined by an angle function σ. Since the half-sphere S+
0 (t)

corresponds to a special choice of σ, a careful analysis of the surface Σ as a function of σ is
required to deduce that Σ = S+

0 (t) for some t ∈ [0, 2π), see Proposition 4.2. In our analysis,
that partly depends on the previous work [11, Sect. 4] where we studied how σ influences the
geometry of Σ, the main difficulty is the possible existence of curves of singular points. This
issue has appeared frequently in previous uniqueness results for the sub-Riemannian minimal
surface equation with Dirichlet boundary condition. In our proof we are able to discard sin-
gular curves by assuming the C2 regularity of Σ, which allows us to employ the C1 regularity
of these curves and the local behaviour of Σ near them, see [6, 24, 9]. Unfortunately, the
singular set for C1 solutions of the Plateau problem can be much more complicated, as was
shown in the first Heisenberg group by Cheng, Hwang, Malchiodi and Yang [7]. By this
reason, our argument in Proposition 4.2 does not hold directly for C1 surfaces, though the
characterization of equality in this situation would be probably the same.

Finally, we must point out that the optimal regularity for the Plateau problem has not
yet been established, even in the Heisenberg group, where it is possible to find examples with
low regularity [18, 8, 14, 21]. However, for viscosity solutions in the Heisenberg group the
work of Capogna, Citti and Manfredini [2] implies C1,α regularity with α ∈ (0, 1).

The paper is organized into three sections. In Section 2 we gather some preliminary mate-
rial about the sub-Riemannian sphere (S3, gh) and the geometry of surfaces in S3. In Section 3
we recall some facts about the spherical surfaces {Sλ}λ>0 that we use to construct foliations
of vertical solid tubes and the associated calibration vector fields. Section 4 is devoted to the
Plateau problem for the circle C0. Finally, in Section 5 we prove the isoperimetric property
of the spheres Sλ.



4 ANA HURTADO AND CÉSAR ROSALES

2. Preliminaries

Here we introduce the geometric setup and gather some basic facts that will be used
throughout the paper. We will mostly follow the notation employed in [9].

2.1. The sub-Riemannian 3-sphere. In the Euclidean space R4 we identify a point p =
(x1, y1, x2, y2) with the quaternion x1 + iy1 + jx2 + ky2. Given p, q ∈ R4 we denote by p · q
and

〈
p, q

〉
the quaternion product and the scalar product of p and q, respectively. The sphere

S
3 ⊂ R

4 is the set of unit quaternions. The pair (S3, ·) is a compact Lie group with identity
element e := (1, 0, 0, 0). The restriction of the scalar product

〈
· , ·

〉
to the tangent bundle TS3

provides the Riemannian metric g on S3 of constant sectional curvature 1. The associated
Riemannian distance d in (S3, g) can be computed as d(p, q) = arccos(

〈
p, q

〉
).

For any p ∈ S3, the right and left translations by p are the diffeomorphisms defined by
q 7→ q · p and q 7→ p · q, respectively. These translations are isometries of (S3, g) since the
Riemannian metric g is bi-invariant. A basis of right invariant vector fields in (S3, ·) is

T (p) : = i · p = −y1
∂

∂x1
+ x1

∂

∂y1
− y2

∂

∂x2
+ x2

∂

∂y2
,(2.1)

E1(p) : = j · p = −x2
∂

∂x1
+ y2

∂

∂y1
+ x1

∂

∂x2
− y1

∂

∂y2
,

E2(p) : = k · p = −y2
∂

∂x1
− x2

∂

∂y1
+ y1

∂

∂x2
+ x1

∂

∂y2
,

where ∂/∂xi and ∂/∂yi with i = 1, 2 are the Euclidean coordinate vector fields in R4. Note
that {E1, E2, T } is an orthonormal basis of TS3 with respect to the Riemannian metric g.

We call horizontal distribution in S3 to the smooth planar distribution H generated
by E1 and E2. Note that H = Ker(σ), where σ is the contact 1-form in S

3 given by
σ := −y1 dx1 + x1 dy1 − y2 dx2 + x2 dy2. This implies that H is completely nonintegrable.
We consider the orientation in H (resp. in TS3) for which {E1, E2} (resp. {E1, E2, T })
is a positive basis. The oriented volume form dv in (S3, g) equals 1

2 σ ∧ (dσ). More pre-
cisely (dv)(u1, u2, u3) = det(u1, u2, u3), where the coordinates of ui are taken with respect to
{E1, E2, T }. The horizontal projection of a tangent vector X is denoted by Xh. A vector X
on S3 is horizontal if X = Xh. In case X is proportional to T then we say that X is vertical.

The sub-Riemannian metric gh on S3 is the restriction to H of the Riemannian metric g.
In particular, {E1, E2} provides a positive orthonormal basis of H with respect to gh. By an
isometry of (S3, gh) we mean a diffeomorphism φ : S3 → S3 whose differential at any p ∈ S3

is an orientation-preserving linear isometry between Hp and Hφ(p). We say that two subsets

Ω1 and Ω2 in S3 are congruent if there is an isometry φ of (S3, gh) such that φ(Ω1) = Ω2.

For any tangent vector X on S3 we denote J(X) := DXT , where D is the Levi-Civita
connection in (S3, g). The restriction of J to H coincides with the orientation-preserving 90
degree rotation on H, see [9, Sect. 2] for details. In particular, we get

(2.2) gh(J(X), X) = 0, for any X ∈ H.

We remark that J(X) = i ·X , for any horizontal vector X .

Sometimes we will identify S3 with the set {(z1, z2) ∈ C2 ; |z1|2 + |z2|2 = 1}, where |z| is
the modulus of the complex number z. If we consider the circle

(2.3) L := S
1 × {0},

then the Riemannian distance dL(p) in (S3, g) between p ∈ S3 and L can be computed as

(2.4) dL(p) = arccos(|z1|), for any p = (z1, z2) ∈ S
3.
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In particular dL is a C∞ function whenever 0 < |z1| < 1. Note also that the circle
C0 := {0} × S

1 is characterized by equality

C0 = {p ∈ S
3 ; dL(p) = π/2}.

On the other hand, the rotation rθ : S3 → S3 defined by

(2.5) rθ(z1, z2) := (z1, exp(iθ) · z2)
is an isometry of (S3, gh) fixing L, since it carries the orthonormal basis {E1, E2, T } at p to
the orthonormal basis {cos(θ)E1 + sin(θ)E2,− sin(θ)E1 + cos(θ)E2, T } at rθ(p). We say
that a set Ω ⊆ S3 is rotationally invariant if rθ(Ω) = Ω for any θ ∈ [0, 2π).

2.2. Vertical translations and Clifford tori. The Hopf fibration is the Riemannian sub-
mersion F : S3 → S3 ∩ {x1 = 0} given by F(p) := p · i · p, where p is the conjugate of the
quaternion p. If we write p = (z1, z2) with |z1|2 + |z2|2 = 1, then we have

F(p) =
(
0, |z1|2 − |z2|2, 2 Im(z1 · z2), 2Re(z1 · z2)

)
.

The fiber of F through p ∈ S3 is the great circle parameterized by ϕt(p) with t ∈ R, where

(2.6) ϕt(p) := exp(it) · p.
The family of maps {ϕt}t∈R provides the one-parameter group of diffeomorphisms associated
to the vector field T in (2.1), which is usually called the vertical Hopf vector field in S3. We
will refer to the left translations {ϕt}t∈R as vertical translations. The vertical axis is the
great circle L in (2.3), which is parameterized by the integral curve of T through the identity
element e. Note that any vertical translation ϕt is an isometry of (S3, gh) with ϕt(L) = L
and ϕt(C0) = C0, where C0 := {0} × S1.

For any ρ ∈ (0, 1) we consider the geodesic circle cρ := S
3 ∩ {x1 = 0, y1 = 2ρ2 − 1}. The

set F−1(cρ) is the vertical Clifford torus Tρ := S1(ρ) × S1(
√

1− ρ2) in S3. Note that the
vertical vector field T is tangent over Tρ. By taking into account (2.4) it follows that Tρ is a
tube around L, in the sense that

(2.7) Tρ = {p ∈ S
3 ; dL(p) = arccos(ρ)}.

It is also clear by (2.5) that Tρ is a rotationally invariant surface.

2.3. Cylindrical coordinates. In the closed 2-dimensional half-sphere

S
2
+ := S

3 ∩ {x2 > 0, y2 = 0}
we take spherical coordinates (ω, τ), with ω ∈ [0, π/2] and τ ∈ [0, 2π). In complex notation
any point in S2+ can be written as (cos(ω) · exp(i τ), sin(ω)). For any p = (z1, z2) ∈ S3 it is

clear that p = rϑ(p
′) for some ϑ ∈ [0, 2π), where p′ := (z1, |z2|) ∈ S

2
+ and rϑ is the rotation

defined in (2.5). So, we can find ω ∈ [0, π/2] and τ ∈ [0, 2π) such that p is expressed in
cylindrical coordinates (ω, τ, ϑ) as

(2.8) p = (cos(ω) · exp(i τ), sin(ω) · exp(i ϑ)).
It follows from (2.4) that ω = dL(p), where L is the vertical axis. So, the coordinate ω is
uniquely determined by p. On the other hand, equality (2.8) also holds for τ ′ = τ + 2nπ
and ϑ′ = ϑ + 2mπ with n,m ∈ Z. From (2.5) and (2.6), if p has cylindrical coordinates
(ω, τ, ϑ), then rθ(p) and ϕt(p) have cylindrical coordinates (ω, τ, ϑ+ θ) and (ω, τ + t, ϑ+ t),
respectively (the values of τ and ϑ are determined modulo 2π).

If Σ is a rotationally invariant surface in S
3, then there is a generating curve of Σ in S

2
+

with associated spherical coordinates (ω, τ). For the vertical Clifford torus Tρ in (2.7), the
generating curve is the circle of equation ω = arccos(ρ). For the totally geodesic 2-sphere in
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(S3, g) obtained by intersection with the hyperplane of equation sin(τ0)x1 − cos(τ0) y1 = 0
with τ0 ∈ [0, π), the generating curve is described by equations τ = τ0 and τ = τ0 + π.

2.4. Horizontal geometry of surfaces. Let Σ be a C1 surface in S3 (we will suppose that
Σ is embedded unless otherwise stated). The singular set Σ0 consists of the points p ∈ Σ
for which the tangent plane TpΣ equals the horizontal plane Hp. Since H is completely
nonintegrable, it follows by Frobenius theorem that Σ0 is closed and has empty interior in Σ.
Hence the regular set Σ−Σ0 is open and dense in Σ. If N is a unit normal vector field to Σ
in (S3, g) then Σ0 = {p ∈ Σ ; Nh(p) = 0}. In the regular set Σ−Σ0 we define the horizontal

Gauss map νh and the characteristic vector field Z by

νh :=
Nh

|Nh|
, Z := J(νh).

Note that Z is horizontal and orthogonal to νh by (2.2). In particular, Z is always tan-
gent to Σ. Moreover, for any p ∈ Σ − Σ0, we have the orthonormal basis of TpS

3 given by
{Z(p), νh(p), T (p)}. As a consequence, we deduce the identity

(2.9) N = |Nh| νh +
〈
N, T

〉
T on Σ− Σ0.

The integral curves of Z in Σ − Σ0 are called (oriented) characteristic curves of Σ. If Σ is
a C2 surface then Z is a C1 vector field and the maximal characteristic curves provide a
foliation of Σ− Σ0.

2.5. Mean curvature and area-stationary surfaces. The volume of a set Ω ⊆ S3 is the
Riemannian volume V (Ω) in (S3, g). The (sub-Riemannian) area of a C1 surface Σ in S3 is
defined by

(2.10) A(Σ) :=

∫

Σ

|Nh| da,

where N is a unit normal vector field to Σ in (S3, g) and da is the area element in (S3, g).

We say that a surface Σ is area-stationary if it is a critical point of the area functional
(2.10) for any compactly supported variation Σα of Σ. If Σ encloses a set Ω and has critical
area under variations Σα for which the enclosed sets Ωα have the same volume, then we
say that Σ is volume-preserving area-stationary. If Σ is an orientable area-stationary (resp.
volume-preserving area-stationary) C2 surface, then the mean curvature H vanishes (resp.
is constant), see [6, Sect. 2], [9, Sect. 4] and [10, Sect. 4.1]. Here the (sub-Riemannian) mean

curvature of Σ is the quantity

(2.11) −2H(p) := (divΣ νh)(p), for any p ∈ Σ− Σ0,

where divΣ stands for the divergence relative to Σ in (S3, g). Moreover, we can reason as in
[24, Cor. 4.11], see also [10, Sect. 4.1], to get the identity

(2.12)
d

dα

∣∣∣∣
α=0

(
A(Σα)− 2H V (Ωα

)
) = 0,

for any variation of Σ by surfaces Σα enclosing sets Ωα.

3. Pansu spheres and foliations of vertical solid tubes

We begin this section by recalling some facts about the family of constant mean curvature
spheres in (S3, gh) introduced in [9, Sect. 5.1]. After that, we will apply vertical translations
to a fixed closed half-sphere to produce a foliation of the associated solid tube around the
vertical axis. These foliations will be employed to construct the calibration vector fields in
the proofs of our main results in Sections 4 and 5.
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For any number λ > 0 we define parametrically the set

Sλ := {γθ(s) ; θ ∈ [0, 2π), s ∈ [0, π/
√
1 + λ2]},

where γθ(s) := (x1(s), y1(s), x2(θ, s), y2(θ, s)) is the curve in S3 with coordinate functions

x1(s) : = cos(λs) cos(
√
1 + λ2 s) +

λ√
1 + λ2

sin(λs) sin(
√

1 + λ2 s),

y1(s) : = − sin(λs) cos(
√
1 + λ2 s) +

λ√
1 + λ2

cos(λs) sin(
√
1 + λ2 s),

x2(θ, s) : =
1√

1 + λ2
sin(

√
1 + λ2 s) cos(θ − λs),

y2(θ, s) : =
1√

1 + λ2
sin(

√
1 + λ2 s) sin(θ − λs).

(3.1)

It comes from [9, Sect. 3] that γθ is the geodesic in (S3, gh) of curvature λ leaving from
the south pole e := (1, 0, 0, 0) with initial velocity cos(θ)E1(e) + sin(θ)E2(e). Note that

γθ(π/
√
1 + λ2) ∈ L and does not depend on θ. We denote this point by eλ and we call it

the north pole of Sλ. For λ = 0 any curve γθ(s) with s ∈ [0, π] parameterizes an arc between
e and −e of a great circle in S3. Indeed, we have S0 = S3 ∩ {y1 = 0}, which is a totally
geodesic 2-sphere in (S3, g).

In the next result we gather some properties of Sλ that will be useful in the sequel.

Proposition 3.1. For any λ > 0 the following facts hold:

(i) Sλ is an embedded 2-sphere of class C2 with singular set {e, eλ},
(ii) Sλ − {e, eλ} is a C∞ surface,

(iii) there is a C1 unit normal vector field N on Sλ in (S3, g), which is C∞ outside the

poles, and such that Sλ has constant mean curvature λ in (S3, gh) with respect to N ,

(iv) the curves γθ(s) with s ∈ (0, π/
√
1 + λ2) are characteristic curves of Sλ,

(v) the surface Sλ is volume-preserving area-stationary. The sphere S0 is also area-

stationary,

(vi) Sλ is a rotationally invariant surface. For any λ > 0 the generating curve of Sλ in

spherical coordinates (ω, τ) is the union of two graphs τ = µλ(ω) and τ = τλ−µλ(ω),
where τλ := π

(
1− λ√

1+λ2

)
and µλ : [0, arctan(1/λ)] → R is a continuous increasing

function with µλ(0) = 0 and µλ(arctan(1/λ)) = τλ/2.
(vii) the volume function m : (0,+∞) → (0, V (S3)/2) defined by m(λ) := V (Bλ) is de-

creasing, where Bλ is the topological closed 3-ball obtained by vertical rotations of the

closed set in S2+ enclosed between the generating curve of Sλ and the arc 0 6 τ 6 τλ.

Proof. Statements (i)-(v) were proved in [9, Prop. 5.1, Re. 5.2]. Statement (vi) comes from
the description of Sλ in the proof of [9, Thm. 6.4 (iii)]. Indeed, the function µλ(ω) is explicitly
given by τλ/2− ρλ(ω), where

ρλ(ω) := arccos(λ tan ω)− λ√
1 + λ2

arccos(
√
1 + λ2 sin ω), ω ∈ [0, arctan(1/λ)].

Hence the generating curve of Sλ in S2+ coincides, up to a translation along the τ -axis,
with the set Gλ of equation τ = ±ρλ(ω) with ω ∈ [0, arctan(1/λ)]. For fixed λ0 > 0 and
ω ∈ [0, arctan(1/λ0)) we have that ω ∈ [0, arctan(1/λ)) for any λ ∈ (0, λ0), and the function
λ ∈ (0, λ0) 7→ ρλ(ω) is decreasing. This entails that the closed set in S

2
+ enclosed between

Gλ and the arc −τλ/2 6 τ 6 τλ/2 is decreasing with respect to λ. Therefore, the function
λ 7→ V (Bλ) is decreasing in (0,+∞). This shows statement (vii) and finishes the proof. �
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For our next result we need to introduce some notation. We define B0 as the closure in S3

of the connected component of S3 − S0 that contains all the sets Sλ − {e} with λ > 0. For
any λ > 0 the equatorial circle of Sλ is the curve

Cλ := {γθ
(
π/(2

√
1 + λ2)

)
; θ ∈ [0, 2π)},

which is obtained by applying the rotations rθ in (2.5) to the point in the generating curve
of Sλ with spherical coordinates (arctan(1/λ), τλ/2) (when λ = 0 we can take (π/2, π/2)).
Let S2λ be the rotationally invariant and totally geodesic 2-sphere in (S3, g) with Cλ ⊂ S2λ

(for λ = 0 we have S2λ = S3 ∩ {x1 = 0}). We say that Dλ := Bλ ∩ S2λ is the equatorial disk

of Bλ. Clearly ∂Dλ = Cλ. The 2-sphere S2λ separates S3 into two closed regions (S3λ)
− and

(S3λ)
+, that we label in such a way that e ∈ (S3λ)

+. For any set Ω ⊆ S
3 we denote

(3.2) Ω−
λ := Ω ∩ (S3λ)

− and Ω+
λ := Ω ∩ (S3λ)

+.

For any λ > 0 the vertical solid tube around L associated to Sλ is the set

(3.3) Wλ := {p ∈ S
3 ; dL(p) 6 arctan(1/λ)}.

From (2.7) it is clear that ∂Wλ = Tρ, where ρ ∈ (0, 1) satisfies arccos(ρ) := arctan(1/λ).
Note that Sλ and Tρ are tangent surfaces along the circle Cλ. We also denote

W0 = S
3 − C0,

where C0 = {0} × S1 is the equatorial circle of S0.

Now, we are ready to prove the following statement.

Proposition 3.2. Consider a closed half-sphere S+
λ for some λ > 0. For any t ∈ [0, 2π), let

S+
λ (t) := ϕt(S+

λ ), where ϕt is the vertical translation defined in (2.6). Then, we have:

(i) S+
λ (t) is a rotationally invariant surface with boundary, having constant mean cur-

vature λ in (S3, gh) and one singular point et := ϕt(e),
(ii) for λ > 0 the family {S+

λ (t)}t∈[0,2π) produces a foliation of Wλ,

(iii) the family {S+
0 (t)− C0}t∈[0,2π) provides a foliation of W0,

(iv) there is a unit horizontal C∞ vector field X+
λ on Wλ − L whose restriction to S+

λ

equals the horizontal Gauss map, and having Riemannian divergence

divX+
λ = −2λ on Wλ − L.

The above properties remain valid if we replace S+
λ with S−

λ ; the only difference is that the

unique singular point of S−
λ (t) := ϕt(S−

λ ) is ϕt(e
λ).

Proof. By Proposition 3.1 (iii) there is a C1 unit normal N0 on S+
λ (0) = S+

λ in (S3, g), which

is C∞ on S+
λ − {e}, and having associated mean curvature λ in (S3, gh). For any t ∈ [0, 2π)

we define Nt := ϕt ◦ N0 ◦ ϕ−1
t . This is a Riemannian unit normal on S+

λ (t) since ϕt is an

isometry of (S3, gh). Moreover, S+
λ (t) has constant mean curvature λ in (S3, gh) with respect

to Nt and only one singular point at et = ϕt(e). As S+
λ is rotationally invariant then

rθ(S+
λ (t)) = (rθ ◦ ϕt)(S+

λ ) = (ϕt ◦ rθ)(S+
λ ) = ϕt(S+

λ ) = S+
λ (t),

for any rotation rθ in (2.5), so that S+
λ (t) is also rotationally invariant. This proves (i).

For λ > 0 we know by Proposition 3.1 (vi) that the generating curve of S+
λ (0) in spherical

coordinates is the graph (ω, µλ(ω)) where ω ∈ [0, arctan(1/λ)]. Thus, the graph (ω, µλ(ω)+t)
determines the generating curve of S+

λ (t). This family of curves gives a foliation of the set
{p ∈ S2+ ; dL(p) 6 arctan(1/λ)}. On the other hand, the generating curves of the half-spheres

S+
0 (t) are circle arcs of spherical coordinates τ = t, so that they produce a foliation of S2+−C0

(note that C0 = ∂S+
0 (t) for any t ∈ [0, 2π)). Now the proofs of (ii) and (iii) come by applying

vertical rotations rθ and having in mind that Wλ is rotationally invariant.
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Finally, we will construct the vector field in (iv). Observe that the set {et ; t ∈ [0, 2π)} of
the singular points of S+

λ (t) parameterizes the vertical axis L. From statements (ii) and (iii)

we can define a vector field Nλ on Wλ whose restriction to S+
λ (t) equals the unit normal Nt.

This vector field is C1 on Wλ and C∞ on Wλ − L. Let X+
λ := (Nt)h

|(Nt)h| , which is a horizontal

unit C∞ vector field on Wλ − L such that X+
λ = (νt)h along S+

λ (t)− {et}. Let us compute

divX+
λ . For p ∈ Wλ − L we consider the unique t ∈ [0, 2π) such that p ∈ S+

λ (t). Note that

(divX+
λ )(p) =

(
divS+

λ
(t)(νt)h

)
(p) +

〈
DNt(p)X

+
λ , Nt(p)

〉
= −2λ+

〈
DNt(p)X

+
λ , Nt(p)

〉
,

where we have used (2.11) and that S+
λ (t) has mean curvature λ with respect to Nt. Next,

we see that the last summand above vanishes. From (2.9) and the definition of X+
λ , we infer

〈
DNt(p)X

+
λ , Nt(p)

〉
= |(Nt)h|(p)

〈
DNt(p)X

+
λ , X+

λ (p)
〉
+
〈
Nt(p), T (p)

〉 〈
DNt(p)X

+
λ , T (p)

〉

= −
〈
Nt(p), T (p)

〉 〈
X+

λ (p), DNt(p)T
〉

= −|(Nt)h|(p)
〈
Nt(p), T (p)

〉 〈
(νt)h(p), Zt(p)

〉
= 0,

as we claimed. All the previous arguments also hold when we replace S+
λ with S−

λ . �

4. The Plateau problem for the circle C0

In this section we use a calibration argument to show that the closed half-sphere S+
0 min-

imizes the area in (S3, gh) among compact surfaces with boundary C0 = {0} × S1. Related
minimization results in different sub-Riemannian contexts are found in [6, Prop. 6.2], [1,
Thm. 2.1], [24, Thm. 5.3] and [21, Lem. 3.1(iv)]. Our approach requires approximation since
the calibrated forms are not defined along the circles C0 and L. Moreover, by analyzing the
behaviour of minimizers near C0, we prove that the half-spheres S+

0 (t) = ϕt(S+
0 ) are the

unique area-minimizing C2 surfaces with fixed boundary C0.

Theorem 4.1. If Σ ⊂ S3 is a compact and orientable C1 surface with ∂Σ = C0, then

A(Σ) > A(S+
0 ). Moreover, if equality holds and Σ is C2, then Σ = S+

0 (t) for some t ∈ [0, 2π).

Proof. Recall the notation W0 = S3 − C0. By Proposition 3.2 (iv) there is a unit horizon-
tal C∞ vector field X+

0 on W0 − L such that divX+
0 = 0 and the restriction of X+

0 to
S+
0 − (C0 ∪ {e}) equals the horizontal Gauss map (ν0)h. The idea for the proof is to apply

the divergence theorem to X+
0 over the set bounded by Σ and S+

0 . We have the difficulty
that X+

0 is defined on W0 − L, whereas Σ is any surface in S3 with ∂Σ = C0. This is solved
by means of an approximation argument.

Starting from a sequence of logarithmic cut-off functions we can find, for any ε > 0 small
enough, a C∞ function ξε : [0, π/2] → [0, 1] satisfying:

(i) ξε = 0 in [0, ε2] ∪ [π2 − ε2, π
2 ],

(ii) ξε = 1 in [ε, π
2 − ε],

(iii) |ξ′ε| 6 2/ε in [0, π2 ].

Consider the rotationally invariant function fε : S3 → [0, 1] given by fε(p) := ξε(dL(p)).
Since dL is C∞ on W0 − L and its gradient in (S3, g) verifies |∇dL| = 1, we get:

(a) fε ∈ C∞(S3) with supp(fε) ⊂ W0 − L,
(b) limε→0 fε(p) = 1, for any p ∈ W0 − L,
(c) ∇fε = 0 except for the compact region

Mε := {p ∈ S
3 ; ε2 6 dL(p) 6 ε} ∪ {p ∈ S

3 ;
π

2
− ε 6 dL(p) 6

π

2
− ε2},

where we have |∇fε| 6 2/ε.
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For any ε > 0 small enough we define the vector field Yε := fε X
+
0 . Clearly Yε is a C∞

vector field on S
3 with supp(Yε) ⊂ W0 − L. Let us see that

(4.1) lim
ε→0

∫

Ω

div Yε dv = 0,

where Ω ⊆ S3 and dv stands for the oriented volume form in (S3, g). To this aim, note that

div Yε = fε divX+
0 +

〈
∇fε, X

+
0

〉
=

〈
∇fε, X

+
0

〉
,

since divX+
0 = 0 and supp(fε) ⊂ W0 − L. So, we obtain

∣∣∣∣
∫

Ω

div Yε dv

∣∣∣∣ 6
∫

Ω

|
〈
∇fε, X

+
0

〉
| dv 6

∫

Ω

|∇fε| dv 6
2V (Mε)

ε
.

On the other hand, by taking the cylindrical coordinates in S3 defined by equality (2.8), it is
easy to check that the volume in (S3, g) of the compact set {p ∈ S3 ; x 6 dL(p) 6 y} equals
2π2 (sin2 y − sin2 x). Hence, we deduce that

∣∣∣∣
∫

Ω

div Yε dv

∣∣∣∣ 6 4π2 cos(2ε2)− cos(2ε)

ε
,

so that (4.1) holds from L’Hôpital’s rule by letting ε → 0.

Now, take a compact and orientable C1 surface Σ in S3 with ∂Σ = C0 = ∂S+
0 and unit

normal N . Since the chain Σ − S+
0 is a 2-cycle in S3, then there is a 3-chain Ω in S3 such

that Σ− S+
0 = ∂Ω. In S3 we define the family of differential 2-forms

ζεp(u,w) := (dv)p(u,w, Yε(p)) = fε(p) det(u,w,X
+
0 (p)),

for any p ∈ S3 and any u,w ∈ TpS
3. It is clear that ζεp(u,w) → ζp(u,w) := det(u,w,X+

0 (p))

when ε → 0, for any p ∈ W0 − L and u,w ∈ TpS
3. By applying Stokes theorem

∫

Ω

div Yε dv =

∫

Ω

dζε =

∫

Σ

ζε −
∫

S+

0

ζε.

By using (4.1) and the dominated convergence theorem, we conclude that
∫

S+

0
−(C0∪{e})

ζ =

∫

Σ−(C0∪L)

ζ.

On the other hand, from the Cauchy-Schwarz inequality we get

(4.2) ζp(u,w) 6 |Nh|(p),
for any p ∈ Σ− (C0 ∪ L) and any orthonormal basis {u,w} in TpΣ. Moreover, we have

ζp(u,w) = |(N0)h|(p),
whenever p ∈ S+

0 − (C0 ∪ {e}) and {u,w} is a positive orthonormal basis in TpS+
0 . Since

C0 ∪ L does not contribute to the area of Σ and S+
0 , we conclude by (2.10) that

A(S+
0 ) =

∫

S+

0

|(N0)h| da 6

∫

Σ

|Nh| da = A(Σ),

which is the desired comparison.

Finally suppose that A(Σ) = A(S+
0 ), so that Σ solves the Plateau problem with fixed

boundary C0. This implies that Σ is connected; otherwise, the component of Σ containing
C0 would be a better competitor. Note that C0 ⊂ Σ − Σ0 because the tangent lines along
C0 are all vertical. Let Σ′ be the component of Σ − (Σ0 ∪ L) containing C0. From equality
A(Σ) = A(S+

0 ) and equation (4.2) we deduce that νh = X+
0 or νh = −X+

0 on Σ′−C0. Hence
the vector fields νh and Z are C∞ on Σ′ − C0. For a point p ∈ Σ′ − C0 consider the unique
half-sphere S+

0 (t) with p ∈ S+
0 (t), and denote by αp and βp characteristic curves of Σ′ and

S+
0 (t) through p. By reversing αp if necessary, and using that (νt)h = X+

0 on S+
0 (t)−(C0∪L),
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we see that both curves are integral curves of the C∞ vector field J(X+
0 ) defined on W0−L.

Thus αp(±s) = βp(s) around the origin, and so αp is a horizontal geodesic in (S3, g). On
the other hand, if p ∈ C0 and α is a characteristic curve of Σ′ with α(0) = p, then there is
δ > 0 such that α((0, δ)) ⊂ Σ′ − C0. From the previous argument the restriction α|(0,δ) is

a horizontal geodesic in (S3, g). By continuity this geodesic extends to 0 as a characteristic
curve of Σ′. All this shows that, locally around C0, the surface Σ is union of horizontal
geodesic segments in (S3, g) leaving orthogonally from C0. Now the proof ends by invoking
Proposition 4.2 below. �

Proposition 4.2. Let Σ ⊂ S3 be a compact, connected, orientable C2 surface with ∂Σ = C0

and containing geodesic segments in (S3, g) leaving orthogonally from C0. If Σ 6= S+
0 (t) for

any t ∈ [0, 2π), then A(Σ) > A(S+
0 ).

Proof. We parameterize C0 by Γ(ε) := (0, 0, cos(ε), sin(ε)) with ε ∈ [0, 2π]. From the hy-
potheses we can find δ > 0 such that γε(s) ∈ Σ for any (ε, s) ∈ [0, 2π] × [0, δ). Here
γε : [0, 2π] → S3 is the great circle of S3 described by

(4.3) γε(s) := cos(s) Γ(ε) + sin(s)U(ε),

where the initial velocity U(ε) := γ̇ε(0) is a unit horizontal vector at Γ(ε). Hence, there
is a function σ(ε) with ε ∈ [0, 2π] such that U(ε) = cosσ(ε)E1(ε) + sinσ(ε)E2(ε), where
Ei(ε) := Ei(Γ(ε)) for any i = 1, 2.

We define the map F (ε, s) := γε(s) for (ε, s) ∈ [0, 2π]× [0, π]. Observe that F (ε, s) ∈ C0 if
and only if s ∈ {0, π}, whereas F (ε, s) ∈ L if and only if s = π/2. Moreover, F is injective on
the domains [0, 2π)× [0, π/2) and [0, 2π)× (π/2, π]. The set {F (ε, s) ; (ε, s) ∈ [0, 2π]× [0, π]}
corresponds to the case κ = 1 and λ = 0 of a more general construction studied by the
authors [11, Sect. 4] when the starting curve is the vertical axis L instead of C0. Since C0

is also vertical, our analysis there extends to the present situation. In particular the angle
σ(ε), that determines U(ε) modulo 2π, can be chosen as a C2 function.

Next, we gather some computations in the proof of [11, Thm. 4.1]. The coordinate vector
fields associated to F are given by (∂F/∂ε)(ε, s) := Vε(s) and (∂F/∂s)(ε, s) = γ̇ε(s), where

Vε(s) =
v′ε(s)

2
J(γ̇ε(s)) + vε(s)Tγε(s),

and

(4.4) vε(s) :=
σ′(ε)− 2

2

(
1− cos(2s)

)
+ 1.

Thus, the map F fails to be an immersion only at the points (ε, π/2) such that σ′(ε) = 1.
Along the other points the area element satisfies

(4.5) da = |JacF |(ε, s) dε ds = |Vε(s)| dε ds =
√
4vε(s)2 + v′ε(s)

2

2
dε ds,

because |γ̇ε(s)| = 1 and
〈
Vε(s), γ̇ε(s)

〉
= 0. A pair (ε, s) for which F is an immersion produces

a singular point if and only if σ′(ε) < 1 and s ∈ {s(ε), π − s(ε)}, where

(4.6) s(ε) :=
1

2
arccos

(
σ′(ε)

σ′(ε)− 2

)
.

On the other hand, the map

(4.7) N(ε, s) :=
−2vε(s)J(γ̇ε(s)) + v′ε(s)Tγε(s)√

4vε(s)2 + v′ε(s)
2
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provides a unit normal when F is an immersion. From here, we deduce

(4.8) |Nh|(ε, s) =
±2 vε(s)√

4vε(s)2 + v′ε(s)
2
,

with positive sign if and only if σ′(ε) > 1 or σ′(ε) < 1 and s ∈ [0, s(ε)] ∪ [π − s(ε), π]. In
such cases, we compute Z(ε, s) from (4.7) to get γ̇ε(s) = Z(ε, s). As a consequence, we can
choose the orientation of Σ so that any γε(s) with s ∈ [0, δ) is a characteristic curve of Σ.
As Σ is compact this property holds until γε meets a singular point.

Now, let us prove that Σ cannot contain singular curves. On the contrary, we would have
σ′ < 1 in an open interval I ⊂ [0, 2π]. Observe that the singular curve c(ε) := F (ε, s(ε))
with ε ∈ I does not touch the set C0 ∪ L. Since Σ− C0 is an area-stationary C2 surface we
know from [24, Thm. 4.17], see also [9, Thm. 4.5], that the characteristic curves γε(s) with
s ∈ (0, s(ε)) meet orthogonally c(ε). By having in mind that

ċ(ε) = Vε(s(ε)) + s′(ε) γ̇ε(s(ε)), ε ∈ I,

this is equivalent to that s′(ε) = 0 for any ε ∈ I. From equation (4.6) there are constants
s0 ∈ (0, π/2) and σ′

0 < 1 such that s(ε) = s0 and σ′(ε) = σ′
0, for any ε ∈ [0, 2π]. Note that

N(ε, s0) = −Tc(ε) by (4.7). Next, according with the results in [6, Prop. 3.5, Cor. 3.6] (see
also [9, Thm. 4.3]), that describe locally Σ − C0 around c(ε), we can continue the surface
Σ beyond c(ε) by following the curves γε(s) for s > s0 small enough. Indeed, from the dis-
cussion below (4.8) we obtain characteristic curves by reversing the orientation of γε(s) with
s > s0. By using that Σ is compact and that the curve L (which we reach when s = π/2)
is vertical, we can prolong the curves γε(s) inside Σ until we meet a new singular curve
d(ε) := F (ε, π − s0). Observe that N(ε, π − s0) = Td(ε) and so, d(ε) is disjoint from c(ε).
Finally, we reason as above to conclude that γε(s) with s > π − s0 is a characteristic curve
of Σ until we come back to the starting circle C0 at s = π. In this way we would produce an
open neighborhood of C0 in Σ by matching two surfaces where

〈
N, T

〉
< 0 and

〈
N, T

〉
> 0,

respectively. This contradicts that C0 = ∂Σ because Σ is embedded.

Now, we are ready to prove the claim. From the fact that Σ does not contain singular

curves we infer that σ′ > 1 in [0, 2π]. Hence the set Σ̃ := F ([0, 2π)× [0, π/2)) is an immersed

surface with Σ̃0 = ∅ and Σ̃∩L = ∅. Note that Σ̃ ⊆ Σ because Σ is compact. From equations
(4.8), (4.5) and (4.4), we get

A(Σ) > A(Σ̃) =

∫

Σ̃

|Nh| da =

∫

[0,2π)×[0,π/2)

|Nh|(ε, s) |JacF |(ε, s) dε ds

=

∫

[0,2π)×[0,π/2)

vε(s) dε ds =
π

4

∫ 2π

0

σ′(ε) dε >
π2

2
.

(4.9)

If equality holds then σ′ = 1 in [0, 2π], so that σ(ε) = ε + ε0 for some ε0 ∈ [0, 2π). Thus

U(ε) = −(cos(ε0), sin(ε0), 0, 0), and we would deduce from (4.3) that Σ̃ ⊆ S0(ε0), where
S0(ε0) = ϕε0 (S0) is the totally geodesic 2-sphere defined by intersecting S

3 with the hyper-

plane of equation sin(ε0)x1−cos(ε0) y1 = 0. More precisely, we have Σ̃ = S+
0 (ε0±π)−{pole}

(with positive sign if and only if ε0 ∈ [0, π)). As Σ is compact and connected with ∂Σ = C0

this would give Σ = S+
0 (t) for some t ∈ [0, 2π), which contradicts the hypotheses. Therefore,

inequality (4.9) reads

A(Σ) >
π2

2
= A(S+

0 (t)) = A(S+
0 ),

and the proof is completed. �

As a direct consequence of Theorem 4.1 we infer a sharp lower bound for the area of
compact surfaces without boundary and containing C0.
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Corollary 4.3. If Σ ⊂ S3 is a compact C1 surface with empty boundary such that C0 ⊂ Σ
and Σ − C0 is disconnected, then A(Σ) > π2. Moreover, if A(Σ) = π2 and Σ is C2, then

Σ = ϕt(S0) for some t ∈ [0, 2π). In particular S0 uniquely minimizes the area, up to vertical

translations, among all the C2 topological 2-spheres of S3 containing C0.

5. Isoperimetric property of the spheres Sλ

In this section we show that the spherical surfaces Sλ with λ > 0 are solutions to the
isoperimetric problem in (S3, gh) among sets inside a vertical solid tube and containing a
horizontal section of the tube. This provides a counterpart in (S3, gh) of a theorem by Ri-
toré for the sub-Riemannian Heisenberg group [23]. Indeed, we will employ the foliations
constructed in Section 3 for adapting the arguments in [23, Thm. 3.1] to the present situation.

Theorem 5.1. Let Ω ⊂ S3 be a set with C1 boundary Σ and volume V (Ω) 6 V (S3)/2.
Suppose that there is λ > 0 such that Ω is contained in the tube Wλ defined in (3.3) and

Ω ∩ S2λ = Dλ. Then, we have

A(Σ) > A(Sµ),

where Sµ is the spherical surface in (S3, gh) with V (Bµ) = V (Ω). Moreover, if equality holds,

then Ω = Bµ.

Proof. For simplicity we will denote Ω+ := Ω+
λ , Ω

− := Ω−
λ , Σ

+ := Σ+
λ and Σ− := Σ−

λ , see
equation (3.2). We first derive the minimization property

(5.1) A(Σ)− 2λV (Ω) > A(Sλ)− 2λV (Bλ).

For that we will apply the divergence theorem over Ω+ and Ω− to the vector fieldsX+
λ andX−

λ

constructed in Proposition 3.2 (iv). This requires approximation since the set Σ∩ (Dλ−Cλ)
could be non-empty and X+

λ , X−
λ are defined on Wλ − L whereas Ω ∩ L 6= ∅.

As in the proof of Theorem 4.1 we can find a sequence of smooth functions fε : Wλ → [0, 1],
for ε > 0 small enough, such that:

(a) supp(fε) ⊆ Wλ − L,
(b) limε→0 fε(p) = 1, for any p ∈ Wλ − L,
(c) ∇fε = 0 except for the compact region Kε := {p ∈ S

3 ; ε2 6 dL(p) 6 ε}, where we
have |∇fε| 6 2/ε.

Consider the foliation of Wλ by vertical translations of S+
λ . The associated vector field

X+
λ is a unit horizontal C∞ vector field on Wλ − L, whose restriction to S+

λ − {e} coin-

cides with the horizontal Gauss map (ν0)h, and verifies divX+
λ = −2λ on Wλ − L. We

define Yε := fε X
+
λ , which is a C∞ vector field on Wλ with supp(Yε) ⊂ Wλ − L. Since

div Yε = −2λ fε +
〈
∇fε, X

+
λ

〉
, we can proceed as in the proof of (4.1) with the help of the

dominated convergence theorem to deduce

(5.2) lim
ε→0

∫

E

div Yε dv = −2λV (E), for any set E ⊆ Wλ.

Now, we take a set Ω as in the statement. We will approximate Ω by sets Ωt in similar
conditions and satisfying that ∂Ωt∩Dλ = Cλ. We remark that this procedure is unnecessary
when Σ ∩Dλ = Cλ, as happens for instance if Ω = Bλ.

For any t > 0 we consider the set ϕt(Ω
+), where ϕt is the vertical translation in (2.6).

Since Ω∩S2λ = Dλ and Wλ is invariant under ϕt, there is δ > 0 such that ϕt(Ω
+) ⊂ Wλ and

ϕt(Ω+) ∩ S2λ = ∅ for any t ∈ (0, δ]. We denote by Ω+
t the union of ϕt(Ω

+) with the small

vertical tube
⋃

s∈[0,t] ϕs(Dλ). The boundary ∂Ω+
t is the union of ϕt(Σ

+) together with Dλ
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and a small piece Ct of the Clifford torus ∂Wλ. Hence, the divergence theorem applied to
the vector field Yε over Ω+

t yields
∫

Ω+

t

div Yε dv = −
∫

Dλ

fε
〈
X+

λ , NDλ

〉
da−

∫

ϕt(Σ+)

fε
〈
X+

λ , Nt

〉
da−

∫

Cλ

fε
〈
X+

λ , η
〉
da,

where NDλ
, Nt and η are the corresponding unit normals in (S3, g) pointing into Ω+

t . Taking
limits when ε → 0 we get from (5.2) and the dominated convergence theorem

−2λV (Ω+
t ) = −

∫

Dλ

〈
X+

λ , NDλ

〉
da−

∫

ϕt(Σ+)

〈
X+

λ , Nt

〉
da−

∫

Ct

〈
X+

λ , η
〉
da

= −
∫

Dλ

〈
X+

λ , NDλ

〉
da−

∫

Σ+

〈
X+

λ , N
〉
da−

∫

Ct

〈
X+

λ , η
〉
da,

where N is the normal on Σ pointing into Ω, and we have employed the change of variables
formula together with equalities X+

λ ◦ϕt = ϕt ◦X+
λ and Nt ◦ϕt = ϕt ◦N . By passing to the

limit when t → 0 and having in mind that {V (Ω+
t )} → V (Ω+) and {A(Ct)} → 0, we infer

−2λV (Ω+) = −
∫

Dλ

〈
X+

λ , NDλ

〉
da−

∫

Σ+

〈
X+

λ , N
〉
da

> −
∫

Dλ

〈
X+

λ , NDλ

〉
da−A(Σ+),

(5.3)

where we have used the Cauchy-Schwarz inequality and that X+
λ is a unit horizontal vector

field. In case Ω = Bλ we get equality above since X+
λ = (ν0)h on S+

λ −{e}. This means that

−2λV (B+
λ ) = −

∫

Dλ

〈
X+

λ , NDλ

〉
da−A(S+

λ ).

From the last two equations we derive the inequality

(5.4) A(Σ+)− 2λV (Ω+) > A(S+
λ )− 2λV (B+

λ ).

If we reproduce the previous arguments with the set Ω− and the vector field X−
λ associated

to the foliation of Wλ by vertical translations of S−
λ , then we conclude that

(5.5) A(Σ−)− 2λV (Ω−) > A(S−
λ )− 2λV (B−

λ ).

Thus (5.1) follows by adding (5.4) and (5.5) sinceDλ has no contribution to V (Ω) and V (Bλ).

Next, we define the function ξ : [0,+∞) → R by ξ(α) := A(Sα) + 2α (V (Ω)−V (Bα)). By
taking derivatives ′ with respect to α, we infer that

ξ′(α) = A′(Sα)− 2αV ′(Bα) + 2
(
V (Ω)− V (Bα)

)
= 2

(
V (Ω)− V (Bα)

)
,

ξ′′(α) = −2V ′(Bα),

where in the first equality we have used (2.12) and that the spheres Sα are volume-preserving
area-stationary. As V (Bα) is decreasing for α ∈ (0,+∞) by Proposition 3.1 (vii), we conclude
that ξ is strictly convex and attains its minimum at the unique value µ ∈ [0,+∞) for which
V (Bµ) = V (Ω) (this value exists because V (Ω) 6 V (S3)/2). From (5.1) we get

A(Σ) > ξ(λ) > ξ(µ) = A(Sµ),

which is the desired area comparison.

Finally, suppose that A(Σ) = A(Sµ). Then we have ξ(λ) = ξ(µ), so that µ = λ > 0.
Moreover, we also obtain equalities in (5.4) and (5.5), which entails by (5.3) that

νh = X+
µ on Σ+ − (Σ0 ∪ L),

νh = X−
µ on Σ− − (Σ0 ∪ L).

(5.6)

Recall that the same equalities hold in S+
µ −L and S−

µ −L by the definition of X+
µ and X−

µ .
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Let us see that Ω = Bµ. It is clear that the circle Cµ = ∂Dµ is contained in Σ − L and

Sµ−L. The surfaces Σ and Sµ are tangent along Cµ because Ω,Bµ ⊆ Wµ and Cµ ⊂ ∂Wµ. As
the singular set (Sµ)0 equals {e, eµ} ⊂ L, it follows that Cµ ⊂ Σ−Σ0 and Cµ ⊂ Sµ − (Sµ)0.
For any p ∈ Cµ we denote by βp the maximal characteristic curve of Sµ passing through p.
By definition of Sµ and Proposition 3.1 (iv) the trace of βp equals the trace of a geodesic

γθ : (0, π/
√
1 + µ2) → Sµ defined in (3.1). Let αp be a characteristic curve of Σ−L through

p. By (5.6) we get α′
p(0) = β′

p(0), which is a tangent vector transversal to S2µ. Hence, we can

find δp > 0 small enough so that αp([0, δp)) ⊂ Σ−−(Σ0∪L) and αp((−δp, 0]) ⊂ Σ+−(Σ0∪L).
Again from (5.6) we see that the restrictions of βp and αp to [0, δp) (resp. (−δp, 0]) are inte-
gral curves through p of the C∞ vector field J(X−

µ ) (resp. J(X+
µ )) defined on Wµ −L. This

implies that αp = βp in [−δp, δp]. Moving p along Cµ we deduce that Σ−L contains a region
R ⊂ Sµ − L given by the union of the curves βp(s) with s ∈ [−δ, δ]. Since Σ is compact and
tangent to Sµ over R, the curves βp can be extended as characteristic curves of Σ− L until
they meet L or Σ0. This shows that Sµ − L ⊆ Σ− L. As a consequence Sµ ⊆ Σ because Σ
is a closed subset of S3. From the fact that A(Σ) = A(Sµ) we obtain Σ = Sµ. By having in

mind that Dµ ⊂ Ω ∩ Bµ, we conclude that Ω = Bµ. This proves the theorem. �

Remarks 5.2. 1. If we remove the hypothesis V (Ω) 6 V (S3)/2 then we can use the inequal-
ity V (Ω) > v(Ω) := min{V (Ω), V (S3−Ω)} into (5.1), and define ξ(α) := A(Sα)+2α (v(Ω)−
V (Bα)), to deduce that A(Σ) > ξ(λ) > ξ(µ) = A(Sµ), where Sµ is the spherical surface with

V (Bµ) = v(Ω). Moreover, if equality holds, then V (Ω) 6 V (S3)/2 and Ω = Bµ.

2. The area comparison is still valid when λ = 0. In this case we only suppose that Ω ⊆ S3

with V (Ω) 6 V (S3)/2 and Ω ∩ S
2
0 = D0. Observe that the inequality A(Σ) > A(S0) in (5.1)

comes from Theorem 4.1 since ∂Σ+ = ∂Σ− = C0. The rest of the proof continues without
changes. If equality holds then A(Σ) = A(S0). When Σ is a C2 surface, the condition
Ω ∩ S20 = D0 together with Theorem 4.1 lead us to Ω = B0.

3. The arguments can be slightly modified to show that the isoperimetric inequality in the
statement still holds when Ω is a finite perimeter set in (S3, gh) under the same hypotheses.
The characterization of equality cases in this context is more delicate and would require a
regularity result as the one of Monti and Vittone [15, Thm. 1.2] employed by Ritoré [23,
Thm. 3.1] in the Heisenberg group.
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