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Abstract: Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell
communication processes, identified in virtually all body fluids. Among extracellular vesicles,
exosomes have gained increasing attention in recent years as they have unique biological origins
and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various
health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast
milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being
bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence
on the health benefits attributed to milk exosomes, and we provide an outlook for the potential
future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a
novel avenue to explore in the context of human nutrition, and they might exert important beneficial
effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism,
immunity, modulation of the microbiota, growth, and development.

Keywords: milk; exosomes; extracellular vesicles; miRNA; immunity; intestinal health; bone; muscle;
microbiota; neurodevelopment

1. Background

Extracellular vesicles (EVs) were first described in the 1960s and 1970s and were
considered mere cellular artifacts lacking a biological purpose [1,2]. It was not until the
decade of the 1990s that EVs were attributed a role in cell-to-cell communication, thereby
gaining increased attention from the scientific community [2,3]. Since then, EVs have been
isolated from almost all mammalian cells and are known to be present in virtually all body
fluids constituting a burgeoning field of research [4,5].

No consensus on EVs definition has been reached so far. However, EVs are generally
considered as membrane-enclosed secreted vesicles that encompass various subsets of
different compounds, namely exosomes, ectosomes, microvesicles, microparticles, and
apoptotic bodies [6]. These different EVs subsets are characterized based on their size,
biological origins, release pathways, functionality, and cargos [7]. In particular, the study
of exosomes has witnessed breakthrough progress in recent times. Exosomes are typically
considered as molecules sized around 10–200 nm, which originate from repeated invagina-
tion of the lipid bilayer membrane of multivesicular bodies [8,9] and can harbor a variety
of different cargos and components, such as lipids, proteins, and nucleic acids, thus acting
as delivery molecules [10]. Regarding their cargos, the nature of the exosomal content is
heterogeneous and depends on its cellular origins and microenvironment [11]. However,
the loading of cargos into the exosome is a non-random process that obeys their biological
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purpose [12]. Hence, given the importance of exosomes in cell-to-cell communication
and their presence in diverse body tissues, a database was developed in 2009 with the
endeavor of cataloging exosome cargos from all types of tissues [13]. To this date, more
than 1960 proteins, 2830 miRNAs, and 1110 lipids have been reported in exosomes [14].

Cellular Origins of Exosomes
From the scientific point of view, one of the most interesting aspects of exosomes re-

sides in their unique biogenesis process. Exosomes biosynthesis begins with the endocytosis
of extracellular environment constituents by invagination of the plasma membrane along
with the internalization of their associated surface proteins, which leads to the formation of
an early-sorting endosome (ESE). The trans-Golgi network and the endoplasmic reticulum
can contribute to the content of the ESE, which matures into late-sorting endosomes (LSE)
to eventually generate multivesicular-bodies (MVBs). MVBs contain intraluminal vesicles
that will constitute future exosomes once the MVB fuses with the plasma membrane [11].
In contrast, larger EVs, such as microvesicles and apoptotic bodies, originate via budding
and shedding from the plasma membrane of cells. Several molecules, such as TSG101,
ALIX, ESCRT, and ceramides, among others, are involved in the biogenesis of exosomes
and, therefore, have been proposed as exosome (specific) markers [5,11,15]. However, these
proteins might be involved in the trafficking of other vesicles, thus potentially acting as
a confounding factor when conducting research in the field of exosomes [11]. Similarly,
exosomes usually display certain proteins in their membranes, namely tetraspanins CD9,
CD63, and CD81, which can serve as exosome biomarkers, albeit caution must be warranted
as tetraspanins can be indistinctly expressed in the membrane of different vesicles [16].

Due to their biogenesis process, exosomes content resembles that of the donor cell. Thus,
the characteristics of exosomes components and cargos will depend mainly on the tissue
where they originate. As previously stated, exosomes have been isolated from virtually all
human fluids, including plasma, saliva, urine, and breast milk [17]. In this regard, the presence
of exosomes in breast milk is of particular interest, given that not only does milk constitute
fundamental nutrition for the newborn but also contains bioactive compounds which have
been implicated in growth, neurodevelopment, and immunomodulatory processes [18–20].

2. Materials and Methods

We comprehensively analyzed the available scientific literature on milk exosomes,
including both reviews and original research articles. An extensive search was conducted
in the scientific databases and search engines PubMed, ScienceDirect, and Google Scholar
using relevant search terms (i.e., “exosomes”, “extracellular vesicles”, “milk”, “dairy”) in
combination with Boolean operators (i.e., “AND”, “OR”, “NOT”) with no time restrictions.
Additionally, the ProQuest Dialog® search tool was used to screen different electronic
databases and repositories such as Embase, BIOSIS Previews, and ProQuest Dissertations
and Theses Professional to supplement the literature search.

3. Milk-Derived Exosomes

Milk is a nutrient-rich fluid produced by female mammals whose main purpose is to
meet the nutritional requirements of the newborn. Due to its excellent nutritional profile,
milk constitutes an important component of the human diet [21]. In addition to nutritional
properties, milk contains a wide repertoire of bioactive compounds to which potential
health benefits have been attributed [22]. In particular, different EVs, including exosomes
and milk fat globules (MFG), are included among described milk bioactive compounds [23].
These vesicles have different sizes, origins, compositions, and functions. Specifically, MFG
are far bigger structures (up to 20 µm) constituted by a triacylglyceride-rich core enveloped
by a polar lipid trilayer [24], while exosomes are nanosized (10–200 nm), lipid bilayered
vesicles with notably lower triacylglyceride content [25]. In the same fashion, lipidomic
analyses have suggested that these compounds differ in the presence of phospholipids, with
a higher proportion of phosphatidylserine and sphingomyelin being reported in human
and bovine milk exosomes in comparison with milk fat globule membranes (MFGM) [25].
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Not only lipid but also protein compositions of MFGM and exosomes display notable dif-
ferences [25–27]. According to the BoMiProt database, more than 1300 proteins have been
exclusively found in bovine milk exosomes, while 294 have been identified in MFGM [26].
These differences would arise due to their different biogenesis pathways. Whereas exo-
somes have endosomal origins, MFG are formed in the endoplasmic reticulum and are
released into the cytosol as lipid droplets [28,29] (as illustrated in Figure 1).

Figure 1. Biogenesis of milk exosomes and milk fat globules. (A), milk exosomes; (B), milk fat globules.

3.1. Milk Exosomes Isolation and Characterization Methods

The isolation of milk exosomes remains a challenging process. Since extracellular
vesicles are an emergent field of research, no consensus has yet been reached on isolation
or characterization methods. The International Society for Extracellular Vesicles (ISEV)
provided criteria and recommendations for the isolation and analysis of EVs, which can
serve as guidance for the accurate reporting of exosomes studies [6,30]. Accordingly,
these studies should describe in detail the methods employed to isolate and characterize
exosomes and report aspects related to these processes, such as purity, size distribution,
and enriched markers assessed [6]. In this regard, the methods used to isolate exosomes
from different sources are also applicable to milk exosomes. However, matrix substances,
such as milk caseins, which account for >80% of bovine milk proteins, can interfere with the
isolation process and the lack of accuracy in separating exosomes from different constituents
represents the main limitation of available techniques [31].

The most widely used method to isolate milk exosomes is differential ultracentrifuga-
tion, which is considered to be the current “gold standard” technique [31,32]. Sequential
ultracentrifugation is needed to separate exosomes from other colloidal structures, and it
is usually followed by an additional gradient step (i.e., sucrose gradient) [33,34]. Density
gradient ultracentrifugation yields low protein contamination and high purity, but it is a
time-consuming process and might be unsuited for large-scale production due to its low
sample throughput and potential negative impact on exosome integrity [33,35].

Size-exclusion chromatography (SEC) has also been successfully implemented to
isolate exosomes from different origins. SEC relies on the differential elution profiles of
different particles running through a stationary phase depending on their size [36]. This
technique has been used to isolate bovine milk exosomes improving both yield and time
efficiency compared to differential ultracentrifugation [25,37]. On this subject, a method
for isolating EVs using a size-exclusion chromatography column in combination with
turbidimetry was developed and applied to cow milk samples [38]. SEC presents prac-
tical advantages over differential ultracentrifugation, being simpler, less expensive, and
reusable [36]. Nonetheless, a recent report suggested that SEC might be incapable of differ-
entiating exosomes from other milk components when assessing industrially processed
milk samples [39]. The presence of other contaminants and different EVs subsets might
compromise SEC analyses in exosomes studies [31,37]. Overall, most authors favor us-
ing a combination of methods to ensure an adequate isolation process [40]. Recently, the
combination of ultracentrifugation and SEC, or tangential flow filtration (TFF), along with
divalent cation chelation with EDTA, was shown to produce large amounts of pure milk
EVs isolates, thus constituting a promising approach [40].

Milk caseins represent an important obstacle to the isolation of milk exosomes. Meth-
ods based on acidification have been explored to cause isoelectric precipitation of milk



Nutrients 2022, 14, 1442 4 of 26

caseins, thus enabling their separation from other milk components [34,41]. Acidification
enables faster isolation of milk exosomes and yields significantly higher amounts com-
pared to differential ultracentrifugation [32]. Accordingly, this process has been proposed
as the most suitable step to remove caseins [42]. However, some authors have reported
deterioration of exosomes’ surfaces after acid treatment [34,41].

Commercial kits were introduced to the market to isolate EVs with similar results
to those obtained by ultracentrifugation techniques without requiring specialized equip-
ment [31]. Among these, exosome precipitation solutions (ExoQuickTM, System Biosciences,
Palo Alto, CA, USA), and membrane affinity spin columns (ExoEasyTM, QIAGEN, Hilden,
Germany) have been applied to milk extracellular vesicles [43–47]. These kits provide rapid
EVs isolation but are susceptible to high protein contamination and can promote exosome
aggregation [31,48]. Particularly, the incapacity to differentiate different EVs subsets is a
common disadvantage of most available methods. Newer techniques, such as asymmetrical
flow field-flow fractionation (AF4), have been shown to enable the differentiation between
different EVs populations up to 1 nm increments [48,49], albeit low yield and high costs
may hinder their implementation [50].

The characterization of milk exosomes is crucial to evaluating the heterogeneity of
isolated preparations [6]. Diverse methods are available for this purpose. Transmission
electron microscopy (TEM) and cryo-electron microscopy (Cryo-TEM) permit the char-
acterization of exosomes by their size and distribution and are widely used in exosomes
research [31,51]. In the same line, adapted high-resolution flow cytometry protocols were
demonstrated to enable the characterization and quantification of milk exosomes [52].
These protocols are typically used in conjunction with TEM or cryo-TEM in milk exosome
studies [53,54]. Other techniques, such as nanoparticle tracking analysis (NTA), which is
usually used in combination with fluorescence detection, can effectively measure particle
size, distribution, and concentration in liquid media [31,55] and are applicable to validate
the isolation of milk exosomes [56]. Similarly, dynamic light scattering (DLS) has been
used to measure the size distribution of milk exosomes [57,58]. However, it is possible that
DLS cannot differentiate populations with different sizes, being useful only to evaluate
populations of monodisperse samples [29,31]. Large-scale and cost-effective isolation of
milk exosomes constitutes a bottleneck for their successful implementation as bioactive
ingredients and methods available so far might not be suited for this purpose [59].

As commented, milk exosomes can be characterized based on enriched marker proteins
such as tetraspanins (i.e., CD9, CD63), trafficking molecules (i.e., TSG101, ALIX), and
chaperones (i.e., HSC70, HSP60) [42,60]. Detection of these markers by Western-Blot
is customary in milk exosomes studies [43,61,62]. Finally, the combination of specific
antibodies and atomic force microscopy (AFM) provides better resolution than other
imaging techniques but requires specialized equipment and has limited throughput [31,42].
Remarkably, given the limitations of existing techniques, the combination of different
methods, including microscopy, flow cytometry, and Western blotting, should be considered
to ensure an adequate characterization of isolated exosomes [60].

3.2. Milk Exosomes Composition and Cargos

Milk exosomes harbor various cargos with potential roles in intercellular commu-
nication, metabolism, and nutrition. Beyond tetraspanins, exosomes can contain many
different proteins, including membrane transport proteins, cell adhesion proteins, signaling
proteins, enzymes, cytoskeletal proteins, and chaperones [15,63]. Furthermore, exosomes
from bovine colostrum were shown to be significantly enriched in proteins implicated in
the growth and immune response [64]. Among the most consistently reported proteins
of milk exosomes are the lactadherin [65], a glycoprotein that has been observed to play
a role in maintaining the intestinal epithelium [66,67]. Besides, bovine milk exosomes
were shown to carry bioactive transforming growth factor-β1 (TGF-β1), a cytokine with
important immunomodulatory properties [68,69].
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Contrary to proteins, the lipid composition of exosomes remains largely unexplored.
Lipidomic analyses of milk-derived exosomes have revealed that phosphatidylcholine (PC),
phosphatidylserine (PS), phosphatidylethanolamine (PE), and sphingomyelin (SM) are
among the most enriched lipids found in these vesicles [25,70,71]. PC has been proposed to
ameliorate inflammation via the gut–brain axis in vivo [72]. Likewise, PE might present
hypocholesterolemic effects reducing intestinal lipids absorption and SM has been proposed
to promote myelin formation and brain neuroplasticity, thus potentially playing a beneficial
role in infant neurodevelopment [73,74]. Evidence from human trials attributes a positive
effect to MFGM lipids in growth, intestinal health, and infant neurodevelopment [75].
These effects are usually attributed to polar lipids, which are also abundantly expressed in
milk exosomes [70]. However, research on the beneficial effects of the lipidic fraction of
milk exosomes is lacking and constitutes an interesting avenue to explore [75].

Among exosome components, nucleic acids have attracted the greatest interest due
to their biological effects on regulating metabolic processes [5]. Different nucleic acids
have been described in milk exosomes, including DNA, mRNA, miRNA, circular RNA,
long non-coding RNA, etc. In particular, milk represents one of the richest sources of
miRNA [32,76]. MiRNAs are defined as 17–24-nucleotide small noncoding RNA fragments
which are responsible for post-transcriptional gene silencing by binding to regions of
target mRNAs [77]. In animals, miRNA genes are transcribed to pri-miRNAs that are
processed by the nuclear RNase III Drosha, and the resulting intermediates are exported
out of the nucleus via exportin-5 to be later cleaved by the RNase III Dicer into a miRNA
duplex [78]. The resulting miRNA duplex associates with Argonaute (Ago) proteins, which
are part of the RNA-induced silencing complex (miRISC), leading to the removal of the
passenger strand and the final maturation of the miRNA [79]. However, miRNAs can also
be loaded into exosomes in a completely independent pathway which might implicate
multiple mechanisms, namely recognition by hnRNPA2B1 and hnRNPA1 RNA-binding
proteins [80,81], an affinity for different cell membrane lipids [82], recognition of specific
RNA motifs and configurations, etc. [83]. These processes are illustrated in Figure 2.
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Including milk, biological fluids constitute an aggressive environment for miRNA
viability. Exosomes protect miRNAs against low pH and RNases, thus enabling their
delivery to target cells [35,84,85]. Furthermore, exosomes have been shown to confer
protection against the adverse conditions present in the digestive tract, which suggests
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that the oral intake of these compounds facilitates the availability of their cargos [86–88].
Besides protecting their cargos, glycoproteins displayed in milk exosomes facilitate their
recognition and uptake by the target cell receptors [70,89].

Interestingly, milk exosomal miRNAs are highly conserved across mammalian species,
including humans [90]. A remarkable number of these milk miRNAs are considered to be
related to the immune system [91,92]. Particularly, miR-155 has been shown to regulate
T cells development and homeostasis [93,94]. Other miRNAs, such as Let-7c, miR-17,
miR-30, miR-92, miR-148a, and miR-223, have been linked to the regulation of different
populations of immune cells and inflammatory processes [95,96]. Synapse localization
is strongly enriched among genes targeted by miRNAs abundantly expressed in milk
exosomes, which might positively affect brain development during early life [97]. MiR-
181a-5p has been consistently reported to be among the most highly expressed miRNAs in
milk exosomes [98,99], and it is considered an antiatherogenic miRNA that downregulates
NF-κB activation and vascular inflammation [100,101]. Hence, milk exosomes may promote
the transfer of miRNAs from the mother to the offspring, playing a role in the early
development of the immune system and mediating different positive health effects [102].

3.3. Bioavailability, Bioaccessibility, and Bioactivity of Milk Exosomes

The capability of milk exosomes to exert biological effects relies on their bioaccessibility
and bioavailability after oral intake [103]. Bioaccessibility would consist of the ability of
the exosomes and their cargos to survive gastrointestinal digestion. As already mentioned,
strong evidence provided by in vitro human digestion models supports that milk exosomes
resist gastrointestinal/pancreatic digestion processes [99,104–106]. This fact is even more
important in infants, given their lower stomach acidity. In this sense, the free synthetic
miRNAs that are added to milk are rapidly degraded by an acidic environment and RNases,
while disruption of exosomes by ultrasonication releases miRNA content, thus leading to
similar effects [107]. Milk exosomes not only protect miRNAs from low pH and RNases
but may also exert a protective effect on cargo proteins from proteases [106].

Storage conditions, freezing, and thawing can compromise exosomes stability, nega-
tively influencing their count in milk samples [108,109]. Nonetheless, some studies have
observed that exosomes are very stable in harsh conditions. In this sense, it has been shown
that exosomes contained in commercial bovine milk harbor miRNAs and immunoregulat-
ing proteins such as TFG-β after pasteurization [68]. However, different reports suggest
that common industrial processing might compromise commercial milk exosome integrity,
thus drastically reducing their count in products such as UHT milk or infant formulas [53].
Similarly, dairy products subjected to fermentation processes and consumer handling
(i.e., microwaves) may show a significant decrease in exosome protein and miRNA con-
tent [107,110]. Processes such as fermentation may induce exosome lysis and increase
RNase levels due to microbial production [107]. In the same line, infant formulas are also
subjected to harsh conditions during their production, and thus, the addition of exosomes
as an ingredient to resemble the characteristics of human milk must overcome challenges
related to industrial processing and storage [111]. These aspects are even more relevant in
hydrolyzed formulas, which are subjected to more severe processing conditions [112].

Bioavailability implies gastrointestinal absorption and the subsequent presence in the sys-
temic circulation [103]. Studies evaluating the effects of gastrointestinal digestion on exosomes
have also analyzed the uptake of exosomes and their cargos by human intestinal cells in vitro,
yielding positive results [99,105]. Furthermore, studies conducted in humans have observed
increased concentrations of certain miRNAs in blood mononuclear cells after the consumption
of milk [113]. This fact has predisposed authors to evaluate the potential of milk-derived exo-
somes as carriers to facilitate oral drug administration [114]. Notably, Manca et al. evaluated
the bioavailability of fluorescently labeled bovine milk exosomes and their labeled miRNAs in
mice, observing that both exosomes and miRNAs were bioavailable after exosomes oral intake
and intravenous administration, and were accumulated in different organs, although the
distribution of miRNAs showed a unique profile [87]. Moreover, studies have reported that
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bovine milk exosomes are assimilated by gut bacteria in mice, thus modulating gut microbiota,
suggesting that exosomes are involved in a potential cross-talk between animals and bacteria
of different species [115,116]. Regarding internalization mechanisms, intestinal cells uptake
exosomes through a glycoprotein-mediated endocytosis process. Accordingly, eliminating gly-
coproteins using proteinase K or trypsin in human and rat intestinal cells leads to a significant
decrease in exosome uptake [117]. Similar results are obtained when intestinal cells are treated
with endocytosis inhibitors and carbohydrate competitors [117]. Different cells can uptake
exosomes by a variety of proposed mechanisms, including clathrin-dependent endocytosis,
caveolin-mediated uptake, micropinocytosis, phagocytosis, etc. [118] In this regard, a recent
study reported that milk exosomes are phagocyted by mice macrophages through a process
mediated by class A scavenger receptors, which is important when assessing their potential
as delivery vehicles [119]. Overall, the uptake mechanisms depend on the exosomes source
and the type of recipient cell, and several mechanisms may co-exist [8].

As discussed, milk exosomes carry proteins, lipids, and nucleic acids with the potential
to regulate immunity, growth, and development [103]. The bioavailability and bioaccessibil-
ity of milk exosomes modulate their bioactivity, defined as their capacity to exert functional
effects. Remarkably, current scientific evidence suggests that milk exosomes can survive
harsh conditions and be bioavailable after oral ingestion. Henceforth, it seems reasonable
to evaluate the beneficial effects that these bioactive compounds can mediate in health and
metabolism when orally consumed (Figure 3).
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4. Beneficial Effects of Bovine Milk Exosomes on Overall Health
4.1. Intestinal Health

A growing body of scientific evidence indicates that milk exosomes survive digestion
processes and are assimilated by intestinal cells via endocytosis, being bioavailable sys-
temically [87,88,99,117,120]. Nonetheless, milk exosomes can also elicit direct effects on
intestinal cells when taken up. In this regard, Martin et al. reported that human milk exo-
somes (HME) exerted a protective effect against H2O2-induced oxidative stress in intestinal
epithelial cells [121]. Ensuing studies endeavored to elucidate the underlying mechanism
of action. On this subject, Dong et al. exposed intestinal stem cells to H2O2, documenting
that the addition of HME led to increased cell viability, which was proposed to be mediated
by the upregulation of the highly conserved Wnt/β-catenin axis [122]. Hence, HME might
exert beneficial effects on intestinal oxidative stress, which is a key feature of necrotizing
enterocolitis (NEC) and intestinal bowel disease (IBD) [123]. Briefly, NEC is a severe in-
testinal pathology that develops during infancy, whereas IBD is a group of adult chronic
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disorders, including ulcerative colitis and Crohn’s disease, characterized by inflammatory
processes [124]. However, both NEC and IBD share common pathological features, namely
compromised intestinal tight junctions, reduced mucosa layer, and increased susceptibility
to bacterial components, such as lipopolysaccharides (LPS) [125], and milk exosomes have
been reported to convey beneficial effects on various of these aspects.

Both raw and pasteurized human milk exosomes have been shown to reduce the
injury caused by hypoxia and LPS in mouse organoids while attenuating the expression of
proinflammatory IL-6 in vitro [62]. Similarly, gavage administration of these exosomes to
a mouse NEC model led to reduced mucosal injury and inflammation and an increased
number of goblet cells and mucosa production regardless of the pasteurization process [62].
Moreover, He et al. evaluated the effects of HME obtained from mothers who delivered term
preterm infants on in vivo and in vitro NEC pathological scores. They observed that HME
protected against the LPS insult and increased the expression of epithelial tight-junction
proteins. Regarding animal models, pretreatment with HME led to reduced intestinal
mucosal damage, lower levels of IL-6 and TNF-α, and increased expression of epithelial
tight-junction proteins. These effects were independent of the delivery status [126]. Other
authors have reported similar effects of HME on the incidence and severity of NEC in rat
models [70,127]. In particular, Chen et al. observed that HME isolated from women who
gave birth to term or preterm newborns exerted a protective effect on NEC by decreasing
the severity of the injury and stimulating the proliferation and migration of intestinal
epithelial cells independently of the delivery status [70]. The authors further analyzed the
lipidomic profile of HME, finding that term and preterm milk exosomes displayed almost
identical lipid compositions. Furthermore, bioinformatic analyses suggested that HME’s
most abundant lipids were related to the ERK/MAPK pathway, which is proposed to
mediate LPS injury in intestinal cells [70]. Therefore, HME not only reduces oxidative stress
but also positively contributes to intestinal epithelial integrity while decreasing intestinal
inflammation in NEC models.

In the light of these studies, it can be proposed that exosomes may confer therapeutic
properties to human milk in NEC situations. Notably, feeding human breast milk is
demonstrated to reduce the incidence of NEC compared to formula feeding [128]. However,
mothers delivering preterm and low birth weight infants may be unable to initiate milk
expression, thus making donor human milk necessary to ensure adequate lactation [129].
In this context, some authors have evaluated the role that milk exosomes obtained from
different animal sources play in NEC as an alternative to human milk. The concomitant
administration of bovine milk exosomes to NEC-induced mice was shown to protect
against intestinal injury, increase the number of goblet cells, and improve endoplasmic
reticulum function in vivo [86]. Similarly, bovine milk exosomes were demonstrated to
induce cell proliferation, protect against oxidative stress caused by H2O2 while inhibiting
Nrf2 and H01 gene expression, and improve purine nucleotide catabolism and energy
status in rat intestinal crypt epithelial cells [110,130,131]. In the same line, milk exosomes
originating from different species, including mice, pigs, and yak, have been demonstrated
to exert beneficial effects on the features of NEC [45,132–134]. The addition of different
nutritive compounds to infant formulas to prevent NEC development has been shown to be
largely unsuccessful, and further insights into which bioactive human milk compounds are
responsible for its effects on NEC prevention are required [135]. In the light of the literature,
the effects of bovine milk exosomes on NEC features might resemble those of HME, thus
constituting a promising new ingredient for infant formulas to address the development
and treatment of NEC.

Regarding IBD, some authors have evaluated the role that milk-derived exosomes
play in the characteristics of these intestinal disorders denoted by inflammatory pheno-
types. Among them, Wu et al. observed that the reduction of bovine milk exosomes and
their miRNA content in diets administered to Mdr1a knockout mice led to exacerbated
IBD symptoms compared to exosome/miRNA-sufficient diets [136]. An ensuing pilot
study conducted in a different genetic mouse model of ulcerative colitis observed that
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the administration of bovine milk exosomes improved the macroscopic colitis histopatho-
logical scores of treated mice compared to control [137]. Benmoussa et al. evaluated the
administration of milk exosomes on colitis outcomes in a dextran sodium sulfate (DSS)
-induced colitis mouse model. The authors concluded that milk exosomes partially restored
intestinal impermeability, recovered mucin secretion, improved histology scores, reduced
colon shortening, and prevented weight loss. In particular, milk exosomes were shown
to downregulate the expression of several colitis-associated microRNAs, namely miR-21,
miR-29b, and miR-125b [138]. Likewise, Reif et al. reported that the oral administration of
exosomes isolated from cow and human milk exerted similar positive effects attenuating
the severity of colitis symptoms, reducing IL-6 and TNF-α expression, and downregulating
DNMT1 and DNMT3 methyltransferases in DSS-induced colitis mice [69]. On this subject,
a recent study conducted by Tong et al. provided further evidence on the beneficial effects
of bovine milk exosomes on wide aspects of ulcerative colitis. The authors observed that
the treatment of RAW264.7 cells with different concentrations of bovine milk exosomes
inhibited inflammatory responses mediated by TLR4-NF-κB and NLRP3 pathways. These
results were replicated in vivo in a mouse model of ulcerative colitis. Moreover, the admin-
istration of bovine milk exosomes improved wide aspects of cytokine homeostasis, immune
response, and modestly improved gut microbiota profile [139]. Thus, bovine milk exosomes
constitute a promising therapeutic tool in managing intestinal inflammatory disorders.

Finally, a recent report suggested a potential application of bovine milk exosomes in
the management of malnutrition. Exosomes were administered to mice fed a 1% protein
diet and were shown to improve defective intestinal epithelial permeability and architecture
induced by malnutrition [140]. Further studies are warranted to evaluate the therapeutic
value of bovine milk exosomes in malnourished individuals.

4.2. Bone and Muscle Metabolism

Bone remodeling is a dynamic process characterized by consecutive cycles of bone re-
sorption and formation regulated by specialized cells, namely osteoclasts and osteoblasts [141].
While the attachment of osteoclasts to the bone surface leads to bone resorption mediated by
acidification and proteolysis processes, the osteoblasts are responsible for bone formation
mediated by tightly regulated processes of matrix production and bone mineralization [141].
Bone remodeling is controlled at the systemic level by hormones responsible for maintaining
calcium homeostasis, mainly parathyroid hormone and vitamin D metabolites [141]. Milk
is not only a rich source of calcium and vitamin D3 but also contains different minerals
and proteins, such as lactoferrin and whey proteins that are involved in bone remodeling
processes [142–145]. Although different mechanisms support a positive role of milk intake in
bone health and the prevention of bone fractures, some studies have failed to prove these
effects [146]. Nonetheless, milk consists of a complex matrix, and the health effects of individ-
ual components might not be completely extrapolated [147]. In this sense, some authors have
focused on milk extracellular vesicles to identify milk bioactive compounds with beneficial
effects on bone formation. In particular, Oliveira et al. orally administered two different
concentrations of bovine milk exosomes (4.7× 106/mL and 14.3× 106/mL) to mice for seven
weeks observing that treated mice displayed increased osteocytes number and woven bone
formation compared to control (PBS) [148]. Furthermore, exposing human mesenchymal
stem cells (hMSCs) to bovine milk exosomes led to increased osteoblast differentiation. In an
ensuing study, Oliveira et al. showed that milk exosomes treatment on murine bone marrow
cells induced an increase in osteoclast differentiation along with an inhibition of the osteo-
clast activity [149]. Recent research conducted by Go et al. studied the addition of bovine
milk exosomes to human osteoblastic Saos-2 cells in vitro, observing an increase in Saos-2
cells proliferation in a time-dependent and dose-dependent manner while promoting the
expression of the osteoblast transcription factors RUNX2 and Osterix [150]. Moreover, treat-
ment of Saos-2 and MC3T3-E1 pre-osteoblastic cells with milk exosomes increased alkaline
phosphatase (ALP) and osteocalcin (OCN) levels, which are involved in extracellular matrix
synthesis processes [150]. Finally, the authors administered 50 mg/kg/day of exosomes to
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rats for 14 days and reported that the treatment was associated with significantly increased
bone mineral density in trabecular and cortical tibiae [150]. In the light of these studies,
bovine milk exosomes could constitute food components with the potential to influence
different aspects of bone remodeling.

The aforementioned effects of bovine milk exosomes in osteogenesis lay the ground-
work for the study of their potential application in settings of bone loss and osteoporosis.
Oliveira et al. explored the osteoprotective properties of bovine milk exosomes in obese
and ovariectomized mice. The treatment with bovine milk exosomes contributed to a
reduced RANKL/OPG ratio in mice fed a high carbohydrate diet, which denotes decreased
osteoclast differentiation and activity. In ovariectomized mice, the administration of bovine
milk exosomes prevented the loss of mechanical resistance and improved several features
of femur microarchitecture [151]. In addition, the administration of exosomes was also
associated with decreased number and activity of osteoclast cells in ovariectomized mice
by reducing the local and systemic RANKL/OPG ratio [151]. Other authors have explored
the use of bovine milk exosomes to improve bone health in the context of osteoporosis.
Yun et al. treated MC3T3-E1 and RAW 264.7 cells with bovine colostrum exosomes. No
cytotoxicity was evident in MC3T3-E1 cells exposed up to 500 ng/mL of exosomes, while
100 ng/mL was enough to enhance cell proliferation. Regarding the RAW 264.7 cells assay,
exosomes were shown to inhibit osteoclast differentiation after exposure to RANKL and
macrophage-colony-stimulating factor [98]. Furthermore, 8-week treatment with colostrum
exosomes before the onset of steroid-induced osteoporosis exerted a positive effect on the
femoral bone volume and bone mass density [98]. Thus, bovine milk exosomes appear to
be a promising element to explore the prevention of bone loss and osteoporotic processes.

Milk intake has been associated with improved linear growth in various observational
and interventional studies [152–154]. In the same line, milk allergy has been linked to
a lower final height in adulthood [155]. Not only has milk intake been associated with
linear growth, but it also may be beneficial for malnourished children undergoing catch-
growth [145]. Importantly, relationships between growth and milk intake can be subjected
to reverse causality and residual confounding. Notwithstanding this fact, the potential
effects of milk on stature growth have been attributed to different milk components, such as
proteins, minerals, and prebiotic carbohydrates [156]. These effects are usually proposed to
be mediated through the stimulation of IGF-1 synthesis, which constitutes a major regulator
of growth and bone elongation [157–159]. Interestingly, some authors have proposed that
breastfeeding is linked to higher IGF-1 levels later in life, which implies a programming
effect of breastmilk on linear growth patterns [160]. MiRNAs abundantly expressed in
milk exosomes, namely miRNA-148a and miRNA-29, have been hypothesized to induce
IGF-1-mediated growth [118,161].

Bone and muscle constitute a functional unit [162]. Not only adequate bone remodeling
but also an appropriate muscle function are desirable to support a healthy musculoskeletal
status. Nutritional interventions targeting both bone mass and muscle function may
have profound implications for mobility and quality of life. In this regard, milk contains
valuable proteins with important anabolic effects in terms of muscle protein synthesis [163].
Nonetheless, different milk components might contribute to these anabolic effects. On this
subject, Mobley et al. explored the effects that exosomes isolated from the whey fraction
of bovine milk had on features of muscle anabolism in vitro. Seeding C2C12 myoblast
cells with milk exosomes led to a significant increase in muscle protein synthesis 12 and
24 h after treatment. Although mTORC1 was not affected 6–24 h after the treatment, a
short-term activation could not be discarded [164]. The following study evaluated the
administration of bovine milk exosomes to C57BL/6 mice in vivo, observing only modest
effects on gene expression and amino acid content in treated animals with no relevant
impact on muscle strength [165]. These results were in line with those obtained by Parry
et al., who documented that a bovine milk exosome-depleted diet elicited anabolic and
transcriptomic effects in rat muscle, whereas an exosome-sufficient diet was not associated
with any anabolic outcome [166]. Overall, in vitro results suggested a potential role for
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bovine whey exosomes in muscle anabolism, but evidence from in vivo studies is conflictive.
Differences in tissue distribution patterns of milk exosomes might be responsible for
these heterogeneous results [165,166], yet cross-communication between different organs
should not be discarded [33]. Promising in vitro results should not be eclipsed by these
discrepancies, and further research on this subject is warranted to elucidate the potential
role of milk exosomes in muscle anabolism. A summary of the preclinical evidence on the
potential beneficial effects of bovine milk exosomes on musculoskeletal health is illustrated
in Figure 4.
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4.3. Immunity

Breast milk is a dynamic composition of nutrients and bioactive factors that changes
throughout lactation according to the needs of the developing infant [167]. A solid body of
literature supports that breastfeeding confers protection against infections, allergic diseases,
and inflammatory processes in infants [168–171]. In this sense, a wide number of breast
milk components present immunoregulatory properties and might contribute to these
effects, including immunoglobulins, oligosaccharides, glycoproteins, living cells from the
mother, and probiotic microorganisms, among others [167]. Exosomes are among the pool
of bioactive compounds with immunoregulatory features identified in milk. Admyre et al.
reported the presence of exosome-like vesicles in human breast milk, which, when incu-
bated with peripheral blood mononuclear cells (PBMC), led to inhibited production of IL-2,
IFN-γ, and TNF-α along with increased production of IL-5 [61]. These effects were pro-
posed to be mediated by the regulation of T-lymphocytes response [61]. Authors postulated
that these effects might contribute to the benefits of breast milk in the development of the
infant’s immune system. Kosaka et al. examined milk exosomes cargos observing that these
vesicles contained miRNAs with the potential to induce B-lymphocytes differentiation,
namely miR-181 and miR-155 [172]. Following an in-depth analysis of human milk exoso-
mal miRNA reported that immune-related miRNAs are present in high quantities in this
medium with low variation among healthy individuals [92]. Nowadays, it is well-accepted
that milk exosomes carry a notable number of miRNAs with potential immunomodulatory
effects [173]. The potential immunomodulatory properties of milk exosomes might be at
least partially responsible for the already discussed benefits on intestinal health and other
health outcomes [174].
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Interestingly, not only human breast milk but also milk from different mammals display
a high miRNA content, and exosome immune-related miRNA profiles are similar across
species [175]. In particular, miRNAs members of the let-7 family and miR-148a were shown to
be highly conserved in milk exosome samples obtained from a wide variety of different mam-
mals and have been implicated in several aspects of the immune function [90,120,176,177].
More precisely, members of the miR-148/152 family were demonstrated to inhibit the TLR-
mediated expression of MHC II and cytokine production by targeting CaMKIIα in dendritic
cells [178]. MiRNA-148a has also been linked to the regulation and function of lympho-
cytes B and T and might play a role in the prevention of inflammatory and autoimmune
disorders [179]. Similarly, members of the let-7 miRNA family play an important role in
regulating TLR4 signaling, contributing to host defense responses in settings of infection [180].
Furthermore, let-7 has been linked to processes of macrophage activation and modulation of
the adaptative immune response [180]. Recently, immune-related miRNAs, such as miR-181a,
miR-26a, and miR-191, were found to be among the most abundantly expressed in colostrum
and mature bovine milk exosomes [98]. Hence, it can be inferred that miRNAs present in milk
exosomes from different species might serve the purpose of contributing to the development
of the infant’s immune system.

Different cargos might also contribute to the immunomodulatory properties of milk
exosomes. Regarding proteins, Benmoussa et al. analyzed possible pathways impacted by
proteins contained in milk exosomes observing that identified proteins were associated with
different immunity pathways related to neutrophil degranulation and the innate immune
system, among other aspects [181]. Specifically, Pieters et al. observed that transforming
growth factor-β (TGF-β) was consistently expressed in exosomes isolated from commercial
semi-skimmed cow milk [68]. TGF-β cytokine is crucial for the differentiation of Th17
cells [182]. To assess exosomes activity, authors co-incubated murine spleen T-cells with a
Th17 differentiation cocktail replacing TGF-β with milk exosomes, confirming the differ-
entiation of Th17 cells, which was repressed by the blockade of TGF-β using monoclonal
antibodies [68]. These results aligned with a study evaluating similar settings [183]. Like-
wise, another study reported TGF-β1 as a cargo of both cow and human milk exosomes [69].
Curiously, one report on proteomic and functional enrichment analysis of bovine milk
exosomes suggested that immune-related proteins are more abundant in colostrum com-
pared to mature milk [64]. Nonetheless, a recent proteomic analysis of late-stage lactation
bovine milk exosomes revealed a large number of proteins that were mostly related to
metabolism and immune system pathways [184]. These findings underscore that not only
nucleic acids but also proteins might contribute to the immunomodulatory properties of
exosomes isolated from different types of milk. Finally, as commented, data regarding the
lipid content of exosomes and its potential effects on immune outcomes are limited and
might constitute an interesting field to explore.

Research on the regulatory effects of milk exosomes in different immune processes
has been reported. In this regard, different macrophage cell lines have been consistently
shown to take up milk exosomes. A recent study observed that the treatment of RAW264.7
macrophages with bovine exosomes before LPS stimulation contributed to a decreased
inflammatory response and a downregulated cytokine secretion mediated by inhibited
NF-κB pathway [185]. Other studies conducted in RAW264.7 cells have demonstrated
that bovine milk exosomes stimulate macrophages proliferation without stimulating nitric
oxide or proinflammatory cytokines production while promoting the expression of proteins
involved in cell cycle and proliferation [186]. Furthermore, bovine milk exosomes were
shown to exert a protective effect against the cytotoxic action of cisplatin, a chemothera-
peutic drug, in RAW264.7 cells [186]. Regarding immune effects on different cells, Arntz
et al. pre-incubated mice splenocytes with different concentrations of exosomes (20 and
200 µg/mL) to later stimulate the cells with LPS. Exosomes treatment led to a pronounced
reduction in proinflammatory markers TNF-α and monocyte chemoattractant protein-1
(MCP-1) in response to the LPS insult compared to control [183]. Furthermore, IL-1Ra
knockout mice, which display symptoms of polyarticular arthritis, were administered
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different doses of bovine milk exosomes. Mice treated with 1200 µg/mL of exosomes
showed a considerable delay in arthritis onset and reduced arthritis symptoms, which
implies a potential role of bovine milk exosomes in autoimmune and inflammatory dis-
eases [183]. Interestingly, milk exosomes have been suggested to confer protection against
HIV infection. Milk exosomes were shown to express soluble mucin 1 (MUC1) and in-
cubation of monocyte-derived dendritic cells (MDDCs) with exosomes was observed to
protect against HIV-1 infection in vitro [187]. Moreover, milk exosomes were taken up by
MDDCs within 4 h and prevented the transfer of HIV-1 from MDDCs to CD4+ T cells,
whereas plasma-derived exosomes did not exhibit any of these effects [187]. Overall, the
literature supports an immunomodulatory role of milk exosomes as diet components that
may impact an infant’s development and different immune processes (Figure 5).
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4.4. Microbiota

EVs have been proposed to facilitate a cross-talk process between the host and the
microbiome [188]. Milk exosome microRNAs display unique distribution profiles and
are accumulated in the intestine, among other organs [87]. Importantly, a fraction of
dietary exosomes and their cargos are not absorbed and can reach further sections of
the intestine [87]. Small compounds such as plant-derived nanoparticles, which contain
proteins and miRNAs [189], have been observed to be taken up by gut bacteria and elicit
changes in the gut microbiota composition [190]. Hence, it seems reasonable to conceive a
potential interaction between dietary milk exosomes and the gut microbiota.

Yu et al. characterized three EVs from different sources, namely pasteurized bovine
milk, coconut water, and adipose-derived stem cells, and compared their uptake by com-
mon representative gut bacteria and analyzed their effects on bacterial growth [191]. The
authors observed that exosomes and exosome-like nanoparticles were capable of support-
ing bacterial growth and modulating gene expression in vitro. Specifically, milk exosomes
promoted the growth of E. coli and L. plantarum commensal strains [191]. Zhou et al. eval-
uated the long-term administration of either bovine milk exosome-sufficient or bovine
milk exosome-depleted diets to C57BL/6 mice and analyzed bacterial communities ex
vivo. Three phyla, seven families, and 52 operational taxonomic units were differentially
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abundant between mice allocated to the exosomes-sufficient diet compared to the exosomes-
depleted diet group [116]. An ensuing study conducted by Tong et al. evaluated the impact
that an eight-week duration treatment with different bovine milk exosomes concentrations
had on features of gut microbiota and intestinal immunity in C57BL/6 mice [115]. Au-
thors reported that milk exosomes led to a higher relative abundance of Clostridiaceae,
Ruminococcaceae, and Lachnospiraceae compared to control (PBS) [115]. Furthermore,
SCFAs production was enhanced in treated animals displaying increased levels of acetate,
propionate, and butyrate, and the administration of moderate quantities of milk exosomes
correlated to increased levels of IgA and sIgA in mice’s intestine [115]. Notably, a recent
study conducted by the same authors documented that the administration of milk exosomes
to a DSS-induced colitis mice model restored gut bacteria relative abundance near the levels
displayed by control mice [139]. Finally, another recent report confirmed a protective effect
of milk exosomes and a miRNA-sufficient diet in the severity of C. difficile infection in
C57BL/6 mice when compared to the administration of a milk exosomes and miRNA
depleted diet [192]. As commented, milk exosomes elicit immunomodulatory effects and
might convey beneficial effects on intestinal health. Hence, the effects of milk exosomes on
gut microbiota should be considered within this context. In the light of these results, milk
exosomes constitute valuable milk bioactive compounds that might influence wide aspects
of intestinal health and microbiota.

4.5. Neurodevelopment

Breastfeeding has been consistently associated with long-term positive cognitive
outcomes [193]. Accordingly, epidemiological studies have linked breastfeeding to higher
intelligence quotient scores; and improved cognitive, language, and motor skills later in
life, compared to formula feeding [193]. Different breast milk components might contribute
to brain development and cognitive function [194,195]. Preclinical evidence suggests
that milk exosomes and their cargos cross the brain-blood barrier and accumulate in the
brain following oral intake [87,196]. On this subject, the depletion of dietary bovine milk
exosomes was reported to impair cognitive performance in C57BL/6 mice compared to an
exosome-sufficient diet [197]. Mice displayed improved spatial learning and memory when
fed the exosome-sufficient diet compared to the exosome-depleted diet [197]. The depletion
of bovine milk exosomes and their RNA cargos from the diet was linked to increased hepatic
purine metabolites in mice and higher plasma and urine excretion of purine metabolites in
humans, which led the authors to speculate that the regulation of purine metabolism by
milk exosomes might mediate their positive effects at cognitive level [198]. In this context, it
could be proposed that exosomes take part in the neurodevelopmental properties of breast
milk. Accordingly, numerous miRNAs contained in milk exosomes, such as miR-148a, miR-
141-3p, miR-375, and miR-107, might be involved in nervous system pathways and brain
development [199,200]. However, sphingomyelin and other phospholipids present in milk
exosomes have been demonstrated to promote neurodevelopment in preclinical research
and clinical studies [196]. Furthermore, miRNAs targeting glycosphingolipid biosynthesis
pathways were shown to be highly expressed in preterm breast milk, which has a major
role in brain development [201]. As commented, different mechanisms support a potential
role of milk exosomes in infant neurodevelopment and further research is warranted.

5. Limitations

Milk exosomes are promising ingredients, which can act as drug delivery vehicles, and
contain bioactive cargos with the potential to influence different health outcomes. However,
some studies have cast doubts on their capacity to elicit significant effects following oral
intake. Several preclinical and clinical studies have failed to show a positive association
between milk intake and serum miRNA levels [202,203]. Nonetheless, these studies did
not specifically focus on exosomal miRNA and aspects related to sample conservation and
the use of miRNA reference sequences might compromise their results [103]. In the same
line, studies in favor of milk miRNA availability in humans (i.e., [204]) have been subjected
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to criticism due to methodological concerns [205,206]. On the contrary, preclinical research
on the assimilation of exosomal miRNA has yielded more promising results [87,160]. The
effects of milk exosomes are at least partially attributed to their nucleic acid content. Yet,
miRNAs not only must survive industrial processing and storage conditions but also persist
after oral intake, being absorbed, and reaching the targeting cells in sufficient amounts to
exert a significant effect [103]. There is a need to evaluate if the promising results observed
in animal models can be extrapolated to clinical research. Clinical studies evaluating the
effect that the depletion of milk exosomes compared to exosome-sufficient milk has on
serum miRNA profile are lacking and might shed light on milk exosome bioavailability.
In the same fashion, studies conducted on human organoids would provide insights into
exosomes bioactivity [174]. Finally, future studies should consider the integrity of isolated
exosomes when assessing their bioavailability after oral intake.

Isolation protocols and characterization methods should be harmonized to ensure the
replicability of milk exosomes studies [207,208]. Furthermore, isolation methods should be
optimized to enable large-scale production without compromising exosome bioactivity in
compliance with good manufacturing practices [88]. The purification of exosomes is impor-
tant to avoid other milk constituents or contaminants which might jeopardize their quality
in preclinical research [174,208], and rigorous compliance with the MISEV guidelines is
necessary to attribute milk exosomes effects reported in exosomes studies [209].

Some reviews have raised concerns about the possible deleterious effects of milk
exosome intake. Accordingly, milk exosomes would contribute to the development of
diabetes, atherosclerosis, osteoporosis, Parkinson’s disease, diverse types of cancer, and
even all-cause mortality mediated by different mechanisms such as over-activation of the
mechanistic target of rapamycin complex 1 (mTORC1), among others [210–214]. These
effects would not be attributed to fermented milk because fermented milk displays reduced
exosome miRNA, branched-chain amino acids, and protein content due to bacterial activ-
ity [212]. On the other hand, a recent paper by one of these authors extensively disclosed
the beneficial effects of milk exosomes on infant intestinal health, β-cells maintenance, bone
homeostasis, adipogenesis, and neurodevelopment [118]. These contradictory data suggest
that the consumption of non-fermented milk leads to strikingly opposed effects depending
on the consumer’s age. However, this argument is not supported by epidemiological
studies evaluating milk or dairy products intakes, and some of the proposed pathways
are independent of the consumer’s age. According to the FAO, there is no solid evidence
regarding the deleterious effects of milk and normal intakes of dairy products on any health
outcome [215].

6. Future Perspectives

Due to their high biocompatibility and stability, milk exosomes have been proposed as
promising vehicles for the delivery of hydrophilic and lipophilic bioactive compounds [216].
In contraposition to artificial delivery systems, these formulations might present lower
immunogenicity, superior bioavailability, increased capacity to cross biological barriers,
and the ability to confer protection against harsh conditions, thus improving the biolog-
ical effects of delivered molecules while reducing their potential toxicity [32,59,217,218].
Specifically, the use of milk exosomes to deliver epicatechin gallate (ECG), a naturally
occurring polyphenolic compound with neuroprotective properties, was shown to improve
its antioxidative and antiapoptotic effects while inhibiting autophagy in a rotenone-induced
model of Parkinson’s disease in vitro, compared to the incubation with free ECG [217].
Similarly, milk exosomes have been explored to improve the bioavailability of different
natural compounds with positive results, including curcumin and anthocyanidins [219,220].
Curcumin is a bioactive polyphenol with anti-inflammatory and antioxidative properties,
which has been proposed to exert beneficial effects on obesity and protect against neural
damage, among other functions [221–223]. In the same line, anthocyanidins derived from
bilberries have been observed to inhibit T-cell cytokine signaling and IFN-γ transduction in
settings of ulcerative colitis [224]. However, these compounds present poor bioavailability
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after oral intake. Modulating the bioavailability of these compounds is crucial for improv-
ing their use as nutraceutical ingredients [225,226]. Milk exosomes represent promising
natural delivery vehicles that might enhance the bioavailability of bioactive ingredients
contained in these formulations.

To establish milk exosomes as ingredients and delivery vehicles, it is mandatory
to overcome some limitations of current isolation and characterization methods, mainly
those related to the inability to produce inexpensive and large-scale quantities of milk exo-
somes [40]. For instance, novel microfluidics-based techniques yield high purity exosomes
and are automatable but lack scalability and high sample capacity [59,218]. Optimization
of current ultracentrifugation and filtration protocols (i.e., TFF), as well as the use of mixed
approaches, including combinations of different characterization techniques, might be best
suited for the large-scale production of high-quality milk exosomes [40,227].

Besides the already-mentioned cargos, milk exosomes might contain or be associated
with different compounds with potential beneficial effects, such as antibodies, functional
lipids, or oligosaccharides. As recently reported by He et al., several milk oligosaccha-
rides, including 2-fucosyllactose with potential prebiotic and immunomodulatory prop-
erties [228], were isolated from human colostrum and mature milk exosomes [229]. The
in vivo administration of these encapsulated oligosaccharides was shown to modulate
macrophages activation in vitro, attenuate adherent-invasive Escherichia coli infection in
dextran sodium sulfate mice models in vivo, and prevent LPS-induced inflammation and
intestinal damage in these animals [229].

Beyond miRNAs, different nucleic acids contained in milk exosomes have been sug-
gested to play roles in different health outcomes. Long noncoding RNAs (lncRNAs) are
transcripts of more than 200 nucleotides that do not translate into proteins [230]. LncR-
NAs identified in human breast milk exosomes were proposed to be implicated in infant
metabolism, neonatal immunity, and development [231]. Not only lncRNAs but also dif-
ferent nucleic acids, such as circular RNAs (circRNAs), covalently closed RNA molecules
capable of modulating miRNAs activity, have been reported in milk exosomes [232]. Cir-
cRNAs identified in bovine milk-derived exosomes were linked to genes involved in the
cytoplasm, endoplasmic reticulum, transport, and transcription factors [232]. In an ensuing
study, Zeng et al. performed functional analysis on circRNAs and lncRNAs identified in
pig milk-derived exosomes predicting that these would be involved in features of intesti-
nal barrier status, including adherence junction, tight junction, and inflammation [230].
Although further research is needed, some authors have postulated potential roles for
milk exosome-derived circRNAs in developing intestine and gut microbiota during early
life [233].

Proteomic analyses have concluded that various immunoglobulin components are
contained in bovine milk exosomes [26,64]. Interestingly, Betker et al. observed that the
“neonatal” Fc receptor (FcRn), a receptor expressed throughout life and involved in IgG
binding and transport, participates in milk exosomes uptake [114]. Furthermore, the
authors demonstrated the presence of substantial amounts of both bound and unbound
bovine IgG in milk exosome isolates [114]. The presence of antibodies among exosomal
cargos further supports their immunomodulatory properties.

As we review throughout the present manuscript, milk exosomes have been linked to
the prevention of disorders linked to perinatal health such as NEC [134] and might modu-
late wide aspects of immunity and development, but studies analyzing infant formulae
have reported very low quantities of exosomal miRNAs in these formulations [109,234].
Several authors have considered the addition of miRNA-containing milk exosomes to
infant formulae as a strategy to reduce the prevalence of intestinal disorders [134,235].
Similarly, the addition of miRNA cargos related to the development of the immune system,
such as miR-155, might contribute to the prevention of atopic disease in infants [29]. Other
miRNA cargos linked to neurodevelopment, lipid, and glucose metabolism might support
adequate infant growth and development [95]. Overall, the benefits of breastfeeding are
well-established in the literature, and the natural presence of milk exosomes in breast milk
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provides a new dimension to perinatal nutrition. Infant formulae might benefit from the
addition of these natural compounds as bioactive ingredients. Furthermore, infants and
adults might take advantage of the potential positive effects of milk exosomes in areas such
as muscle strength, osteoporosis processes, immunity, and intestinal health.

7. Conclusions

The presence of exosomes in breast milk might represent a shift in the paradigm in
human nutrition and constitutes a burgeoning field of research. Milk exosomes contain a
variety of bioactive cargos, which have been reported to exert beneficial effects at multiple
levels, including but not limited to immunity, intestinal and musculoskeletal health, gut
microbiota, growth, and development. Further research is necessary to extrapolate to
clinical studies the promising results observed in preclinical studies.
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