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Neoadjuvant chemotherapy (NACT) outcomes vary according to breast

cancer (BC) subtype. Since pathologic complete response is one of the most

important target endpoints of NACT, further investigation of NACT out-

comes in BC is crucial. Thus, identifying sensitive and specific predictors

of treatment response for each phenotype would enable early detection of

chemoresistance and residual disease, decreasing exposures to ineffective

therapies and enhancing overall survival rates. We used liquid chromatog-

raphy�high-resolution mass spectrometry (LC-HRMS)-based untargeted

metabolomics to detect molecular changes in plasma of three different BC

subtypes following the same NACT regimen, with the aim of searching for

potential predictors of response. The metabolomics data set was analyzed

by combining univariate and multivariate statistical strategies. By using

ANOVA–simultaneous component analysis (ASCA), we were able to deter-

mine the prognostic value of potential biomarker candidates of response to

NACT in the triple-negative (TN) subtype. Higher concentrations of

docosahexaenoic acid and secondary bile acids were found at basal and

presurgery samples, respectively, in the responders group. In addition, the

glycohyocholic and glycodeoxycholic acids were able to classify TN

patients according to response to treatment and overall survival with an

area under the curve model > 0.77. In relation to luminal B (LB) and

HER2+ subjects, it should be noted that significant differences were related

to time and individual factors. Specifically, tryptophan was identified to be
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decreased over time in HER2+ patients, whereas LysoPE (22:6) appeared

to be increased, but could not be associated with response to NACT.

Therefore, the combination of untargeted-based metabolomics along with

longitudinal statistical approaches may represent a very useful tool for the

improvement of treatment and in administering a more personalized BC

follow-up in the clinical practice.

1. Introduction

Breast cancer (BC) incidence continues rising, being

the leading cause of cancer death in women in the last

Global Cancer Statistics 2020 [1]. Resistance to

chemotherapeutic drugs is still the main obstacle for

any cancer treatment. Some cancer cells (CCs) have

innate chemotherapy resistance while others acquire it

during exposure. Thus, pathological nonresponse to

the chemo agents facilitates tumor cell survival and

uncontrolled proliferation or metastasis after treatment

administration [2–4].
Nowadays, undergoing surgery after a successive

combination of drugs is considered the gold standard

for assessing tumor response [5,6]. However, not all

BC patients benefit from the neoadjuvant chemother-

apy (NACT) setting and, therefore, it is critical to dif-

ferentiate between the subjects that will respond

positively and those who will not, in order to choose

alternative and more effective therapies. Regarding

NACT efficacy, recent studies tackle the relationship

between BC phenotypes and treatment outcomes [7–9],
revealing pathological complete response (pCR) as a

surrogate biomarker of response and survival [10,11].

Nevertheless, this procedure is invasive and time-

consuming. Thus, faster, less invasive and more sensi-

tive tools are required in order to detect useful molecu-

lar and/or clinical predictors of pCR [12,13].

On this point, metabolomics has quickly risen up as

a novel approach in the cancer biomarker field for

overcoming the current limitations of standard diag-

nostic and prognostic techniques [14,15]. This expand-

ing research area, combined with high-throughput

screening technologies, may help to unravel the subja-

cent molecular factors conferring true chemosensitivity

to tumor recurrence, yet unknown. Indeed, it appears

as the -omics science that better reflects the complex

interactions from the genome expression to the pheno-

typic variations. Common metabolites directly or indi-

rectly involved in the biology of cancer may serve as

disease evaluators in group of patients. Several studies

have already been conducted to explore the possibility

of using panels of metabolites as biomarkers for early

diagnosis and tumor characterization [16–22]. The

abnormally accumulated metabolites derived from dis-

rupted cancer metabolic pathways are newly described

as oncometabolites, for example, D2-hydroxyglutarate

has an important function in prognosis and diagnosis

of breast cancer and leukemia patients [23–25]. Thus,
although detection of metabolic markers with an

important role in oncological processes is appearing,

research focused on finding discriminant biomarkers of

NACT response in BC, and therefore, clinical outcome

prognosis, is still sparse [12,26–28]. Notably, the devel-

opment of metabolic fingerprinting to find a molecular

pattern that might predict chemoresistance depending

on the molecular BC subtype would support the evi-

dence for its use in the clinical practice.

Large-scale data sets resulting from the untargeted

metabolomics approach, in combination with other

factors, such as time, are becoming increasingly intri-

cate to analyze, and the use of traditional biostatistical

methods cannot be applied straightforwardly to extract

clear and definite results. Hence, the incorporation of

advanced methods such as ANOVA–simultaneous

component analysis (ASCA) has become crucial for

understanding the complexity and heterogeneity of

biological information. ASCA is a direct generalization

of the analysis of variance for univariate data applied

to the multivariate case [29,30]. In consequence, longi-

tudinal intervention studies over time, combined with

untargeted metabolomics, may arise as an essential

type of experimental approach in BC clinical research

for discovering highly accurate markers or proven tar-

gets for tailored therapeutic treatments, detected in

plasma of individuals with this disease [12,30,31].

However, to date, the definition of best practices for

the analysis and interpretation of longitudinal metabo-

lomics data is still a matter of research [32].

With this aim in view, here we explore whether

untargeted metabolomics is able to determine molecu-

lar profiles of prediction to NACT response in a

follow-up of 92 BC patients with different phenotypes,

integrating univariate analysis and ASCA. Grounded

in a liquid chromatography–high-resolution mass spec-

trometry (LC-HRMS) platform-based metabolomics
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analysis, plasma samples were studied at three differ-

ent time points. Therefore, we propose and test the

notion that metabolic fingerprinting in a longitudinal

study may characterize potential clinical biomarkers

and provide new insights into the response to a partic-

ular treatment according to different BC phenotypes.

2. Materials and methods

2.1. Participants and ethics

A total of 92 BC female patients were enrolled in our

study at the Medical Oncology Unit of the University

Hospital of Ja�en (Spain), in order to detect metabolo-

mics changes associated with the efficiency of NACT.

BC was divided into different subtypes by immunohis-

tochemical and gene expression testing of the human

epidermal growth factor 2 (HER2), hormone receptors

of estrogen (ER) and progesterone (PR) and Ki-67.

Specifically, luminal B (LB) patients were diagnosed

with HER2 negative (HER2�) and ER+ with a posi-

tive Ki-67 finding defined as >15%. Patients who nei-

ther expressed hormone receptors (PR�, ER�) nor

overexpressed HER2 were considered as triple-negative

(TN) patients; and, finally, patients overexpressing

human epidermal growth factor 2 were diagnosed as

HER2-positive (HER2+) patients. Concretely, the eval-

uation of HER2 was done following the ASCO/CAP

2018 guidelines, by immunohistochemistry (IHC) stain-

ing and by fluorescent in situ hybridization (FISH):

scores 0 and 1+ were considered negative, 3+ was con-

sidered HER2+, while a dual-probe FISH was carried

out for 2+ scores of the same specimen, or additional

IHC or FISH for a new specimen [33]. Cancer stage

was classified according to the 2010 Tumor Nodes

Metastasis (TNM) system [34]. The main characteris-

tics of these subjects are summarized in Table 1.

Evaluation of potential confounding variables was

performed using the Shapiro–Wilk normality test and,

subsequently, Levene’s test for the equality of vari-

ances between responders (R) and nonresponders

(NR), depending on age and body mass index (BMI)

for each BC phenotype. U-Mann and Whitney Wil-

coxon test was performed for the data that presented a

nonparametric distribution. The association analysis of

the menopausal status with treatment response was

checked with the Pearson chi-square test. In addition,

this statistical test allowed to evaluate whether the

overall survival was related to the outcome to NACT

Table 1. Pathological and clinical characteristics of the subjects of study. N, nodes; P.R, pathologic response; post, postmenopause; pre,

premenopause; T, tumor.

BC molecular subtypes LB TN HER2+

Subjects 48 21 23

P.R R NR R NR R NR

25 23 13 8 16 7

MP grading system

MP1 — 1 — 2 — 1

MP2 — 3 — 2 — 1

MP3 — 19 — 4 — 5

MP4 14 — 5 — 5 —

MP5 11 — 8 — 11 —

Age (range) 49 (33–62) 52 (34–76) 53 (31–76) 48 (33–58) 48 (35–63) 58 (34–70)

BMI (Kg�m�2) 26 (19.3–38.7) 27 (20.1–36.5) 30 (22.1–41.7) 32 (22.1–38.9) 28 (19.6–40.6) 26 (19.0–32.5)

Menopausal status

Pre 16 12 7 6 10 2

Post 9 11 6 2 6 5

HER2+ status Negative Negative Positive

PR Status Neg/Pos Negative Neg/Pos

ER Status Positive Negative Neg/Pos

Ki-67 >15% — —

Stage

T1 5 2 0 0 0 0

T2 18 16 14 5 14 5

T3–4 2 5 2 2 2 2

N+ 10 10 8 3 8 3

N� 14 13 6 4 6 4
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in the TN phenotype. To know the intensity of the

association, the Cramer’s V test was used. Venous

blood samples were collected under fasting conditions

at three different time points: before the first therapy

cure with anthracyclines (basal); once they received

taxol (presurgery); and after they went into surgery

(postsurgery). The blood collection campaign was

conducted over a timeframe period of eight years.

Every patient provided a signed informed consent

for participation prior to basal sample extraction.

This study was approved by the institutional review

board of the Clinical Research Ethics Committee of

Ja�en. All clinical investigations were conducted under

Helsinki Declaration guidelines and International

Conference on Harmonization-Good Clinical Practices

(ICH-GCP).

2.2. Neoadjuvant chemotherapy

All patients received NACT consisting on bi-weekly

dose-dense cycles of anthracyclines (epirubicin

90 mg�m�2 and cyclophosphamide 600 mg�m�2) fol-

lowed by 12 weekly cycles of taxanes (paclitaxel

80 mg�m�2). Cycle time administration could be modi-

fied according to the Common Toxicity Criteria (CTC

v5.0). Anti-HER2 therapy (trastuzumab and per-

tuzumab) was added in HER2-positive BC patients [35].

2.3. Response evaluation

Samples obtained during surgery underwent a

histopathological analysis in order to determine the

postsurgery Miller and Payne (MP) grade [36]. Patho-

logical complete response was assessed from the five-

step scale based on reduction in malignant cellularity

after treatment. Following these criteria, MP5 is con-

sidered as pCR with no malignant cells; MP4 is a very

good response with <10% of malignant cells remain-

ing, near the pCR; in MP3 the significant loss of

tumor cells is too variable between 30 and 90%; MP2

shows a reduction of tumor cells < 30%, and MP1 has

no reduction in malignant cells. Herein, we defined a

response group (MP grades 4–5) and a nonresponse

group (MP grades 1–3) according to the prognostic

potential of the MP grading system [37–40].

2.4. Sample collection and preparation

Blood samples were extracted using standard

venipuncture processes and collected in EDTA tubes.

Plasma was obtained by centrifugation at 14009g for

10 min at 4 °C. All samples were kept at �80 °C until

the analysis was made.

2.5. Metabolite extraction

An aliquot of 75 lL of plasma was mixed with 600 lL
of cold acetonitrile (AcN) containing the analytical

standard (roxithromycin). Then, it was shacked for

2 min at 2500 r.p.m. All the samples were centrifu-

gated at 21 982 g for 10 min at 4 °C. Collected super-

natants were transferred into new vials for evaporation

and reconstituted in 210 lL of water/acetonitrile (50/

50) with 0.1% formic acid.

2.6. Liquid chromatography coupled to high-

resolution mass spectrometry analysis

The analytical separation was achieved using liquid chro-

matography (LC) with an Agilent series 1290 (Agilent

Technologies, Santa Clara, CA, USA) in reverse phase

mode (RP) using Atlantis T3 C18 column

(2.1 mm 9 150 mm, 3 lm) from Waters (Water Corpo-

ration, Milford, MA, USA). The mobile phase A con-

sisted of water/acetonitrile (90/10) and 0.1% formic acid.

The mobile phase B consisted of acetonitrile/water (90/

10) and 0.1% formic acid. The chromatographic run

was 20 min. The gradient elution consisted of 0.0–
0.5 min 1% eluent B; 0.5–11.0 min 99% eluent B, 11.0–
15.5 min 99% eluent B and 15.5–15.6 min 1% eluent B.

and 15.6–20.0 min 1% eluent B. Mass detection was per-

formed using Triple TOF 5600 quadrupole time-of-flight

mass spectrometer (SCIEX, Concord, ON, Canada). The

mass spectrometer was operated using electrospray ion-

ization in positive mode and an information-dependent

acquisition (IDA) method, and the eight most intense

signals were fragmented. The exact mass calibration was

automatically performed every six injections. Three dif-

ferent LC-HRMS analyses were made in positive ioniza-

tion mode, in order to detect molecular differences

within the subtypes of BC (LB, TN, and HER2+)
depending on their response to neoadjuvant chemother-

apy after surgery. A total of 144 samples were analyzed

for LB phenotype, 69 samples for HER2, and 63 for

TN, and blanks and quality control (QC) samples were

also used in each metabolomics analysis.

2.7. Data set creation

Peak View software (version 1.1.2; AB SCIEX) was

used to evaluate the retention time and mass-to-charge

(m/z) variability of three peaks over at different time

points and m/z values. This allowed us to determine

the ranges for the alignment. Peak detection, align-

ment, and data filtering were achieved using Marker

view software (version 1.2.1; SCIEX). Collection

parameters were set as follows: retention time window
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0.10 min, noise threshold 70 cps, and mass tolerance

5.0 ppm. Additionally, only monoisotopic peaks were

considered in order to decrease mass redundancy and

improve true molecular features selection. Blank sam-

ples were used to remove contaminants and signals

provided by solvents.

2.8. Analytical method validation and

normalization

Principal component analysis (PCA) was used to assess

the quality of the analytical system performance. QC

samples clustering representation in this multivariate

analysis (MVA) were useful to validate the analytical

system’s stability. The relative standard deviation

(RSD) was calculated for all the features in the QC

samples after the data set creation. Variables with vari-

ability higher than 30% were discarded (Table S1).

Data normalization by a QC reference sample (proba-

bilistic quotient normalization), logarithmic transfor-

mation, and autoscaling were performed in order to

obtain a Gaussian-type distribution.

2.9. Univariate statistical analysis

Two different statistical approaches were used in this

work in order to determine the broadest range of

metabolites that might differ between the groups of

study when comparing them at a specific point or over

time. Univariate statistical analysis was performed

using the Student’s t-test, which enabled assessing dif-

ferences between R and NR patients of the TN, LB,

and HER2+ molecular subtypes. Univariate statistical

analysis (UVA) was applied at three different time

points independently: before the first therapy cure with

anthracyclines (basal, time 1), once the patients

received treatment with taxol (presurgery, time 2), and

after the breast-conserving surgery (postsurgery, time

3). A P-value < 0.05 was determined as the cutoff

threshold with a Benjamini–Hochberg False Discovery

Rate post hoc correction (FDR < 0.1). This analysis

was carried out using Metaboanalyst 4.0 [41]. Eventu-

ally, discriminant metabolites selection was also based

on their fold change (FC > 1.3).

2.10. Multivariate statistical analysis (ASCA)

The metabolomics data set shows a multilevel struc-

ture with multiple types of variation: the metabolic

dynamism within the individual, the statistical differ-

ences between the subjects, and their combination. To

deal with such complex information, we used ASCA,

which factorizes the original data set into subsets

describing the variation between response and nonre-

sponse, the variation in time and their interaction [29].

To deal with unbalanced data, we used the ASCA+
version [42]. We tested for significance using exact and

approximated permutation tests for the main factors

(response, time, and patient) and interactions, respec-

tively [43]. Significant factorized data were visualized

using PCA. From statistically significant factors, we

derived a list of relevant metabolites, ordered by the

sum of squares of the difference between R and NR.

All computations were done with the MEDA Toolbox

for Matlab [44].

2.11. Identification of differential metabolites

Peak View software was used to establish a molecular

formula according to the experimental exact mass,

fragmentation spectrum, and isotope pattern. The

identification of molecular components was achieved

through comparative searches of available mass spec-

tra using several databases such as Metlin, the Human

Metabolome DataBase, Lipid Maps, NIST 2012, and

mass bank mainly. Additional MS/MS analysis was

carried out when necessary. Also, we used the infor-

mation at the experimental conditions, ionization

behavior, and/or retention time in order to assign a

tentative identification. In those cases in which it was

not possible to assign it, scientific literature was con-

sulted. Finally, mass error of all the candidates was

equal or lower than 5 ppm.

2.12. Biomarker evaluation

The area under the receiver-operating characteristic

curves was used to test the clinical relevance of candi-

date metabolites with corrected P-value < 0.05. Assess-

ment of the classifier performance was carried out with

linear kernel support vector machine (SVM-linear) and

random forest models, using the Biomarker Analysis

provided by Metaboanalyst.

3. Results

3.1. Patient’s characteristics

Regarding the patients eligible for analysis, a number

of 55 BC subjects out of 92 were classified as R

to NACT, in contrast to 37 NR subjects. Considering

the BC phenotype, 16 out of 23 human epidermal

growth factor 2 positive (HER2+) patients responded

(69.56%) and 7 out of 23 showed a nonresponse

according to the MP grading system (30.44%). In the
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case of luminal B (LB) molecular subtype, 26 out of

48 responded (54.16%), while 22 out of 48 did not

show treatment response (45.84%). Last, the TN phe-

notype showed 13 out of 21 patients with response to

NACT (61.9%) and 8 out of 21 patients with nonre-

sponse (38.1%). Assessment of the confounding vari-

ables, body mass index, age, and menopausal status

showed no significant differences in relation to

response when the corresponding t-test was applied

for each BC phenotype (Table S2). In the case of the

survival analysis, a moderate association with outcome

to NACT was obtained for the TN phenotype

(Table S3).

3.2. Metabolomic profiling from univariate

analysis

Significant identified metabolites, selected according

to P-value corrected by FDR < 0.1 and FC > 1.3,

are shown in Table 2. Other altered metabolites with

P-value < 0.05 (FDR > 0.1) and FC < 1.3 are identi-

fied in Table S4, and those not able to be identified

are listed in Table S5. However, a lot of spectral infor-

mation, and the availability of analytical standards, is

still needed. In this study, tentative identities were clas-

sified at level 2 as reported by the Schymansky classifi-

cation [45], validated by their MS/MS spectra

(Fig. S1) after several searches in diverse databases

(Metlin, Human Metabolome Database, Lipid Maps,

NIST 2012 mass spectral library, or mass bank).

Specifically, in the TN molecular subtype, a total of

four signals were selected as significant at time 1 (t1)

and time 2 (t2) but none at time 3 (t3). Candidate

metabolites identified as cis-4,7,10,13,16,19-

Docosahexaenoic acid and LysoPE (18:1) were found

at t1. At t2, 2 significant metabolites were tentatively

identified as 2 bile acids (glycodeoxycholic and glyco-

hyocholic acid). The analysis for the LB phenotype

showed three significant signals at t1 but none at t2 or

t3. Candidate metabolites at t1 were tentatively identi-

fied as LysoPE (18:2), LysoPC (16:0), and tridecanoyl

carnitine (Table 2).

Signals shown in Table S4, corresponding to 23 dif-

ferent m/z in TN, 2 in LB, and 1 in HER2+, would be

expected to have significant values in larger and bal-

anced cohorts. At the three time points, some m/z were

detected as the same tentative identification with dif-

ferent adducts. There were 12 signals that could not be

identified for the TN molecular subtype, 2 m/z for the

LB, and no altered signals were detected at basal or at

postsurgery levels, when comparing the response in

HER2+ patients, as shown in Table S5.

3.3. Metabolic profile from multivariate analysis

ANOVA–simultaneous component analysis (ASCA)

provided the statistically significant factors (Table 3)

from which we drew up a list of associated relevant

metabolites (Table 4). In our multivariate analysis,

time and patient factors were statistically significant

for the HER2+ and LB molecular subtypes (Figs S2

and S3), while response and patient factors were statis-

tically significant for the TN (Fig. S4). To interpret

the time factor, we used ASCA score and loading

plots, that is, the PCA plots of the data factorized by

ASCA. This is shown in Fig. 1 (A and B, respectively).

Score plots in Fig. 1 illustrate samples of HER2+ (A1)

and LB (A2) subjects corresponding to different time

points (t1 in red, t2 in blue, and t3 in green), which

can be interpreted in combination with the loading

plots in Fig. 1B1,B2), where only most relevant signals

are labeled (see also Table 4 and Table S6). Score

Table 2. Tentative identification of the significant metabolites detected in the comparison between response groups in UVA. Dppm, mass

error; FC, fold change > 1 indicates that the average normalized peak area ratio in R patients is larger than that in NR patients; RT, retention

time; t1, before starting the therapy cure, basal level; t2, once the patients received taxol, presurgery; UVA, univariate analysis (Student’s

t-test).

Time

point

BC molecular

subtype m/z

RT

(min)

Molecular

formula Tentative identification Dppm Adduct

P-value

(FDR) FC

t1 TN 329.246 14.39 C22H32O2 cis-4,7,10,13,16,

19-Docosahexaenoic acid

0.3 [M + H] 0.059 2.198

502.287 11.59 C23H46NO7P LysoPE(18:1/0:0) 3.2 [M + Na] 0.059 �1.351

t1 LB 358.295 8.11 C20H39NO4 Tridecanoyl carnitine 1.2 [M + H] 0.032 �1.742

478.293 10.79 C23H44NO7P LysoPE(18:2/0:0) 0.4 [M + H] 0.084 1.352

518.323 10.17 C24H50NO7P LysoPC(16:0/0:0) 0.2 [M + Na] 0.032 1.694

t2 TN 448.305 8.45 C26H43NO6 Glycohyocholic acid �1.5 [M + H � H2O] 0.004 3.404

450.320 9.19 C26H43NO5 Glycodeoxycholic acid 0.7 [M + H] 0.004 3.967
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plots include data ellipses at 0.05 significance level,

although we did not use confidence levels, due to

unbalanced data [46].

For instance, the metabolite 526.2915 [LysoPE (22:6/

0:0)] at the upper right corner of Fig. 1 (B1) is corre-

lated with the green scores in Fig. 1 (A1), which rep-

resent HER2+ postsurgery measurements. Also,

metabolite 188.07 (tryptophan) is right in the oppo-

site direction. These signals can be identified as the

ones that change the most after surgery (Fig. S5):

526.2915 and 188.07 present a generalized higher and

lower value, respectively, after surgery. The same can

be inferred in Fig. 1 (A2 and B2) but for 247.1443

(tryptophan betaine) and m/z 452.3214, with lower

and higher values, respectively, after surgery in LB

patients (Fig. S6).

Lastly, ASCA of TN showed significance in

response factor. Following the same approach using

one PCA score/loading plots, we selected metabolites

448.3047 (glycohyocholic acid), 450.32 (glycodeoxy-

cholic acid), and 572.3699 [LysoPC (22:4)] as the most

differential between R and NR (Fig. 2). Metabolites

448.3047 and 450.32 in R tend to be generally higher

than in NR, observation that agrees with significant

results after FDR correction in Table 2. Otherwise, m/z

572.3699 tends to be mostly higher in NR than in R.

3.4. Candidate biomarker evaluation

Significant metabolites were checked for their diagnos-

tic potential with a multivariate receiver-operating

characteristic (ROC) analysis. The area under curve

(AUC) obtained for the 448.3047 (glycohyocholic acid)

and 450.32 (glycodeoxycholic acid) in combination

(0.946, 95% CI: 0.875–1) indicates how well these can-

didate biomarkers distinguish between our groups of

study (Fig. S7a). Based on this model, only 3 out of

13 TN R were wrongly classified as NR, whereas all

TN NR were correctly classified (Fig. S7b). Finally,

the prognostic power of these bile acids in combina-

tion was tested with an AUC performance of 0.777

(95% CI: 0.541–1). The model indicates a good classi-

fication of patient subgroups with survival expectancy

of more than 2 years (Fig. S8). However, an indepen-

dent cohort would be required to validate the prognos-

tic power of these promising candidates.

4. Discussion

Neoadjuvant chemotherapy constitutes a standard

treatment for the management of BC with several ben-

efits, although there are yet unresolved questions that

concern a high percentage of women that suffer from

this heterogeneous disease. Some challenges faced in

the clinical practice that affect the efficiency of this sys-

temic treatment are the lack of early predictors of

Table 3. Significant factors detected in ASCA.

BC molecular subtype Factor P-value

TN Patient

Response

0.0020

0.0310

HER2+ Patient

Time

0.001

0.001

LB Patient

Time

0.013

0.002

Table 4. Tentative identification of the metabolites significatively detected in ASCA. Dppm, mass error; RT, retention time.

BC molecular subtype m/z RT (min) Molecular formula Tentative identification Dppm Adduct

TN 448.3047a 8.45 C26H43NO6 Glycohyocholic acid �1.5 [M + H � H2O]

450.3200a 9.19 C26H43NO5 Glycodeoxycholic acid 0.7 [M + H]

572.3699 11.87 C30H54NO7P LysoPC (22:4/0:0) 0.6 [M + H]

HER2+ 188.0700 3.57 C11H12N2O2 Tryptophan 0.5 [M + H � NH3]

454.2922 11.19 C21H44NO7P LysoPE (16:0/0:0) �0.9 [M + H]

566.3175 10.54 C28H50NO7P LysoPC (20:4/0:0) �1.3 [M + Na]

583.2567 8.39 C33H34N4O6 Biliverdin �0.9 [M + H]

526.2915 10.62 C27H44NO7P LysoPE (22:6/0:0) �1.7 [M + H]

568.3416 10.68 C30H50NO7P LysoPC (22:6/0:0) �2.2 [M + H]

590.322 10.69 C30H50NO7P �2.7 [M + Na]

LB 247.1443 3.86 C14H18N2O2 Tryptophan betaine 0.8 [M + H]

342.2631 7.38 C19H35NO4 Dodecenoylcarnitine �0.5 [M + H]

363.2163 6.96 C21H30O5 Cortisol 0 [M + H]

454.2935 11.36 C21H44NO7P LysoPE (16:0/0:0) 0.2 [M + H]

502.2921 10.5 C25H44NO7P LysoPE (20:4/0:0) �2 [M + H]

a

m/z found also as significant in univariate analysis.

7Molecular Oncology (2022) ª 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies

C. D�ıaz et al. Novel metabolomics predicts response to NACT in BC



response, as well as the establishment of the pCR prog-

nostic value. Stratification of BC patients according to

underlying molecular factors that confer NACT resistance

would be a great step toward personalized medicine.

In this work, the untargeted LC-HRMS-based meta-

bolomics approach used enables the detection of differ-

ent small molecules that may be involved in the

behavior of three BC phenotypes against NACT. For

this purpose, two statistical analyses—univariate and

multivariate—were carried out. As an outcome of

UVA, alteration of the metabolome in LB and HER2+

subjects only appeared at basal or presurgery levels,

while the TN molecular subtype showed the highest

variability in response to treatment at all time points.

The use of ASCA is of great relevance for better under-

standing the greater metabolome impact over time and

to properly select the biomarkers that might be poten-

tial predictors of the chemotherapy response associated

with the phenotype. This prominent multivariate

method allows analyzing complex metabolomics data

sets with simultaneously measured covariates consider-

ing the experimental design [26,29,31,32,47].

Fig. 1. HER2+ and Luminal B phenotype longitudinal study using ANOVA–simultaneous component analysis (ASCA). The score plots

represent the variation of the patient samples over time (basal, presurgery and postsurgery) in relation to the concentration of metabolites

present in each of them, and the loading plots show the metabolites that are contributing to the significant differences over time in patients

with luminal B and HER2+ phenotypes. (A1) 2D score plot of HER2+ patient samples over time. (A2) 2D score plot of Luminal B patient

samples over time. (B1) The molecular ion at m/z 526.2915 [LysoPE (22:6/0:0)] and 188.07 (tryptophan) represent the metabolites most

differential over time for the HER2+ phenotype. (B2) The molecular ion at m/z 247.1443 (tryptophan betaine) and 452.3214 represent the

metabolites most differential over time for the luminal B phenotype. The red, blue, and green dots correspond to the basal, presurgery, and

postsurgery time, respectively.
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Thus, our longitudinal study analyzed the influence

that factors such as the individual itself, response to

treatment, time, and their interaction, may have on

the dynamic metabolome of 92 BC patients. Clearly,

the significance of the patient factor, obtained in the

ASCA results of all the molecular subtypes studied,

reflects the need for a tailored follow-up in BC

[14,16,48–50]. On the contrary, the significance of the

time factor (with nonsignificant response) should be

interpreted as a homogeneous change in the metabo-

lome of the HER2+ and LB patients after treatment,

regardless they are classified as R or NR.

Regarding the outcomes obtained in the LB and

HER2+ analyses, we highlight the reprogramming of

cellular metabolism as a hallmark of BC. Herein, in

the UVA of LB molecular subtype, lysophospholipids

were increased at basal levels of responder patients

while carnitines appeared as decreased. So that, we

suggest that phospholipids (PL) and carnitines may be

considered as useful targets for cancer therapy and as

BC biomarkers, as described in previous observations

[51–55]. In addition, alteration of amino acids was also

found. The lower tryptophan betaine levels detected

postsurgery in LB patients could give insights into its

potential role in the phenotype behavior [56,57]. Like-

wise, research on larger cohorts would help to validate

whether the increased concentration of LysoPE (22:6)

at t3 in HER2+ could be a decisive biomarker of resid-

ual disease. It should be especially noted the dysregu-

lation of the tryptophan (Trp) metabolism in the

HER2+ molecular subtype. Specifically postsurgery, a

significant decrease in Trp plasmatic concentrations

was observed, as previously reported in serum and

plasma of BC patients [58–60]. In this regard, Trp cata-

bolism dysregulation is known to indirectly contribute

to cancer progression by the kynurenine (Kyn) pathway

[61–63], although no associations with response or sen-

sitivity to chemotherapy were observed in previous

studies, which coincides with our observations [22,64].

In this line, further investigating the metabolome alter-

ation related to treatment response is still needed to

better understand the behavior of the LB and HER2+
molecular subtypes in response to NACT.

Unlike the molecular subtypes LB and HER2+, this
approach notably differentiates TN patients that

respond to NACT and those who do not. From the

ASCA results, given that treatment response is statisti-

cally significant, but time is not, we could conclude

that there is a difference between R and NR sustained

across the three time points in the TN phenotype. In

particular, this metabolic difference may relate to

treatment effectiveness and, if validated in future anal-

yses, to treatment selection. It should be pointed out

that, while response over time was not found to be sig-

nificant, the effect size of this interaction in TN dou-

bles the one obtained in HER2+ and triples the one in

LB. Hence, it may be of great interest to further inves-

tigate the interaction between time and response in

order to determine the prognostic applicability of the

candidate biomarkers proposed for treatment efficiency

prediction in BC phenotypes.

In our findings, both statistical strategies supplement

the results in the TN analyses in relation to response.

At basal plasma levels, the docosahexaenoic acid

(DHA) concentrations are significantly higher in TN R

than in NR. The dysregulation of DHA is of great

importance since it has been shown to be involved in

cell signaling, leading to the reduction in cancer

cell viability and proliferation both in vivo and

in vitro [65–67]. Indeed, DHA supplementation in

combination with NACT is being explored in the

interventional study NCT03831178 (ClinicalTrial.

Fig. 2. Differential metabolites according to the pathological response to neoadjuvant chemotherapy in triple-negative breast cancer using

phenotype ANOVA–simultaneous components analysis (ASCA). The molecular ions at m/z 448.3047 (glycohyocholic acid) and 450.32

(glycodeoxycholic acid) were found elevated in responders. The molecular ion at m/z 572.3699 [LysoPC (22:4)] appeared decreased in

responders. R, responders; NR, nonresponders; t1, basal time; t2, presurgery; t3, postsurgery time.
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gov). This observation clearly supports that the mea-

surement of this fatty acid may be considered as a

biomarker for an early detection of chemoresistance

at the diagnosis of the disease.

Furthermore, two bile acids (BAs), glycodeoxycholic

acid (GDCA) and glycohyocholic acid (GHCA), were

significant in TN presurgery R. The predictive biomarker

model with these candidates was evaluated with a multi-

variate ROC analysis, which showed excellent perfor-

mance since all the TN NR were correctly classified at

t2. Their prognostic power was also assessed, obtaining

a good classification between patients with survival

expectancy of more than 2 years. Additionally, the role

of bile acids in carcinogenesis is increasingly being stud-

ied. Thus, paradoxical functions of these bioactive

molecules have been observed depending on the tissue

affected and BA receptor activation (FXRa, TGR5) in

cancer [68,69]. However, not many studies have been

able to shed light on how their dysregulation may affect

BC development and behavior [70–72]. Nonetheless, we

observed that plasma levels of conjugated secondary

bile acids, GDCA and GHCA, are higher in TN R

when compared to NR at pre- and postsurgery time

points. Nevertheless, GDCA and GHCA were not found

at basal levels, which may be the reason why interaction

between response and time factors is not significant in

our ASCA outcome. Being secondary BAs directly related

to the intestinal microbiota, the study of its potential role

in the behavior of BC should be investigated to a greater

extent [73]. In this regard, different clinical trials gather

more information about the effect of chemotherapy on

gut bacteria and the affection that gut microbiota might

have on the NACT-induced immunosurveillance in TN

patients (NCT02370277 and NCT03586297, ClinicalTrial.

gov). Notwithstanding these promising results, further

analysis would be needed in order to better understand

the effects of medical interventions on the microbiome, as

well as the relevance of independent bile acids as con-

stituents of the BC tumor microenvironment. Thus, a

good noninvasive prognostic strategy for the aggressive

TN phenotype is suggested in this study by detection of

BAs in plasma using LC-HRMS.

On the contrary, variations in the composition of

plasma phospholipids compared with the treatment

response appeared at different time points in our anal-

yses. Specifically, the increased concentration of phos-

phatidylethanolamines [LysoPE (18:1) and (18:2)] at t1

in TN NR is supported by the increased demand for

PE in BC cells under metabolic stress [74,75]. Other-

wise, the phosphatidylcholine LysoPC (22:4) was deter-

mined from the ASCA results as a significantly

increased metabolite for nonresponder TN patients. In

line with our findings, it could be inferred that

evolving knowledge of these candidate metabolites’

behavior in the BC process would improve the stratifi-

cation of the BC patients for better therapy decision-

making.

5. Conclusion

In conclusion, our work presents dynamic metabolic

changes at the individual level in all the phenotypic ana-

lyzes carried out during disease and treatment. The

complete set of small molecules within a biological sam-

ple can be influenced by pathological processes, treat-

ment, as well as the microbiome, thus affecting its

consequent relationship with the metabolome. The high

level of individual variability makes it difficult to find a

single metabolic signature to classify our groups of

patients. Nevertheless, the results obtained in TN sub-

type between R and NR may point toward new

approaches in the fight against cancer. A larger sample

size and number of balanced cohorts would help to cor-

roborate and validate the findings reported in this work.

Lastly, the combination of untargeted metabolomics

and ASCA appears to be a highly valuable tool for deci-

phering the behavior of BC treated with NACT and,

thus, open up the possibility of an early modification of

this therapy according to the future response to treat-

ment, improving prognosis for these patients.
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Fig. S1. Experimental MS/MS spectrum obtained in

our analysis for the secondary bile acids a) gly-

codeoxycholic acid and b) glycohyocholic acid.

Fig. S2. Reference distribution for HER2+ significance

testing with resampling in ANOVA–simultaneous com-

ponent analysis: time factor (left, P-value = 0.002) and

patient factor (right, P-value = 0.013).

Fig. S3. Reference distribution for LB significance test-

ing with resampling in ANOVA–simultaneous compo-

nent analysis: time factor (left, P-value = 0.001) and

patient factor (right, P-value = 0.001).

Fig. S4. Reference distribution for TN significance

testing with resampling in ANOVA–simultaneous com-

ponent analysis: time factor (left, P-value = 0.031) and

patient factor (right, P-value = 0.002).

Fig. S5. Differential expression of 526.2915 [LysoPE

(22:6) and 188.07 (tryptophan)] according to the

pathological response group (R, responders; NR, non-

responders) in HER2+ at time 1 (t1, basal), time 2 (t2,

presurgery) and time 3 (t3, postsurgery) detected using

ANOVA–simultaneous component analysis.

Fig. S6. Differential expression of 247.1443 (tryptophan

betaine) and 452.3214 (not identified) according to the

pathological response group (R, responders; NR, non-

responders) in LB at time 1 (t1, basal level), time 2 (t2,

presurgery), and time 3 (t3, postsurgery) detected using

ANOVA–simultaneous component analysis.

Fig. S7. ROC curve plot for the model obtained from

combination of the significant candidates identified in

TN breast cancer molecular subtype [448.3047 (glycohy-

ocholic acid) and 450.32 (glycodeoxycholic acid)]: (a)

ROC curve plot was created from the averaged results

of 100 cross-validations; (b) as an outcome the model

provides with the distinction of all nonresponders TN

patients and 3 out of 13 responders misclassified.

Fig. S8. ROC curve plot for the prognostic model

obtained from combination of the significant candi-

dates identified in TN breast cancer molecular subtype

[448.3047 (glycohyocholic acid) and 450.32 (gly-

codeoxycholic acid)]: (a) ROC curve plot was created

from the averaged results of 100 cross-validations; (b)

as an outcome the model provides with the distinction

of 2 out of 7 patients from the nonsurvival group and

5 out of 14 survivors misclassified.

Table S1. Selected variables from the untargeted meta-

bolomics analysis for each breast cancer molecular

subtype.

Table S2. Values of significance for normality and

homoscedasticity tests of the continuous variables: age

and BMI; and for association tests of the categorical

variable: menopausal status.

Table S3. Association tests of the survival and treat-

ment response data in the TN phenotype.

Table S4. Tentative identification of the differential

metabolites between response groups in UVA.

Table S5. Differential signals between response groups

without a tentative identification according to the

breast cancer molecular subtype detected in UVA.

Table S6. Differential signals without a tentative iden-

tification detected in ASCA according to time and

patient factors.
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