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Abstract: First of all, in this paper we obtain a perturbed version of the geometric series theorem,
which allows us to present an iterative numerical method to approximate the fixed point of a
contractive affine operator. This result requires some approximations that we obtain using the
projections associated with certain Schauder bases. Next, an algorithm is designed to approximate
the solution of Fredholm’s linear integral equation, and we illustrate the behavior of the method with
some numerical examples.
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1. Introduction

The idea of iterative numerical methods is, given a complete metric space X (typically
a Banach space) and a contractive operator T : X −→ X, or at least one which guarantees
the convergence of the Picard iterates, to construct a sequence of approximations of the
fixed point of that operator x0 = T(x0). The calculation of the Picard iterates is not generally
easy or even feasible, so several methods which allow us to approximate the elements of
the Picard sequence have been proposed. Therefore, a part of the Picard-type iterative
algorithms are focused on determining, for an element x ∈ X, a value close to T(x) and in
this way, successively approximating the iterates. The numerical techniques used are very
diverse, and the resulting algorithms have numerous applications. Proof of all this are the
recent references [1–16].

However, our approach here is completely different: given x, instead of approximating
successively T(x), T2(x), T3(x), . . . , which necessarily involves an accumulation of errors,
in this paper, we approximate directly Tn(x) by means of the use of suitable Schauder bases,
transforming it into a simple calculation which, for example, does not involve the resolution
of systems of algebraic equations or the use of any quadrature formulae because simply
linear combinations of certain values associated with the operator are calculated. What
is more, motivated by its application for the numerical resolution of the linear Fredholm
integral equation, the operator T is considered to be affine and continuous. This affine
and continuous nature means that, instead of using a fixed-point language, we opted for
resorting to an equivalent version using the geometric series theorem, and more specifically,
our first contribution is to obtain a perturbed version of the same which is susceptible
to presenting approximations by means of certain Schauder bases related to the operator.
Such an approximation will imply a low computational cost as mentioned above. Thus,
we are going to design an iterative-type algorithm which allows the approximation of the
fixed point of a suitable continuous affine operator.

As we have mentioned, the application that we are presenting consists of a numerical
algorithm to solve the linear Fredholm integral equation, which is chosen for its great versatility.
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The structure of this paper is as follows. In Section 2 we establish an analytical–
numerical result, which provides us with an approximation of the fixed point of a suitable
continuous affine operator in a Banach space. To continue, Section 3 interprets the previous
result in terms of an algorithm when a Schauder basis is introduced into the considered
space. Section 4 derives a specific algorithm in the case of the linear Fredholm integral
equation in two distinct contexts. Next, Section 5 shows some illustrative examples of
equations or a classic model of electrostatics (Love’s equation), and finally, Section 6 rounds
up with some conclusions.

2. Approximating Fixed Points of Affine Operators

The following result provides us with an approximation of the fixed point of a suitable
continuous affine operator, as well as an estimation of the error. It addresses a version of
the geometric series theorem, which we can label as perturbed: it presents the possibility
of converting the precise calculations into approximate ones, in exchange for making the
calculations possible.

Before establishing this, we present some standard notation. Given a (real) Banach
space X, L(X) will denote the Banach space (usual operator norm) of those bounded and
linear operators from X to X. For T ∈ L(X) and n ∈ N, Tn denotes the power operator

T ◦
n times︷︸︸︷
· · · ◦T, while T0 = I, the identity map on X.

Theorem 1. Let X be a Banach space, y ∈ X and L ∈ L(X) with ‖L‖ < 1, and consider the
continuous affine operator A : X −→ X defined by

Ax := y + Lx, (x ∈ X).

Let y0 ∈ X, n ∈ N and L0, L1, . . . , Ln ∈ L(X). Then, the equation Ax = x has a unique solution
x• ∈ X and∥∥∥∥∥ n

∑
j=0

Ljy0 − x•
∥∥∥∥∥ ≤ n

∑
j=0
‖Ljy0 − Ljy0‖+

(
1− ‖L‖n+1

1− ‖L‖

)
‖y0 − y‖+ ‖L‖n+1

1− ‖L‖‖y‖.

Proof. Let us first observe that, according to the geometric series theorem, there exists a
unique solution x• ∈ X for the equation Ax = x,

x• = (I − L)−1y,

which satisfies for any k ∈ N, ∥∥∥∥∥ k

∑
j=0

Ljy− x•
∥∥∥∥∥ ≤ ‖L‖k+1

1− ‖L‖‖y‖.

Therefore,∥∥∥∥∥ n

∑
j=0

Ljy0 − x•
∥∥∥∥∥ ≤

∥∥∥∥∥ n

∑
j=0

Ljy0 −
n

∑
j=0

Ljy0

∥∥∥∥∥+
∥∥∥∥∥ n

∑
j=0

Ljy0 −
n

∑
j=0

Ljy

∥∥∥∥∥+
∥∥∥∥∥ n

∑
j=0

Ljy− x•
∥∥∥∥∥

≤
n

∑
j=0

∥∥∥Ljy0 − Ljy0

∥∥∥+ n

∑
j=0
‖L‖j‖y0 − y‖+ ‖L‖n+1

1− ‖L‖‖y‖

=
n

∑
j=0

∥∥∥Ljy0 − Ljy0

∥∥∥+(1− ‖L‖n+1

1− ‖L‖

)
‖y0 − y‖+ ‖L‖n+1

1− ‖L‖‖y‖,

as announced.
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It is worth mentioning that when y0 = y and for all j = 0, 1, . . . , m, we have that
Lj = Lj, and we recover a well-known algorithm associated with the geometric series
theorem. However, iterative procedures such as this, used to involve difficult and even
impossible calculations from a practical perspective, so the idea behind this theorem is
to choose the operators L0, L1, . . . , Ln in such a way that L0y0, L1y0, Lny0 are not only
calculable, but also have a low computational cost. In addition, if y0 represents an
approximation of y—normally due to a certain type of error—the previous result shows
how y0 influences the final approximation. Finally, we can obtain an approximation for x•

for some adequate n ∈ N, and for each j = 0, 1, . . . , n, Ljy0 is close to Ljy0. More specifically:

Corollary 1. Suppose that X is a Banach space, L ∈ L(X) and ‖L‖ < 1, y ∈ X, and that
A : X −→ X is the continuous and affine operator A(·) := y + L(·), whose unique fixed point is
denoted by x• ∈ X. Additionally, assume that for some y0 ∈ X, n ∈ N, L0, L1, . . . , Ln ∈ L(X)
and ε, ε0, εn > 0, we have that

n

∑
j=0

ε j <
ε

2
,

j = 0, . . . , n ⇒ ‖Ljy0 − Ljy0‖ < ε j, (1)

and that (
1− ‖L‖n+1

1− ‖L‖

)
‖y0 − y‖+ ‖L‖n+1

1− ‖L‖‖y‖ <
ε

2
. (2)

Then ∥∥∥∥∥ n

∑
j=0

Ljy0 − x•
∥∥∥∥∥ < ε.

Obviously, (2) is valid as soon as n is large enough and ‖y0− y‖ is small. For condition (1),
we present some analytical tools in the next section.

3. Numerical Ideas behind the Algorithm for the Equation y + Lx = x

In view of Corollary 2.2 and under its hypotheses, we can approximate the fixed point
x• of A by a series close to the geometric one:

y0 ∈ X 

∣∣∣∣∣∣∣∣∣
y0 Ly0 L2y0 . . . Lny0  

n

∑
j=0

Ljy0 −−−−→
(n→∞)

x•

L0y0 L1y0 L2y0 . . . Lny0  
n

∑
j=0

Ljy0 ≈
n

∑
j=0

Ljy0

.

In order to derive
n

∑
j=0

Ljy0 ≈
n

∑
j=0

Ljy0

an approximation as that given in (1) is required. To this end, a possible tool appears
provided by the Schauder bases, since they give an explicit linear approximation of any
element of a Banach space by means of the associated projections, which is compatible with
the continuity and affinity of the operator. What is more, in the case of classic bases, we
easily obtain approximations of (the linear part of) A and its powers.

Thus, before continuing, we revise some of the basic notions of Schauder bases that
we are going to need in the design of our algorithm. A sequence {ej}j∈N in a Banach space
X is a Schauder basis if all the element x ∈ X can be uniquely represented as

x =
∞

∑
j=1

αjej,



Mathematics 2022, 10, 1012 4 of 10

for a sequence of real {αj}j∈N. If we define for each j ∈ N the linear operator Pj : X −→ X,
known as the j-th projection associated with the basis, as

Pjx :=
j

∑
k=0

αkek,

for such an x, it is easy to prove, as a consequence of the Baire lemma, that it is a continuous
operator and, in view of the representation of x in terms of the elements of the basis,

lim
j→∞
‖Pjx− x‖ = 0.

With the aid of a Schauder basis, we can approximate Lx with L(Pjx) which, on
occasion, is easy to calculate. To summarize all of this, we focus on a type of affine equation,
linear Fredholm integral equations, although this is the objective of the following section.

4. Algorithm to Approximate the Solution of a Linear Fredholm Integral Equation

In the rest of this paper, we focus our efforts on realizing everything that we explained
thus far in order to address the study of a specific problem, the numerical resolution of a
linear Fredholm integral equation, in two distinct settings.

Let X = C[a, b] or X = Lp[a, b], (1 < p < ∞), k ∈ C[a, b]2 or k ∈ L∞[a, b]2, respectively,
and y ∈ X. Then we consider the corresponding linear Fredhlom integral equation

x(t) = y(t) +
∫ b

a
k(t, s)x(s)ds, (3)

where x ∈ X is the unknown function. In view of the previous results, we consider the
continuous and linear operator L : X −→ X defined at each y0 ∈ X as

Ly0 :=
∫ b

a
k(·, s)y0(s)ds.

Then, given j ∈ N,

Ljy0 =
∫ b

a

(
· · ·

∫ b

a
k(·, t1)k(t1, t2) · · · k(tj−1, tj)y0(tj)dtj

)
· · · dt1.

From now on, in both cases (X = C[a, b] or X = Lp[a, b]), we assume that

‖k‖(b− a) < 1,

since such a condition is sufficient for the validity of ‖L‖ < 1 and it is very easy to check.
Furthermore, for each d ∈ N, we fix a Schauder basis {e(d)j }j∈N in C[a, b]d (if X = C[a, b]) or

in Lp[a, b]d (if X = Lp[a, b]) and we denote the projections in this basis as {P(d)
j }j∈N.

With all of this, we are now ready to define the approximate operators Lj: for each
x ∈ X and j ∈ N, we take

Φj(x)(t, t1, . . . , tj) := k(·, t1)k(t1, t2) · · · k(tj−1, tj)y0(tj)

and fixed on rj ∈ N, thus Lj : X −→ X is given as

Ljy0 :=
∫ b

a

(
· · ·

∫ b

a
P(j+1)

rj (Φj(y0)(·, t1, . . . , tj)dtj

)
· · · dt1. (4)

Now we can apply the corollary 1 since without going any further, each rj is big
enough, ‖Ljx− Ljx‖ < ε j.
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Corollary 2. For any ε > 0 and y0 ∈ X, there are natural numbers n and r0, . . . , rn in such a way
that if x• is the unique solution to the linear Fredholm integral Equation (3), then∥∥∥∥∥ n

∑
j=0

Ljy0 − x•
∥∥∥∥∥ < ε,

where L0 = I and for each j ≥ 1, the operator Lj is defined by (4).

Thus, we have established the following (Algorithm 1)

Algorithm 1: Algorithm for approximating the solution of the linear Fredholm
integral equation.

Choose y0, k, n, ε, ε0, . . . , εn, r0, . . . , rn ∈ N, and {e(d)i }i∈N, d = 1, . . . , n + 1;
L0 ← I;
j← 1;

while

∥∥∥∥∥ n

∑
j=0

Ljy0 − x•
∥∥∥∥∥ ≥ ε and j ≤ n

Φj(y0)(t, t1, . . . , tj)← k(·, t1)k(t1, t2) · · · k(tj−1, tj)y0(tj);

Ljy0 ←
∫ b

a

(
· · ·

∫ b

a
P(j+1)

rj (Φj(y0)(·, t1, . . . , tj)dtj

)
· · · dt1;

j← j + 1; end (while)

sol−approx←
n

∑
j=0

Ljy0.

Observe that
‖sol−approx− x•‖ < ε

and that for an appropriate choice of the bases {e(d)j }j∈N, the calculations are immediate, as
justified below.

Returning to the considered spaces in order to study the linear Fredholm integral
equation, X = C[a, b] or X = Lp[a, b], we remember how it is possible to tensorially
construct bases {e(d)j }j∈N in X = C[a, b]d or X = Lp[a, b]d, respectively, from a basis

{e(1)j }j∈N in the aforementioned spaces.

Specifically, given d ∈ N, d ≥ 2, we consider in Nd the square ordering introduced
in [17] in a inductive form: for d ≥ 2, (1, 1), (1, 2), (2, 2), (2, 1), (1, 3), (2, 3), (3, 3), (3, 2), . . . ,
and given the ordering o1, o2,. . . of Nd−1, the order in Nd is (o1, 1), (o1, 2), (o2, 2), (o2, 1),
(o1, 3), (o2, 3), (o3, 3), . . . . Graphically,

(o1, 1) // (o1, 2)

��

(o1, 3)

��

(o1, 4)

��
(o2, 1) (o2, 2)oo (o2, 3)

��

(o2, 4)

��
(o3, 1) (o3, 2)oo (o3, 3)oo (o3, 4)

��
· · · · · · (o4, 3)oo (o4, 4)oo

Thus, we establish a bijection τ : N −→ Nd, that for each j ∈ N a d-upla is assigned in
the form

τ(j) = (α1, . . . , αd)
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and for such a j, we define

e(d)j (t1, . . . , td) := eα1(t1) · · · eαd(td), ((t1, . . . , td) ∈ [a, b]d). (5)

The usual Schauder basis in C[a, b] is the Faber–Schauder system, and in Lp[a, b] is the
Haar system [18]. More specifically, and assuming without loss of generality that a = 0 and
b = 1, for the Faber–Schauder system, we start from the nodes {tj}j∈N, which are the points

of [a, b] arranged dyadically, and the basis functions {e(1)j }j∈N are continuous piecewise
linear functions, the so-called hat functions, satisfying for each j ∈ N

e(1)j (tj) = 1

and
1 ≤ k < n ⇒ e(1)k (tj) = 0.

On the other hand, if A is a non-empty subset of [0, 1] and δA : [0, 1] −→ R is the
function defined in each 0 ≤ t ≤ 1 as

δA(t) :=
{

1, if t ∈ A
0, if t /∈ A

and ϕ : [0, 1] −→ R is the function such that in each 0 ≤ t ≤ 1

ϕ(t) := δ[0,0.5)(t)− δ[0.5,1](t),

then the Haar system is given by
e(1)1 := 1

and for j ≥ 2, written uniquely as j = 2k + r + 1, with k = 0, 1, . . . and r = 0, 1, . . . , 2k − 1,

e(1)j (·) := ϕ(2k(·)− r).

In both cases, the tensorial sequences defined as (5) constitute Schauder bases in
their respective spaces, C[a, b]d and Lp[a, b]d [17,19]. However, what really makes these
bases useful when they are used in our Algorithm 1 is precisely that the calculation of
the approximate operators Lj is very easy, since the basis functions e(d)j are of separate
variables and each factor is immediately integrable. Let us mention that these Schauder
bases allow us to preserve the linearity of the convergence that it is guaranteed by the series
geometric theorem.

5. Numerical Examples

We now show the numerical results obtained in several specific examples. Beforehand,
let us mention that the reordering of a finite number of Schauder basis elements produces
another new Schauder basis, which could be interesting from a computational point of
view. Thus, for each r ∈ N, we reordered the bases of C[a, b]d and Lp[a, b]d so that the rd

first elements correspond to (α1, α2, . . . , αd) being 1 ≤ αi ≤ r. For these reordered bases,
we maintain the same previous notation, {e(d)j }j∈Nd for the basis and {P(d)

j }j∈N for the
sequence of projections. Furthermore, given n, r ∈ N, we write

x(n,r) :=
n

∑
j=0

Ljy0,

where the indices rj involved in the definition of Lj are given by τ(rj) = (

j + 1 times︷ ︸︸ ︷
r, . . . , r ).
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In each example, we consider y0 = y since another choice of y0 is rather more
theoretical, and since as we have indicated previously, it addresses the function y when
some kind of error is produced in this function. Calculations were obtained by means of
the Mathematica 12 software.

Example 1. We consider the equation of the Example 1 in [10]:

x(t) =
30πt− sin(πt)

15
+

1
15

∫ 1

0
t cos(πts2)x(s) ds

whose solution is x•(t) = 2πt.
The errors obtained with our method are comparable to the order of those obtained in the

reference taking m = 4 and p = 2, as shown in Table 1. The advantage in our case is that it is not
necessary to start with an approximate solution “close enough” to the exact solution and it is not
necessary either solve any system of linear equations.

Table 1. ‖x• − x(n,r)‖ for Example 1 using the usual basis in C[0, 1].

n r = 9 r = 17 r = 33

1 0.00435474 0.00216401 0.00162257
2 0.00300495 0.000773636 0.000210816
3 0.00298439 0.000752736 0.00018924
4 0.00298394 0.000752272 0.000188771

Example 2. The following equation is also extracted from the same reference (Example 2, [10]):

x(t) = t2 − t + 1 +
1
4

∫ 1

0
etsx(s) ds.

As in the referenced paper, since the solution of this equation is not known, we consider the operator
F : C[0, 1]→ C[0, 1] given by

F(x)(t) = x(t)− t2 + t− 1− 1
4

∫ 1

0
etsx(s)ds

and we show ‖F(x(n,r))‖ for different values of n and r in Table 2.
The errors obtained are similar to those reported in Table 2 of [10] but with the same advantage

mentioned above.

Table 2. ‖F(x(n,r))‖ for Example 2 using the usual basis in C[0, 1].

n r = 9 r = 17 r = 33

1 0.122201 0.123111 0.123339
2 0.0399626 0.0413395 0.0416839
3 0.0120328 0.0136133 0.0140084
4 0.00258589 0.00422851 0.0046442

Example 3. The following equation,

x(t) =
2t2 − 1

3
+

2
3

et(t− 1) +
1
3

∫ 1

0
t3etsx(s)ds,

is taken from [20], Example 3. Its solution is x•(t) = t2 − 1. See Table 3 for the error generated by
Algorithm 1.



Mathematics 2022, 10, 1012 8 of 10

Table 3. ‖x• − x(n,r)‖ for Example 3 using the usual basis in C[0, 1].

n r = 9 r = 17 r = 33

1 0.0627248 0.0593289 0.0584785
2 0.0133747 0.0104771 0.00975651
3 0.00503508 0.00242016 0.00156699
4 0.00362812 0.00109348 0.000463489

Example 4. This is a standard test problem, and it arises in electrostatics (see [21]) where it is
called Love’s equation.

x(t) = y(t) +
δ

π

∫ 1

0

x(s)
δ2 + (t− s)2 ds.

We consider δ = −1 and y(t) = 1 +
1
π
(arctg(1− t) + arctg(t)) as in Example 3.2 of [22]. In this

case, the exact solution is x•(t) = 1.
The errors—see Tables 4 nad 5—are similar to those obtained by the Haar wavelet method and

rationalized Haar functions method (see Table 1 in [22]), although their computation requires to
solve some high-order systems of linear equations.

Table 4. ‖x• − x(n,r)‖ for Example 4 using the usual basis in C[0, 1].

n r = 9 r = 17 r = 33

1 0.0819571 0.0825347 0.0826789
2 0.0241024 0.0234044 0.023227
3 0.0059927 0.00634808 0.00645712
4 0.00299427 0.00211501 0.0018917

Table 5. ‖x• − x(n,r)‖ for Example 4 using the usual basis in L2[0, 1].

n r = 8 r = 16 r = 32

1 0.0785242 0.0785241 0.0785217
2 0.0235324 0.0235323 0.0235264
3 0.0101296 0.0101295 0.0101140
4 0.0083851 0.0083850 0.0083669

Example 5. Now considering Example 2 of [23] which has solution x•(t) = sin(2πt)

x(t) = sin(2πt) +
∫ 1

0
(t2 − t− s2 − s)x(s)ds.

We observe that the numerical results obtained with our method (Table 6) significantly improve
those obtained in the reference.

Table 6. ‖x• − x(n,r)‖ for Example 5 using the usual basis in L2[0, 1].

n r = 8 r = 16 r = 32

4 3.17949× 10−11 4.33093× 10−11 4.28502× 10−9

6. Conclusions

In this paper, we present an algorithm for iteratively approximating the fixed point
of a continuous coercive affine operator. Its design is based on a perturbed version of the
classic geometric series theorem, the error control that this provides, and the use of certain
Schauder bases. All of this is illustrated for a wide group of affine problems, the linear
Fredholm integral equations. The low computational cost that our algorithm entails makes
it particularly efficient. All of this is illustrated by several examples. We consider that
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future research could be focused on extending the algorithm to solve different types of
integral and even integro-differential equations.
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