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Abstract: Climate change is expected to increase the occurrence of droughts, with the hydrology in
alpine systems being largely determined by snow dynamics. In this paper, we propose a methodology
to assess the impact of climate change on both meteorological and hydrological droughts, taking
into account the dynamics of the snow cover area (SCA). We also analyze the correlation between
these types of droughts. We generated ensembles of local climate scenarios based on regional climate
models (RCMs) representative of potential future conditions. We considered several sources of
uncertainty: different historical climate databases, simulations obtained with several RCMs, and
some statistical downscaling techniques. We then used a stochastic weather generator (SWG) to
generate multiple climatic series preserving the characteristics of the ensemble scenario. These were
simulated within a cellular automata (CA) model to generate multiple SCA future series. They were
used to calculate multiple series of meteorological drought indices, the Standardized Precipitation
Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and a novel hydrological
drought index (Standardized Snow Cover Index (SSCI)). Linear correlation analysis was applied
to both types of drought to analyze how they propagate and the time delay between them. We
applied the proposed methodology to the Sierra Nevada (southern Spain), where we estimated a
general increase in meteorological and hydrological drought magnitude and duration for the horizon
2071–2100 under the RCP 8.5 emission scenario. The SCA droughts also revealed a significant increase
in drought intensity. The meteorological drought propagation to SCA droughts was reflected in an
immediate or short time (1 month), obtaining significant correlations in lower accumulation periods
of drought indices (3 and 6 months). This allowed us to obtain information about meteorological
drought from SCA deficits and vice versa.

Keywords: climate change; drought analysis; statistical corrections; ensemble of scenarios

1. Introduction

The assessment of hydrological variables requires the application of different models
and should consider different sources of uncertainties [1]. Hydrology in alpine systems
is largely determined by snow dynamics. In these systems, changes in snow availability
can have a significant effect on surrounding ecosystems [2,3], water resources [4–6], and
tourism [7]. Accumulated snow melt in alpine systems provides an essential water resource
to adjacent regions in summer, when precipitation is low [8], thus increasing water avail-
ability when demand is high. This exposes the significant ecological and socioeconomic
impact associated with low SCA values. A key factor that determines snow dynamics
is the weather, which is strongly influenced by elevation [9–11]. Climate change models
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forecast more extreme climate conditions in the future (especially in arid and semi-arid
regions) with reductions in precipitation and increases in temperature, which is expected
to drastically modify the hydrological regime, affecting both surface and groundwater
supplies. Alpine systems in semi-arid regions are highly sensitive to climate change since
the hydrological cycle is significantly influenced by snow dynamics (influenced by precipi-
tation and temperature regimes) [12–14]. For this reason, the assessment of hydrological
droughts associated with snow dynamics is essential to determine the possible impact on
water resources.

Drought is a transitory precipitation anomaly that can affect large areas and have
devastating effects on agriculture, the environment, and water supplies [15,16]. This
negative impact can result in significant economic losses and even social conflict [17]
(especially affecting developing countries). Drought is a complex phenomenon that does
not have a universal description [18]. A simple definition is to consider it as a water
deficit in relation to normal conditions [19]. Depending on the nature of the water deficit,
droughts can be categorized into four types: meteorological, hydrological, agricultural, and
socioeconomic [20]. Meteorological, hydrological, and agricultural droughts are based on
the same concept, i.e., droughts that can be determined as prolonged episodes of unusual
arid climate sufficiently extended by water absence, which cause a significant imbalance
in the hydrological cycle (low precipitation, soil humidity scarcity, water level decrease,
water resource deficits, SCA decrease, etc.) in a region. They are mainly produced by a
deficit in precipitation, an increase in air temperature (high evapotranspiration), and a
reduction in soil moisture. Despite the fact that drought is a phenomenon that can occur in
any region in the world, drought analysis in arid and semi-arid regions is of particularly
vital importance, since these are areas with a scarcity of water resources where the adverse
effects may be greater due to climate change [21].

In alpine systems, monitoring and analysis of meteorological (precipitation and effec-
tive precipitation) and hydrological droughts (associated with SCA) is a key issue given
their importance in water resources. Typically, these droughts originate from a meteorolog-
ical phenomenon that can cause water shortages in other hydrological cycle components
(rivers, groundwater, snow, soil moisture, etc.). In recent decades, the scientific commu-
nity has shown interest in developing drought indices as a tool to monitor and evaluate
meteorological drought conditions. The most widely extended indices are defined with
multi-scalar properties and are comparable in time and space (SPI, SPEI, etc.). The SPI
assesses meteorological droughts in precipitation terms [22] without considering other
variables also related to drought occurrence, such as evapotranspiration, wind speed, etc.
The SPEI (considered as an enhanced SPI) also takes into account the evapotranspiration
effect (in addition to precipitation) to analyze droughts in effective precipitation terms [23].
The mathematical operations proposed to define these indices can be applied to other
variables (surface flows, groundwater, SCA, etc.) to evaluate other drought types, such
as different hydrological components. An appropriate analysis based on these indices
requires the study of series covering long periods [24]. However, in alpine systems, due to
difficult access, we usually miss meteorological data with appropriate spatial distribution,
especially at higher elevation areas. A feasible alternative is to use climate tools (for exam-
ple, Spain02, Aemet 5 km, SPREAD and STEAD, etc., databases in Spain) in areas where
they are available. These tools offer continuous climate records over a long time period
with a fixed spatial resolution. With regard to SCA, this can be obtained from satellite data
(e.g., National Oceanic and Atmospheric Administration (NOAA) satellite data or Mod-
erate Resolution Imaging Spectroradiometer (MODIS) satellite data) or models. MODIS
provides good accuracy for SCA data [25,26], but in the presence of a dense forest canopy,
the uncertainty in the MODIS SCA data increases [27], which reduces the accuracy. A
drawback regarding satellite data is that they may be useless during certain periods if cloud
cover obscures the view or if there has been a sensor failure. In such cases, alternative tools
or models are required to estimate the SCA. So far, SCA has been analyzed using various
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procedures, including physical-based models, regression techniques, artificial networks,
and CA models.

Drought analysis is a topic that has generated interest in the research community
in recent years. Numerous studies evaluated the hydrological effect of meteorological
droughts on groundwater [28–31] or surface flows [32–36]. However, to the best of our
knowledge, there are no studies that have focused on the relationship between meteorolog-
ical droughts and hydrological droughts associated with snow dynamics. Neither have we
found any studies in the literature that determine the uncertainty of possible climate change
impact on meteorological and SCA droughts using multiple climatic series. Regarding
spatial scale, most of the studies evaluated drought impact at the basin scale [35,37], as well
as regions [38–40], countries [41–44], or entire continents [45,46], but few [47,48] studies
focused on alpine systems.

In this article, we propose a methodology to assess the impact of potential future
scenarios (downscaled from RCMs) in meteorological and hydrological droughts in alpine
systems with two novelties. The first novelty is the analysis of meteorological and SCA
hydrological droughts, where we used long, complete series of SCA obtained with a CA
model. Different uncertainty sources were considered to generate local scenarios: different
historical climate databases, simulations (control scenarios and future scenarios), and
different statistical downscaling techniques. We considered the uncertainty in the historical
period inherent to different climate products. Secondly, we studied the correlation between
meteorological droughts and hydrological droughts associated with SCA. We used the
Sierra Nevada mountain range (southern Spain) as a case study, which is a semi-arid alpine
system very sensitive to the impact of climate change.

We considered different climate information sources (climate products/databases) to
determine the historical drought uncertainty. These climate tools were used to determine
meteorological variables (precipitation and effective precipitation), which are necessary
to compute the proposed meteorological drought indices (SPI and SPEI). We analyzed the
correlation between meteorological drought series and hydrological drought series (SSCI,
associated with SCA) to study their relationship within historical and potential future
scenarios. We aimed to assess whether information on meteorological drought could be
extracted from snow dynamics. Future projections of climate variables (precipitation and
temperature) were obtained by downscaling RCMs to adapt them to local conditions. We
used equi-probable sets of projections, which provide more robust results than individual
models [49,50]. We generated multiple future SCA and climate series (with an SWG) to
assess uncertainty in potential future droughts.

This article is organized as follows: Section 2 describes the case study and available
data and presents the methodology used to assess the potential impact of climate change
and its uncertainty in droughts. Section 3 is dedicated to the analysis of the results. Section 4
discusses the main study aspects. Section 5 presents the main conclusions.

2. Materials and Methods
2.1. Study Region

The case study used is the Sierra Nevada mountain range, located in southern Spain
(in the provinces of Granada and Almería) (see Figure 1). It is a linear mountain range,
90 km long and 20 km wide, parallel to the Mediterranean coast. It is recognized by several
protection agencies (Natural Park, National Park, Biosphere Reserve) and occupies an area
of more than 2000 km2. It is one of the highest mountain ranges in Europe, with more
than 20 peaks with altitudes above 3000 m This mountain range contains the highest peak
in the Iberian Peninsula—Mulhacen—with an altitude of 34,786 m. The Sierra Nevada
enjoys a high mountain Mediterranean climate, with dry summers and wetter winters,
with precipitation that falls almost exclusively in snow form (from November to May)
at altitudes above 2000 m. The snow dynamics have a notable effect on the region from
an economic point of view—it is the most southern ski resort in Europe—and from an
environmental and water resources perspective, with a hydrographic network that is
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mainly fed by snow in the melt season. The weather conditions fluctuate temporarily with
high spatial variability due to the topography. Due to these particular conditions, it is
included in the Global Change in Mountain Regions network [51].
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2.2. Datasets and Preprocessing
2.2.1. Historical Weather Data

In this area, various meteorological stations networks are available, which generally
have a lack of data at more than 2000 m.a.s.l. In this study, we used different climate tools
(Spain02 [52,53], Aemet 5 km [54], SPREAD and STEAD [55,56]) available in Peninsular
Spain (given the insufficient climate data spatial distribution at high elevations) to assess the
impact of climate change on droughts. We used the historical reference period 1976–2005
as the basis for evaluating climate change signals. The climate data sets used do not
provide adequate information on altitudinal gradient due to the low spatial resolution
(5 and 12.5 km), so we decided to carry out a drought study referring to the whole of the
Sierra Nevada mountain range. We used lumped climate series (using a monthly record
weighted average) to homogenize climate records at mountain range scale. The weights
were defined as the area represented by each point with information from climate tools by
applying the Thiessen polygon method [57].

2.2.2. Spain02

We used historical data provided by the Spain02 project [52,53], which includes daily
precipitation and temperature estimates from observations (around 2500 quality-control
stations) of the Spanish Meteorological Agency. An assessment of the validation of some
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Spanish datasets (including Spain02) was recently made by Quintana-Seguí et al. [58].
We used version 5 (v5) of the Spain02 dataset. The project uses the same grid as EURO-
CORDEX project with a spatial resolution of 0.11◦ (approximately 12.5 km). The Spain
dataset has already been used in many research studies [59,60]. We only selected climate
dataset points included within the Sierra Nevada (or in its vicinity). These points were
distributed topographically at heights between 558 and 2420 m (see Figure 1).

2.2.3. Aemet 5 km

The Aemet 5 km project includes daily precipitation and temperature data estimated
from 3236 precipitation stations observations and 1800 thermometric stations from the State
Meteorological Agency National Data Bank, with a 5 km spatial resolution. We selected
58 stations from precipitation data set (v.2) and temperature data set (v.1) that varied in
heights between 647 and 2686 m (see Figure 1).

2.2.4. SPREAD and STEAD

The SPREAD data set [55] contains estimated daily precipitation data from
11,513 observations coming from the State Meteorological Agency, Agriculture and Envi-
ronment Ministry (MAGRAMA), and regional hydrological and meteorological services
stations, with a 5 km spatial resolution. Daily temperature data were obtained from STEAD
dataset [56], which includes estimated temperature data from 5056 observations from the
State Meteorological Agency and MAGRAMA stations with a 5 km spatial resolution. The
climate points selected varied in height from 300 to 3230 m (see Figure 1).

2.2.5. Climate Characterization

Average annual precipitation ranges between 509 and 657 mm year−1 in the Sierra
Nevada, mainly occurring between early autumn and spring (October to April). Precipita-
tion is mainly associated with North Atlantic and Mediterranean oscillations [61]. Average
annual temperature varies between 9.6 and 11.4 ◦C, with minimums in January (3 to 5.7 ◦C)
and maximums in August (19.3 to 21.8 ◦C). These temperatures refer to the whole of the
Sierra Nevada National Park, which explains why the minimum temperatures exceed the
0 ◦C barrier.

We examined the correlation of the climate variables (as an average study time period
for the different climate tools) with elevation for the different climate tools. We also
analyzed the altitudinal gradient of the climate variables with elevation. Linear correlation
with elevation is most evident for temperature, with R2 from 0.87 to 0.97 (see Figure 2b),
that for precipitation, with R2 more disparate ranging from 0.4 to 0.76 (see Figure 2a).
Precipitation and temperature show marked spatial heterogeneity in the study area (with
wide altitudinal gradients), which is common in mountainous regions. Precipitation shows
a positive altitudinal gradient (see Figure 2a), with increases in precipitation with altitude.
The opposite is observed for temperatures, which decrease the higher the elevation is
(showing a negative altitudinal gradient) (see Figure 2b).

Temperature correlations with elevation remain relatively constant throughout the
year, with R2 from 0.8 to 0.98 (see Figure 3b). Precipitation shows a more irregular temporal
evolution, with R2 from 0.1 to 0.9 (see Figure 3a). The altitudinal temperature gradient with
elevation (TAGE) based on mean temperatures shows a clear difference between climate
databases. The Aemet 5 km tool shows a pronounced TAGE based on daily means, with
lower gradients in winter (−5.9 ◦C km−1 in December) and more pronounced in spring
and summer (−7.4 ◦C km−1 in March, April, May, and June). In contrast, the Spain02 and
STEAD tools show lower TAGE with little variation throughout the year, with gradients
that vary between −4.9 ◦C km−1 in December and −5.4 ◦C km−1 in May and between
−3.8 ◦C km−1 in December and −4.5 ◦C km−1 in April, respectively (see Figure 3d). Verti-
cal precipitation gradients are the consequence of air rising and stinking as it passes over the
mountain ridge. Its values are positive on the windward side, whilst on the leeward side,
the values are negative, increasing when the distance from the mountain increases. In the
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study area, the altitudinal precipitation gradient with elevation (PAGE) follows the same
pattern with different climate tools, with pronounced variations in winter and almost non-
existent in summer (see Figure 3c). PAGE based on monthly average precipitation reaches
minimum values in summer, with values that vary between +1.2 and +0.058 mm km−1 in
August, increasing significantly for the rest of the year (autumn, winter, and spring), with
maximum values varying from +33.4 to +48.1 mm km−1 in December (see Figure 3c).

2.2.6. Snow Cover Data

SCA data from the historical period (1976–2005) and future period (2071–2100) were
provided from a previous study published by Collados-Lara et al. [62]. In this study, we
used a CA model based on one developed by Pardo- Igúzquiza et al. [63] to simulate SCA
using climate indices (precipitation and temperature) as descriptive variables and a series of
parameters (threshold precipitation, threshold temperature, and threshold in the number of
neighbor cells that produce a change in the cell state). This model uses a series of transition
rules that allows us to determine the absence or presence of snow. It has been proven to be
a useful tool for accurately simulating SCA dynamics [62,63].

2.2.7. Regional Climate Models

We considered the most pessimistic CORDEX project emission scenario (RCP 8.5) [64].
For this scenario, we analyzed nine RCMs nested to four different Global Climate Mod-
els (GCMs) (CNRM-CM5, EC-EARTH, MPI-ESM-LR, and IPSL-CM5A-MR). These series
(control scenarios and future simulations of the CORDEX EU project) from five RCMs
(CCLM4-8-17, RCA4, HIRHAM5, RACMO22E, and WRF331F) nested in each GCM consid-
ered were used to assess possible future climate scenarios in the period 2071–2100. RCM
simulations considered are summarized in Table 1.

Table 1. Selected Regional Climate Models (RCM) and Global Climate Models (GCM).

RCM
GCM CNRM-CM5 EC-EARTH MPI-ESM-LR IPSL-CM5A-MR

CCLM4-8-17 X X X
RCA4 X X X

HIRHAM5 X
RACMO22E X

WRF331F X
X indicates to which GCM is nested the corresponding RCM.
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2.3. Methods

We propose a methodology to study historical meteorological and hydrological SCA
droughts and the potential future impact on them in alpine regions for different time-
aggregation periods (see Figure 4). Several uncertainty sources were considered. The
historical information used was derived from different climate products. Local potential
future scenarios (based on the historical information) were defined for a specific time
horizon (2071–2100) and emission scenario (RCP 8.5) by using different RCM simulations,
downscaling techniques, and SWG to generate multiple synthetic series, etc. We analyzed
the temporal correlation of SPI/SPEI series (defined to study meteorological droughts) and
SSCI series related to SCA dynamics for the study of hydrological droughts. We aimed
to draw conclusions about meteorological droughts, which can be inferred from the SCA
dynamics series and vice versa. The proposed methodology (see Figure 4) includes the
following steps. (1) historical assessment of meteorological (based on precipitation and
effective precipitation series) and hydrological SCA droughts and uncertainties (due to
the climate product) analysis. (2) Future analysis of meteorological and hydrological SCA
droughts: (2.1) define future local scenarios by applying different statistical correction
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techniques under two conceptual downscaling approaches from RCM simulations included
in EURO-CORDEX project; (2.2) multiple climate and SCA series generation by using an
SWG that preserves the main statistics of local future scenarios; (3) correlation analysis
between meteorological and hydrological SCA droughts for different time lags.

We used two different indices to analyze meteorological droughts: SPI and SPEI. The
SCA drought was evaluated with SSCI (applying the same methodology as SPI using SCA
data as input). We applied the run theory [65] to determine the drought statistics. It is
important to note that the future drought index values were calculated using the proba-
bility distributions parameters calibrated for the historical observations for an adequate
comparison between the historical and future periods to identify and assess the impact of
climate change [66].

2.3.1. Drought Indices
Standardized Precipitation Index

SPI requires monthly precipitation data as input. It does not take into account other
variables also related to drought occurrences, such as temperature, evapotranspiration,
wind speed, or atmospheric humidity. This index was developed by McKee et al. [22] for
drought analysis and monitoring. The main advantage of SPI is that it can be calculated
on multiple time scales, being comparable in time and space [67,68]. In our case study,
we calculated SPI for different temporal-aggregation time scales (3, 6, and 12 months).
We fitted accumulated precipitation data to a gamma distribution [69] and transformed
cumulative probability to a standard normal distribution function, with a mean zero and
standard deviation one, which provides SPI values. We used the Abramowitz and Stegun
approximation [70] to transform cumulative probability in the SPI value:

SPI = −
(

t − c0 + c1t + c2t2

1 + d1 + d2t2 + d3t3

)
for 0 < H(x) ≤ 0.5 (1)

SPI = +

(
t − c0 + c1t + c2t2

1 + d1 + d2t2 + d3t3

)
for 0.5 < H(x) < 1 (2)

where:

t =

√√√√ln

(
1

(H(x))2

)
for 0 < H(x) ≤ 0.5 (3)

t =

√√√√ln

(
1

(1 − H(x))2

)
for 0.5 < H(x) < 1 (4)

where H(x) is cumulative probability, and the constants are: c0 = 2.515517, c1 = 0.802853,
c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308. Positive SPI values indicate wet
periods, with deviations above the mean. Negative SPI values indicate dry periods, with
deviations below the mean.
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Standardized Evapotranspiration Precipitation Index

SPEI developed by Vicente-Serrano et al. [23] (considered an improved SPI) is particu-
larly useful for analyzing climate change effects in drought conditions. The SPEI considers
the influence of temperature on drought, preserving the SPI’s multi-scale nature. This index
is based on a climate water balance determined by the difference between precipitation and
potential evapotranspiration in each month i:

Di = Pi − PETi (5)

where D is effective precipitation, P is precipitation, and PET is evapotranspiration. Evapo-
transpiration is calculated by applying the Thornthwaite approximation [71], which only
requires the monthly mean temperature values as input.

The SPEI is calculated following the procedure described in Vicente-Serrano et al. [23],
where cumulative D series fit a three-parameter Log-Logistic distribution. Di values
calculated are added for different time scales (3, 6, and 12 months). To transform the
cumulative probability values to the SPEI values, a standard normal distribution, with
a mean zero and standard deviation one, is used following the Abramowitz and Stegun
approximation [70]:

SPEI = W − c0 + c1W + c2W2

1 + d1W + d2W2 + d3W3 (6)

where W =
√
−2 ln(p) to p ≤ 0.5, where p is the probability of exceeding a certain value

D, p = 1 − F(x), where F(x) is the cumulative probability. If p > 0.5, p is replaced by 1 − p,
and the SPEI resulting sign is reversed. The constants are c0 = 2.515517, c1 = 0.802853,
c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

2.3.2. Drought Statistics

Drought statistics (frequency, duration, magnitude, and intensity) were calculated by
applying the run theory [65]. We considered meteorological (SPI and SPEI) and hydrological
(SSCI) drought index threshold values (ranging from −4 to 0) to identify drought periods.
The frequency is defined as the number of drought events during a certain time period.
The duration is defined as an uninterrupted time period (in months) with index values
below the threshold value. The magnitude is the sum of all the index values during the
duration of the drought. The intensity is the minimum index value in a specific drought
event. Drought statistics values determined for each drought event were averaged for the
total drought events number identified for each threshold.

M = ∑D
i=1 ÍNDICEi (7)

I = Min
(
ÍNDICED

)
(8)

where D is the duration, M is the mean magnitude, and I is the mean intensity of the drought.

2.3.3. Future Drought Strategy

We proposed an RCM correction to generate local future scenarios that would provide
reliable estimates of the climate characteristics (precipitation and temperature). The ob-
tained future climate scenarios were introduced into an SWG to generate multiple climate
series to approach future scenarios’ uncertainty. We used this multiple climate series to
generate relative drought indices (rSPI, rSPEI, and rSSCI), which were calculated using
the probability distributions parameters of the historical series, which allowed us to make
an adequate comparison to assess the potential impact of climate change. The generation
of multiple drought index series (using an SWG) allowed us to assess climate change un-
certainty in droughts. The multiple local future climate scenarios generation procedure is
described next and the multiple local future SCA scenarios were obtained from a previous
study [72].



Water 2022, 14, 1081 11 of 38

Local Future Scenarios

We used a tool developed by Collados-Lara et al. [73,74] for the generation of future
climate scenarios considering two different downscaling approaches: bias correction (BC)
and delta change (DC). The BC approach applies a transformation function to the control
RCM simulation to obtain another with similar statistics to the historical one. The transfor-
mation function is applied to the future simulation to obtain a corrected future scenario.
It is assumed that bias between the historical series statistics and the control simulation
will remain invariant in the future. The DC approach assumes that RCMs provide an
accurate assessment of the relative changes between the control simulation and the future
simulation and applies these changes to the historical series to obtain a corrected future
series. The transformation function applied in both approaches is defined with the first- and
second-moment statistical-correction technique. Individual future scenarios generated with
the different RCMs were merged, making equi-probable ensembles of future projections
with BC and DC approaches, which provide more representative future scenarios.

Generation of Multiple Climate Series Using a Stochastic Model

SWG allows us to generate synthetic time series with statistical characteristics similar
to future projection scenarios. These generated multiple future scenarios are consistent
with future scenarios predicted with RCMs. The future scenarios generated with BC and
DC approaches are used as input in LARS-WG-SWG [75] to generate multiple future
series. LARS-WG has been updated several times (most recently in April 2021) and can
be used to generate synthetic weather series at a location. It can also be used to generate
potential local future scenarios based on Global Climate Models (GCM) outputs. In this
study, we used LARS-WG to produce multiple synthetic climate time series based on sets
of future local climate scenarios generated with BC and DC approaches (derived from
different local RCM projections). Multiple series generated with SWG may show bias with
original series statistics. We corrected these biases using a statistical technique developed
by Collados-Lara et al. [72] based on mean and standard deviation correction.

Analysis of the Temporal Correlation between Meteorological Drought and Snow
Cover Dynamics

We evaluated the correlation degree between meteorological drought and SCA drought
by applying a linear regression model. Meteorological drought series were assumed as
the independent variable (x) and SCA drought series as the dependent variable (y). Thus,
if we consider xi and yi with i = 1, 2, . . . , N; the linear relationship between variables is
determined with the determination coefficient:

R2 = 1 − ∑N
i=1(yi − ŷi )

2

∑N
i=1(yi − y)2 with lag time = 0,+1,+2,+3 months. (9)

where ŷ = β1x + β0 is the fitted linear regression line, where β1 and β0 are slope and
intercept, respectively, with R2 in the range of (0 ≤ R2 ≤ 1). Determination coefficient
specifies the proportion of the independent variable (y) variance that can be linearly
attributed to dependent variable (x) variance [76].

3. Results
3.1. Assessment of the Meteorological (P and T) and Hydrological (SCA) Droughts
3.1.1. Historical Analysis

Figure 5 shows SPI and SPEI evolution for 3-, 6-, and 12-months temporal-aggregation
scales during the historical period 1976–2005 in the study area. Shorter temporal-aggregation
scales (e.g., 3 months) showed more frequent dry and wet period fluctuations. For higher
temporal-aggregation scales (e.g., 12 months), dry and humid periods showed longer
but less frequent fluctuations over time. The indices exhibited a similar trend without
any notable differences, though it is worth mentioning more accentuated drought period
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detection with SPI, especially for smaller temporal-aggregation scales (3 months). With
higher temporal-aggregation scales (12 months), the influence of evapotranspiration on
droughts becomes more relevant.
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Figure 5. SPI and SPEI temporal evolution for the 3 months temporal-aggregation scale for the
(a) Spain02 database; (b) Aemet 5 km database; (c) SPREAD and STEAD database. SPI and SPEI tem-
poral evolution for the 6 months temporal-aggregation scale for the (d) Spain02 database; (e) Aemet
5 km database; (f) SPREAD and STEAD database. SPI and SPEI temporal evolution for the 12 months
temporal-aggregation scale for the (g) Spain02 database; (h) Aemet 5 km database; (i) SPREAD and
STEAD database.

SPI and SPEI series showed a similar temporal evolution, which indicates the high
correlation between both indices. In order to compare the meteorological drought indices
used, we analyzed the correlation between SPI and SPEI. Figure 6 shows the determination
coefficient between both meteorological drought indices (SPI and SPEI) for the different
temporal-aggregation scales (3, 6, and 12 months). The linear correlation coefficient calcu-
lated between SPI and SPEI ranged from 0.82 to 0.91. The lowest correlations were detected
with the lowest temporal-aggregation scales (3 months) for all the climate databases. These
correlations increased for the higher temporal-aggregation scale, obtaining the best results
for the highest temporal-aggregation scale (12 months). It is important to note that SPEI
and SPI have different minimum values (see the horizontal patterns of the data points in
Figure 6a–c,e,f). However, the maximum values are similar.
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Figure 6. (a) Correlation coefficient between SPI and SPEI for the 3 months temporal-aggregation
scale for the (a) Spain02 database; (b) Aemet 5 km database; (c) SPREAD and STEAD database.
Correlation coefficient between SPI and SPEI for the 6 months temporal-aggregation scale for the
(d) Spain02 database; (e) Aemet 5 km database; (f) SPREAD and STEAD database. Correlation
coefficient between SPI and SPEI for the 12 months temporal-aggregation scale for the (g) Spain02
database; (h) Aemet 5 km database; (i) SPREAD and STEAD database.

A comparative analysis of meteorological droughts characteristics identifies similar re-
sults between climate databases (see Figures 7–9) but shows significant differences between
SPI and SPEI. SPI-3 shows more extreme events and severe droughts (20) than SPEI-3 (0)
since the latter only identifies moderate and slight droughts (see Figures 7g–9g). The mean
duration of the drought events detected with SPEI-3 was the longest (5 months) compared
with SPI-3, which detects more intense and short droughts periods (2 months). The mean
magnitude of SPI-3 and SPEI-3 shows a similar difference (−3.6 versus −4.2). Higher SPEI
orders show a downward trend, with drought events that tend to be more severe. SPEI-12
detects events with similar intensity to those identified with SPI-12 (−1.9 vs. −2 on average)
(see Appendix B—Figures A5d,h–A7d,h). The difference in the mean duration of drought
events detected with SPEI-12 versus SPI-12 is notable (12 versus 9 months); however, for
severe and extreme drought events, they average a similar duration (4 months). SPI-12
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detects a higher number of events than SPEI-12 (21 vs. 15) but identifies the same frequency
of severe drought events (5). In magnitude terms, the differences between SPI-12 and
SPEI-12 are notable (−6.5 vs. −10). Magnitude is a drought severity indicator, so the SPEI
provides more severe droughts than SPI (see Appendix B—Figures A5c,g–A7c,g).

Likewise, we analyzed hydrological drought (SCA) characteristics in the Sierra Nevada
mountain range. A statistical analysis shows significant differences in drought frequency,
duration, and magnitude for the different temporal-aggregation scales, but no changes
were detected in intensity. Lower SSCI values showed greater fluctuations than higher
SSCI values, which show a lesser trend with prolonged dry periods. The number of
drought events identified with SSCI-3 was higher (25) than that detected with SSCI-12 (15).
However, SSCI-12 showed longer drought events (11 months) compared to those obtained
with SSCI-3 (5 months). In the same way, the magnitude exhibited by SSCI-12 (−9) far
exceeded that identified with SSCI-3 (−4,6) (see Figure 10 and Appendix B—Figure A8).
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magnitude; (h) mean intensity derived from SPEI for the 3 months temporal-aggregation scale
(Spain02 database).
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Figure 8. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 3 months temporal-aggregation scale 
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Figure 8. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 3 months temporal-aggregation scale (Spain02
database). Historical and future meteorological drought (e) frequency; (f) mean duration; (g) mean
magnitude; (h) mean intensity derived from SPEI for the 3 months temporal-aggregation scale (Aemet
5 km database).
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Figure 9. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 3 months temporal-aggregation scale 
(Spain02 database). Historical and future meteorological drought (e) frequency; (f) mean duration; 

Figure 9. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 3 months temporal-aggregation scale (Spain02
database). Historical and future meteorological drought (e) frequency; (f) mean duration; (g) mean
magnitude; (h) mean intensity derived from SPEI for the 3 months temporal-aggregation scale
(SPREAD and STEAD database).
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3.1.2. Future Analysis

Climate projections under RCP 8.5 emission scenarios based on different correc-
tion approaches (BC and DC) predict a significant reduction in precipitation (27–22%
on average) for the 2071–2100 time horizon, with average precipitation varying between
373 to 468 mm year−1 and 381 to 488 mm year−1 for BC and DC approaches, respectively.
The future mean precipitation differs depending on the climate database used. The Spain02
climate tool provides the highest mean precipitation values (468 to 488 mm year−1) (see
Figure 11a), and the SPREAD database averages the lowest values (373 to 381 mm year−1)
(see Figure 11c). The Aemet 5 km climate tool is in an intermediate range, it provides
future precipitation values that vary on average from 427 to 434 mm year−1 for the BC
and DC approaches, respectively (see Figure 11b). Regarding temperature, a considerable
increase is predicted, which on average stands at 4.5 ◦C (for the BC and DC approaches)
in relation to the historical period for all climate tools (see Figure 11d,e,f). It is important
to note that the BC and DC generated temperature series have the same mean monthly
values, but the series are different. Therefore, both approaches predict the same changes
in mean temperatures when the same historical information is used. However, with each
climate database, the predictions showed different mean temperatures for the mean year
in the future. It is important to note that the historical series of the different databases
are different. The mean temperatures predicted vary from 14.3 to 16.1 ◦C for the BC and
DC approaches, respectively. The STEAD database predicted the highest mean temper-
atures (16.1 ◦C), whilst the Aemet 5 km climate tool predicted the lowest mean values
(14.3 ◦C). The predictions made with the Spain02 database are in an intermediate range,
with 15.9 ◦C mean temperature values. In alpine systems, another relevant aspect related
to climate conditions is SCA. Maximum SCA annual periods in the 1976–2005 historical
period are reached in winter months (January and February), with 449 and 439 km2 covered
by snow, respectively. On the contrary, in summer (July and August), the SCA is practically
nil (see Figure 11g). Future projections of SCA for the BC and DC approaches predict a
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significant reduction in annual SCA for the 2071–2100 future period, with a reduction in
snow season of 2 months (May to October) with 195 and 176 km2 and 227 and 209 km2

maximum values in January and February for the BC and DC approaches, respectively
(see Figure 11g). This represents an average annual SCA reduction from 79% and 75% for
the BC and DC approaches, respectively, whilst in peak months (January and February), a
reduction of 57% and 49% in January and 59% and 52% in February is predicted for the BC
and DC approaches.

Variations in climate conditions and SCA dynamics have a determining effect on
future meteorological and hydrological droughts. Under an RCP 8.5 emission scenario,
meteorological drought showed a significantly increasing trend in the study area with all
the climate tools. SPI-3 suffered an increase in the mean number of severe drought events
for the Spain02 (27 vs. 21) and Aemet 5 km (22 vs. 18) climate databases compared to
the observed period (see Figures 7a and 8a). Severe drought duration showed a similar
contrast with the historical one for SPI-3, but we observed a generalized increase in du-
ration for Spain02 (7 versus 4 months) (see Figure 7b), Aemet 5 km (6 vs. 4 months) (see
Figure 8b), and SPREAD (6 vs. 4 months) climate products (see Figure 9b). Likewise, we
identified an increase in drought severity in relation to the observed period for Spain02
(−6.5 vs.−3.6) (see Figure 7c), Aemet 5 km (−5.5 vs. −3.6) (see Figure 8c), and SPREAD
(−5.5 vs. −3.7) climate products (see Figure 9c). In contrast, no significant variation in
drought intensity is detected in the future in any database. Statistical studies with SPEI-3
do not reveal significant changes in the number of drought events detected in the future,
except for the analysis with the SPREAD and STEAD climate tool, which shows a lower
number of drought episodes compared to the reference period (34 vs. 43) (see Figure 9e).
However, the duration of drought events identified with SPEI-3 was much higher than that
observed in the historical period with Spain02 (9 vs. 5 months) (see Figure 7f), Aemet 5 km
(9 vs. 5 months) (see Figure 8f), and SPREAD and STEAD (9 vs. 5 months) (see Figure 9f)
climate databases. In the same way, the magnitude of the droughts is accentuated with all
the climate tools . However, there are no significant changes in drought intensity for all
climate products (see Figures 7h–9h).
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In the long term, both SPI and SPEI show a considerable increase in the number of
extreme and severe droughts detected in relation to the observed period. We also predicted
an increase in drought duration. For example, the results obtained on average with respect
to the observed period with Spain02 (82 vs. 8 months for SPI-12 and 131 vs. 10 months
for SPEI-12), Aemet 5 km (74 vs. 8 months for SPI-12 and 196 vs. 10 months for SPEI-
12), and SPREAD and STEAD (74 vs. 10 months for SPI-12 and 196 vs. 17 months for
SPEI-12) climate products, with drought events that were longer for scenarios generated
with the BC approaches. Future drought severity (2071–2100) shows mean magnitudes
that far exceeded the values identified in the reference period (1976–2005) for Spain02
(−100.2 vs. −5.9 for SPI-12 and −206.9 vs. −7.8 for SPEI-12), Aemet 5 km (−74.1 vs. −6 for
SPI-12 and −272.6 vs. −8 for SPEI-12), and SPREAD and STEAD (−74.1 vs. −7.6 for SPI-12
and −272.7 vs. −14.2 for SPEI-12) databases. Likewise, we revealed more intense droughts
for the RCP 8.5 emission scenario with SPI-12 and SPEI-12 in all climate databases (see
Appendix B—Figures A5–A7).

Hydrological drought statistics for the 3-month temporal-aggregation scale can be
seen in Figure 10. Hydrological droughts at lower temporal-aggregation scales (3 months)
showed less extreme and severe drought events, with SSCI values that never exceed the
−1.5 barrier in the future. Predictions revealed that there was no variation in the number
of drought events compared to the reference period, but there was a notable increase in the
duration of these events (8 months for the BC approach and 7 months for the DC approach,
vs. 5 months). Drought magnitude showed similar differences (−5.6 and −5.7 for the BC
and DC approaches, respectively, vs. −4.6), which is due to the remarkable reduction that
was observed in the mean drought intensity (−1.2 for BC and DC approaches vs. −1.8).
These results contrast with those obtained for the higher temporal-aggregation scale,
with droughts that were much more intense in the future (−6.2 for the BC approach and
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−5.8 for the DC approach vs. −2.1). Future predictions for hydrological SCA droughts
showed a continuous extreme drought time period in the Sierra Nevada with the BC ap-
proach, with a single drought event for the entire analyzed period (349 months). Similar
results were revealed with the DC approach, with a single extreme drought event that
lasted most of the study time period (303 months). Drought magnitude was much higher
(−1436.6 for the BC approach and −1269.6 for the DC approach, vs. −8.9) compared to the
reference period (see Appendix B—Figure A8).

3.1.3. Assessment of the Correlations between Meteorological (P and T) and Hydrological
(SCA) Droughts

We analyzed the linear correlation between multiple meteorological (SPI and SPI)
drought indices and the hydrological (SSCI) drought index series (generated with BC
and DC correction approaches). The mean values of these correlations for the BC and
DC approaches are shown in Figure 12. The snow dynamics response to meteorological
conditions was identified with a 0 to 3 months’ time lag (see Figure 12). In general,
snow depends on climate characteristics (temperature and relative humidity). The highest
correlation values occurred for smaller temporal-aggregation scales (3 and 6 months) with
short response times (0 to 1 month). In general, correlations decreased significantly on the
longest time aggregation scale (12 months). It should be noted that correlation was slightly
higher with SPEI. In particular, from the climate databases used, it should be noted that the
meteorological drought series produced with Spain02 had a higher correlation with the
hydrological drought series (SSCI). For drought propagation, the 1 month response time
seems to be a turning point in all the temporal-aggregation scales. The highest correlation
in the reference period 1976–2005 (0.63) occurred in the 3-month temporal-aggregation scale
with an immediate response time (0 months). Thus, this indicates that the corresponding
month’s climate condition was the most significant variable that contributed to the SCA
dynamics in Sierra Nevada.

In general, the SPI mean correlations with SSCI are higher in the future, especially
in the lower temporal-aggregation scales. In contrast, the SPEI shows slightly lower
correlations with the SSCI. However, the maximum mean correlation took place with
the SPEI in 3-month temporal-aggregation scale with no delay in hydrological drought
response, with a 0.69 value for the Spain02 climate tool. In contrast, the highest SPI mean
correlation (0.66) occurred with a 1 month time lag.
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Figure 12. Correlation between meteorological (SPI) and hydrological (SSCI) drought for the
(a) 3 months temporal-aggregation scale; (b) 6 months temporal-aggregation scale; (c) 12 months
temporal-aggregation scale. Correlation between meteorological (SPEI) and hydrological (SSCI)
drought for the (d) 3 months temporal-aggregation scale; (e) 6 months temporal-aggregation scale;
(f) 12 months temporal-aggregation scale.
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4. Discussion

Climate models provide essential information to study the impact of climate change
on droughts. However, there is high uncertainty in scenarios generated from GCM and
RCM simulations that may cause a drought persistence underestimation [77]; therefore,
an uncertainties analysis associated with climate models must be incorporated. One way
to reduce this uncertainty in the climate projections is to merge multiple RCMs, which
provide more robust results than individual models [49]. SWGs are useful tools to take into
account uncertainty by generating equi-probable multiple weather series preserving the
values identified in some statistics for the future climate. SWG has been used extensively
in previous studies to assess the impact of climate change [78,79]. In this study, we used
an SWG to quantify the climate change uncertainty in meteorological and hydrological
droughts associated with SCA.

Most studies have used standardized indices with multi-scale properties, comparable
in time and space, for drought analysis and monitoring [80–82]. In our study, we used
SPI and SPEI indices for meteorological droughts and a novel variant of the SPI (SSCI)
for hydrological droughts to assess the impact of climate change (and its uncertainty) on
multiple time scales. These indices require continuous climate records (precipitation and
temperature) over a long enough time period. Climate tools contain continuous climate
records (precipitation and temperature) over a long period of time with a fixed spatial
scale and are useful in areas where data are scarce (such as alpine areas). In this study,
we used the climate products available in Peninsular Spain (Spain02, Aemet 5 km, and
SPREAD and STEAD). Other researchers have analyzed the impact of climate change (and
its uncertainty) on droughts in other regions [83,84], but not in the Sierra Nevada mountain
range. Nevertheless, the methodology applied in this study is a parsimonious approach
applicable to any case study. Only historical SCA and climate data and future RCM and
SCA climate data are needed to assess the impact of climate change (and its uncertainty)
on meteorological and hydrological droughts.

Drought characteristics (including frequency, duration, magnitude, and intensity)
have an implicit or explicit relationship with the established temporal-aggregation scale.
In general, long temporal-aggregation scale indices are more likely to indicate moderate
droughts that persist for long periods of time, whilst short temporal-aggregation scales
indicate more severe droughts with short durations [85]. In this article, behavior analysis
of each temporal-aggregation scale in meteorological and hydrological drought detection
in the reference period agrees with the above observation. Results in the reference period
(1976–2005) revealed high correlations between SPI and SPEI in each temporal-aggregation
scale, which indicates that precipitation variability is the main meteorological drought
driver. For the 1976–2005 historical period, the meteorological droughts studied with SPEI
identified more serious droughts that manifested for a longer time compared to those
detected with SPI in each temporal-aggregation scale, which shows the importance of
considering potential evapotranspiration in drought analysis. However, despite what we
might expect, the most intense droughts were detected with SPI. Although most research
refers to the greater capacity of SPEI to identify droughts [86,87], there is no common
agreement regarding the severity detected. In some studies in semi-arid regions, higher
intensities were detected with SPI [88–90], whilst in others, a higher severity was always
identified with SPEI [91]. Other investigations showed more extreme droughts with SPI
at lower temporal-aggregation scales, although similar or even slightly higher intensities
were identified in higher accumulation periods with SPEI [92]. In this study, although the
droughts were generally more extreme with SPI, we only identified slightly more severe
droughts with SPEI at longer temporal-aggregation scales. These results are consistent with
other investigations in the Mediterranean region [66,93], where precipitation variability
controls drought occurrence.

For the 2071–2100 horizon under the RCP 8.5 emission scenario, climate change’s
impact on meteorological droughts in Sierra Nevada is very significant. Future scenarios
indicate a reduction in precipitation from 22 to 27% and a 4.5 ◦C increase in average tem-
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perature at the end of the 21st century, which is consistent with other studies that evaluated
climate change impact in the Mediterranean region [94,95]. This notable alteration in future
climate conditions explains the significant impact on droughts. Despite relevant uncertainty,
we expected a general increase in drought severity and duration. Future drought scenarios
based on SPI showed less significant changes compared to SPEI. When considering the
temperature effect, SPEI-based scenarios show a clear trend towards drastically more severe
and prolonged droughts. However, both SPI and SPEI detected considerable deviations
from normal conditions in the reference period. Several studies that used SPI and SPEI
indices to assess the impact of climate change on meteorological drought in semi-arid
regions reached the same conclusions [66,96]. These results demonstrate that temperature
is the dominant factor contributing to increased drought compared to other factors such
as precipitation. The importance of considering potential evapotranspiration in drought
analysis under global warming scenarios has been highlighted in previous studies [23],
thus demonstrating the consistency of our results.

SCA analysis in RCP 8.5 (the higher emission scenario) revealed a very considerable
impact on hydrological droughts. During winter (December to March), we expected
reductions from 46 to 66% in SCA, although further reductions are expected in the rest
of the year. This significant impact on SCA has a direct effect on hydrological droughts,
with a general increase in drought magnitude, severity, and duration. Other studies have
also demonstrated the significant impact of climate change on SCA in other mountain
ranges [97–99]; however, there are no studies that have evaluated the impact of climate
change on SCA droughts.

We also analyzed the correlation of SSCI with the SPI and SPEI using a linear regres-
sion model for the different accumulation periods to identify the temporal-aggregation
scale in which precipitation and effective precipitation deficits propagate through hy-
drological cycles to produce deficits in SCA. Another possible option would be to use
the cross-wavelet analysis, which is a robust method that shows how the components
of the time series are coherent in the time-frequency domain and provides phase lag
information. The cross-wavelet analysis has been used in other research to study the
coherency between the seasonal components of climate and vegetation time series and
provide the phase lag [100,101], and investigate the relationship between the climate indices
and drought/flood conditions [102,103], amongst others. In this study, the precipitation
SCA relationship reflects an important correlation coefficient between meteorological and
hydrological droughts. The SSCI series revealed a good correlation with SPI and SPEI series
in lower temporal-aggregation scales (3 and 6 months), but we observed a considerable
reduction in the relationship for the 12-month temporal-aggregation scale. The SPEI series
showed a higher correlation with the SSCI series, which shows the effect of temperature
on SCA dynamics. Other researchers have identified the influence of climate variables
on the snow dynamics in the Sierra Nevada [13,14]. These studies identified the precip-
itation regime as the main snow dynamics driver, not underestimating the influence of
temperature. Correlations between meteorological and hydrological droughts show good
correlations for short response times in the different SPI and SPEI accumulation periods.
Although the strongest correlation occurs when SPEI is not lagged, the presence of weak
correlations in time lags of several months demonstrates the lack of early warning potential
for hydrological droughts based on the persistence of meteorological anomalies.

5. Conclusions

We proposed a methodology to evaluate the potential impact of climate change (and
its uncertainty) for meteorological and hydrological droughts. We generated local en-
semble scenarios from RCMs by combining the results obtained with different statistical
downscaling techniques under BC and DC approaches. We applied an SWG to generate
multiple series based on the generated ensemble of local scenarios. Relative standard-
ized indices were used to assess the impact of climate change on meteorological (SPI and
SPEI) and hydrological (SSCI) droughts at different time scales. We analyzed drought fre-
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quency, duration, magnitude, and intensity trends to better understand temporal changes
in drought characteristics.

The methodology used in this study is applicable to any case study. We applied it
to the Sierra Nevada mountain range, which is an alpine area highly sensitive to climate
change. For the most pessimistic emission scenario, RCP 8.5, we estimated a reduction from
27 to 22% in precipitation and an increase in temperature of 4.5 ◦C at the end of the 21st
century, which will affect SCA dynamics, with a reduction of 2 months for the snow season
in and an average reduction from 79 to 75% in the annual SCA. Meteorological drought
analysis revealed the usefulness of SPEI evaluating drought characteristics in climate
change scenarios due to the fundamental role of temperature in potential evapotranspira-
tion. Despite relevant uncertainty, our results showed that climate change scenarios lead
to a generalized increase in both meteorological and hydrological drought statistics, with
a considerable effect on duration (174 versus 12 months for meteorological droughts and
326 vs. 11 months for hydrological drought) and magnitude (−250 vs. −7 for meteorologi-
cal drought and −1353 vs. −9 for hydrological drought) in the long-term drought study
in relation to the reference period. Although in the historical period, the SPI shows simi-
lar values to SPEI, under climate change scenarios, the SPI could underestimate drought
magnitude and duration.

The correlation between meteorological and hydrological droughts provides a better
understanding of drought propagation procedures and can provide early warning to
identify potential adaptation strategies. In this study, we applied a linear regression model
to detect the multiple-scale relationship between meteorological and hydrological droughts.
Correlation analysis demonstrated a good hydrological response to precipitation and/or
effective precipitation deficits at short temporal-aggregation scales, although for long
temporal-aggregation scales, the hydrological response was weaker. The propagation time
from meteorological to hydrological drought presents stable characteristics in multiple
temporal-aggregation scales, with an immediate or short response time (1 month).

Author Contributions: D.P.-V. and F.J.R. conceived and designed the research; A.-J.C.-L. conceived
and designed the research and analyzed the data (generating local future scenarios); J.-D.H.-H.
analyzed the data and conducted the experiments; E.P.-I. designed the cellular automata model
that provided the snow cover data. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially supported by the research project SIGLO-AN (RTI2018-101397-
B-I00) from the Spanish Ministry of Science, Innovation and Universities (Programa Estatal de ICDCI
orientado a los Retos de la Sociedad), the GeoE.171.008.TACTIC from the GeoERA organization
funded by European Union’s Horizon 2020 research and innovation program and the Regional Min-
istry of Economic Transformation, Industry, Knowledge and Universities of the Regional Government
of Andalusia through the postdoc program of the Andalusian Plan for Research Development and
Innovation (PAIDI 2021) (POSTDOC_21_00154, University of Granada, Antonio-Juan Collados-Lara).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Spain02, Aemet 5 km, SPREAD, STEAD, and
CORDEX projects for the data provided for this study. The work of the first author at “Instituto
Geológico y Minero de España” was conducted within the internship program of the Master in Water
Quality Science and Technology (University of Granada).

Conflicts of Interest: The authors declare no conflict of interest.



Water 2022, 14, 1081 26 of 38

Abbreviations
BC Bias correction.
CA Cellular automata.
DC Delta change.
GCM Global climate model.
MAGRAMA Agriculture and Environmental Ministry.
MODIS Moderate Resolution Imaging Spectroradiometer.
NOAA National Oceanic and Atmospheric Administration.
PAGE Precipitation Altitudinal Gradient with Elevation.
RCM Regional Climate Model.
SCA Snow cover area.
SPEI Standardized Precipitation Evapotranspiration Index.
SPI Standardized Precipitation Index.
SSCI Standardized Snow Cover Index.
SWG Stochastic Weather Generator.
TAGE Temperature Altitudinal Gradient with Elevation.
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magnitude; (d) mean intensity derived from SPI for the 6 months temporal-aggregation scale 
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(g) mean magnitude; (h) mean intensity derived from SPEI for the 6 months temporal-aggregation 
scale (Spain02 database). 

  
(a) (b) 

  
(c) (d) 

Figure A1. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 6 months temporal-aggregation scale (Spain02
database). Historical and future meteorological drought (e) frequency; (f) mean duration; (g) mean
magnitude; (h) mean intensity derived from SPEI for the 6 months temporal-aggregation scale
(Spain02 database).
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Figure A2. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 6 months temporal-aggregation scale 
(Aemet 5 km database). Historical and future meteorological drought (e) frequency; (f) mean dura-
tion; (g) mean magnitude; (h) mean intensity derived from SPEI for the 6 months temporal-aggre-
gation scale (Aemet 5 km database). 
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Figure A2. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 6 months temporal-aggregation scale (Aemet
5 km database). Historical and future meteorological drought (e) frequency; (f) mean duration;
(g) mean magnitude; (h) mean intensity derived from SPEI for the 6 months temporal-aggregation
scale (Aemet 5 km database).
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Figure A3. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 6 months temporal-aggregation scale 
(SPREAD and STEAD database). Historical and future meteorological drought (e) frequency; (f) 
mean duration; (g) mean magnitude; (h) mean intensity derived from SPEI for the 6 months tem-
poral-aggregation scale (SPREAD and STEAD database). 

Figure A3. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 6 months temporal-aggregation scale
(SPREAD and STEAD database). Historical and future meteorological drought (e) frequency; (f) mean
duration; (g) mean magnitude; (h) mean intensity derived from SPEI for the 6 months temporal-
aggregation scale (SPREAD and STEAD database).
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Figure A5. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 12 months temporal-aggregation scale 
(Spain02 database). Historical and future meteorological drought (e) frequency; (f) mean duration; 
(g) mean magnitude; (h) mean intensity derived from SPEI for the 12 months temporal-aggregation 
scale (Spain02 database). 

Figure A5. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 12 months temporal-aggregation scale
(Spain02 database). Historical and future meteorological drought (e) frequency; (f) mean duration;
(g) mean magnitude; (h) mean intensity derived from SPEI for the 12 months temporal-aggregation
scale (Spain02 database).
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Figure A6. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 12 months temporal-aggregation scale 
(Aemet 5 km database). Historical and future meteorological drought (e) frequency; (f) mean 

Figure A6. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 12 months temporal-aggregation scale (Aemet
5 km database). Historical and future meteorological drought (e) frequency; (f) mean duration;
(g) mean magnitude; (h) mean intensity derived from SPEI for the 12 months temporal-aggregation
scale (Aemet 5 km database).
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Figure A7. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean
magnitude; (d) mean intensity derived from SPI for the 12 months temporal-aggregation scale
(SPREAD and STEAD database). Historical and future meteorological drought (e) frequency; (f) mean
duration; (g) mean magnitude; (h) mean intensity derived from SPEI for the 12 months temporal-
aggregation scale (SPREAD and STEAD database).
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Figure A7. Historical and future meteorological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SPI for the 12 months temporal-aggregation scale 
(SPREAD and STEAD database). Historical and future meteorological drought (e) frequency; (f) 
mean duration; (g) mean magnitude; (h) mean intensity derived from SPEI for the 12 months tem-
poral-aggregation scale (SPREAD and STEAD database). 
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Figure A8. Historical and future hydrological drought (a) frequency; (b) mean duration; (c) mean 
magnitude; (d) mean intensity derived from SSCI for the 12 months temporal-aggregation scale. 
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