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Abstract The Greater Antilles islands of Cuba, Hispaniola, Puerto Rico and Jamaica plus the Virgin
Islands host fragments of the fossil convergent margin that records Cretaceous subduction (operated for about
90 m.y.) of the American plates beneath the Caribbean plate and ensuing arc-continent collision in Late
Cretaceous-Eocene time. The “soft” collision between the Greater Antilles Arc (GAA) and the Bahamas
platform (and the margin of the Maya Block in western Cuba) preserved much of the convergent margin. This
fossil geosystem represents an excellent natural laboratory for studying the formation and evolution of an intra-
oceanic convergent margin. We compiled geochronologic (664 ages) and geochemical data (more than 1,500
analyses) for GAA igneous and metamorphic rocks. The data was classified with a simple fourfold subdivision:
fore-arc mélange, fore-arc ophiolite, magmatic arc, and retro-arc to inspect the evolution of GAA through

its entire lifespan. The onset of subduction recorded by fore-arc units, together with the oldest magmatic arc
sequence shows that the GAA started in Early Cretaceous time and ceased in Paleogene time. The arc was
locally affected (retro-arc region in Hispaniola) by the Caribbean Large Igneous Province (CLIP) in Early
Cretaceous and strongly in Late Cretaceous time. Despite multiple biases in the database presented here, this
work is intended to help overcome some of the obstacles and motivate systematic study of the GAA. Our results
encourage exploration of offshore regions, especially in the east where the forearc is submerged. Offshore
explorations are also encouraged in the south, to investigate relations with the CLIP.

1. Introduction

The fossil Greater Antilles Arc (GAA), part of the Great Arc of the Caribbean (Burke, 1988), provides an unusual
opportunity to examine the complete evolution of an intra-oceanic convergent margin from birth to demise,
especially because much of it is exposed above sea-level. Igneous and metamorphic rocks of the GAA (Figure 1)
record subduction beneath the Caribbean plate during the Cretaceous and Paleogene spanning about 90 m.y.
all through the present ca. 2,000 km length of the convergent margin (e.g., Iturralde-Vinent et al., 2016; Mann
et al., 2007; Pindell & Kennan, 2009 and references therein). In most interpretations, the subducting lithosphere
corresponds to the North and South American plates separated by the Proto-Caribbean ridge during the GAA
lifetime (e.g., Blanco-Quintero et al., 2010; Pindell & Kennan, 2009). Convergence was terminated with the
subduction of passive margin sequences (Despaigne-Diaz et al., 2016, 2017; Garcia-Casco, Iturralde-Vinent, &
Pindell, 2008); the ensuing soft collision with the margins of the Maya Block and the Bahamas Platform began
in Cuba in the Latest Cretaceous (Iturralde-Vinent et al., 2008; van Hinsbergen et al., 2009) and propagated to
Hispaniola and further east (e.g., Escuder-Viruete, Pérez-Estain, Booth-Rea, & Valverde-Vaquero, 2011; Escu-
der-Viruete, Perez-Estatin, Gabites, & Suarez-Rodriguez, 2011; Mann, 1999; Pindell & Barrett, 1990). After
frontal to oblique collision ended in Eocene time, convergence between the Caribbean and North American plates
stopped and the western part of the convergent margin (Cuba) accreted to the North American plate. A new trans-
form boundary—the left-lateral Oriente Transform Fault (Rojas-Agramonte et al., 2005, 2008)—and associated
formation of the Cayman Trough during the collision (Middle Eocene) - separated Cuba from the Caribbean plate
and eastern GAA fragments (Rosencrantz et al., 1988). This was a “soft” collision, so deformation was mostly
modest and most of the arc was not disrupted, making the GAA one of Earth's best-preserved fossil oceanic

HU ET AL.

1 of 31


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0003-1173-3069
https://orcid.org/0000-0002-8083-4632
https://orcid.org/0000-0003-2019-6234
https://orcid.org/0000-0002-8814-402X
https://doi.org/10.1029/2021GC010148
https://doi.org/10.1029/2021GC010148
https://doi.org/10.1029/2021GC010148
https://doi.org/10.1029/2021GC010148
https://doi.org/10.1029/2021GC010148
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1525-2027.CRBBNPLATE1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1525-2027.CRBBNPLATE1
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2021GC010148&domain=pdf&date_stamp=2022-03-29

I Y ed N | . .
NI Geochemistry, Geophysics, Geosystems 10.1029/2021GC010148

ADVANCING EARTH
AND SPACE SCIENCE

85°W 75°W 65° W
v v

r4

22°N »
3 oo Virgin Islands
18°N » ey - ~ o
Jamaica Puerto Rico ™
Hispaniola ‘
[ ] Passive margin sequence
I Ophiolite & Melange
[ Cretaceous volcanic rock [Jl] Cretaceous plutonic rock
[ Paleogene volcanic rock [ | Paleogene plutonic rock 400 km 0
D Metamorphic terranes S
B Plume-associated magmatism
140°E »
West Mariana Ridge Bonin Arc
145° » <
Pacific Plate
® Trench I 1BM Ridges
A A A
10°N 20°N 30°N

Figure 1. Comparison of fossil and active arcs, at the same scale. (a) Map of the Greater Antilles showing the location of passive margin sequences, ophiolites
and melange blocks, magmatic arcs, metamorphic terranes and plume-associated igneous rocks, modified from Torrd, Proenza-Fernandez, et al. (2016) and Wilson
et al. (2019). (b) Tectonic map of the Izu-Bonin-Mariana arc system, modified after Stern and Bloomer (1992).

convergent margins. In fact, the GAA is still an active convergent margin east of the Dominican Republic, where
slow, highly oblique convergence with Atlantic oceanic lithosphere continues today (e.g., Mann et al., 2002).

The GAA evolved as an intra-oceanic convergent margin; a contemporary analog is the Izu-Bonin-Mariana
(IBM) arc system (Figure 1c; Stern et al., 2012) which is mostly submerged. GAA sedimentary, metamorphic and
magmatic units developed in subduction-related (fore-arc, arc and retro-arc) environments. These are recognized
as follows: (a) extended passive margins of the Bahamas and the Maya Block accreted to the overriding plate in
Cuba, (b) ophiolites and ophiolitic mélanges, and (c) magmatic arcs (Cretaceous and Paleogene). Plume-associ-
ated igneous rocks were also developed in the GAA retro-arc region. These four tectonic units are not developed
on every island, but volcanic rocks are exposed on each.

Previous reviews focused on a range of related issues including the larger geodynamic evolution of the Carib-
bean plate (e.g., Boschman et al., 2014; Pindell et al., 2005, 2012); terrane accretion history (e.g., Garcia-Casco,
ITturralde-Vinent, & Pindell, 2008), the geology of Cuba (e.g., Iturralde-Vinent et al., 2016), high-pressure meta-
morphism in Cuba (e.g., Garcia-Casco et al., 2006), ophiolitic units (Lewis et al., 2006) and GAA arc igneous
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rocks (e.g., Lidiak & Anderson, 2015; Lidiak & Jolly, 1996). This paper is the first systematic overview of the
magmatism and metamorphism of the entire GAA convergent margin system.

Here, we summarize published petrologic, geochronological, and geochemical data for GAA ophiolites, mélange
blocks, the magmatic arc, and retro-arc extensional features and use this information to provide new insights
into GAA evolution. We also suggest some potentially fruitful directions for future study. Our approach is to use
geochronologic and geochemical data to constrain the entire magmatic and metamorphic history of the conver-
gent margin, from subduction initiation (SI) through maturity and death. The reconstruction does not include
other important geological issues, such as deformation, sedimentation, etc. We have two goals in this paper:
First, we want to explore if SI models (Stern & Gerya, 2018) are useful for understanding GAA evolution, using
the general approach of Hu and Stern (2020). Second, we hope to motivate further systematic study of the GAA
convergent margin system.

2. Methods

We imposed a simple fourfold tectonic subdivision on the GAA based on a SW dipping subduction system agreed
to by most scholars working in the Caribbean (e.g., Boschman et al., 2014; Escuder-Viruete, Diaz de Neira,
et al., 2006; Escuder-Viruete, Contreras, Stein, et al., 2007; Garcia-Casco et al., 2006; Garcia-Casco, Iturralde-Vi-
nent, & Pindell, 2008; Pindell & Kennan, 2009; Pindell et al., 2005; Rojas-Agramonte et al., 2021). In addition
we used modern geographic relationships of rock units relative to the present position of the magmatic arc to put
published data about GAA rocks into 4 tectonic domains: (a) forearc mélange; (b) forearc ophiolite; (c) magmatic
arc (Cretaceous and Paleogene); and (d) retro-arc region, including metamorphic terranes and igneous rocks.
This subdivision does not strictly correlate with the geotectonic position of the different geologic complexes
in the Cretaceous to their present geographic positions, but it is a useful approximation. Geochronological and
geochemical data published in the peer-reviewed literature for Cuba, Hispaniola, Puerto Rico, Jamaica, and the
Virgin Islands were assigned into one of the four present tectonic subdivisions (Figure 2).

The compiled units are listed in Table S1. The geochronological compilation was done after Wilson et al. (2019)
and includes a total of 664 samples including 2 paleontologically constrained lava flow ages and 662 radiometric
ages determined by six dating techniques: K-Ar (329 samples, 49.5% of data), U-Pb zircon (138 samples, 20.8%
of data), “*Ar-*Ar (168 samples, 25.3% of data), Rb-Sr (14 samples, 2.1% of data), Re-Os (6 samples, 0.9%
of data), and Lu-Hf (7 samples, 1.1% of data). These age data are compiled from 92 studies. A total of 1,537
geochemical analyses were compiled from 51 studies. Samples were screened to avoid highly altered samples
using loss on ignition (LOI); only samples with less than 4 wt.% LOI (1,185 samples, Figure 3) were selected,
then further filtered to remove samples with no trace element data, leaving 1,112 samples for plotting on trace
element diagrams. Immobile trace element plots were used to classify lithologies and to distinguish the tectonic
affinities of GAA felsic and mafic components. For the purposes of plotting on tectonic discrimination diagrams,
lithologies classified as basalt, basalt-andesite, and alkali basalt are plotted as “mafic”; all other lithologies
including dacite/rhyolite, trachy-andesite, and trachyte are classified as “felsic.” Details of geochronological data
and sources are provided in the supplementary documents (Tables S1 and S2) and listed in the references.

3. Results

Below we first explain the fourfold subdivision of the GAA (Section 3.1), then what age data was compiled and
filtered (Section 3.2), and finally how immobile trace element data was compiled and filtered (Section 3.3).

3.1. Fourfold Subdivision of the Greater Antilles Arc

In northern Cuba extensive relics of oceanic lithosphere are recognized as the “northern ophiolites” and “eastern
ophiolites” (Iturralde-Vinent, 1998; Iturralde-Vinent et al., 2006). This forms a discontinuous belt of outcropping
ophiolites that can be traced more than 1,000 km from Cajalbana in the west to Baracoa in the east (Figures la
and 4). Three main segments with seven major exposures can be distinguished along strike, from west to east:
Cajalbana represents the western segment; the central segment is represented by Havana-Matanzas, Villa Clara,
Camagiiey, and Holguin; while Mayari-Cristal and Moa-Baracoa make up the eastern segment. The ophiolite
belt lies north of the magmatic arc and overthrusts sedimentary rocks of the North American continental margin
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Figure 3. Histogram of loss on ignition from compiled Greater Antilles Arc geochemical data.

in western and central Cuba, revealing that they formed in what became the forearc. Ophiolites in the eastern
segment are tectonically emplaced from the SW on top of the Cretaceous volcanic arc, in contrast to other
massifs of the western and the central segments. Hence, there is doubt as to whether this segment represents
a forearc or formed in a back-arc environment (Marchesi et al., 2006, 2007). A few ophiolitic slices are also
present in the geographic rear-arc setting in the Escambray massif to the south of the magmatic arc which likely
represent fragments of the subducted Protocaribbean ocean or Caribbean forearc (Garcia-Casco et al., 2006, and
references therein). Garcia-Casco et al. (2006) noted the contrasting petrologic evolution of high-pressure meta-
morphic complexes within mélange between the eastern segment and western-central segments (clockwise vs.
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Figure 4. Simplified tectonic map of the Greater Antilles Arc showing the location of geologic units in the fourfold subdivision. See text for further discussion.
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counterclockwise P-T path), as a likely consequence of timing of subduction-accretion and tectonic setting of
formation (onset of subduction vs. mature subduction) (Blanco-Quintero et al., 2010; Blanco-Quintero, Gerya,
et al., 2011; Garcia-Casco, Lazaro, et al., 2008; Lazaro et al., 2009).

Forearc ophiolites refer to the massifs of Cajilbana, Havana-Matanzas, Santa Clara, Camagiiey, and Holguin
within the northern ophiolite belt. For simplicity, the eastern ophiolite belt (Mayari-Baracoa) and its volcanic
and plutonic sequences are also included here as an apparent forearc ophiolite. High-pressure metamorphic rocks
within serpentinite mélange intermingled with ophiolitic massifs, such as mélange in Cajalbana (in olistostromes)
and Habana-Matanzas-Villa Clara and mélange associated with the eastern ophiolite belt, are assigned to the
forearc mélange belt. Magmatic arc units include island arc tholeiites and calc-alkaline suites, and alkaline magma
hybridized calc-alkaline rocks (Torr6 et al., 2020 and references therein). These plutonic and volcanic arc rocks
include the Cretaceous arc south of the northern ophiolite belt and Paleogene igneous rocks of the Sierra Maestra
of southeastern Cuba. The Mabujina arc-related complex (Rojas-Agramonte et al., 2011), and the subducted
passive margin-related Pinos, Cangre and Escambray metamorphic terranes (Despaigne-Diaz et al., 2016, 2017,
Garcia-Casco et al., 2001; Garcia-Casco, Iturralde-Vinent, & Pindell, 2008) exposed south of the magmatic arc
are assigned to the retro-arc based on their present geographic position.

In northern Hispaniola, ophiolites associated with the accretionary complex are present in the Cordillera Septen-
trional-Samand Peninsula in the Dominican Republic. These fragments of oceanic lithosphere are part of the
Puerto Plata ophiolitic complex (Escuder-Viruete et al., 2014; Hernaiz Huerta et al., 2012) and the Rio San Juan
metamorphic complex (Escuder-Viruete & Pérez-Estatn, 2006, 2013; Escuder-Viruete, Friedman, et al., 2011;
Escuder-Viruete, Pérez-Estatn, Booth-Rea, & Valverde-Vaquero, 2011; Escuder-Viruete, Perez-Estatn, Gabites,
& Suarez-Rodriguez, 2011; Escuder-Viruete, Valverde-Vaquero, Rojas-Agramonte, Gabites, Carrion Castillo, &
Perez-Estaun, 2013; Escuder-Viruete, Valverde-Vaquero, Rojas-Agramonte, Gabites, Pérez-Estatn, 2013; Krebs
et al., 2008, 2011) which include the Rio San Juan high-pressure serpentinite mélange and Gaspar Hernan-
dez serpentinized peridotite. Escuder-Viruete and Castillo-Carrién (2016) suggested that the high-pressure
Cuaba mafic gneisses and amphibolites of the southern Rio San Juan metamorphic complex represent exhumed
subducted GAA fore-arc, while (ultra-) high-pressure ultramafic rocks from the Cuaba subcomplex are consid-
ered to be arc cumulates (Hattori et al., 2010) or mantle plume fragments in an ultra-high pressure oceanic
complex (Abbott & Draper, 2007, 2013; Gazel et al., 2011). High-pressure accretionary wedge materials within
the Cordillera Septentrional are assigned to the fore-arc mélange. The Punta Balandra unit of the Samani
complex consists of eclogite- and blueschist-interleaved sepentinitic mélange thrust over non-eclogitic units that
represent the subducted passive margin (Escuder-Viruete & Pérez-Estatin, 2006); this is assigned to the fore-arc
mélange subdivision. Island arc tholeiites and calc-alkaline series igneous rocks are exposed in the Central and
Eastern Cordilleras, including volcanic rocks from the Early Cretaceous Los Ranchos and Maimén formations
and Tireo group and granitoids which are included in the volcanic arc unit (Escuder-Viruete, Contreras, Stein,
et al., 2007; Escuder-Viruete, Diaz de Neira, et al., 2006; Torr6, Garcia-Casco, et al., 2016; Torrd, Proenza,
Marchesi, et al., 2017). Igneous rocks associated with arc-rifting and back-arc spreading in central Hispaniola,
and Caribbean Large Igneous Province (CLIP)-associated units such as the Duarte Complex (Dominican Repub-
lic) and Dumisseau formation (Haiti and southwestern Dominican Republic) are assigned to the retro-arc (Escu-
der Viruete et al., 2008; Escuder-Viruete, Joubert, et al., 2016; Escuder Viruete, Perez-Estatn, et al., 2007; Escu-
der-Viruete, Perez-Estaiin, et al., 2011; Sen et al., 1988; Sinton et al., 1998).

Cretaceous and Paleogene volcanic and plutonic rocks of Jamaica (Mitchell, 2020 and references therein), Puerto
Rico (e.g., Jolly et al., 1998, 2002, 2008a), and the Virgin Islands (e.g., Jolly & Lidiak, 2006; Lidiak & Jolly, 1998)
are included in this study. Jamaican rocks are assigned to the retro-arc. The southern wall of Puerto Rico Trench
comprises schists and serpentinites of a submerged accretionary prism (Perfit et al., 1980b). Ophiolitic mélange
and peridotite belts of southwestern Puerto Rico (Lidiak et al., 2011; Schellekens, 1998a) belong to the retro-arc
region in the fourfold subdivision according to its current geographic location.

3.2. Age and Technique Distribution in the Greater Antilles

A systematic difference in ages occurs between different techniques shown in Figure 5a. For example, U-Pb
zircon ages display an older mean of 92 + 53 (26) Ma compared to younger mean ages from Ar-Ar (74 + 41 Ma)
and K-Ar (70 + 41 Ma) systems. These results indicate that a significant number of Ar-Ar and K-Ar ages represent
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Figure 5. Histogram of compiled age data for the Greater Antilles Arc (GAA), including Cuba, Hispaniola, Jamaica, Puerto Rico, and Virgin Islands sorted by (a)
geochronologic method and (b) magmatism and metamorphism (based on association to melange, ophiolite or retro-arc). Results of radiometric dating and paleontology
age constraints show the temporal spectrum of the GAA magmatic and metamorphic events. Ages range from 155 Ma (Jurassic) to 30 Ma (Oligocene), but the vast
majority (except for two dates) are Cretaceous and Paleogene. Data sources listed in Table S1.

cooling or reset ages, which is particularly evident in the case of Cenozoic K-Ar ages of Cretaceous volcanic arc
igneous rocks in Cuba, for example. Figure 5b distinguishes ages determined for igneous versus metamorphic
rocks. Metamorphic rocks are further divided into mélange-related metamorphism, ophiolite-related metamor-
phism, and metamorphism of present-day complexes located in the retroarc (see further discussion in Section 4.4).
Melange-related metamorphic ages show an older mean of 84 + 58 Ma compared to ophiolite-related metamor-
phic ages (78 + 4 Ma) and metamorphic ages of present-day retroarc (72 + 28 Ma). Igneous ages (76 + 48 Ma)
are similar to these two younger metamorphic ages. As mentioned in the geographic sampling bias section, the
Caribbean realm is under sampled in many regions and caution must be taken when interpreting age histograms.

Some peaks stand out in the histograms, especially in the Late Cretaceous - early Paleocene from 95 to 60 Ma
(Figure 5b). This interval is shown in both igneous and metamorphic rocks and is especially clear in “°Ar/*Ar
ages and K-Ar ages. Two subordinate peaks are observed at 120-110 Ma and ~40 Ma. The older peak is especially
clear in U-Pb zircon and Re-Os ages and reflects both magmatic and metamorphic activity, including partial
melting of metamorphic rocks in a hot subduction zone (eastern Cuba). The younger peak is dominated by K-Ar
and “°Ar/*Ar ages and mostly reflects igneous activity. These differences are good examples of technique bias
(the difference between ages from different techniques) and potential resetting of the K-Ar isotopic system. There
is also geologic bias, the difference between U-Pb zircon, which mostly is used for dating igneous crystallization,
and “°Ar/*°Ar, which is often used for dating metamorphic and cooling events below ca. 400°C. These biases are
discussed further in Section 4.1.

In the next sections, we examine the age distributions of the four tectonic units: forearc ophiolite, forearc mélange,
magmatic arc, and retro-arc.

3.2.1. Forearc Mélange

Age data of the forearc mélange in Cuba and Hispaniola come from high-pressure metamorphic rocks within
serpentinite mélange, presumably reflecting the GAA subduction zone metamorphic history (Figure 6). Nine-
ty-three dates or 14.0% of the 664 ages in our compilation are for this tectonic subdivision. Some of these are ages
of igneous protoliths (esp. U-Pb zircon ages), whereas many others are metamorphic. In Cuba, samples are from
mélange intermingled with ophiolites within the northern ophiolite belt and mélanges of Sierra del Convento
and La Corea in the Eastern Moa-Baracoa Ophiolite. In northern Hispaniola, ages of high-pressure metamorphic
rocks and tectonic blocks of serpentinized peridotite within the Rio San Juan serpentinite mélange and Samana
complex are included. In the Puerto Rico Trench, a mica-epidote schist and muscovite from a greenschist yield
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Figure 6. Histogram of compiled age data for forearc melange in the Greater Antilles Arc fourfold subdivision, (a) Cuba, (b)
Hispaniola, and (c) Puerto Rico. See text for further discussion.

K-Ar ages of 63 + 3 Ma and 66 + 6 Ma (Perfit et al., 1980b). Age distributions of forearc mélange in Hispaniola
display a younger mean (72 Ma), larger 26 (52 Ma), and a wider range (139-26 Ma) compared to an older mean
(105 Ma), smaller 26 (+24 Ma), and narrower range (130-83 Ma) of Cuba. The possible significance of the
difference in ages is explored in the discussion.

3.2.2. Forearc Ophiolite

GAA forearc ophiolites are exposed between the trench (the suture zone in the west and Puerto Rico Trench in the
east) and the magmatic arc, mainly exposed in tectonically uplifted regions in Cuba and Hispaniola (Figure 4).
There are limited data for Cuba (N = 22) and Hispaniola (N = 8; Figure 7); only 4.6% of available ages are for
this tectonic subdivision. Hispaniola shows older forearc ophiolite ages than Cuba. Within the Rio San Juan
metamorphic complex, an evolved gabbro sill intruded into the Gaspar Hernandez serpentinized peridotite-tec-
tonite yielded a concordant zircon U-Pb age of 136.4 + 0.34 Ma and an even older hornblende “°Ar-3°Ar age
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Figure 7. Histograms of compiled age data for forearc ophiolite in (a) Cuba and (b) Hispaniola.

of 153.5 + 8.9 Ma (Escuder-Viruete, Friedman, et al., 2011). One zircon 2Pb/?**U age of 126.1 + 0.3 Ma for
an olivine gabbro from the Puerto Plata ophiolitic complex (Monthel, 2010) shows a similar age to the oldest
forearc ophiolite ages in Cuba (Lazaro et al., 2016). Ophiolite ages show a wider range, from 127 to 60 Ma, in the
northern ophiolite belt in central and western Cuba. In the Havana-Matanzas section, one whole rock *°Ar-*Ar
age of 98.1 + 0.5 Ma was reported for a plagiogranite (Llanes Castro et al., 2019). Ages of intrusive (arc-related)
tonalitic and granitic rocks within the Villa Clara ophiolite range from 85 to 61 Ma (Iturralde-Vinent et al., 1996;
Rojas-Agramonte et al., 2010), and ages of dolerite and basalt in the Holguin ophiolite range from 127 to 72 Ma
(Iturralde-Vinent et al., 1996). In the eastern ophiolite belt, one gabbro sample in the Moa massif yielded a
zircon 20Pb/238U age of 124.3 + 0.9 Ma (Rojas-Agramonte et al., 2016) and the Rio Grande intrusive in the
Mayari-Cristal ophiolitic massif provided a hornblende “°Ar-*Ar age of 89.70 + 0.50 Ma (Proenza et al., 2006).
Lazaro et al. (2015) reported hornblende “°Ar-*Ar age of 77-81 Ma obtained for amphibolites from the Giiira
de Jauco metamorphic sole. Thus, forearc ophiolites and metamorphic soles in Cuba and Hispaniola both yield a
wide range of ages reflecting varied geodynamic processes affecting the oceanic lithosphere since its formation
in the Early Cretaceous.

3.2.3. Magmatic Arc

Age data for GAA Cretaceous and Paleogene magmatic arcs come from Cuba, Hispaniola, Puerto Rico, and the
Virgin Islands (Figure 8). Volcanic and plutonic rocks from the Cretaceous and Paleogene arcs are included;
373 ages or 56.2% of the 664 ages in our compilation are for this unit. Magmatism in these four islands shows a
broadly similar range but with very different distributions. A strong early peak in magmatism (120-110 Ma) is
shown in Hispaniola; this peak is robust because it is dominated by U-Pb zircon ages. A few ages in this range
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are found in Cuba but the main peak is around 90 to 70 Ma. Puerto Rico and Virgin Islands show mostly much
younger ages, mostly 75-40 Ma in Puerto Rico and 45-30 Ma in the Virgin Islands. This is a good example of
geographic bias. The oldest mean age (85 + 49 Ma) is found for Hispaniola, and lower mean ages of 77 + 30 Ma
are found for Cuba, 57 + 32 Ma for Puerto Rico, and 52 + 43 Ma for the Virgin Islands. The possible significance
of the difference in ages is explored in the discussion.

3.2.4. Retro-Arc

The retro-arc subdivision encompasses igneous and metamorphic samples from the region south of the GAA
magmatic arc. This subdivision includes magmatic and metamorphic events (Figure 9). Age data of the retro-arc
region in Cuba include igneous and metamorphic rocks of the passive margin-related Pinos and Escambray meta-
morphic terranes and the volcanic arc-related Mabujina complex in western and central Cuba. One-hundred sixty
eight ages or 25.3% of the 664 ages in our compilation are for this unit. The metamorphic and magmatic age of the
Cuban retro-arc region ranges from 132 to 50 Ma and peak at around 75 to 65 Ma, giving a mean of 74 + 34 Ma
(20). In Hispaniola, the retro-arc region consists of oceanic plateau (Escuder-Viruete, Joubert, et al., 2016; Sen
et al., 1988) and transitional and oceanic crust, which formed during Late Cretaceous back-arc basin opening
(Escuder-Viruete et al., 2008). The age of Hispaniola retro-arc samples ranges from 126 to 53 Ma, with a peak
around 90 Ma and a mean of 90 + 28 Ma (20).

In the southwestern corner of Puerto Rico, the Bermeja Complex lies behind (south of) the Cretaceous magmatic
arc. Two samples from Las Palmas Amphibolite provide hornblende K-Ar ages of 126 + 3 Ma and 112 + 15 Ma
(Cox et al., 1977). Zircons from amphibolite boulders in the Bermeja complex show older ages (ca. 130 Ma;
Pérez, 2008).

Jamaica falls in the GAA retro-arc region due to its location well to the south and west of the magmatic arc in
Cuba and Hispaniola, respectively. Metamorphic and magmatic rocks in Jamaica range in age from 120 to 53 Ma.
Granitoids and high-pressure metamorphic rocks range from 78 to 53 Ma. Paleontology constraint on the Devils
Racecourse Formation provides the oldest age of 120 Ma. Jamaica retroarc rocks give a mean of 65 + 29 Ma (20).

3.3. Immobile Trace Element Geochemistry of the GAA

We used immobile trace element plots to determine original lithologies because these are less susceptible to
alteration and better allow identification of petrogenetic and geodynamic attributes of GAA igneous rocks. First,
the 1,112 screened igneous origin rocks are classified on the basis of incompatible element ratios Zr/Ti versus
Nb/Y (Figure 10a). Most data (91%) plot in low Nb/Y sub-alkaline fields: basalt (49%), andesite/basaltic andesite
(34%), and rhyolite/dacite (8%). Far fewer data plot in the high Nb/Y alkaline fields: alkali basalt (4%), trachy-an-
desite (5.6%), and trachyte (0.5%). Based on this classification, subalkaline basalts dominate the GAA, followed
by andesite and basaltic andesite.

There is a noticeable geographic bias in the 1,112 samples, with 271 analyses from Cuba (52% of GAA area, 24%
of data), 214 analyses from Hispaniola (38% of GAA area, 19% of data), 76 analyses from Jamaica (5.5% of GAA
area, 6.9% of data), 480 analyses from Puerto Rico (4.5% of GAA area, 43% of data), and 71 analyses from Virgin
Islands (0.1% of GAA area, 6.4% of data; Figure 11b). For plotting on tectonic discrimination diagrams, the 6
lithologies indicated above are further grouped into mafic and felsic rocks. Mafic refers to basalt, alkali basalt,
and andesite/basaltic andesite (86% of data); and felsic refers to trachy-andesite, trachyte, and rhyolite/dacite
(14% of data). By this measure, the GAA is overwhelmingly a mafic construction, as expected for intra-oceanic
arcs (Stern, 2010).

3.3.1. Felsic Rocks: Ta-Yb Plot

GAA felsic rocks are found in all four tectonic settings: forearc ophiolite (Cuba), forearc melange (Cuba),
magmatic arc (Hispaniola, Puerto Rico, Virgin Islands; Cuba Paleogene arc), and retro-arc (Jamaica). Most data
fall into the volcanic arc granite (VAG) field on the Ta-Yb tectonic discriminant diagram (Pearce, Harris, &
Tindle, 1984; Figure 12). A few samples plot in adjoining fields near VAG.

3.3.2. Mafic Rocks: Th/Yb-Nb/Yb Plot

This diagram (Figure 13) allows assessing the extent of subduction-related metasomatism and contamination by
continental crust on the one hand versus magmas derived from mantle that was not affected by subduction, like
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Figure 10. Zr/Ti versus Nb/Y diagram (after Pearce, 1996) for Greater Antilles Arc igneous rocks.

mid-ocean ridge basalts (MORB), enriched mid-ocean ridge basalts (E-MORB), and ocean island basalts (OIB;
Pearce, 2008). Th and Nb are both more incompatible than Yb so Th/Yb and Nb/Yb covary for unmodified
mantle, with low Nb/Yb and Th/Yb for basalts from depleted unmodified mantle like N-MORB and high Nb/Yb
and Th/YD for basalts from enriched mantle like OIB. The covariation defines the N-MORB to OIB “unmodified
mantle array.” Basalts generated from mantle that has been affected by melts/fluids evolved from subducted sedi-
ments or that interacted with continental crust will plot above the unmodified mantle array. Because the GAA
was built on oceanic crust and is not underlain by continental crust, the samples that plot above the mantle array
crystallized from magmas that formed above a subduction zone, as expected.

GAA forearc ophiolites are plotted in Figure 13a. These mostly show elevated Th/Yb, consistent with formation
at a convergent plate margin. The metasomatized mantle source involved N-MORB and E-MORB mantle for the
few samples from Hispaniola, and the wider spectrum in Cuba indicate that these sources were metasomatized
as well as (local) metasomatized OIB mantle source. Figure 13b shows that forearc mélange blocks in Cuba and
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Figure 11. Histogram with lithologies from 1112 Greater Antilles Arc samples based on the Zr/Ti versus Nb/Y classification in Figure 10. (a) All samples and (b)
individual islands.
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Figure 12. Felsic rocks (of trachy-andesite, trachyte and rhyolite/dacite composition) of the Greater Antilles Arc in the
tectonic discrimination diagram of Pearce, Harris, and Tindle (1984). See text for further discussion.

Hispaniola exhibit a similar spectrum of mantle sources to those of forearc ophiolites, but Cuba data shows deri-
vation from less metasomatized mantle sources compared to more metasomatized mantle sources suggested from
Hispaniola data. Nearly all magmatic arc data show arc affinities, as expected. The magmatic arc of Hispaniola,
Puerto Rico, and Virgin Islands present a wide spectrum of metasomatized mantle sources from N-MORB to
OIB, in contrast to the Cretaceous and Paleogene magmatic arcs of Cuba, for which samples are more confined
to metasomatized N-MORB to E-MORB (Figure 13c). Retro-arc samples show variable results, with Hispanio-
la-Cuba-Puerto Rico mostly plotting in the mantle array and Jamaica showing a clear arc affinity (Figure 13d).

3.3.3. Ti-V Plot

The Ti-V plot reveals variations in the behavior of V during partial melting and fractionation, which is thought to
reflect magmatic oxygen fugacity. The basis of this plot is that Ti is always +4 and behaves as an incompatible
element but V can be +3 or +4 in magmas and V*3 is more compatible than V**. Because convergent margin
magmas are more oxidized than MORB or OIB, arc magmas have lower Ti/V. Arc magmas have Ti/V ratios equal
to and less than 20, except for calc-alkaline magmas which show the effects of magnetite fractionation, therefore
plotting magmatically evolved rocks should be done with caution. MORB and continental flood basalts have Ti/V
ratios of about 20-50 and alkaline rocks have Ti/V generally >50. Back-arc basin basalts may have either arc-like
or MORB-like Ti/V ratios.

Figure 14 shows that most mafic rocks of GAA fall into island arc tholeiite (IAT) and MORB/BABB fields.
Most forearc ophiolite data show IAT and MORB/BABB affinity and some data from Cuba fall into the boninite
field (Figure 14a). In Figure 14b, most forearc mélange data from Cuba fall into the MORB/BABB field, with
fewer showing IAT affinity. The vast majority of magmatic arc data exhibit IAT and MORB/BABB affinity
(Figure 14c), though there are also a few data showing boninite (Hispaniola) or OIB affinity. Most retro-arc data
cluster in the IAT and MORB/BABB field and few rocks show OIB affinity (Figure 14d).
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3.3.4. Sr/Y Versus Y and La/Yb Versus Yb Plots

The St/Y versus Y and La/Yb versus Yb plots are typically used to discriminate adakite from normal arc andesitic,
dacitic and rhyolitic magmas. The term adakite was coined by Defant and Drummond (1990) to describe inter-
mediate to felsic, high Sr/Y and La/Yb volcanic and plutonic rocks produced by melting of the basaltic portion of
oceanic crust in subduction zones. This requires unusual “hot” subduction and high-pressure evolution of magma
where garnet is stable. In addition to slab melting (young and hot oceanic lithosphere and ridge subduction), high
Sr/Y and La/Yb ratios can be produced by melting of mafic lower arc crust, fractional crystallization of hydrous
mafic magmas, and high-pressure fractional crystallization of arc mafic magmas (Castillo, 2012; Moyen, 2009).

Figure 15 shows that most GAA intermediate to felsic rocks have high Y and Yb content and low St/Y and La/
YD ratios, falling into the normal island arc field. In Figure 15a, a few samples from forearc ophiolite, forearc
mélange and retro-arc of Cuba and the volcanic arc of Hispaniola, Puerto Rico and Virgin Islands fall into the
high Sr/Y adakite field. In Figure 15b, a few samples from forearc mélange and retro-arc of Cuba, volcanic arc of
Hispaniola, Puerto Rico and retro-arc of Jamaica fall into the high Sr/Y and La/Yb adakite field.
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Figure 14. Ti/1,000 (ppm) versus V (ppm) diagram from Shervais (1982) for Greater Antilles Arc mafic rocks (basalt, alkali basalt, and andesite/basaltic andesite). See
text for further discussion.

4. Discussion

Below we discuss five aspects of our compilation. First, we discuss the extent to which our compiled data are
biased. Second, we discuss the extent to which a SI model can be usefully applied to the system. Third, we discuss
the extent to which the CLIP affected the GAA. Fourth, we discuss some complications and considerations.
Finally, we offer some suggestions for future research.

4.1. What Are the Biases in the Data and Assumptions in Our Approach?

We are aware of four significant biases in our compilation: technique, geologic, geographic, and land/sea. Tech-
nique bias reflects the fact that some radiometric methods (e.g., U-Pb zircon, “°Ar-**Ar) are more reliable than
others (e.g., K-Ar). Geologic bias refers to the fact that ages pertain to either igneous or metamorphic episodes.
Geographic bias refers to the fact that some islands have more geochronologic and geochemical data per unit
area than others. Land/sea bias reflects the fact that nearly all the data in our compilation comes from subaerial
exposures and we know little about the submerged GAA.
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Figure 15. Plots of (a) St/Y versus Y and (b) La/Yb versus Yb after Castillo (2012) discriminating between adakitic and island-arc andesite, dacite and rhyolite (ADR)
lavas for Greater Antilles Arc rocks with silica content greater than 56 wt%. See text for further discussion.

4.1.1. Technique Bias

Technique bias is a significant consideration for the geochronology compilation. A total of 662 radiometric ages
and two paleontology constraints from the literature were compiled for Cuba, Hispaniola, Jamaica, Puerto Rico,
and Virgin Islands, as shown in Figure 5. These studies used a wide range of radiometric techniques, with U-Pb
zircon (21% of ages) and “°Ar-3°Ar (25% of ages) being the preferred techniques and K-Ar (50% of ages) consid-
ered least reliable. Ages determined by four other techniques (Rb-Sr, Re-Os, Lu-Hf, and paleontology) make up
4% of the age compilation and contribute little to technique bias. Ages by the three major techniques are distrib-
uted differently among the islands. Cuba accounts for about half (46.7%) of the 310 ages we compiled, 55% of
which (169) are K-Ar ages. Hispaniola has 192 ages (29%), only 24% (46) of which are K-Ar ages. Jamaica has
5% of the data (34), 38% of which are K-Ar ages. Puerto Rico has 13% of the age data in our compilation, 80% of
which are K-Ar ages. The Virgin Islands have 6% of the age data (40), 75% of which are K-Ar ages. We conclude
that there is significant technique bias in the geochronology compilation.

Future geochronologic research will surely emphasize U-Pb zircon and “°Ar-*Ar techniques and promise to
reduce technique bias. It is noteworthy that some modern thermochronologic techniques (e.g., monazite, titanite,
and xenotime U-Pb) have not yet been conducted on GAA rocks. Fission track work on Cretaceous and Paleogene
volcanic arc rocks in southeastern Cuba (Rojas-Agramonte et al., 2006) and Jamaica (Comer et al., 1980) reveals
GAA exhumation history, and recent zircon and apatite (U-Th)/He ages on volcanic rocks in Jamaica (Cochran
et al., 2017) and Puerto Rico (Romén et al., 2021) provide further constraints on the kinematics of GAA collision
and uplift.

4.1.2. Geologic Bias

Ages determined by radiometric techniques can be subdivided into those that date when a magma crystallized
(crystallization age) or when a metamorphic rock cooled below a closure temperature (metamorphic age). A
systematic difference in age is seen for some techniques in Figure Sa. For example, U-Pb zircon ages display an
older mean of 92 Ma compared to younger mean ages from *°Ar-3°Ar (74 Ma) and K-Ar (70 Ma) systems. These
results indicate that “°Ar-3°Ar and K-Ar ages are strongly influenced by resetting and/or represent cooling below
ca. 400°C rather than the igneous/metamorphic formation age of the rock bodies. Four-hundred seventy nine ages
are igneous crystallization ages and 183 are metamorphic/cooling ages. Igneous activity is better approximated
with U-Pb zircon ages whereas metamorphic evolution and cooling/decompression rates are better approximated
by “°Ar-*Ar dating of amphiboles and micas. This may account for the significant difference between mean U-Pb
zircon age (92 Ma) and younger mean age from “°Ar-*Ar (74 Ma). Figure 5b distinguishes ages determined for
igneous versus metamorphic rocks, but no significant difference in age is observed; igneous ages show a mean of
76 + 48 Ma whereas metamorphic ages show a mean of 77 + 43 Ma.
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4.1.3. Geographic Bias

Geographic bias refers to whether a region is sampled in proportion to its exposures or not. One way to do this
is to compare data density on a island basis, using the area of basement exposed on each island. Cuba has ~58%
of exposed GAA basement, Hispaniola has ~30%, Jamaica has 2.3%, Puerto Rico has ~9.3%, and the Virgin
Islands have ~0.7% (estimated basement, non-sedimentary outcrop, exposure areas calculated from Iturralde-Vi-
nent et al. [2016], Escuder Viruete, Perez-Estain, et al. [2007], Mitchell [2020], Lidiak and Anderson [2015],
and Wilson et al. [2019]). These are the proportions expected for geographically unbiased data. Relative to this
expectation, for geochronology Cuba is slightly undersampled with 46.7% of ages, Hispaniola is proportionally
sampled (29% of ages) whereas Jamaica (5% of ages), Puerto Rico (13% of ages), and Virgin Islands (6% of ages)
are oversampled (Figure 11b). Within Hispaniola, Haiti is undersampled (31% of basement exposures, 14.1% of
the ages) relative to the Dominican Republic (69% of basement, 85.9% of the ages). Geographic bias is more
pronounced in 1,112 samples with geochemical data. Cuba is undersampled with 271 analyses (58% of GAA
area, 24% of plotted data) as is Hispaniola with 214 analyses (30% of GAA area, 19% of plotted data). Within
Hispaniola, nearly all data come from the Dominican Republic (99.4%). Jamaica is oversampled with 76 analyses
(2.3% of GAA area, 6.9% of data), Puerto Rico is strongly oversampled with 480 analyses (9.3% of GAA area,
43% of data), as are the Virgin Islands with 71 analyses (0.7% of GAA area, 6.4% of data; Figure 11b).

It should be noted that there is also geographic bias within countries. For example, in Hispaniola, there are signif-
icantly more samples for geochronology in the Central Cordillera than in the rest of the island.

4.1.4. Land/Sea Bias

This bias deals with the fact that GAA samples in our compilation mostly come from the islands and few data come
from offshore. This is a particular problem for the forearc ophiolite and mélange and retro-arc, for which samples
mostly come from the western collided half of the GAA. In the east, where slow oblique convergence continues,
forearc ophiolite and mélange that are the eastern equivalents of their western counterparts are submerged, requir-
ing marine geoscientific techniques to study. Some studies have been conducted in the submerged eastern forearc.
Marbles and other metasediments dredged from ca. 400 km along the southern wall of the Puerto Rico Trench are
reported derived primarily from island-arc and pelagic component, and some magnesian schists and serpentinites
are found in the accretionary prism (Heezen et al., 1985; Perfit et al., 1980b). Forearc ophiolite and mélange also
include possible submerged fragments of the North Slope terrane of northern Puerto Rico (Larue & Ryan, 1998).
More studies also need to be conducted in the submerged Beata Ridge to the south of Hispaniola (Diirkefdlden
et al., 2019). The ridge has been classified as part of the Mesozoic CLIP (Hoernle et al., 2004).

4.1.5. Subduction Initiation in the Greater Antilles Arc

Investigating SI is the key to understanding the tectonic evolution of a convergent margin. It is increasingly
recognized that suprasubduction zone ophiolites (Pearce, Lippard, & Roberts, 1984), metamorphic soles (Agard
etal., 2007; van Hinsbergen et al., 2015), and sometimes boninites are generated during SI (Stern & Gerya, 2018),
creating the fore-arc (Stern et al., 2012). Within the GAA, a long ophiolite belt parallels the western section of
the magmatic arc in Cuba, offering an opportunity to study how this convergent plate margin and underlying
subduction zone formed. Equivalent forearc units presumably exist offshore north of the eastern GAA, providing
an attractive target for 21st century research.

Petrological and geochemical studies of ophiolitic crustal sequences mixed with volcanic arc units show both
mid-ocean ridge basalt (MORB) and IAT signatures in the central (Ando6 et al., 1996) and the eastern parts
(Marchesi et al., 2007; Proenza et al., 2006) of Cuba. Although the vertical relationships are unclear, such basalts
are expected in a SI environment (Whattam & Stern, 2011). Boninite is also characteristic of some SI ophiolites
and is found in the Havana ophiolite of Cuba (Fonseca et al., 1989; Kerr et al., 1999) and Puerto Plata ophi-
olitic complex, Cacheal complex (Escuder-Viruete et al., 2014), and Los Ranchos (Escuder-Viruete, Diaz de
Neira, et al., 2006), Maimén (Torrd, Garcia-Casco, et al., 2016; Torrd, Proenza, Marchesi, et al., 2017; Torro,
Proenza-Fernandez, et al., 2016), and Amina (Escuder-Viruete, Contreras, Joubert, et al., 2007) Formations in
Hispaniola. Also, Late Cretaceous volcanic rocks from Los Pasos Formation in Cuba (Torrd, Proenza-Fernan-
dez, et al., 2016) and Cuaba subcomplex in Rio San Juan metamorphic complex (Escuder-Viruete & Castil-
lo-Carridn, 2016) exhibit boninitic, low-Ti island arc tholeiitic, and normal tholeiitic signatures. However, Late
Cretaceous Téneme Formation lavas in eastern Cuba show similar low-Ti IAT signatures with boninitic affinity
suggesting later additions to the convergent margin (Proenza et al., 2006).
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Spinels in ophiolitic peridotites are used to infer tectonic settings, with the highest Cr# spinels (Cr# = (Cr/
Cr + Al)) associated with forearcs (Bonatti & Michael, 1989). SI-related forearc peridotite spinels vary widely
(Morishita et al., 2011). Ophiolitic peridotite spinels from harzburgites in Havana-Matanzas ophiolites vary in
Cr# from 0.21 to 0.73 (Llanes-Castro et al., 2018). A similar range of Cr# in ophiolitic peridotite spinels from
eastern segment harzburgites varies from 0.36 to 0.72 (Gervilla et al., 2005; Gonzélez-Jiménez et al., 2011;
Marchesi et al., 2006; Proenza et al., 1999). Peridotites with coexisting high- and low Cr# spinels indicate vari-
able melt compositions as expected for a magmatic system that produced both boninitic magmas (from ultra-de-
pleted peridotites with high Cr# spinels) as well as tholeiitic melts (from less depleted peridotites with moderate
Cr# spinels; Morishita et al., 2011). Alternatively, this may indicate a multi-episodic history of partial melting
and/or refertilization processes.

Radiometric ages of ophiolites range from Early to Late Cretaceous (Figure 7a), with the oldest ophiolites in
Cuba and Hispaniola giving similar ages (126 Ma; Escuder-Viruete et al., 2014; Escuder-Viruete, Friedman,
et al., 2011; Lazaro et al., 2016; Rojas-Agramonte et al., 2016; Rui et al., 2020). Radiolarians in sediments
that overly pillow basalt at Holguin provide biostratigraphic constraints that are between Hauterivian (132.9—
129.4 Ma) and Barremian (129.4-125.0 Ma; Ando et al., 1996). Despite GAA fore-arc ophiolite ages showing
a rather broad range, the oldest ages of forearc ophiolites together with active magmatic arc suggest SI in the
Early Cretaceous beginning around 130 Ma (cf., Escuder-Viruete et al., 2014; Escuder-Viruete, Diaz de Neira,
et al., 2006; Lazaro et al., 2016; Pindell et al., 2012; Rojas-Agramonte et al., 2011). To date, only one metamor-
phic sole has been identified in the Caribbean realm, and it has not been related to Early Cretaceous subduction
inception. It is the Guira de Jauco amphibolite in eastern Cuba, with an **Ar-3*Ar cooling age of 77-81 Ma, that
has been related to the emplacement of the Moa-Baracoa ophiolite during the Late Cretaceous (90-85 Ma) in a
new subduction zone perhaps related to the effects of the Caribbean plume (Lazaro et al., 2013, 2015). Clearly,
further work is needed to constrain the magmatic ages of GAA forearc ophiolites and formation ages of meta-
morphic soles.

4.1.6. Comparison to the S Tibet SI Example

The GAA SI sequence and evolution can be usefully compared to that of the convergent margin of southern Tibet,
showing significant similarities and differences. The southern margin of Tibet is an excellent place to study SI
because the rocks are well-exposed, forearc ophiolite and metamorphic sole ages cluster tightly (as expected from
the ST hypothesis) and younger elements of a mature convergent margin (such as magmatic arc and forearc basin)
are also present. The significance of especially the differences between the ages of similar features in GAA and
clear examples of SI like Tibet need to be understood in our efforts to test and further develop SI hypotheses.
Figure 16 shows that they have similar spatial scales, both being about 2,000 km long. As Figure 16 shows, the
two convergent systems both began in Early Cretaceous time, both experienced prolonged subduction (~70-80
million years), and both were sites of Eocene collision. However, S Tibet ophiolites are dominantly the same
age whereas a wider range of ages is found for GAA ophiolites. S Tibet metamorphic soles are about the same
age as most SI ophiolites (~120 Ma) whereas GAA ophiolitic soles are associated with younger events (Lazaro
et al., 2013, 2015). S. Tibet experienced abundant igneous activity with collision whereas the GAA did not.
These observations underscore the importance of further research into the age and nature of especially GAA SI
sequences.

The wider range of ophiolite ages within the GAA might reflect continued fore-arc extension after SI began in
the Early Cretaceous. The formation of Late Cretaceous metamorphic soles and low-Ti IAT volcanism in eastern
Cuba is further evidence of a more complicated subduction history for GAA compared to S Tibet. This might
be due to changing subduction regimes, the influence of the CLIP (94-83 Ma; Escuder-Viruete, Perez-Estatn,
et al., 2011; Hauff, Hoernle, Tilton, et al., 2000; Sinton et al., 1998), along-strike extension, or a combination
of these. Some of these tectonic complexities and the possible effect of the CLIP on the GAA are discussed in
separate section below.

4.2. The Role of the Caribbean Large Igneous Province (CLIP)

In this section, we discuss the extent to which the CLIP might have affected the Cretaceous evolution of the GAA.
The CLIP consists of thickened oceanic crust (up to 20 km) in the central (submarine) part of the Caribbean Plate
(Mauffret & Leroy, 1997) and is also accreted/uplifted as subaerial flood basalt sequences exposed around the
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Figure 16. Comparison of two fossil convergent plate margins, at the same scale. Geochronologic data from ophiolite, metamorphic soles and magmatic arc of the
Greater Antilles Arc (GAA) compared to the convergent system of southern Tibet (Hu & Stern, 2020). On the top left, simplified tectonic map of southern Tibet
showing major ophiolitic massifs of the Yarlung Zangbo Suture Zone, Xigaze and Indus forearc basin and volcanic belts of the Lhasa terrane, modified after Hébert
et al. (2012). On the top right, tectonic map of GAA from Figure 1a. First panel: histogram of compiled age data for ophiolites along the Yarlung Zangbo Suture Zone
versus ophiolite of GAA. Second panel: histogram of compiled age data for metamorphic soles within the melange from Yarlung Zangbo Suture Zone versus GAA.
Third panel: histogram of compiled age data of plutonic and associated volcanic rocks in the Lhasa terrane versus GAA. See text for further discussion.

margins of the Caribbean Sea and northwestern South America. Most authors favor an origin in the Pacific Ocean
for the CLIP, possibly above the Galapagos mantle plume, and subsequent emplacement in the inter-America gap
during the Cretaceous-Tertiary (e.g., Boschman et al., 2014; Duncan & Hargraves, 1984; Hastie & Kerr, 2010;
Hoernle et al., 2002; Mann et al., 2007; Pindell et al., 2012; Sinton et al., 1997, 1998). Remnants of these terranes
can be found in Central America, Colombia, Ecuador and in the Caribbean on Curagao, Aruba, Hispaniola
and Jamaica (e.g., Hastie et al., 2016; Hauff, Hoernle, Tilton, et al., 2000; Hauff, Hoernle, van den Bogaard,
et al., 2000; Hoernle et al., 2004; Kerr et al., 1996; Loewen et al., 2013; Révillon et al., 2000; Sinton et al., 1998).
New data from Diirkefilden et al. (2019) support long-term CLIP volcanism for at least 18 Ma, from ~92 to
~74 Ma with main magmatic activity from 89 to 90 Ma, though CLIP-related Duarte Complex lavas in the
Dominican Republic date back to the Early Cretaceous (Escuder Viruete, Perez-Estain, et al., 2007). Remnants
of rocks with CLIP affinity in the GAA (Hispaniola, Jamaica, Puerto Rico, and offshore Hispaniola in the Beata
Ridge) occur in a retro-arc position in our four-fold subdivision.
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Recent papers, for example, by Diirkefélden et al. (2019) and Hastie, Ramsook, et al. (2010) still favor the idea
of Duncan and Hargraves (1984) and Burke (1988) that collision between the ~90 Ma CLIP and the Great Arc
of the Caribbean along an east-dipping subduction zone was responsible for a polarity reversal event during the
Santonian-Campanian (~80-85 Ma; Burke, 1988), when a new west-dipping subduction zone was established.
Recently, geochemistry of Cretaceous lavas from the Virgin Islands without a mantle plume component led
Hastie et al. (2021) to conclude that the Caribbean subduction polarity reversal occurred in the Turonian-Campa-
nian. However, the OIB-E-MORB source identified in the forearc, arc and retroarc (Figure 13) suggests the oppo-
site. Furthermore, the geology and geochronology of Cuba, Hispaniola and Puerto Rico do not support the idea
of a polarity reversal event at any stage of the Cretaceous arc-building process (Boschman et al., 2014; Braszus
et al., 2021; Mann et al., 2007; Pindell et al., 2005, 2012; Rojas-Agramonte et al., 2011). Rather, the CLIP influ-
ence observed in other GAA islands suggests that varied degree of tectonic or geochemical interaction with the
convergent margin was responsible for a significant amount of melting as well as metamorphism. For example,
the CLIP shows tectonic influence on the Cuban segment of GAA, metamorphism of the Mabujina Amphibolite
Complex (MAC) in central Cuba occurred during the Turonian (ca. 90-93 Ma) when it became part of the Cuban
volcanic arc and was shortly after intruded by plutonic rocks of the Manicaragua batholith (Figure 8a; Turoni-
an-Campanian; ca. 89-83 Ma; Rojas-Agramonte et al., 2011). Lazaro et al. (2013, 2015) postulated that the Late
Cretaceous formation of the Giiira de Jauco metamorphic sole (Figure 7a) and onset of obduction of the Moa-Ba-
racoa ophiolite was triggered by the emplacement and development of the CLIP plume head. In Hispaniola, CLIP
component has been identified in the geochemistry of igneous rocks of the supra-subduction zone environment
(Escuder-Viruete et al., 2008). Farré-de-Pablo et al. (2020) conclude that chromitite from Loma Caribe peridotite
formed by plume-derived melts that interacted with supra-subduction zone mantle in a Late Cretaceous back-arc
setting in Hispaniola. The extent of interaction between CLIP and different segments of the GAA is still unclear,
however, multiple lines of tectonic and geochemical interaction with the convergent margin of GAA and geochro-
nology data displayed in Figure 16 suggests the emplacement of the CLIP during the Late Cretaceous imposes
influence on the subduction zone magmatic, metamorphic and tectonic processes.

4.3. Other Complications and Considerations

We must keep in mind that our fourfold subdivision of units into mélange, forearc ophiolite, magmatic arc, and
retro-arc may be flawed. For example, there may have been more than one subduction zone, as Jamaica rocks
that fall into the retro-arc subdivision show an arc affinity (Figure 14d). Another complication may be that
during the Early Cretaceous, a subducting proto-Caribbean ridge separated the North and South American plates
(Blanco-Quintero, Gerya, et al., 2011; Blanco-Quintero, Lazaro, et al., 2011; Garcia-Casco, Lazaro, et al., 2008;
Pindell et al., 2005). This ridge may have been subducted beneath the eastern Cuban segment of the arc (trench-
trench-ridge triple junction) in Early Cretaceous time (ca. 120 Ma; Blanco-Quintero et al., 2010), with the North
American plate subducted beneath the Cuban arc and the South American plate subducted beneath the Hispanio-
la-Puerto Rico branch of the arc. The eastern migration of the triple point during the mid-Cretaceous in Hispan-
iola (Escuder-Viruete, Contreras, Stein, et al., 2007) could have resulted from the segmentation of proto-Carib-
bean ridge by transform faults (Rojas-Agramonte et al., 2021), causing Late Cretaceous adakitic magmatism in
Hispaniola. The location of the triple junction during the Late Cretaceous is not known, but a shift toward the east
(present coordinates) can be inferred if it was connected to the Central Atlantic ridge. Hence, with time, more and
more North American plate was subducted below the GAA.

Also, Cenozoic normal and strike-slip faulting may have displaced geologic bodies from their original position to
their present geographic position. We do not think that there has been major shuffling of original GAA tectonic
units because the N. Caribbean transform fault system, with the largest displacements, trends sub-parallel to the
GAA trend. However, large-scale thrusting may have had an effect in re-locating some tectonic units. This is,
for example, the case of latest Cretaceous-Eocene orogenic thrust tectonics in western Cuba, where the oceanic
arc-ophiolitic Bahia Honda-Cajalbana units now lie north of the North America passive margin sequences and can
be restored 220 km to the south of its present position (e.g., Saura et al., 2008). On the other hand, metamorphic
complexes made of sediments and igneous rocks in Cuba (Escambray complex and Pinos terrane) now located in
the retro-arc originated in the North American passive margin and were metamorphosed beneath the Cretaceous
forearc during subduction of Mesozoic passive margin sequences (Cruz-Gamez et al., 2016; Despaigne-Diaz
et al., 2016, 2017; Garcia-Casco, Iturralde-Vinent, & Pindell, 2008). Furthermore, serpentinite mélange units
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of the Escambray complex contain subducted oceanic crust (eclogites and blueschists) similarly formed in the
Cretaceous forearc (Garcia-Casco et al., 2006; Schneider et al., 2004).

Concerning ophiolites, the Cuban eastern ophiolite belt (Mayari-Cristal and Moa-Baracoa) overthrusts volcanic
arc exposures now located to the south. Hence, its classification as forearc ophiolite is controversial. In fact, most
publications consider these ophiolitic rocks as formed in the Cretaceous back-arc (Iturralde-Vinent, 1998; Lazaro
et al., 2013, 2015; Marchesi et al., 2006, 2007, 2011, 2016). However, Lazaro et al. (2016) identified fore-arc
basaltic blocks within La Tinta mélange, which is associated to the Moa-Baracoa ophiolitic complex, while Rui
et al. (2020) suggests that the Moa-Baracoa harzburgites originated in a nascent forearc mantle.

In Hispaniola, the Loma Caribe peridotite, the largest ophiolitic complex of the Dominican Republic, formed in
an intra-arc/back-arc basin, in line with its present position, but the peridotite belts of southwestern Puerto Rico,
now present in the retro-arc, may have formed in different Cretaceous tectonic positions, including the Farallon
plate (Pacific-derived) in the retro-arc and the incoming Proto-Caribbean lithosphere (Atlantic-derived; Escud-
er-Viruete et al., 2008, 2009; Farré-de-Pablo et al., 2020; Lewis et al., 2006; Lidiak et al., 2011; Montgomery
et al., 1994; Proenza et al., 2007).

In the retro-arc region, there are Late Cretaceous-Paleocene volcanic arc rocks in the Cayman Ridge and Nicara-
guan Rise. The Cayman Ridge has been interpreted variously including a remnant arc after the GAA split in two
and formed the Yucatan Basin since the Maastrichtian (Perfit & Heezen, 1978; Rosencrantz, 1990). However,
granitoids of intermediate composition recovered from the Cayman Ridge show distinct continental affinity
(Kysar et al., 2009; Lewis et al., 2005), in contrast to island arc composition of the Sierra Maestra in southeastern
Cuba (Rojas-Agramonte et al., 2004). Lewis et al. (2011) indicated that granitoids recovered from the Nicaraguan
Rise fall in the high-K calc-alkaline field of GAA granitoids, similar to those intrusions in Jamaica and Haiti,
which they suggest formed in response to another northward subduction system.

4.4. Suggestions for Future Research

Our compilation indicates that there is much more work to be done before we have a full understanding of how
the GAA intraoceanic arc system formed and evolved. The geographic bias we document indicates that geochem-
ical and geochronological research in Cuba and Haiti needs to increase significantly. Large geologic systems
that cross political boundaries require special efforts compared to those within a single political entity. In this
situation, co-ordination between geologists in the entities is called for, for example, reinforcing the Caribbean
Geological Conference and the Caribbean Journal of Earth Science (http://www.caribjes.com/) and other local
journals and, perhaps, the formation of a Greater Antilles Geological Society. Such efforts would also stimulate
research co-operation between geoscientists of GAA nations and territories and attract international researchers.

Another opportunity exists to apply modern thermochronologic techniques (e.g., U-Th-He, monazite, titanite, and
xenotime U-Pb), that should be carried out to decipher uplift history across and along the GAA, especially its
relationship to collision with Maya Block and the Bahamas Platform.

Another opportunity is to exploring how a trench with active convergence changes along strike into a suture
zone. Oblique convergence continues in the east (Mann et al., 2002) and an active subduction zone can be traced
by deep seismicity as far west as western Dominican Republic (Hayes, 2018). GAA along with the Izu collision
zone of Japan and the Makran-Zagros transition in Iran are the only places in the world where a trench with active
subduction can be traced along strike into a suture zone. Such transitions warrants further investigation so we can
better understand what happens when a subduction zone becomes a collision zone.

Because so much of the GAA is above sea-level, we can build on what we know from studying exposed arc crust
and mantle and extend this offshore, especially to the N into the forearc and S into the retroarc and the CLIP.
There is much we can learn about SI from studying the GAA forearc. We are beginning to make progress under-
standing the on-land forearc, represented by the long ophiolite belt that parallels and lies north of the west-central
magmatic arc in Cuba, but we know nothing about equivalent forearc crust that must exist offshore north of the
eastern GAA, where subduction continues. Marine geoscientific research to study the eastern GAA forearc is
needed. Studies of retroarc crust should begin with studying steep exposures south of SE Cuba and the Aves
Ridge, the natural continuation of the island arc to the east and south of the GAA. In this regard, the effects of
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subduction of the Proto-Caribbean ridge, separating North and South American plates and now totally consumed,
should be considered in understanding the evolution of the volcanic arc.

5. Conclusions

The Greater Antilles islands of Cuba, Hispaniola, Puerto Rico, Jamaica, and the Virgin Islands are fragments of
the GAA, an unusually well-preserved fossil intra-oceanic convergent margin. The GAA is the result of subduc-
tion of the North and South American plate beneath the Caribbean plate that lasted for ~90 m.y. in the west and
continues today in the east. The “soft” collision between GAA and Maya and Bahamas margins caused uplift and
exposure of the western GAA, providing an excellent natural laboratory for studying the formation and evolu-
tion of an intra-oceanic convergent margin. We compiled 664 (mostly) radiometric ages and more than 1,500
geochemical analyses for GAA igneous and metamorphic rocks and assigned these to a simple fourfold subdivi-
sion of the GAA based on relative geographic position to the magmatic arc: fore-arc mélange, fore-arc ophiolite,
magmatic arc, and retro-arc and use these data to inspect the evolution of the GAA, from SI through maturity
and demise. The oldest ages of forearc ophiolites together with those of the magmatic arc suggest subduction
began in Early Cretaceous time at around 130 Ma. The geochronological data suggest that the GAA was, at least
partially, strongly affected by the CLIP in Late Cretaceous time (e.g., MAC, Central Cuba; Giiira de Jauco meta-
morphic sole, Eastern Cuba; Loma Caribe peridotite). Some peaks are seen in the histograms, especially in the
Late Cretaceous from 95 to 60 Ma, that may relate to the CLIP event(s) and with events of collision with passive
margins. Two subordinate peaks are observed at 120-110 Ma and ~40 Ma. Immobile trace element geochemical
data show that the GAA is dominated by mafic igneous rocks, as expected for an intraoceanic convergent margin.
The arc shows trace element concentrations expected for convergent margin magmas and these trace element
concentrations for retroarc igneous rocks in central and southern Hispaniola are more like OIB and MORB. In
spite of multiple biases, the database presented here is a useful step forward in the effort to help overcome some of
the obstacles and motivate systematic study of the GAA. Our results encourage forming of regional partnerships,
involvement of international partners, and exploration of offshore regions.
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