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“Knowing the answers will help you in school. 

Knowing how to question will help you in life.” 

Warren Berger 
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ABSTRACT  

 

Obesity and cardiometabolic disease rates are increasing across young and 

middle-aged adults. This situation calls for the identification and implementation 

of novel cardiometabolic risk (CMR) markers for identifying individuals at 

higher risk of developing cardiometabolic diseases and establishing adequate 

prevention and treatment strategies. In this regard, exercise interventions and the 

use of bioactive ingredients are both  promising strategies to combat obesity and 

cardiometabolic diseases.  

The present International Doctoral Thesis aimed to evaluate the impact of 

exercise on novel CMR markers (Section I) and the impact of bioactive 

compounds and exercise on energy metabolism (Section II). Findings from the 

studies included in Section I revealed that plasma succinate levels might be a 

promising novel CMR marker in young, sedentary adults (Study I). However, 

succinate levels were not modified after a 24-week of an exercise training 

program (Study I). We also studied the effects of acute endurance and resistance 

exercise on plasma levels of plasma bile acids (BA), which have been also 

proposed as novel CMR factors in young adults (Study II). This study 

demonstrated that plasma levels of BA rapidly decreases after a bout of 

endurance and resistance exercise in an exercise-type specific manner in young, 

sedentary adults. Remarkably, those individuals with higher cardiorespiratory 

fitness levels showed a unique response of unconjugated primary BA 120 min 

after endurance exercise that seems to be reflective of their better health status in 

comparison to their low cardiorespiratory fitness levels counterparts (Study II). 

Studies from Section II concluded that the level of evidence on the use of 

bioactive ingredients to activate brown adipose tissue (BAT) and to promote 

white adipose tissue (WAT) browning in healthy humans is weak and scarce 

(Study III). Nevertheless, there is strong scientific evidence from rodent models 

that supports the use bioactive ingredients to activate BAT and promote WAT 

browning and thus to potentially combat obesity and cardiometabolic disorders 

(Study IV). Finally, in Study V we evaluated the effect of 12 mg of 

dihydrocapsiate during endurance exercise  on energy metabolism, showing that 

the ingestion of dihydrocapsiate does not increase energy expenditure or fat 

oxidation during endurance exercise in men with overweight/obesity.  

In summary, the present International Doctoral Thesis provides new 

insights into the impact of acute and long terms effects of exercise on the 

circulating levels of novel CMR markers. Furthermore,  the use of bioactive 

ingredients is a promising strategy to activate BAT in individuals with obesity 

and cardiometabolic diseases, while their beneficial effects during exercise 

remains to be further explored. 
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RESUMEN  

La incidencia de obesidad y enfermedades cardiometabólicas está aumentado en 

los adultos jóvenes y de mediana edad. Esta situación requiere de la 

identificación e implementación de nuevos marcadores de riesgo 

cardiometabólico (RCM) que permitan identificar a aquellos individuos con 

mayor riesgo de desarrollar enfermedades cardiometabólicas y poder establecer 

estrategias de prevención y tratamiento de manera temprana. En este sentido, los 

programas de ejercicio y el uso de ingredientes bioactivos constituyen estrategias 

prometedoras para combatir la obesidad y las enfermedades cardiometabólicas. 

La presente Tesis Doctoral Internacional tuvo como objetivo evaluar el 

impacto del ejercicio sobre marcadores noveles de RCM (Sección I) y el impacto 

de los ingredientes bioactivos y el ejercicio en el metabolismo energético (Sección 

II). Los hallazgos de los estudios de la Sección I revelaron que los niveles de 

plasmáticos de succinato podrían ser un nuevo y prometedor marcador de RCM 

en adultos jóvenes sedentarios (Estudio I). Sin embargo, los niveles de succinato 

no se modificaron después de 24 semanas de un programa de entrenamiento 

(Estudio I). En el Estudio II estudio demostramos que los niveles plasmáticos de 

ácidos biliares disminuyen rápidamente después de una sesión de ejercicio de 

agudo una manera específica y dependiente del tipo de ejercicio (aeróbico o 

fuerza) en adultos jóvenes sedentarios. Aquellos individuos con mayores niveles 

de capacidad cardiorrespiratoria mostraron respuesta una característica en los 

ácidos biliares primarios tras finalizar el ejercicio aeróbico que parece reflejar su 

mejor estado de salud en comparación con sus los individuos con menores 

niveles de capacidad cardiorrespiratoria (Estudio II). Los estudios de la Sección 

II concluyeron que el nivel de evidencia sobre el uso de ingredientes bioactivos 

para activar el tejido adiposo pardo (TAP) y promover el “amarronamiento” del 

tejido adiposo blanco (TAB) en humanos sanos es bajo (Estudio III). Sin embargo, 

existe una importante evidencia científica derivada de estudios en roedores que 

respalda el uso de ingredientes bioactivos para activar TAB y promover el 

amarronamiento del TAB para combatir la obesidad y los trastornos 

cardiometabólicos (Estudio IV). Finalmente, en el Estudio V evaluamos el efecto 

de 12 mg de dihidrocapsiato durante una sesión de ejercicio aeróbico, 

concluyendo que la ingesta de dihidrocapsiato no aumenta el gasto energético ni 

la oxidación de grasas durante el ejercicio de aeróbico a intensidad FATmax en 

hombres con sobrepeso/obesidad. 

En resumen, la presente Tesis Doctoral Internacional proporciona nuevos 

conocimientos acerca del impacto de los efectos agudos y crónicos del ejercicio 

sobre los niveles circulantes de marcadores noveles de RCM. Además, el uso de 

ingredientes bioactivos es una estrategia prometedora para activar el tejido 

adiposo pardo en personas con obesidad y enfermedades cardiometabólicas, 

mientras que sus efectos beneficiosos durante el ejercicio aún deben explorarse 

más a fondo. 
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OBESITY AND CARDIOMETABOLIC DISEASES: A GLOBAL EPIDEMIC 

 

Obesity has become a global epidemic that significantly reduces life expectancy 
1. It is a well-known fact that obesity is an independent risk factor for 

cardiometabolic diseases such as insulin resistance, dyslipidemia, hypertension, 

and sleep disorders 2. Obesity also leads to the development of cardiovascular 

disease independently of other cardiometabolic risk (CMR) factors 3. Nowadays, 

cardiometabolic diseases are the leading cause of death worldwide 4 and the rates 

are alarmingly increasing across young and middle-aged adults 5. Worryingly, 

individuals with obesity not only experience cardiometabolic complications  at 

an earlier age, but they also suffer cardiometabolic diseases for a larger period of 

their lifetime and present a reduced life span in comparison with normal-weight 

individuals 6.  

To date, identification of apparently asymptomatic, young individuals at 

high CMR is yet a major challenge in primary prevention 7. Therefore, the 

identification and implementation of novel CMR markers may yield valuable 

insights into the pathophysiology and prevention of obesity and cardiometabolic 

diseases, improving the identification of individuals at risk of developing 

cardiometabolic complications as early as possible to establish adequate 

prevention and treatment strategies 8–10. 

 

IDENTIFICATION AND IMPLEMENTATION OF NOVEL 

CARDIOMETABOLIC RISK MARKERS: A PREVAILING NECESSITY 
 

Due to the gradually developing nature of cardiometabolic diseases, a significant 

fraction of the young population is currently being classified at low CMR 

according to the current guidelines and criteria 11. This could be partially 

explained because these classification systems involve traditional CMR markers 

such as dyslipidemia, smoking, and hypertension that might be not so effective 

for identifying young individuals at early stages of cardiometabolic 

complications 11,12. For example, dyslipidemia is routinely evaluated through 

levels of total cholesterol, high-density lipoprotein cholesterol(HDL-C), low-

density lipoprotein cholesterol (LDL-C), and triglycerides. Nevertheless, it is 

known that a significant proportion of individuals with cardiometabolic 

complications present these lipid/lipoprotein levels within the normal ranges 13. 

This suggests that using these traditional CMR markers may not be useful to 

assess CMR across all population age-groups, particularly across young and 

relatively healthy adults where these traditional CMR markers are unlikely to be 

already altered or are within normal clinical values. Moreover, the exclusive use 
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of this cluster of lipid species (i.e., total cholesterol, HDL-C and LDL-C and/or 

triglycerides) might not reflect the tremendous complexity of lipid metabolism 

in humans 14. For these reasons, advances in the use of “omics” techniques, 

namely genomics, transcriptomics, proteomics and metabolomics, constitute a 

promising approach to the identification of endogenous novel circulating CMR 

markers and to unveil their role in metabolism 15.  

Nevertheless,  there is evidence that certain molecules that were identified 

decades ago and that have been profoundly studied, such as the intermediates of 

the tricarboxylic acid cycle (TCA), could be linked to obesity and cardiometabolic 

alterations in unforeseen ways. Actually, recent evidence revealed that some of 

the TCA intermediates could also act as signaling molecules that control the 

hypoxic response, immunity, DNA modifications, angiogenesis, and even cancer 
16. Among these intermediates, succinate has emerged as a novel pleiotropic 

signaling metabolite which is produced by both host and succinate-producer 

bacteria. Several studies have demonstrated that plasma succinate is elevated in 

several pathological conditions, including individuals with obesity and 

cardiometabolic alterations 17. Moreover, surgical weight loss intervention 

lowered circulating succinate levels in patients with type 2 diabetes and morbid 

obesity 18,19, being the preoperative circulating levels of succinate an strong 

predictor of diabetes remission after bariatric surgery 19. Given this, it has been 

proposed that circulating succinate levels could be serve as a novel CMR maker 

in middle-aged adults 20. However, no study has investigated whether circulating 

succinate levels could serve as a novel CMR marker in young-adults and its 

relationship with both traditional and novel (i.e., omega-6 oxylipins) CMR 

markers.  

 

Metabolomics: disentangling the complexity of human metabolism  

After the complete sequencing of the human genome, most of the attention 

focused to postgenomic technologies, such as transcriptomics, proteomics and 

metabolomics. The implementation of these technologies have allowed to obtain 

an integrated view of metabolism by offering new insights into the components 

that contribute to cardiometabolic diseases 21.  

Metabolomics constitutes a field of omics that comprises the 

characterization of metabolites and metabolic pathways in biological systems 

(Fig. 1). The metabolic phenotyping of an individual allows to use the metabolite 

readouts as a proxy for an organism’s observable biochemical traits and 

phenotype. Thus, the implementation of metabolomics has already revealed 

previous unsuspected CMR markers and potential therapeutic strategies 22. 

Within metabolomics, lipidomics – that refers to the comprehensive profiling of 
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lipids species and its metabolic pathways through liquid chromatography - mass 

spectrometry (LC-MS) techniques – has become one of the most used techniques 

for studying human metabolism 23. Lipidomics enabled the quantification of a 

wide-spectrum of oxidized lipids in just one analytical run, revealing that 

oxylipins - the oxidized products of omega-3 and omega-6 polyunsaturated fatty 

acids (PUFA) - might serve as indicators of oxidative stress in chronic diseases 

and as potential novel CMR markers 24,25. Interestingly, recent evidence revealed 

that the plasma levels of a set of four omega- 6 oxylipins may serve as early CMR 

markers in young adults, since they were positively associated with adiposity 

levels, prevalence of metabolic syndrome, and elevated circulating glucose and 

lipid levels 26. Interestingly, further pathway analyses revealed that those 

individuals with obesity had higher plasma levels of omega- 6 and lower plasma 

levels of omega- 3 oxylipins in comparison to their normal-weight counterparts 
26.  

 

Figure 1: Use of metabolomics for the identification of novel cardiometabolic risk factors and clinical 

stratification of individuals.  Adapted from Sen P et al. Front Mol Biosci 2018. 
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Lipidomics also cover other molecules that play important roles in human 

metabolism, such as bile acids. Similar to oxylipins, there is evidence that 

increased levels of circulating bile acids 27 are linked to cardiometabolic diseases 

in humans. Actually, recent evidence suggests that circulating bile acids levels 

could serve as potential novel CMR makers in young individuals, since plasma 

levels of bile acids were associated with traditional CMR markers in young, 

relatively healthy adults 28.  

Gut microbiota: the importance of the prokaryote universe within us 

The gut microbiota is composed by a complex and dynamic population of 

microorganisms along the gastrointestinal, including bacteria, viruses, fungi and 

archaea 29. Among these group of organisms, bacteria are the most abundant and 

they exert a marked impact on health and disease 30. Gut microbiota composition 

is regulated by intrinsic factors such as host genotype and age 31, but it is also 

affected by extrinsic factors, such as diet and exercise 32,33. The metabolites 

produced by these bacteria modulate biological host processes such as digestion 

and absorption of nutrients, immunity and gut barrier permeability 34,35. 

 
Figure 2. Example of molecules and metabolites produced by the gut microbiota in relation to the nutrients 
or metabolic source and their derived compounds. BSCFA, branched SCFA; LPS, lipopolysaccharides; 
PAMPs, pathogen- associated molecular patterns; SCFA, short chain fatty acids. de Vos WM et al. Gut 2022. 
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 Alterations in the composition of gut microbiota have been linked to the 

development of obesity and cardiometabolic diseases in humans 36,37. Indeed, 

certain bacteria metabolites such as trimethylamine-n-oxide 36, secondary bile 

acids 36, or even some TCA intermediates, such as succinate 17, are linked to 

obesity and cardiometabolic diseases (Fig. 2). In this context, the modification of 

extrinsic factors that modulates gut microbiota composition in a beneficial 

fashion, such as exercise and diet, are promising strategies to restore the 

functionality of gut microbiota 38–40. Consequently, including the assessment of 

gut microbiota composition in clinical studies could help to get a better 

understanding of the mechanisms that lead to obesity and cardiometabolic 

diseases. 

 

STRATEGIES TO COMBAT OBESITY AND CARDIOMETABOLIC 

DISEASES: A FOCUS ON EXERCISE AND BIOACTIVE INGREDIENTS 
 

Unequivocally, the implementation of novel CMR markers will improve the 

screening of individuals at high risk of developing cardiometabolic diseases 41. 

Besides, it is important to consider that CMR markers not only serve to evaluate 

the CMR status of the individuals, but also to evaluate and monitoring the impact 

of interventions aiming to combat obesity and cardiometabolic diseases 42,43. To 

date, most of non-pharmacological interventions for combating obesity and 

cardiometabolic diseases advocate for recommending guidelines for physical 

activity healthy dietary habits, like the World Health Organization guidelines on 

physical activity and sedentary behaviour 44. 

 

Exercise interventions to counteract obesity and promote cardiometabolic 

health 

 

Growing epidemiological evidence indicates that sedentary behaviour is 

associated with all-cause and cardiometabolic morbidity and mortality 45. 

Indeed, physical inactive individuals present an increased prevalence of 

cardiometabolic diseases, cancer, and early mortality 46, whereas physically 

active individuals present an better glucose (i.e., lower glucose levels, higher 

insulin sensitivity) and lipid (i.e., lower LDL-C, lower triglycerides, higher HDL-

C) profile, and lower blood pressure levels in comparison to physical inactive 

individuals (Fig. 3) 47. In this sense, exercise is an effective strategy to improve 

cardiometabolic health in both healthy and unhealthy individuals 48. Several 

meta-analyses have demonstrated that endurance exercise training decreases 

blood pressure levels in hypertensive individuals 49,50, improves lipid 
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metabolism in patients with hyperlipidaemia 51,52, reduces glycated haemoglobin 

in patients with type 2 diabetes 51, improves body composition in obese 

individuals 51, and reduces intrahepatic fat 53. 

 

Figure 3. Beneficial effects of exercise on cardiometabolic health in humans.  

Nonetheless, despite the effectiveness of exercise training on improving 

cardiometabolic health in adults with overweight/obesity 53,54, little is known on 

the effects of exercise training on traditional and novel CMR in populations of 

young and apparently healthy individuals. Thereby, further research is 

warranted to understand the effects of exercise on novel CMR markers, such as 

circulating TCA intermediates or bile acids in young adults.  

 

Metabolic lessons from a single bout of exercise: clinical interest of studying  

the acute effects of exercise  

 

Beyond the role of exercise training in promoting cardiometabolic health, the 

study of the acute effects of exercise provides unique metabolic insights into the 

identification of early stages of metabolic disease and molecules that could serve 

to evaluate the response to therapeutic interventions 55,56.  

Traditionally, most of the studies that aimed to investigate the changes in 

circulating molecules in response to exercise focused on the measurement of a  

relatively small number of molecules, usually as a result of the intrinsic 



International Doctoral Thesis                                                           Francisco J Osuna-Prieto  

34 
 

limitations of the techniques required. Nowadays, the implementation of multi-

omics approaches to study the effects of acute exercise have shown that a bout of 

exercise modifies the concentration of a myriad circulating molecules that are 

involved in the regulation of several physiological process, such as energy 

metabolism, inflammation and oxidative stress 57. However, it is important to 

consider that endurance and resistance exercise have a different impact on 

human physiology 58. Endurance exercise leads to cardiovascular adaptations 

that increase peak oxygen consumption with none/little effects on  strength 

parameters, whereas resistance exercise improves neuromuscular functions that 

lead to significant improvements in strength and muscle mass with none/little 

impact on peak oxygen consumption 59. These specific exercise-type responses 

are mediated by a complex interplay between a several signaling pathways 

coupled to metabolic downstream effectors 60. Actually, the metabolomic 

profiling comparing the responses of acute endurance exercise and acute 

resistance exercise  revealed that they do impact different metabolic pathways, a 

phenomena that is linked to an specific plasma metabolite fingerprint 61.  

Therefore, a better understanding of the impact of different types of acute 

exercise (i.e., endurance and resistance) on novel CMR markers could lead to 

improvements in the identification of early stages of cardiometabolic diseases 

that might be unnoticed through routing assessments of CMR markers (i.e., 

fasting levels), and to evaluate the response to therapeutic interventions, such as 

exercise and diet.  

 

Bioactive ingredients to combat obesity and cardiometabolic diseases  

 

A definition of bioactive ingredients was adopted by consensus in the 23rd 

Hohenheim Consensus Meeting, defining bioactive ingredients as essential and 

non-essential compounds that naturally occur in small amounts in food and 

plants and have shown to exert positive effect(s) on human health 62. Throughout 

history, humans have relied on natural products containing bioactive ingredients 

to counteract disease. In fact, the structure and properties of some of these 

bioactive ingredients have led to the development of a wide list of drugs that are 

currently being used in the prevention and treatment of obesity and 

cardiometabolic diseases 63,64. Evidence from epidemiological studies support 

that high intake of bioactive ingredients through fruits and vegetables is 

associated with a reduced incidence of obesity and cardiometabolic diseases. 

Bioactive ingredients combat obesity and cardiometabolic diseases by targeting 

different pathways and regulatory function that can lead to increases in energy 



International Doctoral Thesis                                                           Francisco J Osuna-Prieto  

35 
 

expenditure and satiation, inhibition of the pancreatic lipase activities, or 

reduction of circulating glucose and/or lipid levels 65.  

Interestingly, it seems that some bioactive ingredients increase energy 

expenditure through the activation of non-shivering thermogenesis (NST), which 

is defined as the increase of metabolic heat production above the basal 

metabolism without the involvement of muscle shivering. 

 

Bioactive ingredients targeting non-shivering thermogenesis  

 

Brown adipose tissue (BAT) is a thermogenic organ that generates heat via non-

shivering thermogenesis (NST) to maintain body temperature. BAT 

thermogenesis is supported by the action of the uncoupling protein 1 (UCP1) in 

the mitochondrial inner membrane, the molecular distinctive of BAT (Fig. 4) 66. 

UCP1 could be also expressed by beige adipocytes, brown-like adipocytes that 

emerge within white adipose (WAT) depots 67. The main BAT activator is cold 

exposure 68. The cold stimulus activate the transient potential receptor (TRP) 

channels in the skin, which act as temperature receptors 69. This results in the 

activation of the sympathetic nervous system (SNS) and the thermogenic 

program in brown and beige adipocytes 70. Both circulating and intra-cellular 

fatty are used to fuel thermogenesis within BAT mitochondria 71. Moreover, 

circulating glucose is also a fuel for of brown adipocytes, allowing imaging 

techniques to use labelled glucose to trace human BAT activity 72. Thus, because 

BAT consumes energy to generates heat, strategies aimed to targeting BAT 

thermogenesis and/or WAT “browning” (emerging of beige adipocytes within 

WAT) have arisen as potential therapeutic tools against obesity and 

cardiometabolic diseases 73.  

 

During the last decade, several studies revealed negative associations of 

human BAT with body mass index (BMI) 74, body fat mass 75–77, circulating 

glucose 76,78, total cholesterol and triglycerides 79,80, and with the incidence of type 

2 diabetes 81. In fact, recent evidence has reinforced that BAT presence could be 

associated with a  better cardiometabolic profile in humas 82. This study included 

more than 50,000 patients and revealed that individuals with detectable BAT 

presented lower prevalence of cardiometabolic diseases, i.e., lower odds of type 

2 diabetes, dyslipidemia, hypertension and cardiovascular events 82. 

Furthermore, individuals with detectable BAT also presented an improved 

profile of traditional CMR markers, such as lower glucose and triglycerides 

levels, and higher HDL-C values in comparison with their non-detectable BAT 

counterparts. 
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Acute and chronic cold exposure increases BAT volume and activity in 

humans, and improves metabolic health in obese, and diabetic patients 83–86, yet 

cold interventions are hard to implement in clinical practice 70,87. A potential 

alterative to cold interventions is the use of bioactive ingredients. TRP channels 

are not only regulated by temperature, but also for bioactive ingredients 

naturally present in food and plants 88. Among TRP channels, TRP vanilloid 1 

(TRPV1), TRP ankyrin 1 (TRPA1), and TRP Melastin 8 (TRPM8) are the most 

relevant for BAT activation, as their stimulation is associated with increased BAT 

activity 89. For these reasons, bioactive ingredients might be able to mimic the 

effects of cold exposure and activate BAT through the activation of TRP channels 
70. In addition, the activation of TRPV1, TRPA1, and TRPM8 has demonstrated to 

prevent obesity and cardiometabolic diseases by inhibiting body fat gain and 

pro-inflammatory pathways 90–92. 

 

 

Thereby, the activation of BAT and promotion of WAT browning could 

yield extra benefits beyond the increase in energy expenditure, constituting a 

promising tool to treat obesity and cardiometabolic diseases in humans 93. 

However, further studies should address which bioactive ingredients are the 

most effective for increasing BAT activity and/or WAT browning in humans in 

Figure 4. Sympathetic and endocrine control of brown adipose tissue thermogenesis. βAR; beta-
adrenergic receptor, Ep; eosinophils, Metrnl; meteorin-like, Mf; macrophage, NA: noradrenaline, NP: 
natriuretic peptide, TRP; transient receptor potential channel, UCP1; uncoupling protein 1, WAT; white 
adipose tissue. Saito M et al. Best Pract Res Clin Endocrinol Metab. 2016 
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order to provide an evidence-based list of bioactive ingredients to be used in 

clinical trials.  

 

Exercise and bioactive ingredients  

 

Despite it has been clearly demonstrated the adherence to exercise and nutrition 

guidelines is an effective strategy to combat obesity and its cardiometabolic co-

morbidities, the adherence to these beneficial life style patters is often low 94. This 

fact calls for multi-dimensional approaches that hopefully will lead to a higher 

adherences and ultimately higher success rates among the population. 95. 

Some bioactive ingredients with anti-obesity properties, such as capsaicin, 

green tea catechins, nitrates, or curcumin, also exert effects that could enhance 

exercise benefits in humans 96. Particularly, capsaicin and capsinoids seems to 

exert their ergogenic effects by activating TRPV1, the same channels responsible 

for its thermogenic effects 97. Some of the ergogenic effects mediated by TPRV1 

activation are: i) increased calcium release by the sarcoplasmic reticulum of 

contracting skeletal muscle cells; ii) higher fatty acid oxidation; and iii) 

promotion of glycogen sparing, which results in an increased aerobic exercise 

performance 98. Nonetheless, most of the research on the field has been conducted 

in trained individuals and/or athletes 96, a population which physiological 

characteristics and response to exercise significantly differ from individuals with 

overweight/obesity problems.  

While the benefits of  endurance exercise have shown to be effective in 

weight loss and cardiometabolic risk management in adults with 

overweight/obesity 54, little is known whether these effects could be further 

enhanced (i.e., higher energy expenditure and at fat oxidation during exercise 

per bout of exercise) by the combined use of bioactive ingredients and aerobic 

exercise in adults with overweight/obesity.  
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GENERAL AIM 
The general aim of the present International Doctoral Thesis is to understand the 
impact of exercise and bioactive ingredients on novel cardiometabolic risk 
markers and energy metabolism in adults.  
 
SPECIFC AIMS 
 
SECTION I. Impact of exercise on novel markers of cardiometabolic risk 

markers 

• Specific aim I: to investigate the relationship between plasma succinate 

levels with traditional and novel cardiometabolic risk markers, and to 

evaluate the effect of a 24-week exercise training intervention on plasma 

succinate levels in young adults (Study I).  

 

• Specific aim II: to investigate the effects of an acute maximal endurance 

and resistance exercise on plasma levels of bile acids in young adults 

(Study II).  

 

SECTION II: Impact of bioactive compounds and exercise on energy 

metabolism 

• Specific aim I: to investigate the effect of bioactive ingredients on brown 

adipose tissue volume and activity in humans (Study III). 

 

• Specific aim II: to study the effect of bioactive ingredients on brown 

adipose tissue and white adipose tissue browning in rodent (mice and 

rats) (Study IV). 

 

• Specific aim III: to evaluate the effects of dihydrocapsiate ingestion on 

energy expenditure and fat oxidation during an acute bout of aerobic 

exercise in men with overweight/obesity (Study V). 
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RESULTS AND 

DISCUSSION  
 

 

SECTION I 
 

STUDY I: Elevated plasma succinate levels are 

linked to higher cardiovascular disease risk factors 

in young adults 
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ABSTRACT 

 

Background: Succinate is produced by both host and microbiota, with a key role 

in the interplay of immunity and metabolism and an emerging role as a 

biomarker for inflammatory and metabolic disorders in middle-aged adults. The 

relationship between plasma succinate levels and cardiovascular disease (CVD) 

risk in young adults is unknown.  

 

Aim: To determine the relationship between plasma succinate levels and 

traditional and novel CVD risk in young adults.  

 

Methods: Cross-sectional study in 100 (65% women) individuals aged 18–25 years 

from the ACTIvating Brown Adipose Tissue through Exercise (ACTIBATE) 

study cohort. CVD risk factors, body composition, dietary intake, basal metabolic 

rate, and cardiorespiratory fitness were assessed by routine methods. Plasma 

succinate was measured with an enzyme-based assay. Brown adipose tissue 

(BAT) was evaluated by positron emission tomography and circulating oxylipins 

were assessed by targeted metabolomics. Fecal microbiota composition was 

analyzed in a sub-sample.  

 

Results: Individuals with higher succinate levels had higher levels of visceral 

adipose tissue (VAT) mass (+ 42.5%), triglycerides (+ 63.9%), C-reactive protein 

(+ 124.2%), diastolic blood pressure (+ 5.5%), and pro-inflammatory omega-6 

oxylipins than individuals with lower succinate levels. Succinate levels were also 

higher in metabolically unhealthy individuals than in healthy overweight/obese 

peers. Succinate levels were not associated with BAT volume or activity or with 

fecal microbiota composition and diversity.  

 

Conclusions: Plasma succinate levels are linked to a specific pro-inflammatory 

omega-6 signature pattern and higher VAT levels and seem to reflect the 

cardiovascular status of young adults. 
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BACKGROUND  

 

Cardiovascular disease (CVD) remains the main cause of death worldwide 1. 

Worryingly, the rates of CVD are increasing in young/middle-aged adults (18–

45 years) 2. The incorporation of new circulating biochemical markers and 

technologies are improving the detection of CVD risk in the general population 
3,4. Early identification of individuals at risk of developing CVD is important 5, 

but predictive biomarkers of CVD risk and related metabolic disturbances are not 

well characterized in young adults 6. Advances in the functional analysis of the 

human metabolome have yielded many new endogenous metabolites as 

potential biomarkers for CVD 7, including the tricarboxylic acid (TCA) cycle 

intermediate succinate 8. 

 

Historically considered as a respiratory substrate of the mitochondrial 

electron transport chain, succinate is now known to have additional 

physiological roles. For example, it acts as a signaling molecule in both 

intracellular and extracellular compartments by binding and activating its 

cognate receptor, succinate receptor 1 (SUCNR1), also known as G-protein 

coupled receptor 91 9. In addition to being a marker of hypoxia and a driver of 

tissue damage 10, succinate is now recognized as a pro-inflammatory signal that 

boosts immune activation 11–13. We and others have shown that succinate also 

plays a key role in the fine-tuning of the inflammatory response, acting both as 

an alarmin 11–13 and as a resolving molecule 14–17. Moreover, succinate is a positive 

regulator of intestinal gluconeogenesis 18, activates brown adipose tissue (BAT) 

thermogenesis 19, and is involved in the muscle-remodeling program in response 

to exercise 20,21. Additional roles for succinate in energy metabolism are 

anticipated from the finding that acute dietary intake modulates post-prandial 

succinate plasma levels by a mechanism that is dependent on intestinal glucose 

sensing and metabolic status 22. Succinate is also a microbiota-derived metabolite 

with a key role in governing intestinal homeostasis 23. Succinate levels are clearly 

elevated in inflammatory-related health conditions, including obesity and type 2 

diabetes (T2D) 22,24–26, and are also related to a microbiota dysbiosis signature 26. 

Indeed, succinate has been validated as a surrogate biomarker of poor metabolic 

control in patients with obesity and T2D 22,24,26 and can predict diabetes remission 

in patients undergoing bariatric surgery 24. To date, however, no study has 

investigated whether circulating succinate levels are associated with CVD risk, 

whether it can be a biomarker of CVD risk 3–6. Similarly, whether an exercise-

intervention program is an effective strategy to decrease circulating succinate 

levels in young adults remains to be investigated. 

 



International Doctoral Thesis                                                       Francisco J Osuna-Prieto 

52 

 

Oxylipins are a large family of lipid-based metabolites derived from 

polyunsaturated fatty acids that differentially regulate inflammatory processes, 

representing a novel group of putative CVD risk biomarkers 27,28. Omega-3 

oxylipins mainly exert anti-inflammatory and pro-resolving effects, whereas 

omega-6 oxylipins are mainly involved in pro-inflammatory processes 29,30. 

Interestingly, previous work has established a link between higher levels of 

circulating omega-6 oxylipins and an elevated pro-inflammatory status and CVD 

risk 31,32, but little is known about the role of omega-3 oxylipins for CVD risk.  

 

In the present study, we aimed to determine the relationship between 

plasma succinate levels and CVD risk in young adults. We examined whether 

succinate levels correlate with traditional and novel CVD risk factors (i.e., 

oxylipins) in a well-phenotyped cohort of young adults. As a secondary aim, we 

examined the effect of a 24-week supervised exercise-intervention program on 

plasma succinate levels in young adults.  

 

METHODS 

Participants 

The present study was conducted within the framework of the ACTIBATE 

(ACTIvating Brown Adipose Tissue through Exercise) study 33, a randomized 

controlled trial designed to determine the effect of exercise on BAT activity 

(Clinical trials identifier: NCT02365129). Inclusion criteria were the following: to 

be sedentary (<20 min moderate-to-vigorous physical activity on <3 days/week), 

non-smoker, not taking any medication, and stable body weight over the last 3 

months. Exclusion criteria were: diagnosis of diabetes, hypertension or any 

medical condition(s) that can interfere with or be aggravated by exercise, being 

pregnant, using medication (including antibiotics) that could affect energy 

metabolism or gut microbiota, and being frequently exposed to cold 

temperatures (e.g., indoors/outdoors workspace with low-temperatures, such as 

cold-storage works, ski/snow monitors, fieldwork during the winter sessions or 

low-temperature areas). All participants gave their informed consent, and the 

study was approved by the Ethics Committee on Human Research of the 

University of Granada (nº.924), and Servicio Andaluz de Salud (Centro de 

Granada, CEI-Granada). We selected participants from the ACTIBATE study 

with valid data for serum CVD risk factors, body composition, dietary intake, 

basal metabolic rate (BMR), cardiorespiratory fitness, brown adipose tissue 

(BAT) volume and activity, and with plasma samples available for succinate 

measurements. This resulted in a cohort of 100 young adults (65 women, 35 men; 

age 18–25 years) that were used in subsequent analyses. Of this cohort, 58 
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individuals had available fecal samples that were used in the fecal microbiota 

and composition analysis. Table 1 shows the descriptive characteristics of the 

participants as well as the plasma succinate levels measured at baseline. A 24-

week randomized exercise-controlled trial was conducted with a parallel-group 

design. After the baseline examinations, individuals were randomly assigned 

into three different groups using a computer-generated simple randomization 

(29): (i) control group (CON, no exercise, n=36), (ii) moderate-exercise intensity 

group (Ex-MOD, n=32), and (iii) vigorous-exercise intensity group (Ex-VIG, 

n=32). The study was conducted in two consecutive years in 4 different waves 

(from September 2015 to June 2016, and from September 2016 to June 2017). All 

participants were instructed not to change their normal routine and their physical 

activity and dietary patterns throughout the study.  

 

Procedures 

 

All data were collected at the same hour of the day, but on different days within 

a period of three weeks. Participants commuted to the research center by car, bus, 

or motorcycle, and all reported to have slept as usual and refrained from 

stimulant beverages and any moderate physical activity in the previous 24 h, or 

any vigorous physical activity in the 48 h prior to each visit. Participants 

remained still (either lying down or sitting) during the assessments. Self-reported 

menstrual cycle phase of female participants was recorded at each visit.  

 

Anthropometry, basal metabolic rate, and dual-energy X-ray absorptiometry

  

On the first visit, participants arrived at 08:15 AM (after a 12-h overnight fast, 

with a standardized dinner the evening before). Waist circumference was 

measured twice at the minimum perimeter area with a measuring tape (mm 

precision) and the mean value was calculated. For those with abdominal obesity, 

waist circumference was measured just above the umbilicus (horizontal plane). 

Body mass and height were measured (no shoes, light clothing) using a model 

799 Seca scale and stadiometer (Seca, Hamburg, Germany). After having 

urinated, participants put on standardized clothes (clothing insulation value: 

0.20) and entered a warm room (22.8 ± 0.9°C; 43.8 ± 6.7% humidity). Basal 

metabolic rate (BMR) was measured during 30 min while lying down on a bed 

using a CCM Express or Ultima CardiO2 metabolic cart (Medical Graphics 

Cardiorespiratory Diagnostics St Paul, MN) 34,35, according to methodological 

recommendations 36. We selected the average of the most stable 5-min period, as 

it was the most accurate estimation of the individuals’ BMR 34. Body fat mass, 

lean body mass and visceral adipose tissue (VAT) were measured by whole-body 



International Doctoral Thesis                                                       Francisco J Osuna-Prieto 

54 

 

dual-energy X-ray absorptiometry (HOLOGIC, Discovery Wi, Marlborough, 

MA). Body mass, lean mass, and fat mass indices were calculated as kg/m2. 

 

Positron emission tomography-computed tomography scanning and analysis  

 

On the second visit, participants arrived in a fasted condition (≥6 h) and were 

placed in a cool room (19.5–20°C) wearing a water-perfused cooling vest (Polar 

Products Inc., Stow, OH) and the same standardized clothes as on visit 1. Water 

temperature was progressively reduced until shivering occurred (self-reported 

and visually observable). The water temperature at the onset of shivering was 

recorded as the shivering threshold (5.4 ± 2.2°C for men and 6.3 ± 2.2°C for 

women; common range for both sexes is 3.9–12.2°C). At 48–72 h after the 

shivering threshold test, on visit 3, the participants were placed in a cool room 

(19.5–20°C) with the cooling vest temperature set at 4°C above their individual 

shivering threshold. After 1 h of cold exposure with a cooling vest 4°C above 

their individual shivering threshold and the room temperature at 19.5–20°C, they 

received an intravenous injection of ∼185 MBq 18F-18F-fluorodeoxyglucose (FDG) 

while the water temperature was increased by 1°C. The positron emission 

tomography combined with computed tomography (PET-CT) scan was 

performed one hour after the injection, and scans were analyzed using the Beth 

Israel plug-in for FIJI software 37, in agreement with the methodological 

recommendations 38 and following a protocol described elsewhere 39,40. PET-CT 

images from cervical vertebra 1 to thoracic vertebra 6 (approximately) were 

obtained. To assess BAT volume and 18F-FDG uptake, we selected voxels with a 

radiodensity between −190 and -10 Hounsfield Units and an 18F-FDG uptake 

above the individualized standardized uptake value (SUV) threshold of 1.2/(lean 

body mass/body mass) 38. Based on this information, BAT volume and 18F-FDG 

uptake (calculated as SUV mean) parameters were obtained following the 

BARCIST 1.0 recommendations 38. 

 

Cardiorespiratory fitness  

 

On the fourth visit, individuals arrived in fasting conditions (3–5 h) having 

refrained from drinking coffee/tea during the testing day or the day before. 

Neither vigorous exercise (48 h before) nor moderate exercise (24 h before) was 

allowed prior to the assessments. A treadmill maximum-exercise test employing 

an H/P/Cosmos Pulsar treadmill (H/P/Cosmos Sports & Medical GmbH, 

Nussdorf-Traunstein, Germany) was performed according to a modified Balke 

protocol 33: 1-min warm-up at 3 km/h, followed by 2 min at 4 km/h, and 1 min 

at 5.3 km/h. Subsequently, the treadmill slope was increased by 1% each minute 
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until volitional exhaustion was reached. Respiratory gas exchange was 

monitored with a CPX Ultima CardioO2 system (Medical Graphics Corp., St Paul, 

MN) with a facemask, model 7400 (Hans Rudolph Inc., Kansas City, MO), and a 

preVent™ metabolic flow sensor (Medical Graphics Corp.) 34. Carbon dioxide 

production (VCO2) was assessed using a non-dispersive infra-red sensor, and 

oxygen consumption (VO2) was measured using a galvanic fuel cell 34. Maximum 

VO2 (VO2max) was defined as a respiratory exchange ratio of ≥1.1, once a VO2 

plateau was reached, with a heart rate within 10 beats/min of the individuals’ 

age-predicted maximum (209-0.73×age) 41. VO2 max was calculated relative to 

body mass 42. 

 

Cardiovascular disease risk factors and plasma succinate analysis   

 

During the fifth visit, blood samples were drawn from the antecubital vein in the 

morning (8.00–9.00 A.M) after overnight fasting (>10 h), under resting conditions. 

Blood samples were collected in Vacutainer Tubes®, which were immediately 

centrifuged, and serum (obtained with Vacutainer® SST™ II Advance tubes) and 

plasma (obtained with Vacutainer® Hemogard™ tubes, containing potassium 

salt of ethylenediamine tetra-acetic as anticoagulant) aliquots were stored at -

80°C until analyses. Serum samples were used for cardiovascular risk factor 

analyses, whereas plasma samples were used to determine succinate and omega-

3 and omega-6 oxylipin concentrations.  

 

Glucose was measured in an AU5832 biochemical analyzer (Beckman 

Coulter, Brea, CA) using a Beckman Coulter reagent (#OSR6521) and insulin was 

measured in a DXI analyzer (Beckman Coulter) using a Beckman Coulter 

chemiluminescent reagent (#33410). These values were used to calculate the 

homeostatic model assessment (HOMA) index of insulin resistance 43. Total 

cholesterol, triglyceride, and high-density lipoprotein-cholesterol (HDL-C) 

serum levels were measured in the AU5832 analyzer using the Beckman Coulter 

reagents #OSR6116, OSR60118 and OSR6187, respectively. Low-density 

lipoprotein-cholesterol (LDL-C) levels were subsequently calculated using the 

Friedewald formula: (total cholesterol) − (HDL-C) − 0.45 * (triglycerides). 44 C-

reactive protein was also measured in an AU5832 analyzer with the reagent 

#OSR6299. Plasma succinate levels were measured using the EnzyChromTM 

Succinate Assay Kit (BioAssay Systems, Hayward, CA). The assay sensitivity was 

12 µM and the intra- and inter-assay coefficients of variance were <3.50% and 

6.95%, respectively, and the accuracy ranged from 1 to 11.5% error 24,26. 
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Systolic and diastolic blood pressure was measured with an automatic 

sphygmomanometer (Omrom M2; Omron Healthcare, Kyoto, Japan). 

Measurements were repeated on three different days and the averages were 

calculated. The prevalence of metabolic syndrome was calculated according to 

the National Cholesterol Education Program Adult Treatment Panel III (ATP III) 

criteria 45 .Participants were considered to have metabolic syndrome if they had 

three or more of the following risk factors: waist circumference ≥102 cm for men 

and ≥88 cm for women; triglycerides ≥150 mg/dL; HDL-C <40 mg/dL for men 

and <50 mg/dL for women; systolic blood pressure ≥130 mmHg or diastolic 

blood pressure ≥85 mmHg; glucose >110 mg/dL. 

 

Fecal microbiota analysis  

 

On the sixth visit, a fecal sample (50–60 g) was collected from a sub-cohort of 

n=58 participants using a sterilized plastic container. Samples were transported 

in a portable cooler at 4°C to the laboratory and stored at -80°C until DNA 

extraction. Fecal samples were homogenized in a Stomacher® 400 (A. J. Seward 

and Co. Ltd., London, UK) and DNA extraction and purification were performed 

with a commercial kit (QIAamp DNA Stool Mini Kit, QIAGEN, Barcelona, 

Spain). DNA was quantified using a NanoDrop ND1000 spectrophotometer 

(Thermo Fisher Scientific, DE) and quality was evaluated according to the 

A260/280nm and A260/230nm absorbance ratios.  

 

Purified DNA was amplified by PCR targeting the V3 and V4 

hypervariable regions of the bacterial 16S rRNA gene by using the following 

primer pairs, 16S Amplicon Forward Primer: 

50TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCW

GCG, and 16S Amplicon Reverse Primer: 

50GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTA

TCTAATCC. 46 PCR assays were conducted in a final volume of 25 µL, consisting 

of 12.5 µL 2× KAPA HiFi Hotstart ready mix (KAPA Biosystems, Woburn, MA), 

5 µL forward primer (1 µM), 5 µL reverse primer (1 µM), 2.5 µL DNA (10 ng), 

with the following PCR program: 1) denaturation (95ºC, 3 min); 2) 8 cycles of 

denaturation (95ºC, 30 s); annealing (55ºC, 30 s) and elongation (72ºC, 30 s); 3) 

final extension (72ºC, 5 min). Next, AMPure XP beads (Beckman Coulter, 

Indianapolis, IN) were used to purify the 16S V3 and V4 amplicons. A PCR 

indexing step was then performed, which attaches dual indices and Illumina 

sequencing adapters using the Nextera XT Index Kit (Illumina, San Diego, CA). 

The PCR conditions were as follows: 1) 95ºC, 3 min; 2) 8 cycles of 95ºC, 30 s; 3) 

55ºC, 30 s; 4) 72ºC, 30 s; 5) 72ºC, 5 min; 6) hold at 4ºC. Pooled PCR products were 
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purified using AMPure XP beads (Beckman Coulter) before quantification. 

Finally, the amplicons were sequenced at MiSeq (Illumina) using paired-end 

(2×300 nt) Illumina MiSeq sequencing system (Illumina).  

 

Merging and pre-clustering of raw sequences was conducted using the 

“DADA2” 47 package in R 48, allowing differences in 2 nucleotides (so-called 

phylotypes), which were filtered according to a threshold for mean abundance 

of 0.001% and a sequence length 240 pb before the analysis. A total of 11,659,014 

paired-end reads were obtained with an average of 126,728±33,395 reads per 

sample. All samples were above the 10,000 reads cut-off. Samples were 

standardized to an equal size of 30,982 reads using the “PHYLOSEQ” 49 package 

in R 48, obtaining a total of 11,158 phylotypes. The “CLASSIFIER” function from 

the Ribosomal Database Project (RDP) was used for assigning taxonomic 

affiliation of phylotypes, according to the naive Bayesian classification 50 by using 

a pseudo-bootstrap threshold of 80%. A total 209 genera belonging to 16 different 

phyla were obtained. To further determinate the annotation of phylotypes 

(species assignments), the “SEQMATCH” function from RDP 51 was employed 

to define the discriminatory power of each sequence read; annotation was 

conducted according to previously published criteria 52. Microbial communities 

were analyzed from phylum to species, calculating relative abundances 

expressed as percentages for use in subsequent analyses. Only the data for 

abundances higher than 1% relative abundance were represented at phylum and 

genus level according to the study variables.   

 

Beta and alpha diversity metrics, and fecal microbiota composition, were 

then determined and used in the subsequent analyses. Beta diversity indicates 

differences in microbial community composition between individuals 53, whereas 

alpha diversity indicates the number of different phylotypes and relative 

abundances within a given individual 54. Alpha diversity was calculated based 

on the Chao richness, inverse Simpson, Camargo’s evenness, and Shannon 

indices with the “MICROBIOME” 55 package in R software 48. Chao richness 

estimates the diversity according to the number of different phylotypes identified 

in the community 56; Shannon diversity increases as both the richness and the 

evenness of the community increase 57; the inverse of Simpson diversity is 

calculated from classical Simpson diversity and indicates richness in a 

community with uniform evenness 58; and Camargo’s evenness indicates the 

equitability of phylotypes frequencies in the community 59. 

 

Data are presented as means ± standard deviations unless otherwise 

stated. Normality of all variables was assessed using the D’Agostino & Pearson 
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omnibus with GraphPad Prism version 8.0.0 for Windows (GraphPad Software, 

San Diego, CA). Since variables were non-normally distributed, non-parametric 

tests were used for all analyses. The cohort was divided into tertiles according to 

circulating succinate levels (low, intermediate or high groups) using the 

Statistical Package for the Social Sciences v.22.0 (IBM SPSS Statistics, IBM 

Corporation, Chicago, IL).  The “VEGAN” 60 R package was used for calculating 

the data matrix comprising the relative abundances at phylum and genus levels 

using the Bray-Curtis algorithm 61 for measuring beta diversity. Samples were 

ordinated by principal coordinate analysis. Significance level threshold was set 

at P<0.05. R software (V.3.6.0) 48 and GraphPad Prism were also used for plots. 

Beta diversity was measured quantitatively for relative abundance higher than 

0.5% by permutational multivariate analysis of variance (PERMANOVA) based 

on Bray-Curtis 61 dissimilarity, with Past3 62. The Kruskal-Wallis test was used 

for the assessment of significant differences in gut microbiota composition and 

alpha diversity. P-values were corrected by the two-stage step-up method of 

Benjamini, Krieger and Yekutieli multiple comparison by controlling the False 

Discovery Rate (FDR). 

 

Dietary recalls  

 

Regular dietary energy intake was estimated using three non-consecutive 24-h 

dietary recalls, one of which was on a non-working day. Participants were 

interviewed by dietitians who recorded all food items and drinks that the 

individuals consumed on the day prior to the interview. The methodology has 

been extensively described elsewhere 63. In brief, a book with pictures of different 

food servings and sizes was used to help participants estimate the amount of 

food consumed. EvalFINUT® software (http://www.finut.org/evalfinut/) was 

used to obtain the nutritional composition of the diet, which was used to obtain 

dietary energy and macronutrients intake, and dietary energy density 

parameters. Consumption of water and salt was not recorded. Participants were 

not informed in advance when their diet was going to be registered.  

 

Determination of plasma omega-3 and omega-6 oxylipins 

 

Plasma levels of omega-3 and omega-6 oxylipins were measured and analyzed 

using a targeted metabolomics approach with liquid chromatography-tandem 

mass spectrometry (LC-MS/MS), as described elsewhere 64. Using this LC-

MS/MS method, 83 oxylipins were detected and relatively quantified (Table S1).  
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Oxylipins were extracted using liquid-liquid extraction 64. Briefly, 150 µL 

of plasma was transferred into a 1.5 mL-Eppendorf tubes and was spiked with 5 

µL of a solution of butylated hydroxytoluene (0.4 mg/mL) and 10 µL of a 

deuterated internal standard mix. Next, 150 µL of a buffer solution (0.2 M citric 

acid and 0.1 M disodium hydrogen phosphate) were added, followed by the 

addition of 1000 µL of the extraction solvent methyl tert-butyl ether and butanol 

(50:50, v/v). Samples were mixed for 5 min with a bullet blender (Next Advance, 

Averill Park, NY), and then centrifugated (16,000 g, 10 min, 4°C). After the 

centrifugation step, 900 µL of the upper layer was transferred to a new 1.5 mL 

Eppendorf tube. Samples were evaporated to dryness using a SpeedVac system 

prior to reconstitution in 50 µL of a solution of methanol:acetonitrile (70:30, v/v). 

The resulting solution was centrifuged (16,000 g, 10 min, 4°C), prior to the 

collection of 40 µL of the supernatant, which was transferred into glass vials for 

injection in the LC-MS/MS system.  

 

The extracted samples were analyzed using a Shimadzu LC system 

(Shimadzu Corporation, Kyoto, Japan), coupled to a SCIEX QTRAP 6500+ mass 

spectrometer (SCIEX, Framingham, MA). Separation was performed using a BEH 

C18 column (50 mm × 2.1 mm, 1.7 μm) from Waters Technologies (Milford, MA) 

kept at 40°C. The mobile phase consisted of 0.1% acetic acid in water (A), 0.1% 

acetic acid in acetonitrile/methanol (90:10, v/v, B), and 0.1% acetic acid in 

isopropanol (C). Ionization was performed using electrospray ionization in 

negative mode. For the MS/MS acquisition, selected reaction mode (SRM) was 

employed. SRM transitions were individually optimized for targeted analytes 

and respective internal standards using standard solutions. The list of internal 

standards is shown in Table 1.  

 

For each target compound detected, the ratio between its peak area and 

the peak area of its corresponding internal standard was calculated using SCIEX 

OS Software. Quality control (QC) samples (i.e., blank plasma samples) were 

used to evaluate the quality of the data and to correct for between-batch 

variations, using the in-house developed mzQuality workflow (available at 

http://www.mzQuality.nl). 65 Relative standard deviations (RSDs) of the peak 

area ratios were calculated for each target analyte present in the QC samples. 

Metabolites showing RSDs higher than 30% on peak area ratios in QC samples 

were excluded from further analysis (Table 1).  
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Table 1. List of metabolites analyzed by LC-MS/MS  

 

Abbreviation IUPAC Name  ChEBI ID 
RSD in QC 

samples 

Omega-3 oxylipins   

ALA 9Z,12Z,15Z-octadecatrienoic acid 27432 9.80% 

9-HpOTrE 9S-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid 165791 NM 

9-HOTrE 9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid 80447 7.60% 

12,13-DiHODE (±)-12,13-dihydroxy-9Z,15Z-octadecadienoic acid 88461 5.80% 

EPA 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid 28364 8.50% 

5-HpEPE 5S-hydroperoxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid 145815 NM 

5-HEPE (±)-5-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid 72801 13.10% 

12-HpEPE 
12S-hydroperoxy-5Z,8Z,10E,14Z,17Z-eicosapentaenoic 

acid 
78909 NM 

12-HEPE (±)-12-hydroxy-5Z,8Z,10E,14Z,17Z-eicosapentaenoic acid 72645 12.10% 

14,15-EpETE (±)-14,15-epoxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid 88457 NM 

14,15-DiHETE (±)-14,15-dihydroxy-5Z,8Z,11Z,17Z-eicosatetraenoic acid 88459 8.00% 

17,18-EpETE (±)-17,18-epoxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 72853 NM 

17,18-DiHETE (±)-17,18-dihydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 88349 9.10% 

DPA 7Z,10Z,13Z,16Z,19Z-docosapentaenoic acid 61204 14.00% 

DHA 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid 28125 9.80% 

4-HDoHE 
(±)-4-hydroxy-5E,7Z,10Z,13Z,16Z,19Z-docosahexaenoic 

acid 
72624 14.30% 

8-HDoHE 
(±)-8-hydroxy-4Z,6E,10Z,13Z,16Z,19Z-docosahexaenoic 

acid 
72610 19.70% 

11-HDoHE 
(±)-11-hydroxy-4Z,7Z,9E,13Z,16Z,19Z-docosahexaenoic 

acid 
72794 17.10% 

13-HDoHE 
(±)-13-hydroxy-4Z,7Z,10Z,14E,16Z,19Z-docosahexaenoic 

acid 
72608 12.30% 

14-HDoHE 
(±)-14-hydroxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic 

acid 
72647 14.70% 

16-HDoHE 
(±)-16-hydroxy-4Z,7Z,10Z,13Z,17E,19Z-docosahexaenoic 

acid 
72613 15.40% 

17-HDoHE 
(±)-17-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic 

acid 
72637 9.00% 

20-HDoHE 
(±)-20-hydroxy-4Z,7Z,10Z,13Z,16Z,18E-docosahexaenoic 

acid 
72615 23.60% 

19,20-EpDPE 
(±)-19(20)-epoxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic 

acid 
72653 13.50% 

19,20-DiHDPA 
(±)-19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic 

acid 
72657 7.90% 

Omega-6 oxylipins   

LA 9Z,12Z-octadecadienoic acid 17351 10.20% 

10-NO2-LA 10-nitro,9Z,12Z-octadecadienoic acid 34125 13.30% 

9-HPODE (±)9-hydroperoxy-10E,12Z-octadecadienoic acid 165782 NM 

9-HODE (±)-9-hydroxy-10E,12Z-octadecadienoic acid 72651 7.60% 

9,12,13-TriHOME 9S,12S,13S-trihydroxy-10E-octadecenoic acid 34506 6.90% 

9,10,13-TriHOME 9S,10S,13S-trihydroxy-11E-octadecenoic acid 34499 15.70% 

13-HPODE (±)13-hydroperoxy-9Z,11E-octadecadienoic acid 91272 NM 

13-HODE (±)-13-hydroxy-9Z,11E-octadecadienoic acid 72639 7.10% 

9,10-EpOME 9,10-epoxy-12Z-octadecenoic acid 34494 7.80% 

12,13-EpOME (±)-12(13)-epoxy-9Z-octadecenoic acid 38229 9.60% 
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9,10-DiHOME 9,10-dihydroxy-12Z-octadecenoic acid 72663 7.30% 

12,13-DiHOME 12,13-dihydroxy-9Z-octadecenoic acid  72665 6.70% 

DGLA 8Z,11Z,14Z-eicosatrienoic acid 53486 23.90% 

8-HETrE 8S-hydroxy-9E,11Z,14Z-eicosatrienoic acid 140473 22.80% 

15-HETrE 15S-hydroxy-8Z,11Z,13E-eicosatrienoic acid 88348 13.50% 

AA 5Z,8Z,11Z,14Z-eicosatetraenoic acid 15843 13.40% 

AdrA 7Z,10Z,13Z,16Z-docosatetraenoic acid  53487 22.10% 

PGG2 
9S,11R-Epidioxy-15S-hydroperoxy-5Z,13E-prostadienoic 

acid 
27647 NM 

PGH2 9S,11R-Epidioxy-15S-hydroxy-5Z,13E-prostadienoic acid 15554 NM 

PGE2 9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid 15551 36.00% 

PGF2alpha 9α,11α,15S-trihydroxy-prosta-5Z,13E-dien-1-oic acid 15553 ND 

TxA2 
9S,11S-Epoxy,15S-hydroxy-thromboxa-5Z,13E-dien-1-Oic 

acid 
15627 NM 

TxB2 9S,11,15S-trihydroxy-thromboxa-5Z,13E-dien-1-oic acid 28728 6.90% 

8,9-EpETrE 8,9-epoxy-5Z,11Z,14Z-eicosatrienoic acid 34490 ND 

11,12-EpETrE 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid 34130 ND 

11,12-DiHETrE 11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid 63969 8.40% 

14,15-EpETrE 14,15-epoxy-5Z,8Z,11Z-eicosatrienoic acid 34157 19.50% 

5,6-EpETrE (±)5,6-epoxy-8Z,11Z,14Z-eicosatrienoic acid 34450 NM 

5,6-DiHETrE 5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid 63974 9.00% 

8,9-DiHETrE 8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid 63970 9.90% 

11,12-DiHETrE 11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid 63969 8.40% 

14,15-DiHETrE 14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid 63966 7.10% 

5-HPETE 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid 91268 NM 

5-HETE 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid 28209 10.40% 

11-HPETE 11R-Hydroperoxy-5Z,8Z,12E,14Z-eicosatetraenoic acid 165279 NM 

11-HETE 11-hydroxy-5Z,8Z,12E,14Z-eicosatetraenoic acid 72606 10.70% 

12-HPETE 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid 15626 NM 

12-HETE 12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid 19138 11.40% 

15-HPETE 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid 91271 NM 

15-HETE 15-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoic acid 64017 9.30% 

20-HETE 20-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid 34306 9.40% 

1a,1b-dihomo-PGF2α 
1a,1b-dihomo-9S,11R,15S-trihydroxy-5Z,13E-prostadienoic 

acid 
NA 22.10% 

2,3-dinor-8-iso-PGF2α 
9α,11α,15S-trihydroxy-2,3-dinor-(8β)-prosta-5Z,13E-dien-

1-oic acid 
NA ND 

2,3-dinor-11β-PGF2α 
9α,11β,15S-trihydroxy-2,3-dinor-prosta-5Z,13E-dien-1-oic 

acid 
NA ND 

iPF2α-IV 
(8S)-10-[(1R,2S,3S,5R)-3,5-Dihydroxy-2-pentylcyclopentyl]-

8-hydroxydeca-5,9-dienoic acid 
NA ND 

5-iPF2α VI (8β)-5,9α,11α-trihydroxy-prosta-6E,14Z-dien-1-oic acid 140933 ND 

8,12-iPF2α (12α)-5,9α,11α-trihydroxy-prosta-6E,14Z-dien-1-oic acid NA 7.20% 

12-HHTrE 12S-hydroxy-5Z,8E,10E-heptadecatrienoic acid 63977 8.10% 

20-hydroxy-PGF2a 9α,11α,15S,20-tetrahydroxy-prosta-5Z,13E-dien-1-oic acid 165322 ND 

20-hydroxy-PGE2 9-oxo-11α,15S,20-trihydroxy-prosta-5Z,13E-dien-1-oic acid 137370 ND 

8-iso-PGF2a 9α,11α,15S-trihydroxy-(8β)-prosta-5Z,13E-dien-1-oic acid 34509 ND 

8-iso-15-R-PGF2a 9α,11α,15R-trihydroxy-(8β)-prosta-5Z,13E-dien-1-oic acid NA ND 

11beta-PGF2a 9α,11β,15S-trihydroxy-prosta-5Z,13E-dien-1-oic acid 27595 ND 

PGF2alpha 9S,11R,15S-trihydroxy-5Z,13E-prostadienoic acid 15553 ND 
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PGE3 
9-oxo-11α,15S-dihydroxy-prosta-5Z,13E,17Z-trien-1-oic 

acid 
28031 ND 

PGD3 
9α,15S-dihydroxy-11-oxo-prosta-5Z,13E,17Z-trien-1-oic 

acid 
34939 ND 

8-iso-PGE2 
9-oxo-11α,15S-dihydroxy-(8β)-prosta-5Z,13E-dien-1-oic 

acid 
131888 ND 

11beta-PGE2 9-oxo-11β,15S-dihydroxy-prosta-5Z,13E-dien-1-oic acid 89581 ND 

PGD2 9α,15S-dihydroxy-11-oxo-prosta-5Z,13E-dien-1-oic acid 15555 ND 

8-iso-13,14-dihydro-15-keto-

PGF2a 
9α,11α-dihydroxy-15-oxo-(8β)-prost-5Z-en-1-oic acid NA ND 

13,14-dihydro-15-keto-PGF2a 9α,11α-dihydroxy-15-oxo-prost-5Z-en-1-oic acid 63976 ND 

13,14-dihydro-PGF2a 9α,11α,15S-trihydroxy-prost-5Z-en-1-oic acid 88346 ND 

13,14-dihydro-15-keto-PGE2 9,15-dioxo-11α-hydroxy-prost-5Z-en-1-oic acid 15550 ND 

13,14-dihydro-15-keto-PGD2 9α-hydroxy-11,15-dioxo-prost-5Z-en-1-oic acid 72603 ND 

1a,1b-dihomo-PGF2a 
9α,11α,15S-trihydroxy-1a,1b-dihomo-prosta-5Z,13E-dien-

1-oic acid 
NA ND 

bicyclo-PGE2 
11-deoxy-13,14-dihydro-15-keto-11β,16. xi.-

cycloprostaglandin E2 
89568 ND 

5S,6R-LipoxinA4 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid 6498 ND 

5S,6S-LipoxinA4 5S,6S,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid 63990 ND 

20-carboxy-LTB4 
5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraene-1,20-dioic 

acid 
27562 ND 

20-hydroxy-LTB4 5S,12R,20-trihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid 15646 ND 

10S,17S-DiHDoHE 
10(S),17(S)-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-

docosahexaenoic acid 
138653 ND 

18-HEPE (±)-18-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid 72802 ND 

15-HEPE (±)-15-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid 72627 ND 

9-HEPE (±)-9-hydroxy-5Z,7E,11Z,14Z,17Z-eicosapentaenoic acid 89570 ND 

ChEBI: Chemical Entities of Biological Interest; IUPAC, International Union of Pure and Applied 

Chemistry; NA: not available, ND: not detected, NM: not measured, QC: quality control, RSD: 

relative standard error. 

 

Classification of individuals into metabolic healthy overweight-obese and 

metabolic unhealthy overweight-obese groups 

Individuals were categorized as metabolic healthy overweight/obese (MHOO; 

n=27) or metabolic unhealthy overweight/obese (MUOO; n=16) as described 66. 

The MHOO group included individuals with a body mass index (BMI) ≥25 

kg/m2 and without any of the following cardiovascular risk factors: i) serum 

HDL-C <40 mg/dL for men and 50 mg/dL for women; (ii) serum triglycerides 

>150 mg/dL; (iii) systolic blood pressure >130 mmHg or diastolic blood pressure 

>85 mmHg; or (iv) serum glucose >100 mg/dL. The MUOO group included 

individuals with BMI ≥25 kg/m2 and presenting with at least one of the 

aforementioned cardiovascular risk factors. 
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Supervised exercise-intervention training program  

The fully description of the supervised exercise training program can be found 

elsewhere (28). Briefly, the supervised exercise intervention combined endurance 

and resistance training, following the World Health Organization (WHO) 

guidelines. For 24 weeks, participants attended to the research center 3-4 times 

per week, and both endurance and resistance training were personalized to the 

participants’ physical fitness levels. The intervention was divided in 5 phases of 

different durations, starting with a familiarization phase of 4 weeks (28). 

Participants completed 150min/week of endurance training, performed at 60% 

of heart rate reserve (HRR) in the Ex-MOD, whereas Ex-VIG performed 

75min/week at 60% HRR and 75min/week at 80% HRR. Participants completed 

a total of 80min/week of resistance exercise, performed in 2 sessions/week, , 

performed with loads equivalent to 50%RM in the Ex-MOD and to 70%RM Ex-

VIG. The load for resistance exercises were adjusted monthly (28). All exercise 

sessions were conducted in groups of 10-12 participants at the same time of the 

day during the whole intervention. Attendance was daily registered, and 

adherence to the prescribed intensity for the endurance training was quantified 

by heart rate monitors (RS800CX, Polar Electro Öy, Kempele, Finland). 

Participants were allowed and encouraged to perform unsupervised training 

sessions when they were unable to attend the research center.  

 

Statistical analysis  

 

Data are presented as means ± standard deviations (unless otherwise stated). 

Plasma succinate levels were computed as tertiles (low, intermediate or high 

levels) using the function “Visual Binning” with SPSS (SPSS v. 22.0, IBM SPSS 

Statistics, IBM Corp. Armonk, NY). For descriptive characteristics, categorical 

and continuous variables were used according to plasma succinate levels. 

Differences in categorical variables between groups were analyzed by chi-square 

tests, whereas differences in continuous variables between groups were analyzed 

by one-way analyses of variance. The level of significance between groups was 

set at P<0.05, after Bonferroni correction for multiple comparisons. Serum levels 

of cardiovascular risk parameters and plasma omega-3 and omega-6 oxylipins 

levels were log10 transformed to achieve a normal distribution. Plasma succinate 

levels followed a normal distribution and were not transformed. The plasma 

succinate fold-change value was used to perform interaction network pathway 

analyses of plasma omega-3 and omega-6 oxylipins, computed as the ratio of the 

mean values of the two compared groups (i.e., high vs. low fold change = average 

succinate levels (high tertile)/ average succinate levels (low tertile). Fold-change 
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differences were analyzed with an unpaired t-test. The sex distribution in the 

classification of MHOO and MUOO individuals was not similar; therefore, to 

study whether plasma succinate levels were different between groups the 

analyses were adjusted by sex as a covariate. No sex interaction was detected in 

the other analyses (all P>0.05). Fig. 3 and Fig. S1 were built using GraphPad 

Prism version 8.0.0 for Windows (GraphPad Software, San Diego, CA). Fig. 2 was 

built using Cytoscape software version 3.7.0 for Windows (Boston, MA) 67. 

 

 

 

RESULTS 

 

The characteristics of the participants included in the study are shown in Table 

2. We found a great variability in plasma succinate levels in the cohort (11.6–129.8 

µM; amplitude range, 118.2 µM) (Fig. 1). Given this broad range, we used the low 

(11.6–55.1 µM), intermediate (55.2–71.4 µM), and high (71.5–129.8 µM) plasma 

succinate tertiles for subsequent analyses (Table 2).   

 

 
 

Figure 1. Waterfall plot showing plasma succinate levels per individual (n=100). Each bar 
represents a single individual.  
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Table 2. Characteristics of the individuals by tertiles of plasma succinate levels.  
 Plasma succinate tertiles   
 Low (n=34) Intermediate (n=33) High (n=33)   
    P 

Age (years)  21.7 ± 2.3 22.6 ± 2.1 21.6 ± 1.9 0.137 

Sex (n,%)           0.777 

Men 13 (38.2) 10 (30.3) 12 (36.4)  

Women 21 (61.8) 23 (69.7) 21 (64.6)  

Weight status (n,%)          0.097 

Normal-weight 23 (67.7) 19 (57.6) 15 (45.5)  

Overweight 8 (23.5) 11 (33.3) 10 (30.3)  

Obese 3 (8.8) 3 (9.1) 8 (24.2)  

BMI (kg/m2) 24.2 ± 3.8 24.0 ± 3.8 26.1 ± 5.2 0.091 

LMI (kg/m2) 14.8 ± 2.1 14.1 ± 2.2 15.1 ± 2.7 0.275 

FMI (kg/m2) 8.1 ± 2.7 8.5 ± 2.6 9.6 ± 3.3 0.077 

Body fat (%) 33.6 ± 7.4 35.8 ± 6.7 37.0 ± 8.1 0.170 

VAT (g) 289* ± 146 346 ± 178 411* ± 201 0.020 

Waist circumference (cm) 78.8 ± 11.9 80.9 ± 13.3 84.3 ± 14.7 0.247 

Glucose (mg/dL) 86.5 ± 6.2 88.5 ± 6.5 87.3 ± 6.9 0.466 

Insulin (μUI/mL) 7.4 ± 3.9 8.2 ± 3.9 9.6 ± 6.0 0.126 

HOMA index  1.6 ± 1.0 1.8 ± 1.0 2.1 ± 1.6 0.152 

Total cholesterol (mg/dL) 156.2 ± 25.0 162.6 ± 31 170.2 ± 34 0.230 

HDL-C (mg/dL) 51.3 ± 9.7 52.4 ± 9.5 54.2 ± 15 0.808 

LDL-C (mg/dL) 91.2 ± 23 94.3 ± 25 95.7 ± 29 0.907 

Triglycerides (mg/dL) 68.2* ± 28 80.0 ± 40 111.8* ± 70 0.002 

C-reactive protein (mg/L) 1.7* ± 2.2 2.1 ± 2.1 3.8* ± 5.1 0.039 

SBP (mmHg) 114.1 ± 11 116.7 ± 11 120.4 ± 12 0.082 

DBP (mmHg) 68.8* ± 7.7 71.4 ± 5.5 73.7* ± 7.6 0.023 

Metabolic syndrome ATPIII (n,%) 0 (0) 1 (3) 4 (12.1) 0.068 

Cardiorespiratory fitness (mL/kg/min) 44.9* ± 7.3 38.8* ± 7.7 40.6 ± 6.9 0.004 

BAT volume (mL) 71.3 ± 47.3 71.0 ± 68.8 64.3 ± 56.2 0.825 

BAT SUVmean 4.0 ± 2.1 3.6 ± 2.0 3.8 ± 1.8 0.794 

Basal metabolic rate (kcal/d) 1335 ± 570 1518 ± 896 1407 ± 198 0.534 

Energy intake (kcal/d) 1904 ± 463 1769 ± 397 1950 ± 497 0.115 

Energy density intake (kcal/g/d) 1.5 ± 0.4 1.5 ± 0.3 1.4 ± 0.3 0.333 

Fat intake (g/d) 84.8 ± 25.9 78.3 ± 26.4 85.7 ± 23.9 0.156 

Protein intake (g/d) 77.8* ± 20.2 70.2* ± 14.6 76.4 ± 21.6 0.003 

Carbohydrates intake (g/d) 202.4 ± 67.0 191.1 ± 64.4 214.2 ± 73.6 0.378 

Data are presented as mean and standard deviation (SD), otherwise stated. P from one-way analysis of 
variance, or from chi-square test (categorical variables). Plasma succinate levels are computed as tertiles. 
*Symbols indicates significant differences between groups (P<0.05) after Bonferroni correction for multiple 
comparisons. ATPIII: National Cholesterol Education Program Adult Treatment Panel III; BAT: brown 
adipose tissue; BMI: body mass index; DBP: diastolic blood pressure; FMI: fat mass index; HDL-C: High 
density lipoprotein-cholesterol; HOMA index: homeostatic model assessment; LDL-C: Low density 
lipoprotein-cholesterol; LMI: lean mass index; SBP: systolic blood pressure; SUV: standardized uptake 
value; VAT: visceral adipose tissue.  
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Young adults with higher plasma succinate levels have higher visceral 

adiposity and an adverse cardiovascular profile  

Participants in the highest tertile of succinate had significantly higher visceral 

adipose tissue (VAT) mass (+42.5%), serum triglyceride levels (+63.9%), serum 

C-reactive protein levels (+124.2%), and diastolic blood pressure (+5.5%) than 

peers in the lowest tertile (Table 2). By contrast, cardiorespiratory fitness levels 

were significantly higher in the lowest tertile (up to +15.7%) than in the 

intermediate tertile (Table 2). No significant differences were found in dietary 

energy and macronutrients intake, dietary energy density parameters, BMR 

levels or BAT parameters across the three tertiles (Table 2). 

 

 

Plasma succinate levels are not associated with fecal microbiota composition 

and diversity  

Analysis of the fecal microbiota in young adults revealed no association between 

succinate levels and beta or alpha diversity (all P≥0.380 Fig. 2a, b). Similarly, no 

associations were found between succinate levels and relative abundances at the 

phylum level (all P>0.05; Fig. 2c, left panel). Nonetheless, we found that 

individuals in the lowest tertile of plasma succinate had a higher relative 

abundance of Bacteroides (+56.9%) and a lower relative abundance of 

Acidaminococcus (-93.8%) than individuals in the intermediate and highest 

tertiles, respectively (all P≤0.01; Fig. 2c, right panel). No significant differences 

were observed in the relative abundance of the species belonging to Bacteroides 

and Acidaminococcus genera across the succinate tertiles (all P>0.05; Table 3). 

Likewise, no associations were found between succinate levels and succinate-

producing or succinate-consuming species (all P>0.05; Table 4 and Fig. 3a, b). 
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Fig. 2. Fecal microbiota diversity and composition by tertiles of plasma succinate (n=58). L: Low succinate plasma concentration (11.6–57.3 µM); I: 
Intermediate succinate plasma concentration (57.3–75.3 µM); H: High succinate plasma concentration (75.4–129.8 µM). A) Principal Coordinate Analysis 
(PCoA) plot of the first two principal coordinates at phylum and genus level, categorized by circulating succinate levels. Genus PCoA only shows PCoA 
analyses done using Bray-Curtis dissimilarity. Ellipses represent the 95% confidence intervals (package, vegan, R version 3.6). B) Differences between the 
circulating succinate tertiles in fecal microbiota diversity indexes (richness Chao, Shannon, inverse of Simpson, and evenness Camargo). Kruskal-Wallis test 
(P<0.05) was used to test for each pairwise comparison. C) Relative abundance of the fecal microbiota at phylum (left panel) and genus level (right panel) 
according to circulating succinate levels. Stacked bar represented percentage abundance. The symbol (*) means statistical significance differences between 
Low and Intermediate levels, whereas the symbol (•) means statistical significance differences between Low and High levels, determined by Kruskal-Wallis 
test, corrected for multiple comparisons FDR (P<0.05).  
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Table 3. Relative abundance (%) of species belonging to the Bacteroides and Acidaminococcus 

genera by tertiles of plasma succinate (n=58).  

 

Plasma succinate tertiles 

Low (11.6–57.3 

µM) n=19 

Intermediate 

(57.8–75.4 µM) 

n=20 

High (76.3–129.8 

µM) n=19 

 

Bacteroides genus (%)          P 

Bacteroides caccae 0.62 ± 1.26 0.40 ± 0.50 0.66 ± 1.10 0.729 

Bacteroides cellulosilyticus 0.70 ± 1.78 0.15 ± 0.23 0.42 ± 0.59 0.776 

Bacteroides clarus 0.00 ± 0.00 0.04 ± 0.08 0.03 ± 0.07 0.099 

Bacteroides coprocola 1.25 ± 2.36 1.79 ± 3.21 0.26 ± 0.84 0.264 

Bacteroides coprophilus 0.01 ± 0.03 0.32 ± 1.43 0.11 ± 0.50 0.462 

Bacteroides dorei 3.33 ± 4.54 2.57 ± 3.79 4.69 ± 5.40 0.449 

Bacteroides eggerthii 0.38 ± 1.42 0.09 ± 0.18 0.41 ± 0.81 0.730 

Bacteroides faecis 0.32 ± 0.58 0.21 ± 0.41 0.10 ± 0.24 0.176 

Bacteroides finegoldii 0.32 ± 1.06 0.04 ± 0.10 0.16 ± 0.41 0.796 

Bacteroides fragilis 0.66 ± 1.65 0.15 ± 0.37 0.29 ± 0.70 0.408 

Bacteroides intestinalis 0.02 ± 0.09 0.01 ± 0.02 0.01 ± 0.02 0.435 

Bacteroides massiliensis 1.40 ± 2.67 1.00 ± 1.42 0.87 ± 1.36 0.853 

Bacteroides nordii 0.00 ± 0.01 0.01 ± 0.02 0.00 ± 0.01 0.692 

Bacteroides ovatus 0.45 ± 0.85 0.44 ± 1.17 0.15 ± 0.14 0.537 

Bacteroides plebeius 0.54 ± 0.92 0.45 ± 1.63 0.16 ± 0.38 0.696 

Bacteroides salyersiae 0.10 ± 0.38 0.02 ± 0.07 0.00 ± 0.01 0.635 

Bacteroides sartorii 0.00 ± 0.00 0.02 ± 0.10 0.00 ± 0.00 0.387 

Bacteroides stercoris 0.38 ± 1.01 1.05 ± 3.55 0.14 ± 0.32 0.741 

Bacteroides thetaiotaomicron 0.14 ± 0.21 0.18 ± 0.28 0.50 ± 0.86 0.139 

Bacteroides uniformis 3.37 ± 2.84 2.34 ± 3.01 3.80 ± 3.15 0.209 

Bacteroides vulgatus 6.94 ± 7.06 2.42 ± 2.67 4.90 ± 5.56 0.186 

Bacteroides xylanisolvens 0.44 ± 0.62 0.27 ± 0.41 0.58 ± 0.83 0.234 

Acidaminococcus genus (%)              

Acidaminococcus fermentans 0.00 ± 0.00 0.00 ± 0.00 0.33 ± 1.43 0.358 

Acidaminococcus intestini 0.08 ± 0.26 0.92 ± 1.80 0.89 ± 1.54 0.086 

 

Data are presented as mean and standard deviation (SD). P-value from the Kruskal-Wallis test, correcting 

for multiple comparisons FDR (P≤0.05). 
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Table 4. Relative abundance (%) of succinate-producing and -consuming species previously 

described by Serena C. et al. 23 by tertiles of plasma succinate (n=58). 

 

 

Plasma succinate tertiles 

Low (11.6–

57.3 µM) n=19 

Intermediate 

(57.8–75.4 µM) 

n=20 

High (76.3–

129.8 µM) 

n=19 

 

Succinate-producers (%)          P 

Bacteroides fragilis  0.66 ± 1.65 0.15 ± 0.37 0.29 ± 0.70 0.408 

Bacteroides vulgatus  6.94 ± 7.06 2.42 ± 2.67 4.90 ± 5.56 0.186 

Parabacteroides distasonis  0.36 ± 0.56 1.45 ± 4.48 0.46 ± 0.76 0.491 

Paraprevotella xylaniphila  0.34 ± 1.48 0.08 ± 0.28 0.08 ± 0.33 0.606 

Alistipes indistinctus 0.07 ± 0.13 0.18 ± 0.42 0.11 ± 0.22 0.467 

Blautia wexlerae  0.31 ± 0.36 0.71 ± 1.85 0.32 ± 0.52 0.437 

Faecalibacterium prausnitzii  2.40 ± 1.38 3.03 ± 2.75 1.93 ± 1.68 0.298 

Akkermansia muciniphila  0.76 ± 1.34 2.28 ± 4.34 1.53 ± 2.49 0.321 

Succinate-consumers (%)               

Bacteroides thetaiotaomicron  0.14 ± 0.21 0.18 ± 0.28 0.50 ± 0.86 0.139 

Phascolarctobacterium faecium  1.39 ± 2.94 1.85 ± 3.82 2.54 ± 5.10 0.609 

Phascolarctobacterium succinatutens  0.47 ± 1.42 0.79 ± 1.53 0.11 ± 0.42 0.712 

Ruminococcus bromii  0.17 ± 0.41 0.42 ± 1.03 0.42 ± 1.34 0.738 

Dialister propionicifaciens 0.03 ± 0.11 0.00 ± 0.01 0.00 ± 0.00 0.645 

Dialister succinatiphilus  0.00 ± 0.00 0.00 ± 0.01 0.65 ± 2.00 0.354 

 

Data are presented as mean and standard deviation (SD). P-value from the Kruskal-Wallis test, correcting 

for multiple comparisons FDR (P≤0.05). 

 

Figure 3. Differences at family (A) and genus (B) levels by tertiles of plasma succinate levels 

(n=58): families (Prevotellaceae plus Veillonellaceae/Odoribacteriaceae plus Clostridaceae) [fam(P 

+V/O + C)] ratio; genera (Prevotellaceae spp. plus Veillonellaceae spp./Odoribacteriaceae spp. plus 

Clostridaceae spp.) [gen(P +V/O + C)] ratio. P-value from the Kruskal-Wallis test, correcting for 

multiple comparisons FDR (P<0.05). 
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Plasma succinate levels are associated with pro-inflammatory omega-6 

oxylipins  

 

Given the clear link between plasma succinate and some pro-inflammatory 

markers, such as serum C-reactive protein and serum triglycerides (Table 2) 68, 

and the lack of associations between plasma succinate levels and classical 

inflammatory markers (i.e., L-6, TNF-α or IFN-γ; data not shown), we extended 

our investigation to the fatty acid-derived oxylipins. No significant differences 

were observed in plasma omega-3 oxylipins when comparing the high versus low 

succinate tertiles (Fig. 4a) (abbreviations are detailed in Table 1). However, 

individuals in the highest succinate tertile had significantly higher plasma 

concentrations of omega-6 oxylipins than individuals in the lowest tertile, 

including the omega-6 fatty acids DGLA (+61.1%), AdrA (+47.4%) and AA 

(+28.7%), as well as several of their downstream products, as revealed by 

interaction network pathway analysis (Fig. 4b). In addition, individuals in the 

highest succinate tertile had significantly lower levels of the omega-6 oxylipins 

12,13-EpOME (-30.7%) and 1a,1b-dihomo PGF2alpha (-25.4%). With respect to 

DGLA metabolism, the hydroxy-trienoic acid product resulting from 15-

lipoxygenation of DGLA (15-HETrE), was found to be significantly higher in 

concentration in individuals in the highest succinate tertile than in those in the 

lowest succinate tertile (+21.8%). The concentration of other downstream AA-

derived oxylipins was also significantly higher in individuals in the highest 

tertile of plasma succinate, including 11-HETE (+20.4%), 12-HETE (+74.9%), 12-

HHTrE (+97.9%) and TxB2 (+84.8%).  

 

Only small differences in oxylipin levels were observed when comparing 

high versus medium succinate tertiles (Fig. 5A), but the differences observed 

between medium versus low succinate tertiles (Fig. S5B) resembled the 

differences between high and low succinate tertiles.  
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Young adults with metabolically unhealthy overweight/obesity have higher 

plasma succinate levels than their metabolically healthy counterparts 

To gain more insight into the potential role of plasma succinate as an early 

marker of cardiovascular risk, we subcategorized the overweight/obese 

individuals of the cohort (43% of our population) as healthy (MHOO; n=27) or 

unhealthy (MUOO; n=16) based on their cardiovascular profile. Individuals in 

the MUOO group had higher BMI (+7.2%), FMI (+3.1%), VAT mass (+24.3%), 

fasting glucose (+7.6%), insulin (+57.9%), homeostatic model assessment index 

(+71.5%), total cholesterol (+15.4%), triglycerides (+119.8%), and systolic (+8.2%) 

and diastolic (+10.1%) blood pressure than peers in the MHOO group, and had 

lower HDL-C levels (-16.1%) (Table 5). Moreover, plasma succinate levels were 

significantly higher (+21.3%) in the MUOO group (75.5 ± 12.3 µM) than in the 

MHOO group (62.3 ± 17.4 µM) (P=0.009; Fig. 6). 

 

 

Figure 5. Comparisons between plasma succinate levels in metabolic healthy 

overweight/obese (MHOO, n=27) and metabolic unhealthy overweight/obese (MUOO, n=16) 

young adults. P value obtained from one-way analysis of variance adjusted for sex.  
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Table 5. Characteristics of metabolically healthy overweight/obese (MHOO, n=27) and 

metabolically unhealthy overweight/obese (MUOO, n=16) individuals 

 

Data are presented as mean and standard deviation (SD), unless stated otherwise. P-value from one-way 
analysis of variance, which was conducted with log10 transformed data and sex adjusted, or from chi-square 
for categorical variables. ATP III: National Cholesterol Education Program Adult Treatment Panel III. BMI: 
body mass index; DBP: diastolic blood pressure; FMI: fat mass index; HDL-C: High-density lipoprotein 
cholesterol; HOMA: homeostatic model assessment; LDL-C: Low-density lipoprotein cholesterol; LMI: lean 
mass index; MHOO: metabolically healthy overweight-obese; MUOO: metabolically unhealthy overweight-
obese; SBP: systolic blood pressure; VAT: visceral adipose tissue.  
 

 

A 24-weeks exercise-intervention training program does not modify plasma 

succinate levels  

 

Of the 100 participants that started the exercise program, 99 had valid succinate 

determinations after the 24 weeks intervention. Of them, 12 participants from the 

EX-MOD group and 11 participants from the EX-VIG group were excluded from 

the main analyses for attending less than 70% of the total training sessions. 24 

weeks of supervise exercise training does not modify plasma succinate levels [Δ 

mean and standard deviation: Δ CON= 4.1 ± 22.8; Δ EX-MOD= 4.3 ± 21.8; Δ EX-

VIG= -1.8 ± 19.9, Fig. 7. The results were not altered when other attendance 

criteria (i.e., <70% or ≥85%) were applied (data not shown). 

 

 MHOO MUOO  P  

Sex (n,%)             0.013 

Men 8 (29.6) 11 (68.8)  

Women 19 (70.4) 5 (31.2)  

Age (years) 21.9 ± 2.4 22.7 ± 2.5 0.663 

BMI (kg/m2) 28.2 ± 2.4 30.3 ± 3.1 0.050 

LMI (kg/m2) 15.7 ± 2 17.3 ± 1.9 0.376 

FMI (kg/m2) 11.1 ± 2.1 11.4 ± 2.2 0.023 

Body fat (%) 40.1 ± 6.6 38.5 ± 5.3 0.071 

VAT (g) 459 ± 147 570.6 ± 127 0.036 

Glucose (mg/dL) 86.9 ± 6.6 93.6 ± 6.9 0.004 

Insulin (µUl/mL) 8.7 ± 3.9 13.8 ± 7.2 0.001 

HOMA index 1.9 ± 1 3.3 ± 1.9 0.001 

Total cholesterol (mg/dL) 152.1 ± 21.7 175.6 ± 38 0.035 

HDL-C (mg/dL) 50.6 ± 9.3 42.5 ± 9.3 0.035 

LDL-C (mg/dL) 88 ± 16.9 107.6 ± 36 0.161 

Triglycerides (mg/dL) 67.6 ± 23.7 148.6 ± 86 <0.001 

C-reactive protein (mg/L) 2.7 ± 2.3 4.7 ± 6.3 0.203 

SBP (mmHg) 117.5 ± 7.5 129.3 ± 10 0.003 

DBP (mmHg) 71.4 ± 6.01 77.8 ± 7.3 0.016 

Metabolic syndrome ATPIII (n,%) 0 (0) 5 (31) 0.003 

Cardiorespiratory fitness (mL/kg/min) 38.3 ± 8.3 37.7 ± 6.4 0.048 
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DISCUSSION 

Here, we demonstrate for the first time to our knowledge that plasma succinate 

is associated with VAT mass, serum triglycerides and C-reactive protein levels, 

and diastolic blood pressure in young adults. Likewise, individuals with higher 

levels of plasma succinate have higher levels of plasma omega-6 oxylipins, which 

are linked to increased pro-inflammatory status and, accordingly, elevated CVD 

risk 31,32. By contrast, plasma succinate levels are not associated with BAT or with 

fecal microbiota composition and diversity. Interestingly, individuals who are 

metabolically unhealthy with overweight/obesity have higher plasma succinate 

levels than their metabolically healthy counterparts. However, plasma succinate 

levels are not modified after 24-weeks of an exercise-intervention program. 

Collectively, our findings suggest that plasma succinate is candidate biomarker 

of cardiovascular risk in young adults. Further studies are, nevertheless, needed 

to unravel the underlying mechanisms that may explain these associations.  

 

Investigations of the association of plasma succinate levels with body 

composition are scarce. We recently showed that plasma succinate levels are 

positively associated with BMI in middle-aged and elderly adults with obesity 

and T2D 24,26. In the present study, we found that young adults with higher 

Figure 7. Effects of a 24 weeks of exercise training program on plasma succinate levels in young 
adults.  CON (n=35), Ex-MOD (n=21), Ex-VIG (n=20).  
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succinate levels have higher VAT mass, an established marker of elevated CVD 

risk 69–71. Visceral fat depots are linked to metabolic dysfunction through 

increased mitochondrial oxidative stress, a main driver of cellular insulin 

resistance 72. Interestingly, succinate dehydrogenase (SDH) activity is a potential 

source of reactive oxygen species (ROS) under specific conditions, including 

obesity 73–75, suggesting an adverse influence of SDH in obesity. In this context, 

some of the metabolic improvements observed after bariatric surgery are, in part, 

due to the restoration of SDH activity in VAT, which concurs with the weight 

loss caused by the surgery 76. It is thus reasonable to propose that a fraction of 

the plasma succinate could originate in (and be secreted from) VAT depots, 

through SDH activity, contributing to the positive association between plasma 

succinate levels and VAT mass. 

 

The gut microbiota plays a key role in regulating host metabolism, and 

specific signatures of gut microbiota composition have been associated with 

obesity, insulin resistance, and T2D 77. Succinate is a primary cross-feeding 

metabolite between gut-resident microbes, which is important to preserve a 

healthy gut microbiota 23. We recently demonstrated in middle-aged adults that 

the fecal microbiota is a putative contributor of circulating succinate levels in 

some health conditions such as obesity 26. Our previous data also support the 

notion that succinate is a marker of microbiota dysbiosis, as intestinal 

permeability positively correlates with circulating succinate in individuals with 

obesity 26. Nonetheless, we found no association between plasma succinate and 

succinate-producing or succinate-consuming bacteria species in the present 

analysis. Differences in the age and metabolic status of the cohorts, or even the 

moderate sample size of the present study (n=100), may partly explain these 

findings.  

 

We previously showed that circulating succinate is regulated nutritionally 
22, and it is known that SUCNR1 has an intracellular anti-lipolytic function 78,79. 

Studies in mice have recently demonstrated that succinate uptake stimulates 

uncoupling protein 1 (UCP1)-dependent thermogenesis in brown adipocytes via 

ROS production, protecting against diet-induced 19. Our present study, however, 

failed to show a significant association between systemic succinate and BAT 

volume or activity. Given the cross-sectional nature of our study, we cannot draw 

conclusions on a potential role of succinate in human BAT thermogenesis. 

Additionally, neither plasma succinate levels nor BMR were associated with 

parameters of energy intake/consumption in our young cohort. Nonetheless, 

plasma succinate levels were inversely associated with cardiorespiratory fitness. 

In this line, succinate has recently emerged as an important player in muscle 
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adaptation in response to exercise 20,80. While the observational design of our 

present study does not enable us to infer causality, it adds to the increasing body 

of evidence on the role of succinate as a possible mediator of the cardiovascular 

benefits of exercise. Cardiorespiratory fitness is also recognized as a relevant risk 

factor associated with adverse cardiovascular health and poor prognosis 81, and 

a lower prevalence of metabolic syndrome has been reported in people with 

better cardiorespiratory fitness 82. This may fit with our finding that the MUOO 

group had significantly higher succinate levels than the MHOO group, which 

also supports previous data showing higher succinate levels in obese individuals 

with T2D than in their healthy obese counterparts 26. Altogether, these results 

strengthen the hypothesis that high plasma succinate levels are linked to an 

impaired metabolic status.  

 

Young adults with high plasma succinate levels also had higher plasma 

levels of C-reactive protein and pro-inflammatory oxylipins. Omega-6 oxylipins 

are key metabolites in pro-inflammatory processes and are closely linked to the 

progression of obesity and to cardiovascular risk 31,32, whereas omega-3 oxylipins 

usually have opposing effects 31,32. Specifically, we observed that circulating 

succinate levels were related to the omega-6 oxylipins 11-HETE, 12-HETE, 12-

HHTrE, and 15-HETrE. Previous research has linked 5-HETE and 11-HETE to 

obesity 83–85, whereas the auto-oxidative product 15-HETrE has been associated 

with a high risk of cardiovascular events 86. Of particular note is the high level of 

TxB2 in individuals with high succinate, which is reported to increase in patients 

with coronary atherosclerosis 87. In addition to an increase in AA products in 

individuals with high succinate levels, we also observed an increase in the 

precursor DGLA, which has been previously associated with obesity and insulin 

resistance 88. Likewise, the AA metabolic product AdrA, which was higher 

among participants in the highest succinate tertile, has been shown to be directly 

associated with the risk of all-cause mortality 89. As many of the enzymes (i.e., 

cyclooxygenases and lipoxygenases) involved in oxylipin metabolism are shared 

by both omega-3 and omega-6 oxylipins 90, it is not surprising to find an 

asymmetric pattern in the omega-3 and omega-6 oxylipins profile in the high 

versus low succinate groups.  

 

Recently, an elegant study showed that muscle cells release succinate 

through a pH-Gated mechanism that involves the membrane transporter 

monocarboxylate transporter 1 (MCT1) during exercise 20. These increases in 

circulating succinate levels are liked to muscle adaptations and remodeling via 

SUCNR1 activation 20. To the best of our knowledge, no study has evaluated the 

effects of exercise training on circulating succinate levels in humans. We found 
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that 24-weeks of exercise training did not modify plasma succinate levels in 

young adults. Nevertheless, this is not a surprising finding since other traditional 

cardiometabolic risk factors that were either associated (i.e., serum triglycerides, 

C-reactive protein, or blood pressure levels) or not associated (i.e., serum glucose, 

insulin, total cholesterol, HDL-C, or LDL-C) with plasma succinate levels were 

not affected after 24-weeks of exercise (data not shown). Actually, these findings 

concur with previous exercise intervention studies conducted in relatively 

healthy individuals in which these circulating cardiometabolic risk markers were 

not altered by after exercise interventions  91–93. Thus, the absence of exercise 

effect on cardiometabolic risk factors could be explained by the young age (22±2 

years old) and relatively healthy status of our participants whose 

cardiometabolic risk markers were within normal ranges. Further studies with 

different types of exercise interventions and duration are needed to confirm these 

results.  

 

Strengths and limitations  

 

A major strength of the present study is the well-characterized population, 

including detailed measurements of body composition, BAT, and novel markers 

of the cardiometabolic profile such as oxylipins, which allow us to gain new 

insight into the inflammatory status of the individuals compared with classical 

inflammatory markers (i.e., IL-6, TNF-α or IFN-γ). A major limitation of the study 

is its cross-sectional design, and no causality can be established. Another 

limitation is the limited sample size for multivariate statistical analyses. Finally, 

although 18F-FDG uptake is the current gold-standard for BAT quantification, it 

also has limitations in the assessment of BAT metabolic activity and volume 94.  

 

CONCLUSION 

 

In conclusion, our study reveals that plasma succinate levels are linked to a 

specific pro-inflammatory omega-6 signature pattern and higher VAT levels, and 

might be useful as a novel clinical tool to identify young individuals at higher 

CVD risk, allowing the implementation of effective preventive treatment. Plasma 

levels of succinate seem to reflect the cardiovascular status of young adults, 

supporting its potential as a biomarker of CVD risk. However, plasma succinate 

levels are not modified after a 24-weeks exercise-intervention program. 

Prospective studies are needed to confirm its clinical relevance and predictive 

value as a CVD risk biomarker, an whether other type of exercise interventions 

programs could actually modify plasma succinate levels. 
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in a different manner in young, sedentary adults: 
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ABSTRACT 

Background: Acute exercise elicits complex changes in the concentration of 

circulating molecules which are partially modulated by the metabolic demands 

of contracting muscle. Circulating bile acids (BA) are signaling molecules that 

control energy expenditure, glucose, and lipid metabolism. However, the effects 

of acute exercise on plasma levels of BA in humans remains unexplored. 

Objective: To investigate the effects of an acute maximal endurance exercise (EE) 

and resistance exercise (RE) on plasma levels of BA in young adults. 

Additionally, we investigated whether these effects were different depending on 

the individual’s fitness levels.   

Methods: Cardiorespiratory fitness (CRF) was assessed through a maximum 

walking effort test in 14 young adults (21.8 ± 2.5 yr., 12 women); whereas muscle 

strength in lower major muscle groups was assessed through resistance exercises 

in 17 young adults (22.4 ± 2.5 yr., 11 women). The concentration of 8 plasma BA 

were measured with liquid chromatography – tandem mass spectrometry before 

and, 3, 30, 60, and 120 min after each exercise bout. Body composition, serum 

cardiometabolic risk factors, brown adipose tissue, and fecal microbiota 

composition (16S rRNA sequencing) were measured. 

Results: EE acutely and transiently decreased the plasma levels of total, primary 

and secondary BA (P≤0.014) just after exercise, and in the 30 min after exercise, 

followed by an overall increase that was more pronounced in the case of primary 

BA. Acute RE exerted a rapid and more prolonged reduction of plasma levels of 

secondary BA that lasted until 120 min after exercise (P<0.001). The kinetics of 

plasma levels of primary BA, cholic acid (CA) and chenodeoxycholic acid 

(CDCA) after EE were different across individuals with low and high CRF levels 

(P≤0.044). Contrary, there were no differences on plasma levels of BA after RE 

between individuals with low and high levels of lower and upper body muscular 

strength (P>0.05). Those individuals with high CRF levels presented increased 

plasma levels of CA and CDCA at 120 min as well as an improved glucose and 

immuno-metabolic profile in comparison with the low CRF group. The fecal 

microbiota diversity and composition was similar between individuals with high 

vs. low CRF levels.  

Conclusion: Overall, we found that EE and RE acutely and transiently reduces 

plasma levels of BA in an exercise-type specific manner. Individuals with high 

CRF levels display an increase in plasma levels of CA and CDCA after 120 min 

of EE that seem to be reflective of their better health status vs. their low CRF 

levels counterparts 
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BACKGROUND 

Acute exercise elicits a complex metabolic response that involves a complex 

organ and cellular communication through changes in the concentration of a 

myriad of molecules and metabolites 1. A better comprehension of this response 

will help to unravel the mechanism by which cellular and biochemical pathways 

are affected by exercise. For these reasons, the implementation of new molecular 

techniques in the exercise physiology field, such as metabolomics and lipidomics, 

are providing new insights into the metabolic and molecular pathways involved 

in the health-related benefits of exercise 2,3.  

The liver is an organ with major implications in the regulation of energy 

metabolism, and it is the site of production of bile acids (BA) from cholesterol 4. 

Primary BA cholic (CA) and chenodeoxycholic acid (CDCA) are synthesized in 

the hepatocytes and then conjugated either with glycine (~75%) or taurine (~25%) 
5. Next, they are stored in the gallbladder and secreted within the bile to the 

duodenum, helping to the absorption of dietary lipids and fat-soluble vitamins 6. 

The primary BA that reach the colon can undergo metabolic conversions by 

certain gut microbiota bacteria that expresses enzymes involved in BA 

metabolism to transform primary to secondary BA, such as deoxycholic acid 

(DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) 5. 

Approximately 90% of the BA are cleared from the hepatic circulation for reuse 

in the liver and 5% are excreted in feces, whereas a small fraction reaches the 

systemic circulation 7,8. These circulating BA exert signaling functions in 

peripheral tissues and organs involved in glucose and lipid metabolism 9,10. 

These metabolic effects are driven through the activation of Takeda-G-protein-

receptor-5 (TGR5) and the farnesoid X receptor (FXR) in different tissues such as 

adipose tissue, skeletal muscle, or pancreas 11. In fact, results from preclinical 

studies revealed that the activation of TGR5 by BA leads to an increase in energy 

expenditure and improves glucose and lipid metabolism (3–5).  

During exercise, sustained muscle activity is supported by a fine-tunned 

and coordinated liver response that helps to mobilize energy stores and recycle 

metabolites, including BA 12. Several studies have evaluated the effects of EE 13–

15 and RE 13 on circulating levels of BA suggesting that the type of exercise might 

have a different impact on BA levels. In the light of these results, we hypothesize 

that EE and RE might elicit a differential response on plasma levels of BA. 

Furthermore, none of the aforementioned studies were conducted in young, 

sedentary adults or investigated whether the cardiorespiratory fitness (CRF) and 

muscle strength levels of the individuals, which are well-recognized markers of 

health status 16,17, could play a role in the circulating levels of BA in response to 

exercise. Therefore, it is of clinical interest to understand whether it exists an 
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influence of the individuals’ physical fitness status on the circulating levels of BA 

in response to different types of exercise in humans. Lastly, whether the gut 

microbiota composition could impact plasma the levels of BA after exercise 

remains unexplored. 

The aim of the present study was to investigate the effect of EE and RE on 

plasma levels of BA in young, sedentary adults. As a secondary aim, we 

investigated whether these effects were related to the individual’s CRF and 

muscle strength levels.  

 

METHODS 

Individuals and study design 

The present study has been conducted under the framework of the ACTIBATE 

study (ACTivating Brown Adipose Tissue through Exercise; ClinicalTrials.gov 

ID: NCT02365129) 18. A total of 14 individuals underwent the EE trial, whereas 

17 individuals underwent the RE trials. Inclusion criteria were: i) to be sedentary 

(i.e., <20min/day of moderate-to-vigorous physical activity in <3days/week); ii) 

to be non-smoker; iii) not to be taking any medication; and iv) to have a stable 

body weight over the last 3 months. Exclusion criteria were: having been 

diagnosed with diabetes, hypertension, or other medical conditions that could be 

life-threatening or that can interfere with/be aggravated by exercise; being 

pregnant; being using medication that could affect energy metabolism; and 

having frequent exposures to cold temperatures. 

The study was approved by the Ethics Committee on Human Research of 

the University of Granada (no. 924) and by the Servicio Andaluz de Salud (Centro 

de Granada, CEI-Granada) and all individuals signed an informed consent. The 

study protocol and experimental design were applied following the last revised 

ethical guidelines of the Declaration of Helsinki. 

Acute exercise trials 

Both EE and RE trials were performed in a fasted state (i.e., 3-5h fasting), after 

avoiding stimulants (i.e., caffeine), and avoiding any moderate- and vigorous-

intensity exercise (24h and 48h respectively) in separate days.  

The EE consisted of a maximum effort test on treadmill (Pulsar treadmill, 

H/P/Cosmos Sports & Medical GmbH, Nussdorf-Traunstein, Germany) 

following the modified Balke protocol 19. Briefly, individuals walked at 3 km/h 

for 1 min and at 4 km/h for 2 mins for warming up (0% grade) 19. Then, the test 

started by walking at 5.3 km/h and 0%. From that moment on, the treadmill 
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grade was increased by 1% every min, until volitional exhaustion was reached 19. 

At this point, individuals started a 5-min recovery walking at 4 km/h and 0% 

grade 19. During the whole trial, individuals were equipped with a heart rate 

monitor (Polar RS800CX, Polar Electro Öy, Kempele, Finland), 10 electrodes for 

electrocardiogram monitoring, and a Hans-Rudolph plastic mask (model 7400, 

Hans Rudolph Inc., Kansas City, MO, USA) connected to a preVent™ metabolic 

flow sensor (Medical graphics Corp, St Paul, MN, USA) for respiratory gas 

exchange analyses using a CPX Ultima CardioO2 gas exchange analysis system 

(Medical Graphics Corp, St Paul, MN, USA). During the test, respiratory gas 

exchange (oxygen consumption (VO2) and carbon dioxide production) was 

recorded and the VO2peak was determined as the highest observed VO2 value, 

after excluding artifacts if needed. 

The RE consisted on a combination of four different strength tests: i)  a 

maximum isometric strength test in leg press, ii) a handgrip strength test and iii) 

two 1 repetition maximum (1-RM) tests in bench and leg press 20. Individuals first 

completed the maximum isometric strength test in leg press. After being 

allocated in the leg press machine (A300 Leg Press, Model 2531, Keiser 

Corporation, Fresno CA, USA), individuals performed two 3-second repetitions, 

2 mins apart, for which they were instructed and encouraged to push as hard as 

they could for the whole duration of the repetition. Afterwards, individuals 

performed the handgrip strength test by completing two repetitions with each 

hand, 1 min apart, using a Takei 5401 digital Grip-D hand dynamometer (Takei, 

Tokyo, Japan) 21. For the handgrip strength test, individuals remained in a 

standing position, with the exercising arm parallel and slightly separated from 

the trunk. The individuals were asked to squeeze the grip gradually and 

continuously, and as hard as possible. Men executed the test with the grip span 

of the dynamometer fixed at 5.5 cm, while it was adjusted to the individual’s 

hand size for women, according to a validated equation 21. The highest strength 

recorded in each hand was selected and the average between both hands was 

used for the analyses. 

Then, individuals performed the leg press 1-RM test in the above-

mentioned leg press machine. After performing 1 set of 10 repetitions with a self-

selected light weight for warming-up, they were instructed to perform 1 set of 8 

repetitions selecting the resistance with which they could perform 15 repetitions 

as much. Later, after a 1-min recovery, the resistance load was increased by the 

study personnel, aiming to set a load with which the individual could perform 

<10 repetitions, and individuals were instructed to do as many repetitions as 

possible. The individuals were instructed to stop exercising after 3-4 repetitions 

if they felt they could perform more than 10 repetitions with the resistance load. 

If they performed more than 10 repetitions, they rested for 5 mins and repeated 
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the test with a higher load. The maximum number of attempts for assessing the 

RM (in a set of <10 repetitions) was 3. Lastly, individuals performed the bench 

press 1-RM test following the procedure described for the leg press, in a bench 

within a pneumatic power rack (Power rack, Model 3111, Keiser Corporation, 

Fresno CA, USA). The 1-RM of both exercises was estimated by the equation 

previously proposed 22. 

Anthropometric and body composition measurements 

Weight and height were measured barefoot and wearing light clothing, using a 

SECA scale and stadiometer (model 799; Electronic Column Scale, Hamburg, 

Germany). Body mass index (BMI) was calculated from weight and height 

(kg/m2). Waist circumference (WC) was measured at the minimum perimeter, at 

the end of a normal expiration, with the arms relaxed on both sides of the body. 

WC was measured twice with a plastic tape measure; the two measures were 

averaged for further analyses. Lean, fat, and visceral adipose tissue (VAT) masses 

were measured by dual-energy X-ray absorptiometry using a Discovery Wi 

device (Hologic Inc., Bedford, MA, USA) equipped with analysis software (APEX 

version 4.0.2). Fat mass was also expressed as a percentage of body weight and 

the lean and fat mass indices as kg/m2. 

Blood sample collection and determination of cardiometabolic risk factors 

Fasting blood samples were drawn from the antecubital vein in the morning 

(8.00–9.00 A.M) after overnight fasting (>10 h). Blood samples were collected in 

Vacutainer Tubes® and centrifuged, obtaining serum (obtained with Vacutainer® 

SST™ II Advance tubes) and plasma (obtained with Vacutainer® Hemogard™ 

tubes, containing potassium salt of ethylenediamine tetra-acetic as anticoagulant) 

aliquots that were stored at -80°C until analyses. For the acute exercise trials the 

blood was collected before, and 3, 30, 60 and 120 min after the end of each exercise 

session, and plasma aliquots were stored at -80°C until lipidomics analyses.   

Glucose levels were assessed using an AU5832 analyser (Beckman 

Coulter, Brea, CA, USA) with a Beckman Coulter reagent (OSR6521). Insulin was 

measured by chemiluminescence immunoassays using the UniCel DxI 800 

analyser (Beckman Coulter) with Beckman Coulter chemiluminescent reagent 

(33410). TC, HDL-C, TG, glutamic pyruvic transaminase (GTP), gamma-glutamyl 

transferase (GGT), alkaline phosphatase (ALP), and creatinine were measured 

using an AU5832 spectrophotometer (Beckman Coulter) with Beckman Coulter 

reagents (OSR6116, OSR60118, OSR6187, OSR6507, OSR6520, OSR6204, and 

OSR6678). LDL-C (mM) was calculated from the Friedewald formula 

[𝑇𝐶 (𝑚𝑀) − 𝐻𝐷𝐿𝑐(𝑚𝑀) − 0 · 45 × 𝑇𝐺 (𝑚𝑀). C-reactive protein, C3 protein, and 

C4 protein were measured by immunoturbidimetric assays (OSR6299, OSR6159, 
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and OSR6160) using an AU5832 spectrophotometer. Leptin and adiponectin 

were measured in plasma using the MILLIPLEX MAG Human Adipokine 

Magnetic Bead Panel 2 (Catalogue # HADK2MAG-61K) and a MILLIPLEX MAP 

Human Adipokine Magnetic Bead Panel 1 (Catalogue # HADK1MAG-61K), 

respectively (Luminex Corporation, Austin, TX, USA). Systolic and diastolic 

blood pressure was measured at three different consecutive time points using an 

automatic Omrom M2 (Omron Healthcare, Kyoto, Japan) following the 

guidelines of the European Heart Society 23. The homeostasis model assessment 

(HOMA index), and fatty liver index (FLI) were then calculated 24. 

Determination of plasma bile acids 

Plasma levels of BA were determined with a validated liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) method 25. Briefly, 

plasma samples were prepared with a liquid-liquid extraction method and 

analyzed using a Shimadzu LC system (Shimadzu Corporation, Kyoto, Japan) 

connected to a SCIEX QTRAP 6500+ mass spectrometer (AB Sciex, Framingham, 

MA, USA). The protocol enabled the relative quantitation of primary (i.e., CA, 

CDCA, glycocholic acid [GCA], and glycochenodeoxycholic acid [GCDCA]) and 

secondary (i.e., DCA, glycodeoxycholic [GDCA], glycolithocholic [GLCA], 

glycoursodeoxycholic [GUDCA]) BA. The area peak ratio of primary and 

secondary BA measured summed from the individual data, and the new 

computed variables were expressed as total BA, primary BA, and secondary BA. 

The BA detected by this method are listed in Table 1, whereas the internal 

standards used are in Table 2.  

Table 1. List of bile acids analyzed, including relative standard deviations (RSDs) observed in 

the quality control (QC) samples. 

Abbreviation 
Name (International Union of Pure and Applied 
Chemistry, IUPAC) 

ChEBI 
ID 

RSD in 
QC 

 

Primary bile acids   

CA 3α,7α,12α-trihydroxy-5β-cholan-24-oic acid 16359 4.4% 
GCA N-(3α,7α,12α-trihydroxy-5β-cholan-24-oyl)-glycine 17687 3.6% 
CDCA 3α,7α-Dihydroxy-5β-cholan-24-oic Acid 16755 7.0% 
GCDCA N-(3α,7α-dihydroxy-5β-cholan-24-oyl)-glycine 12544 5.3% 

Secondary bile acids   

DCA 3α,12α-Dihydroxy-5β-cholan-24-oic Acid 28834 6.2% 
GDCA N-(3α,12α-dihydroxy-5β-cholan-24-oyl)-glycine 27471 5.3% 
GLCA N-[(3α,5β)-3-hydroxy-24-oxocholan-24-yl]-glycine 37998 8.4% 
GUDCA N-(3α,7β-dihydroxy-5β-cholan-24-oyl)-glycine 89929 4.3% 
    

Observed variability is expressed as relative standard deviation of the peak area ratio in the quality control 
samples. Abbreviations: CA: cholic acid; CDCA: chenodeoxycholic acid; ChEBI: Chemical Entities of 
Biological Interest; DCA: deoxycholic acid; GCA: glycocholic acid; GCDCA: glycochenodeoxycholic acid; 
GDCA: glycodeoxycholic acid; GLCA: glycolithocholic acid; GUDCA: glycoursodeoxycholic acid; QC: 
quality control; RSD: relative standard deviation. 
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Table 2. List of internal standards used in the LC-MS/MS method. 

Abbreviation 
Name (International Union of Pure and Applied 
Chemistry, IUPAC) 

d4-CA-ISTD 3α,7α,12α-trihydroxy-5β-cholan-24-oic acid-d4 

d4-GCA-ISTD N-(3α,7α,12α-trihydroxy-5β-cholan-24-oyl)-glycine-d4 

d4-DCA-ISTD 3α,12α-dihydroxy-5β-cholan-24-oic acid-d4 

d4-GDCA-ISTD N-(3α,12α-dihydroxy-5β-cholan-24-oyl) glycine-d4 

d5-GUDCA-ISTD N-(3α,7β-dihydroxy-5β-cholan-24-oyl)-glycine-d5 

Abbreviations: CA: cholic acid; DCA: deoxycholic acid; GCA: glycocholic acid; GDCA: glycodeoxycholic 
acid; GUDCA: glycoursodeoxycholic acid. 

 

Sample preparation 

The sample preparation was performed on ice, except for the evaporation 

step. BA were extracted using liquid-liquid extraction 25. Before the extraction, 

150 µL of plasma sample was transferred into a 1.5 mL Eppendorf tube and mixed 

with 5 µL of an antioxidant solution composed of 0.4 mg/mL of butylated 

hydroxytoluene (BHT), and 10 µL of an internal standard solution containing the 

isotopically labeled analogs (Table S2). Then, 150 µL of buffer solution (0.2 M 

citric acid and 0.1 M disodium hydrogen phosphate at pH 4.5) were added, 

followed by the addition of 1 mL extraction solvent composed of methyl-

tertbutyl-ether and butanol (50:50, v/v). Samples were then mixed for 5 min 

using a bullet blender (Next Advance, Averill Park, NY) and centrifugated 

(16,000 g, 10 min, 4 °C). Next, 900 µL of supernatant were transferred to a new 

1.5 mL Eppendorf tube and evaporated to dryness using a SpeedVac system at 

room temperature. The dry residue was reconstituted in 50 µL of 

methanol:acetonitrile (70:30, v/v), and centrifuged (16,000 g, 10 min, 4 °C). Finally, 

40 µL of the supernatant was transferred into an autosampler vial and 10 µL was 

injected into the LC-MS/MS system. 

Liquid chromatography-tandem mass spectrometry  

LC-MS/MS analysis was performed as previously described 25. Briefly, the 

extracted samples were analyzed using a Shimadzu LC system (Shimadzu 

Corporation, Kyoto, Japan), coupled to a SCIEX QTRAP 6500+ mass 

spectrometer (SCIEX, Framingham, MA). The separation was carried out using a 

BEH C18 column (50 mm × 2.1 mm, 1.7 μm) from Waters Technologies (Milford, 

MA) kept at 40 °C. The mobile phase consisted of 0.1% acetic acid in water (A), 

0.1% acetic acid in acetonitrile/methanol (90:10, v/v, B) and 0.1% acetic acid in 

isopropanol (C). The data acquisition was performed using electrospray 

ionization in negative mode. MS/MS acquisition was carried out using Selected 

Reaction Mode (SRM). SRM transitions were individually optimized for targeted 

analytes and their respective internal standards using standard solutions. 
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Data pre-processing  

For each target compound, the ratio between its peak area and the peak area of 

its respective internal standard was calculated using SCIEX OS-MQ Software and 

was used for further data analysis. The data quality was monitored using regular 

injection of quality control (QC) samples, prepared from of blank plasma 

samples. QC samples were used to correct for between batch variations, using 

the in-house developed mzQuality workflow (available at 

http://www.mzQuality.nl) 25. Relative standard deviations (RSDs) were 

calculated for each analyte present in the quality control (QC) samples (Table 1). 

All analytes showed RSD values in QC samples below 10%, ensuring high data 

quality.  

Assessment of 18F-fluorodeoxyglucose uptake by brown adipose tissue  

Briefly, the shivering threshold of each individual was determined following a 

personalized cooling protocol 26 48 to 72 hours after the shivering threshold 

determination, individuals were exposed to a 2-hour personalized cooling 

procedure at 3·8ºC above their individual shivering threshold. After 1 hour of 

cold exposure, a bolus of ~185 MBq of 18F-fluorodeoxyglucose (18F-FDG) was 

intravenously injected and the water temperature was increased by 1ºC. If 

subjects reported shivering, the water temperature was further increased by 1ºC. 

After 2 hours of cold exposure, a static positron emission tomography/computed 

tomography (PET/CT, Siemens Biograph 16 PET-CT, Erlangen, Germany) scan 

was performed. CT acquisition was performed using a peak of 120 kV and PET 

acquisition with a scan time of 6 minutes per bed position. PET/CT images were 

obtained from the atlas (i.e., cervical vertebra 1) to approximately the mid-chest. 

BAT-related outcomes were calculated as described 27. 

Fecal microbiota analysis 

A fecal sample (50-60 g) was obtained from each volunteer and introduced in a 

60 mL plastic sterile container. The fecal samples were transported in a portable 

cooler with an ice plate to the research center and stored at -80ºC until DNA 

extraction. Fecal samples were homogenized in a Stomacher® 400 blender (A. J. 

Seward and Co. Ltd., London, UK). The DNA extraction and purification steps 

were performed with a QIAamp DNA Stool Mini Kit (QIAGEN, Barcelona, 

Spain) according to the manufacturer’s instructions. DNA concentration and 

purity were determined with a NanoDrop ND1000 spectrophotometer (Thermo 

Fisher Scientific, DE, USA).  
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Sequencing  

Extracted DNA was amplified by PCR targeting the V3 and V4 hypervariable 

regions of the bacterial 16S rRNA gene using the following primer pairs: 16S 

Amplicon PCR Forward Primer: 5´CCTACGGGNGGCWGCAG; and 16S 

Amplicon PCR Reverse Primer: 5′GACTACHVGGGTATCTAATCC. The PCR 

assays were carried out in a 25 µL final reaction volume, including 12.5 µL of the 

2X KAPA HiFi Hotstart prepared mixture (KAPA Biosystems, Woburn, MA, 

USA), 5 µL of each forward and reverse primer (1 µM), and 2.5 µL of extracted 

DNA (10 ng). The following PCR program was used: (i) denaturation at 95 °C for 

3 min, (ii) 8 denaturation cycles at 95 °C for 30 s, (iii) annealing at 55 °C for 30 s, 

(iv) elongation at 72 °C for 30 s, (v) final extension at 72 °C for 5 min. Next, 

AMPure XP microspheres (Beckman Coulter, Indianapolis, IN, USA) were used 

to purify the 16S V3 and V4 amplicon away from free primers and primer-dimer 

species. For the PCR index step, we used the Nextera XT index kit (Illumina, San 

Diego, CA, USA) to tag DNA with the sequencing adapters. The pooled PCR 

products were purified using AMPure XP balls (Beckman Coulter, Indianapolis, 

IN, USA) before quantification. The amplicons were sequenced in a MiSeq 

(Illumina, San Diego, CA, USA), using the Illumina MiSeq paired-end 

sequencing system (2x300nt) (Illumina, San Diego, CA, USA). 

Fecal microbiota bioinformatics  

The “Dada2” 28 package version 1.10.1 in R software 29 was used for analyzing the 

raw sequences (FastQ files). All samples that were above the 10,000 reads cut-off 

threshold were considered valid for subsequent analyses. Samples were 

standardized to an equal sequencing depth of 30,982 reads using the “Phyloseq” 
30 package in R software, leading to a total of 11,158 different phylotypes.  

Phylotypes were assigned to their specific taxonomic affiliation (from 

phylum to genus) based on the naïve Bayesian classification with a pseudo-

bootstrap threshold of 80% 30(using the “Classifier” function in Ribosomal Data 

Project (RDP) 31. We obtained a total of 209 genera that belong to 16 different 

phyla. In order to determine the species taxonomies, we used the “Seqmatch” 

function in RDP. For the main analysis, we used relative abundances as the read’s 

percent of each phylotype relative to the total number of reads. We performed 

the analyses when the average of the relative sequence abundance was higher 

than 1%. Only those species with ≥ 97% coincidence with the respective 

representative sequence read and found in at least 50% of the individuals were 

annotated, identifying a total of 50 different species for the analyses.  
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Beta diversity indicates the number of species shared among the microbial 

community from the individuals, and was assessed by pseudo-F statistics. 

Pseudo-F shows the ratio between cluster variance and within-cluster variance 

[(between-cluster-sum-of-squares/(c-1))/(within-cluster-sum-of-squares/(n-

c))], where c is the number of clusters and n is the number of variables 32. A 

pseudo-F value of 1 indicates that the variance between and within-group is 

similar; if pseudo-F ≥ 1, the between-group variance is higher than the within-

group variance. Alpha diversity reflects the number of different phylotypes and 

the relative abundance of these phylotypes within the same individual. A total of 

4 different alpha diversity indexes were calculated: i) species richness (number of 

different phylotypes in the community)  ii) evenness index (equitability of the 

phylotypes frequencies in the community) 33; iii) Shannon index (number and 

equitability of the phylotypes in the community) 34; iv) inverse Simpson index 

(derived from the classical Simpson index;  richness in a community with 

uniform evenness) 35. 

Statistical analyses 

Descriptive data are expressed as mean ± standard deviation, unless otherwise 

stated. First, data normality was checked using the Shapiro-Wilk test, visual 

histograms, and Q-Q plots. None of the BA followed a normal distribution, 

thereby all values were log2-transformed for the analyses. The effects of EE and 

RE on plasma levels of BA were analysed by one-way repeated-measures 

analysis of variance (ANOVA). In this test, the different time when blood was 

collected (i.e., baseline, 3, 30, 60, and 120 min) was included as ‘time’. These fold 

changes relative to baseline values were calculated with the log2-transformed 

outcomes (e.g., 120 min fold change = log2 area peak ratio at 120 min minus log2 

area peak ratio at baseline). Next, the function “Visual Binning” of SPSS 

(Statistical Package for the Social Sciences v.26.0; IBM Corporation, Chicago, IL, 

USA) was used to divide the cohort into low/high CRF individuals and 

low/high muscle strength individuals based on the median levels of the VO2peak 

relative to body weight and RM leg press respectively. Then, two-factor-repeated 

measures ANOVA were performed to investigate if the effects of the of EE and 

RE were different depending on the CRF and muscle strength levels (low/high 

CRF levels or low/high muscle strength levels and time). The differences in 

specific time points between low/high CRF individual were assessed by t-tests 

for independent samples comparing the fold change of each time point. We 

performed t-tests for independent samples to investigate whether the differences 

in CRF levels were related to differences in body composition and metabolic 

status of the individuals. Additionally, analyses of covariance adjusting for fat 

mass percentage were performed to study if differences in the metabolic status 
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were independent of the individual’s adiposity. All analyses were performed 

using the Statistical Package for the Social Sciences v.26.0 (IBM Corporation, 

Chicago, IL, USA) and figures were built with GraphPad Prism software v.9 

(GraphPad Software, San Diego, CA, USA). The statistical significance was set at 

P<0.05. 

 

RESULTS  

The characteristics of the individuals involved in both EE and RE interventions  

are shown in Table 3. 

Table 3. Baseline characteristics of the study individuals. 

 

 

 

 

 

 

 

 

 

Data are presented as mean and standard deviation (SD), otherwise stated. Abbreviations:  BMI: body mass 
index; RM: repetition maximum; VAT: visceral adipose tissue; VO2: oxygen consumption. 

Plasma levels of bile acids transiently decrease after a bout of endurance and resistance 

exercise in a different manner 

EE rapidly decreased plasma levels of total and secondary BA until 30 min after 

exercise (-52% and - 45%, respectively), whereas primary BA decreased just after 

3 min after exercise (-59%) (Fig. 1A; all P≤0.014, ɳ2≥0.272). From there on, plasma 

levels of total and secondary BA tend to increase their levels until 120 min, while 

primary BA returned nearly to their baseline levels at 120 min (-18%). The 

analysis of the kinetics of each BA revealed that EE lowered plasma levels of the 

conjugated primary BA GCA and GCDCA 30 min after exercise (-79% and -28%,  

 Endurance 

(n=14) 

Resistance 

 (n=17) 

 Mean SD Mean SD 

Demographics     

Age (years old) 21.8 2.5 22.4 2.5 

Male (%) 2  14% 6  35% 

Female (%) 12  86% 11 64% 

Body composition     

BMI (kg/m2) 24.2 4.0 25.3 4.2 

Lean mass (kg) 39.6 7.2 41.8 9.0 

Fat mass (kg) 24.1 9.5 26.2 6.7 

Fat mass (%) 35.9 10.0 37.1 6.3 

VAT mass (g) 326 173 378 160 

Physical Fitness     

RM leg press (kg) 205.2 54.8 210.3 69.6 

VO2peak (mL/kg/min)  40.7 7.2 40.0 9.6 

Time to exhaustion (s) 806 236 872 219 
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Figure 1. Acute endurance exercise rapidly and transiently reduces the plasma levels of total, primary 
and secondary bile acids (n=14). Changes in bile acid groups (A), primary (B) and secondary (C) bile acids 
after acute endurance exercise. Each line represents the kinetics of the mean log2 fold change relative to 
baseline of each group of bile acids or individual bile acids. The sum of total, primary and secondary bile 
acids were calculated. F, P and ɳ2 values obtained from repeated measures analyses of variance (ANOVA). 
Abbreviations: CA: cholic acid; CDCA: chenodeoxycholic acid; DCA: deoxycholic acid; GCA: glycocholic 
acid; GCDC: glycochenodeoxycholic acid; GDCA: glycodeoxycholic acid; GLCA: glycolithocholic acid; 
GUDCA: glycoursodeoxycholic acid.  

respectively), while the unconjugated primary BA CA decreased until 3 min (-

42%; Fig. 1B; all P ≤0.010, ɳ2≥0.292). From that point, plasma levels of GCA and 

GCDCA remained moderately stable, while CA continued increasing its 

concentration until surpassing its baseline levels 120 min after exercise (+40%; 

Fig. 1B; all P ≤0.010, ɳ2≥0.292). The secondary BA DCA, GDCA, GLCA and 

GUDCA decreased their concentration until 30 min after EE (-20%, -94%, -61%, 

and -34%, respectively), but their levels remained relatively steady from there on 

(Fig. 1C; all P≤0.020, ɳ2≥0.264). On the other hand, RE exclusively elicited a rapid 

reduction of plasma levels of secondary BA, reaching their lowest concentration 
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at 120 min post exercise (-26%; Fig. 2A; P<0.001, ɳ2=0.270). Specifically, RE 

reduced the concentration of the conjugated primary BA GCA and GCDCA until 

min 120 (-68% and -17%, respectively) (Fig. 2B; all P≤0.005, ɳ2≥0.205) and the 

plasma levels of the conjugated secondary BA GDCA, GLCA, and GUDCA until 

120 min after RE (-101%, -39%, and -17%; Fig. 2C; all P≤0.020, ɳ2≥0.187).  

 

 

Figure 2. Acute resistance exercise exerts a rapid and prolonged reduction of plasma levels of secondary 

bile acids (n=17). Changes in bile acid groups (A), primary (B) and secondary (C) bile acids after acute 

resistance exercise. Each line represents the trajectory of the mean log2 fold change relative to baseline of 

each group of bile acids or individual bile acids. The sum of total, primary and secondary bile acids were 

calculated. F, P and ɳ2 values obtained from repeated measures analyses of variance (ANOVA). 

Abbreviations: CA: cholic acid; CDCA: chenodeoxycholic acid; DCA: deoxycholic acid; GCA: glycocholic 

acid; GCDC: glycochenodeoxycholic acid; GDCA: glycodeoxycholic acid; GLCA: glycolithocholic acid; 

GUDCA: glycoursodeoxycholic acid. 
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Individuals with high cardiorespiratory fitness levels show a significantly higher increase 

in plasma levels of primary unconjugated primary bile acids levels after 120 mins of acute 

endurance exercise compared to their low cardiorespiratory fitness levels counterparts 

To gain insight into whether the individual’s CRF and strength levels play a role 

in the kinetics of plasma BA in response to exercise, the EE cohort was divided 

into individuals with low and high CRF levels. We found that the kinetics of 

plasma levels of primary BA after EE were different across individuals with high 

and low CRF levels (Fig. 3B; Pinteraction=0.044).  

  

Figure 3. The response in plasma levels of bile acids after acute endurance exercise is different between 

young adults with low and high cardiorespiratory fitness levels. Each line represents the kinetics of the 

mean log2 fold change relative to baseline of each group of bile acids or individual bile acids. The sum of 

total (A), primary (B) and secondary (C) bile acids were calculated. P values obtained from two-factor 

(low/high CRF and time) repeated measures analyses of variance (ANOVA). Abbreviations: CA: cholic acid; 

CDCA: chenodeoxycholic acid; CRF: cardiorespiratory fitness; DCA: deoxycholic acid; GCA: glycocholic 

acid; GCDC: glycochenodeoxycholic acid; GDCA: glycodeoxycholic acid; GLCA: glycolithocholic acid; 

GUDCA: glycoursodeoxycholic acid.  
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Thus, while primary BA acutely decreased in both low and high CRF levels 

groups 3 min after exercise (-64% and -65%, respectively), individuals with high 

CRF levels showed an increase in plasma levels of primary BA from there on until 

they exceeded their baseline levels at 120 min (+37%; Fig. 3B) whereas in their 

counterparts primary BA remained under their baseline levels at 120 min (-53%; 

Fig. 3B). Particularly, there were significant differences in the kinetics of plasma 

levels of the unconjugated primary BA CA (Fig. 3D; Pinteraction=0.028) and CDCA 

(Fig. 3F; Pinteraction=0.029), which displayed a unique trend to increase 120 min 

after finishing the EE above their baseline levels exclusively in the high CRF 

group (high CRF= +77% vs low CRF= -5%, Fig. 3D; and high CRF= +65% vs 

Low= CRF -39%, Fig. 3F, respectively).  

 

Figure 4. The response in plasma levels of bile acids after acute resistance exercise is similar between 

young adults with low and high lower body strength levels. Each line represents the trajectory of the mean 

log2 fold change relative to baseline of each group of bile acids or individual bile acids. The sum of total (A), 

primary (B) and secondary (C) bile acids were calculated. P values obtained from two-factor (low/high CRF 

and time) repeated measures analyses of variance (ANOVA). Abbreviations: CA: cholic acid; CDCA: 

chenodeoxycholic acid; CRF: cardiorespiratory fitness; DCA: deoxycholic acid; GCA: glycocholic acid; 

GCDC: glycochenodeoxycholic acid; GDCA: glycodeoxycholic acid; GLCA: glycolithocholic acid; GUDCA: 

glycoursodeoxycholic acid. 
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Likewise, the RE cohort was divided into individuals with low and high lower 

and upper strength levels.  Contrary to EE, there were no differences in the 

kinetics of plasma levels of BA after RE between individuals with low and high 

levels of low muscle strength (leg press) (Fig. 4; all Pint≥0.316), neither between 

individuals with low and high levels of low muscle strength (bench press; 

Pint≥0.05, data not shown) or with low and high handgrip strength levels 

(Pint≥0.05, data not shown). 

 

Individuals with high cardiorespiratory fitness levels present higher adiposity levels and 

a worse cardiometabolic profile than their low cardiorespiratory fitness levels 

counterparts, but similar fecal microbiota composition 

We then investigated whether the aforementioned differences in BA kinetic after 

EE could be related to the body composition and metabolic status of the 

individuals. Interestingly, individuals with high CRF levels presented lower BMI 

(-21%) and adiposity levels (-34% fat mass percentage; -47% VAT mass), and a 

better glucose (-45% insulin levels; -49% HOMA index) and immuno-metabolic 

profile (-77% serum leptin; -58% C-reactive protein; -15% creatinine, and -16% C3 

levels) in comparison to their low CRF levels counterparts (Table 4; all P≤0.045). 

However, no differences were observed for hepatic enzymes, FLI, blood 

pressure, lipid, and BAT parameters (Table 4; all P>0.05). The differences in 

glucose and immuno-metabolic parameters persisted after adjusting for fat mass 

% (Table 4; all P≤0.045).  

Finally, due to the unequivocally role of gut microbiota on BA 

metabolism, we compared the fecal microbiota composition between individuals 

with high and low CRF levels. The results revealed no differences in beta or alpha 

diversity (Fig. 5A-B; all P≥0.295) or in relative abundance at phylum and genus 

levels (Fig. 5C; all P>0.05).  

´ 

 

Table 4. Baseline characteristics of the individuals that performed acute aerobic 
exercise (n=14) after dividing by the levels of cardiorespiratory fitness.  

 Low CRF (n=7) High CRF (n=7) P P1 

  Mean SD Mean SD     

Sex (n, con %) 
    

0.127 - 

Men 0 0 2 29 
  

Women 7 100 5 71 
  

Age (years) 22.84 2.37 20.7 2.3 0.112 0.167 
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Data are presented as mean and standard deviation (SD), otherwise stated. Abbreviations: ALP: alkaline 
phosphatase; BAT: brown adipose tissue; BMI: body mass index; C3: complement component 3; C4: 
complement component 4; FMI: fat mass index; GGT: gamma-glutamyl transferase; GTP: glutamic pyruvic 
transaminase; HDL-c: high-density lipoprotein cholesterol; HOMA: homeostasis model assessment LDL-C: 
low-density lipoprotein cholesterol; LMI: lean mass index; RM: repetition maximum; SUV: standardized 
uptake value; VAT: visceral adipose tissue; WC: waist circumference. P values are derived from Student’s t-
test for independent samples. P1 values are derived from the analyses of covariance adjusting for fat mass 
percentage. Boldfaced values mean P < 0.05. For statistical analyses, serum levels of cardiometabolic risk 
factors were log10 transformed. 

 

 

 

Body composition 

BMI (kg/m2) 27.0 3.7 21.3 1.6 0.006 0.012 

WC (cm) 82.0 9.7 76.0 8.7 0.24 0.498 

Lean mass (kg) 39.7 5.2 39.5 9.2 0.969 0.009 

LMI (kg/m2) 14.3 1.6 14.2 2.3 0.94 0.074 

Fat mass (kg) 31.9 5.6 16.2 4.7 <0.001 - 

FMI (kg/m2) 11.5 2.2 6.0 2.1 <0.001 - 

Fat mass (%) 43.2 3.1 28.7 9.1 0.002 - 

VAT (g) 426.2 178.5 224.9 95.1 0.022 - 

Brown adipose tissue 

BAT volume (mL) 83.1 57.1 79.6 41.3 0.903 0.214 

BAT SUVmean 4.0 3.1 4.6 1.7 0.711 0.466 

BAT SUVpeak 16.0 14.9 15.4 6.9 0.932 0.669 

BAT Radiodensity -58.9 12.8 -50.5 5.8 0.27 0.659 

Cardiometabolic risk factors 

Glucose (mg/dL) 89.9 4.5 85.1 6.2 0.125 0.316 

Insulin (µIU/mL) 10.9 5.5 6.0 1.1 0.015 0.045 

Insulin glucose ratio 17.9 7.6 11.0 2.8 0.033 0.08 

HOMA index 2.5 1.4 1.3 0.2 0.012 0.039 

Creatinine (mg/dL) 0.7 0.1 0.8 0.1 0.05 0.012 

GTP (IU/L)  18.9 13.9 17.1 11.9 0.774 0.902 

GGT (IU/L) 23.9 24.7 14.6 3735.0 0.552 0.669 

ALP (IU/L) 63.1 16.5 56.7 16.9 0.447 0.383 

Fatty liver index 14.4 10.9 5.8 2.9  0.113 0.124 

Total cholesterol (mg/dL) 169.1 48.6 175.0 35.9 0.722 0.264 

HDL-C (mg/dL) 49.7 6.6 56.0 10.9 0.214 0.369 

LDL-C (mg/dL) 103.7 41.9 106.0 31.2 0.79 0.293 

Triglycerides  78.4 44.1 65.1 18.8 0.591 0.654 

C-reactive protein (mg/L) 2.9 2.1 1.2 1.7 0.033 0.023 

C3 (mg/dL) 152.7 14.3 127.5 22.5 0.024 0.025 

C4 (mg/dL) 33.9 10.2 25.3 9.3 0.086 0.224 

Leptin (µg/L) 11.6 4.6 2.7 2.2 0.006 <0.001 

Adiponectin (mg/L) 10.9 6.3 15.7 10.3 0.316 0.524 

Systolic blood pressure (mmHg) 116.9 9.1 116.7 15.8 0.977 0.178 

Diastolic blood pressure (mmHg) 72.5 4.8 70.1 6.6 0.451 0.502 
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P=0.709 P=0.925 

Figure 5. Fecal microbiota diversity and composition is similar between subjects with low and high cardiorespiratory fitness levels. (L: 
Low, n=7; H: High, n=7). Panel A shows Principal Coordinate Analysis (PCoA) plot of the first two principal coordinates at phylum and 
genus level, categorized by groups of cardiorespiratory fitness. Genus PCoA only shows the five genera of higher abundance. For this 
analysis, only microorganism whose abundance relative were higher that 0.5%, were included. PCoA analyses were done using Bray-curtis 
dissimilarity. Ellipses represent the 95% CI. Panel B shows the differences between the groups of cardiorespiratory fitness in fecal microbiota 
diversity indexes (richness Chao, Shannon, inverse of Simpson and evenness Camargo). Mann-Whitney test (p<0.05) was used to test for 
each pairwise comparison (GraphPad Prism 8.00). Panel C indicates relative abundance of the fecal microbiota at phylum level and genus 
level according to cardiorespiratory fitness levels. Stacked bar represented percentage abundance. 
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DISCUSSION 

Here, we investigated the effects of EE and RE on plasma levels of BA in young, 

sedentary adults. Overall, EE acutely decreased plasma levels of total, primary 

and secondary BA during the first 30 mins after exercise, but their levels slightly 

increased there on, especially the primary BA that almost returned to their 

baseline levels at 120 min after exercise. On the other hand, acute RE exclusively 

reduced the plasma levels of secondary BA, yet this decrease was persistent and 

remained stable 120 min after exercise. Notably, the kinetics of plasma levels of 

primary BA CA and CDCA after EE were different across individuals with low 

and high CRF levels: after decreasing in a similar fashion in both groups 3 min 

after exercise, individuals with higher CRF levels showed an increase in plasma 

levels of primary BA CA and CDCA from there on until surpassing their baseline 

levels at 120 min (+77% and +65, respectively), in contrast to their counterparts 

in whom primary BA remained decreased at 120 min after exercise (-5% and -

39%, respectively). Contrary, no differences were found in the kinetics of plasma 

levels of BA after acute RE between individuals with low and high muscular 

strength levels. Further analyses revealed that those individuals with high CRF 

levels presented lower adiposity levels and an improved glucose and immuno-

metabolic profile in comparison to their counterparts, but similar fecal microbiota 

composition. This suggest that the increase in CA and CDCA 120 min after EE is 

linked to their better health status of high CRF individuals, independently of 

their fecal microbiota composition. 

A bout of endurance exercise rapidly and transiently reduces the plasma levels of bile 

acids 

Overall, our findings revealed that acute EE decreased plasma levels of total, 

primary, and secondary BA during the first 30 min after exercise, followed by a 

slightly increase that was more pronounced in the case of primary BA. This is in 

contrast to the results of a previous study where plasma levels of total, primary 

and secondary BA did not change after 60 min of EE on a cycloergometer at 70% 

VO2peak in recreationally active males 13. Pursuant to our EE results, running 21 

km significantly reduced the serum concentration of total BA by (~-46%), 

specifically CA, DCA and GUDCA, in 30 middle-aged recreational just after 

finishing the exercise 14. A third study found a reduction of plasma levels GCA 

and DCA immediately after finishing a longer running session (80.5 km, 

treadmill) in trained male runners 15. However, the type of endurance exercise 13 

(i.e., cycling vs walking), duration and intensities of these studies 13–15 

significantly differed from our EE protocol. Furthermore, they included active 

individuals with higher CRF levels 13–15 than our sedentary individuals. This fact 

precludes us to draw firm conclusions, because CRF clearly influences the 
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circulating levels of metabolites in response to EE 3. Despite these differences, the 

results across these studies seem shows that an extenuating EE, either the case of 

our study (maximum walking effort test), running 21km 14, or 80.5 km 15, acutely 

reduces the circulating levels of BA in the first 30 min after exercise in humans.   

A bout of resistance exercise exert a prolonged reduction of plasma levels of bile acids 

In regards to RE, the same 10 individuals of the study of Morville et al. 

performed a RE session on a separate day 13. The RE protocol consisted of 5 

resistance drills, conducting  5 sets of 10 repetitions with 90 secs of rest between 

sets, with a total session duration of 60 min. Contrary to our findings, they 

reported that RE reduced total plasma levels of BA 60 and 180 min after finishing 

the exercise (-35% and -41%, respectively). Specifically, RE reduced plasma levels 

of CA (-69% at 60 and 180 min), CDCA (-55% at 120min, -52% at 180 min), and 

GUDCA (-58% immediately after, and -83% at min 60 and 180) 13. The differences 

between RE protocols might explain the discrepancies with our results since they 

conducted a more extenuating RE protocol in terms of intensity and duration. 

Overall, the results of Morville et al. suggest that the plasma levels response of 

BA to acute exercise might be exercise-type dependent, and that the reductions 

in plasma levels of BA are more prolonged after RE than after EE, which is 

concurrent with our results. This divergent response is not surprising since EE 

and RE engage different types of muscle groups and type of fibres 37, resulting in 

an exercise-type specific metabolite fingerprint 38. Nonetheless, these 

comparisons between type of exercise should be interpreted with caution since 

there were not matched in terms of intensity and duration. Further studies 

profiling the plasma levels of BA after longer recovery periods (i.e., 6, 12, or 24 h 

after EE and RE) are needed to determine when BA returns to their baseline 

levels.  

Physiological significance of the reduction of plasma levels of bile acids after exercise  

The physiological relevance and the mechanisms whereby exercise 

transiently reduces the circulating levels of BA are poorly understood. It is 

known that acute exercise increases systemic inflammation and oxidative stress 
39. For instance, a single bout of exercise increases the circulating levels of 

proinflammatory molecules and immune cells, such as IL-6 and neutrophils 40. In 

fact, these increases in circulating inflammatory and immune markers after a 

single bout of exercise are actually linked to the health benefits of exercise 40. 

However, circulating levels of BA follow an inverse direction and rapidly 

decrease after both EE and RE. One hypothesis for this phenomena involves a 

reduction of BA intestinal recycling or enterohepatic circulation as a consequence 

of a reduction of blood supply to the gastrointestinal tract. Indeed, many athletes 

usually report lower gastrointestinal symptoms such as abdominal pain and 
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diarrhoea while exercising , which suggests that mesenteric blood flow during 

intense exercise might be altered or reduced 41,42. However, other studies has 

suggested that blood flow to the lower gastrointestinal tract remains unaltered 

or even increased during exercise 43–45. A second scenario involves a reduction in 

hepatic BA production during exercise, since during this period there is no need 

of absorption of dietary lipids and fat-soluble vitamins, a process which is 

facilitated by BA production and secretion 6. Further studies are warranted to 

determine if any of the aforementioned hypotheses or others could explain the 

acute decrease of circulating levels of BA in the first moments after finishing a 

bout of exercise and the mechanisms that control this complex process.  

Impact of health status on plasma levels of bile acids after acute endurance exercise  

Previous evidence has suggested that the different response of serum 

levels of BA in response to an oral glucose tolerance test (OGTT) between women 

with high and low CRF levels is linked to differences in insulin sensitivity status 

through mechanisms that might involve BA signaling. In a similar fashion that 

an OGTT, exercise constitutes a metabolic challenge that requires a fine 

regulation of glucose and insulin signalling pathways to meet its energetic 

demands 46. Our findings revealed that individuals with higher CRF levels 

displayed a unique increase in plasma levels of CA (+77%) and CDCA (+65%) 

120 min after EE. Remarkably, high CRF individuals presented better glucose 

parameters (-45% serum insulin levels, -49% HOMA index) than their 

counterparts, suggesting that the increase in CA and CDCA could be related to 

their improved glucose metabolism. This is congruent with preclinical studies in 

which the activation of the TGR5 in muscle and pancreas is linked to an improved 

glucose tolerance 47–49. Interestingly, TGR5 is activated by several BA, and 

particularly the unconjugated forms of CA and CDCA are the most potent TGR5 

activators among primary BA 50. Specifically, the activation of TGR5 improves 

muscle function in mice, which concurs with explanation of the beneficial effects 

of exercise through BA signaling on skeletal muscle 48. This is further supported 

by experiments in diabetics mice, where TGR5 agonism ameliorated insulin 

resistance in skeletal muscles through the activation of the cyclic adenosine 

monophosphate (cAMP)/protein kinase A (PKA) and partially restored systemic 

glucose homeostasis 51. Moreover, the muscle-specific TGR5 overexpression is 

sufficient for improving glucose metabolism in diet-induced obese mice in 

comparison to wild-type animals 49. Altogether, it seems that after EE there is 

coordinate response to increase the production of unconjugated primary BA that 

leads to this particularly rise in plasma levels of CA and CDCA 120 min after EE. 

Moreover, this increase seems to be reflective of the better health status of high 

CRF individuals and might be related to a better glucose homeostasis via a BA-
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TGR5 activation axis in skeletal muscle. Future mechanistic studies are needed 

to confirm this hypothesis.  

Fecal microbiota composition seems to have no impact on plasma levels of bile acids after 

acute endurance exercise  

The gut microbiota plays an important role in the metabolism of BA, and 

modulates its circulating concentrations through the expression of bile salt 

hydrolases (BSHs) and 7-α-dehydroxylases, the bacterial enzymes involved in 

BA metabolism 52. BSHs participate in the deconjugation of primary and 

secondary BA by catalysing the removal of glycine and taurine 52, whereas 7-α-

dehydroxylases enzymes convert primary BA to secondary BA 53,54. It is known 

that athletes, which present higher CRF levels in comparison to sedentary 

individuals, also present a different gut microbiota composition 55,56 and it could 

constitute a critical component of their physical performance 57. However, we 

found no differences in fecal microbiota composition between individuals with 

high and low CRF levels. Interestingly, it has been reported that BA profiles in 

response to different dietary challenges are not influenced by the fecal microbiota 

composition and diversity of individuals, but by variants in small intestinal BA 

transporter encoding genes 58. Based on that, it might be possible that not only 

genes related to BA synthesis, but also genes involved in small intestinal BA 

transporter synthesis, could be explaining the specific BA signature in response 

to EE of the CRF individuals. Further research is warranted to unveil if gut 

microbiota composition might influence the acute exercise response of 

circulating BA in humans.  

Strengths and limitations 

Our study suffers from various limitations. Moreover, our findings may not be 

extrapolatable to trained and/or older individuals, individuals with metabolic 

complications that affect glucose metabolism (e.g., type 2 diabetes). We did not 

measure taurine-conjugated BA and neither the unconjugated form of LCA and 

UCDCA. Finally, the sex heterogeneity of our cohort precludes us to evaluate to 

what extent the response of plasma levels of BA to acute exercise could be sex 

dependent.  On the other hand, our study presents several strengths. For 

instance, we provided a well-phenotyped cohort (e.g., body composition, 

cardiometabolic risk factors, BAT), and is the only one that has considered the 

potential role of fecal microbiota. Moreover, our study comprises both EE and 

RE, which offers a comparative overview of the effects of different types of 

exercise on plasma levels BA in humans  
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CONCLUSIONS 

Our study reveals that a single bout of exercise rapidly decreases plasma levels 

of BA in an exercise-type specific manner in young, sedentary adults. Notably, 

individuals with higher CRF levels showed an increase in plasma levels of the 

primary BA CA and CDCA above their baseline levels at 120 min after EE. These 

increases in CA and CDCA after EE seems to be reflective of the better health 

status of these individuals in comparison to their low CRF levels counterparts 

and might be associated with a better or more adaptive response to exercise, 

independently of their fecal microbiota composition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Doctoral Thesis                                                                                          Francisco J Osuna-Prieto 

111 
 

REFERENCES 

1. Hawley, J. A., Hargreaves, M., 
Joyner, M. J. & Zierath, J. R. 
Integrative biology of exercise. Cell 
159, 738–749 (2014). 

2. Schranner, D., Kastenmüller, G., 
Schönfelder, M., Römisch-Margl, W. 
& Wackerhage, H. Metabolite 
Concentration Changes in Humans 
After a Bout of Exercise: a 
Systematic Review of Exercise 
Metabolomics Studies. Sport. Med. - 
open 6, 11 (2020). 

3. Contrepois, K. et al. Molecular 
Choreography of Acute Exercise. 
Cell 181, 1112-1130.e16 (2020). 

4. Trefts, E., Gannon, M. & 
Wasserman, D. H. The liver. Curr. 
Biol. 27, R1147–R1151 (2017). 

5. Wahlström, A., Sayin, S. I., 
Marschall, H. U. & Bäckhed, F. 
Intestinal Crosstalk between Bile 
Acids and Microbiota and Its Impact 
on Host Metabolism. Cell Metab. 24, 
41–50 (2016). 

6. Ðanić, M. et al. Pharmacological 
Applications of Bile Acids and Their 
Derivatives in the Treatment of 
Metabolic Syndrome. Front. 
Pharmacol. 9, 1–20 (2018). 

7. Ridlon, J. M., Kang, D. J. & 
Hylemon, P. B. Bile salt 
biotransformations by human 
intestinal bacteria. Journal of Lipid 
Research vol. 47 241–259 (2006). 

8. Mok, H. Y., Von Bergmann, K. & 
Grundy, S. M. Regulation of pool 
size of bile acids in man. 
Gastroenterology 73, 684–690 (1977). 

9. Ahmad, T. R. & Haeusler, R. A. Bile 
acids in glucose metabolism and 
insulin signalling — mechanisms 
and research needs. Nat. Rev. 
Endocrinol. 15, 701–712 (2019). 

10. Jacinto, S. & Fang, S. Essential roles 
of bile acid receptors FXR and TGR5 
as metabolic regulators. Animal Cells 

Syst. (Seoul). 18, 359–364 (2014). 

11. Chiang, J. Y. L. Bile acid metabolism 
and signaling. Compr. Physiol. 3, 
1191–212 (2013). 

12. Trefts, E., Williams, A. S. & 
Wasserman, D. H. Exercise and the 
Regulation of Hepatic Metabolism. 
Progress in Molecular Biology and 
Translational Science vol. 135 
(Elsevier Inc., 2015). 

13. Morville, T. et al. Divergent effects of 
resistance and endurance exercise 
on plasma bile acids, FGF19, and 
FGF21 in humans. JCI insight 3, 
(2018). 

14. Danese, E. et al. Middle-distance 
running acutely influences the 
concentration and composition of 
serum bile acids : Potential 
implications for cancer risk ? 8, 
52775–52782 (2017). 

15. Howe, C. C. F. et al. Untargeted 
metabolomics profiling of an 80.5 
km simulated treadmill 
ultramarathon. Metabolites 8, (2018). 

16. Raghuveer, G. et al. 
Cardiorespiratory Fitness in Youth: 
An Important Marker of Health: A 
Scientific Statement from the 
American Heart Association. 
Circulation E101–E118 (2020) 
doi:10.1161/CIR.0000000000000866. 

17. McGrath, R. P., Kraemer, W. J., Snih, 
S. Al & Peterson, M. D. Handgrip 
Strength and Health in Aging 
Adults. Sport. Med. 48, 1993–2000 
(2018). 

18. Sanchez-delgado, G. et al. Activating 
brown adipose tissue through 
exercise ( ACTIBATE ) in young 
adults : Rationale , design and 
methodology. Contemp. Clin. Trials 
45, 416–425 (2015). 

19. BALKE, B. & WARE, R. W. An 
experimental study of physical 
fitness of Air Force personnel. U. S. 
Armed Forces Med. J. 10, 675–88 
(1959). 



International Doctoral Thesis                                                                                          Francisco J Osuna-Prieto 

112 
 

20. Martinez-Tellez, B., Sanchez-
Delgado, G., Amaro-Gahete, F. J., 
Acosta, F. M. & Ruiz, J. R. 
Relationships between 
cardiorespiratory fitness/muscular 
strength and 18F-
fluorodeoxyglucose uptake in 
brown adipose tissue after exposure 
to cold in young, sedentary adults. 
Sci. Rep. 9, 1–9 (2019). 

21. Ruiz-Ruiz, J., Mesa, J. L. M., 
Gutiérrez, A. & Castillo, M. J. Hand 
size influences optimal grip span in 
women but not in men. J. Hand Surg. 
Am. 27, 897–901 (2002). 

22. Phillips, N. Essentials of Strength 
Training and Conditioning. 
Physiotherapy 83, 47 (1997). 

23. Whelton, P. K. & Williams, B. The 
2018 European Society of 
Cardiology/European Society of 
Hypertension and 2017 American 
College of Cardiology/American 
Heart Association Blood Pressure 
Guidelines: More Similar Than 
Different. JAMA 320, 1749–1750 
(2018). 

24. Bedogni, G. et al. The fatty liver 
index: A simple and accurate 
predictor of hepatic steatosis in the 
general population. BMC 
Gastroenterol. 6, 1–7 (2006). 

25. Di Zazzo, A. et al. Signaling lipids as 
diagnostic biomarkers for ocular 
surface cicatrizing conjunctivitis. J. 
Mol. Med. 98, 751–760 (2020). 

26. Martinez-Tellez, B. et al. A new 
personalized cooling protocol to 
activate brown adipose tissue in 
young adults. Front. Physiol. 8, 1–10 
(2017). 

27. Martinez-Tellez, B. et al. Distribution 
of Brown Adipose Tissue 
Radiodensity in Young Adults: 
Implications for Cold [18F]FDG-
PET/CT Analyses. Mol. Imaging Biol. 
(2019) doi:10.1007/s11307-019-
01381-y. 

28. Callahan, B. J. et al. DADA2: High 

resolution sample inference from 
Illumina amplicon data. Nat. 
Methods 13, 581–583 (2016). 

29. R Core Team. R: A Language and 
Environment for Statistical 
Computing. (2019). 

30. McMurdie, P. J. & Holmes, S. 
phyloseq: An R Package for 
Reproducible Interactive Analysis 
and Graphics of Microbiome Census 
Data. PLoS One 8, e61217 (2013). 

31. Cole, J. R. et al. Ribosomal Database 
Project: data and tools for high 
throughput rRNA analysis. Nucleic 
Acids Res. 42, D633–D642 (2014). 

32. Anderson, M. J.  Permutational 
Multivariate Analysis of Variance ( 
PERMANOVA ) . in Wiley StatsRef: 
Statistics Reference Online 1–15 
(Wiley, 2017). 
doi:10.1002/9781118445112.stat0784
1. 

33. Lozupone, C. A. & Knight, R. 
Species divergence and the 
measurement of microbial diversity. 
FEMS Microbiology Reviews vol. 32 
557–578 (2008). 

34. Kim, B.-R. et al. Deciphering 
Diversity Indices for a Better 
Understanding of Microbial 
Communities. J. Microbiol. Biotechnol 
27, 2089–2093 (2017). 

35. Simpson, E. Measurment of 
Diversity. Nature 163, 688 (1949). 

36. Osuna-Prieto, F. J. et al. Elevated 
plasma succinate levels are linked to 
higher cardiovascular disease risk 
factors in young adults. Cardiovasc. 
Diabetol. 20, 1–10 (2021). 

37. Plotkin, D. L., Roberts, M. D., Haun, 
C. T. & Schoenfeld, B. J. Muscle fiber 
type transitions with exercise 
training: Shifting perspectives. 
Sports 9, 1–11 (2021). 

38. Morville, T., Sahl, R. E., Moritz, T., 
Helge, J. W. & Clemmensen, C. 
Plasma Metabolome Profiling of 
Resistance Exercise and Endurance 



International Doctoral Thesis                                                                                          Francisco J Osuna-Prieto 

113 
 

Exercise in Humans. Cell Rep. 33, 
108554 (2020). 

39. Markworth, J. F., Maddipati, K. R. & 
Cameron-Smith, D. Emerging roles 
of pro-resolving lipid mediators in 
immunological and adaptive 
responses to exercise-induced 
muscle injury. Exerc. Immunol. Rev. 
22, 110–134 (2016). 

40. Brown, W. M. C., Davison, G. W., 
McClean, C. M. & Murphy, M. H. A 
Systematic Review of the Acute 
Effects of Exercise on Immune and 
Inflammatory Indices in Untrained 
Adults. Sport. Med. - Open 1, 1–10 
(2015). 

41. ter Steege, R. W. F. & Kolkman, J. J. 
Review article: the pathophysiology 
and management of gastrointestinal 
symptoms  during physical exercise, 
and the role of splanchnic blood 
flow. Aliment. Pharmacol. Ther. 35, 
516–528 (2012). 

42. Moses, F. M. The effect of exercise 
on the gastrointestinal tract. Sports 
Med. 9, 159–172 (1990). 

43. Endo, M. Y., Shimada, K., Miura, A. 
& Fukuba, Y. Peripheral and central 
vascular conductance influence on 
post-exercise hypotension. J. Physiol. 
Anthropol. 31, 32 (2012). 

44. Endo, M. Y. et al. Differential arterial 
blood flow response of splanchnic 
and renal organs during low-
intensity cycling exercise in women. 
Am. J. Physiol. - Hear. Circ. Physiol. 
294, 2322–2326 (2008). 

45. Eriksen, M. & Waaler, B. A. Priority 
of blood flow to splanchnic organs 
in humans during pre- and post-
meal  exercise. Acta Physiol. Scand. 
150, 363–372 (1994). 

46. Sylow, L., Kleinert, M., Richter, E. A. 
& Jensen, T. E. Exercise-stimulated 
glucose uptake-regulation and 
implications for glycaemic control. 
Nat. Rev. Endocrinol. 13, 133–148 
(2017). 

47. Kumar, D. P. et al. Activation of 

transmembrane bile acid receptor 
tgr5 modulates pancreatic islet - 
Cells to promote glucose 
homeostasis. J. Biol. Chem. 291, 6626–
6640 (2016). 

48. Sasaki, T. et al. The exercise-
inducible bile acid receptor Tgr5 
improves skeletal muscle function in 
mice. J. Biol. Chem. 293, 10322–10332 
(2018). 

49. Sasaki, T. et al. Muscle-specific TGR5 
overexpression improves glucose 
clearance in glucose-intolerant mice. 
J. Biol. Chem. 296, 100131 (2021). 

50. Watanabe, M. et al. Bile acids induce 
energy expenditure by promoting 
intracellular thyroid hormone 
activation. Nature 439, 484–489 
(2006). 

51. Huang, S. et al. TGR5 agonist 
ameliorates insulin resistance in the 
skeletal muscles and improves 
glucose homeostasis in diabetic 
mice. Metabolism. 99, 45–56 (2019). 

52. De Smet, I., Van Hoorde, L., Vande 
Woestyne, M., Christiaens, H. & 
Verstraete, W. Significance of bile 
salt hydrolytic activities of 
lactobacilli. J. Appl. Bacteriol. 79, 292–
301 (1995). 

53. Long, S. L., Gahan, C. G. M. & Joyce, 
S. A. Interactions between gut 
bacteria and bile in health and 
disease. Molecular Aspects of Medicine 
vol. 56 54–65 (2017). 

54. Mullish, B. H. et al. Functional 
microbiomics: Evaluation of gut 
microbiota-bile acid metabolism 
interactions in health and disease. 
Methods 149, 49–58 (2018). 

55. Petersen, L. M. et al. Community 
characteristics of the gut 
microbiomes of competitive cyclists. 
Microbiome 5, 1–13 (2017). 

56. Clarke, S. F. et al. Exercise and 
associated dietary extremes impact 
on gut microbial diversity. Gut 63, 
1913–1920 (2014). 



International Doctoral Thesis                                                                                          Francisco J Osuna-Prieto 

114 
 

57. Scheiman, J. et al. Meta-omics 
analysis of elite athletes identifies a 
performance-enhancing microbe 
that functions via lactate 
metabolism. Nat. Med. 25, 1104–1109 
(2019). 

58. Fiamoncini, J. et al. Determinants of 
postprandial plasma bile acid 
kinetics in human volunteers. Am. J. 
Physiol. - Gastrointest. Liver Physiol. 
313, G300–G312 (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



115 
 

 115 

 

 

RESULTS AND DISCUSSION  

 

SECTION II 
 

STUDY III: Activation of Human Brown Adipose 

Tissue by Capsinoids, Catechins, Ephedrine, and 

Other Dietary Components: A Systematic Review 
 

 

Osuna-Prieto FJ, Martinez-Tellez B, Sanchez-Delgado G, Aguilera CM, 

Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A, Ruiz JR. 

Activation of Human Brown Adipose Tissue by Capsinoids, Catechins, 

Ephedrine, and Other Dietary Components: A Systematic Review.  

 

Advances in Nutrition. 2019 Mar 1;10(2):291-302. PMID: 30624591 

 

 

 

 

 

 

 

 

 



116 
 

 116 

 
 

ABSTRACT 

Human brown adipose tissue (BAT) has attracted clinical interest not only 

because it dissipates energy but also for its potential capacity to counteract 

obesity and related metabolic disorders (e.g., insulin resistance and 

dyslipidemia). Cold exposure is the most powerful stimulus for activating and 

recruiting BAT, and this stimulatory effect is mediated by the transient receptor 

potential (TRP) channels. BAT can also be activated by other receptors such as 

the G-protein-coupled bile acid receptor 1 (GPBAR1) or β-adrenergic receptors. 

Interestingly, these receptors also interact with several dietary components; in 

particular, capsinoids and tea catechins appear to mimic the effects of cold 

through a TRP-BAT axis, and they consequently seem to decrease body fat and 

improve metabolic blood parameters. This systematic review critically addresses 

the evidence behind the available human studies analyzing the effect of several 

dietary components (e.g., capsinoids, tea catechins, and ephedrine) on BAT 

activity. Even though the results of these studies are consistent with the outcomes 

of preclinical models, the lack of robust study designs makes it impossible to 

confirm the BAT-activation capacity of the specified dietary components. Further 

investigation into the effects of dietary components on BAT is warranted to 

clarify to what extent these components could serve as a powerful strategy to 

treat obesity and related metabolic disorders. 
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BACKGROUND 

Brown adipose tissue (BAT) generates heat via non-shivering thermogenesis 

(NST) to keep core body temperature constant at low ambient temperatures 1–4. 

Among other mechanisms 5, NST occurs by the action of the uncoupling protein 

1 (UCP1), a molecular hallmark of BAT 6. This protein is expressed in both brown 

adipocytes (classical BAT) and brite adipocytes (brown-like adipocytes emerging 

in white adipose depots, also known as beige adipocytes)  7. The sympathetic 

nervous system (SNS) is the main regulator of BAT activity, realising 

norepinephrine through terminal neurons 8. The surface of BAT adipocytes is rich 

in β-adrenergic receptors (β-ARs), which bind to norepinephrine 9. These β-ARs 

are coupled to a Gs protein system that activates the enzyme adenylyl cyclase 

and lead to the formation of cyclic adenosine monophosphate (cAMP) as a 

second messenger 10. cAMP activates protein kinase A, what leads to the 

activation of the thermogenic programme 9. Both intra-cellular fatty acids and 

those coming from the blood stream are the main substrate of BAT mitochondria 
11. Circulating glucose is also a fuel for of brown adipocytes, allowing imaging 

techniques to use labelled glucose to trace human BAT activity 12. However, a set 

of techniques based on lipid metabolism are being postulated as an alternative 13. 

 

Several studies showed a negative association of human BAT activity 

and/or volume with body mass index (BMI) 14, fat mass 15–17, glucose levels 16,18, 

total cholesterol and triglycerides 19,20, and with the incidence of type II diabetes 
21. Thus, since its “re-discovery” in humans in 2009 4,22–24, BAT has been 

postulated as a potential target tissue to face obesity and related diseases. Cold 

exposure is the main BAT activating stimulus 25. It stimulates the transient 

potential receptor (TRP) channels that activate the SNS response 26. Acute and/or 

chronic cold exposure effectively increases BAT volume and activity in humans, 

and improves overall metabolic health in healthy, obese, and diabetic patients 27–

30. However, cold acclimation is difficult to implement in clinical practice and is 

unpleasant for patients 26,31. 

 

Interestingly, TRP channels not only mediate temperature stimuli, but are 

also chemesthetic receptors of substances naturally present in food and herbal 

plants 32. TRP vanilloid 1 (TRPV1), TRP ankyrin 1 (TRPA1), and TRP melastin 8 

(TRPM8) seem to be the most relevant for BAT activation, as their stimulation is 

associated with an increased BAT activity 33. Currently, it is known that several 

thermogenic food ingredients (hereafter referred to as bioactive ingredients) are 

able to mimic cold exposure through the activation of TRP channels, 

consequently stimulating BAT 26. The activation of TRPV1,TRPA1, and TRPM8 34 

could to be protective against obesity and cardiovascular risk preventing dietary-
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induced body fat gain and inhibiting pro-inflammatory pathways 35–37. In 

addition, some of these bioactive ingredients can increase cold-induced 

thermogenesis (CIT) as well as diet-induced thermogenesis (DIT) 38. These effects 

might be partially explained by BAT, since DIT is higher in BAT-positive subjects  

compared to BAT-negative subjects 39 and the association between cold-induced 

BAT activation and CIT, independently of age and fat-free mass 40. 

To date, there is increasing scientific evidence suggesting that bioactive 

ingredients may play a role in human BAT volume and activity 41. We 

systematically reviewed the available human intervention studies analysing the 

effect of bioactive ingredients on BAT in order to know the potential clinical 

relevance of this promising strategy.  

 

METHODS 

 

We conducted a systematic search of articles of interest in PubMed and Web of 

Science . Our search strategy included articles from 1 January 2007, the year of 

the publication the first article suggesting that BAT was metabolically active in 

adult humans, until 1 February 2018 42.  

 

Search strategy  

Search terms related to studies of brown fat in humans were combined in the 

following strategy in PubMed: (((((((“Adi- pose Tissue, Brown” [Mesh] OR 

“Brown Fat” OR “Brown adipose tissue”))) OR ((“Adipose tissue, beige” [Mesh] 

OR “beige adipose tissue” OR “Brite fat” OR “beige fat”))))) NOT (((((((((((“Mice” 

[Mesh]) OR “Rats” [Mesh]) OR “Animal Experimentation” [Mesh]) OR “Models, 

Animal” [Mesh])) OR (“rats” OR “mouse”))) OR “mice”)) OR “rat”))) NOT 

“Review” [Publication Type]; and in Web of Science: ((“Brown adipose tissue” 

OR “Brown fat” OR “Brite adipose” OR “Beige adipose” OR “Beige fat” OR “brite 

fat”) NOT (“Mice” OR Rat∗ OR (Experiment∗ AND Animal∗)OR (Research∗ 

AND Animal∗)OR “mouse” OR (model∗ AND animal∗))). File type: (ARTICLE 

OR CLINICAL TRIAL OR CASE REPORT 

 

Study selection  

The inclusion criteria were as follows: 1) bioactive ingredients (those components 

that met the bioactive ingredient definition criteria, that is any non-artificially 

synthetized/pharmaceutical chemical component of biological origin able to 

elucidate a significant thermogenic response when administrated orally or 

injected); 2) human studies; 3) original studies: no reviews; 4) articles written in 

the English language. Studies which included cancer reports such as 

pheochromocytoma or hibernoma were excluded. After having discarded the 
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duplicates found in both data bases, eligibility for inclusion was evaluated on the 

following: 1) reading title and abstract and 2) reading the full text.  

 

Data extraction 

 

The following data were collected from each included study: 1) dietary 

compound; 2) source; 3) dose; 4) year; 5) country; 6) season/month; 7) study 

design; 8) BMI; 9) participants’ sex; 10) main findings; 11) BAT measurement 

technique; 12) 18F-fluorodeoxyglucose (FDG) positron emission tomography 

(PET) combined with computed tomography (CT) (18F-FDG PET/CT) 

measurement point; 13) reference.  

 

RESULTS 

 

General results 

A total of 1778 studies were identified after duplicates were discarded (Fig. 1). 

No additional information was retrieved after repeating the search in Scopus 

(information not included in the flowchart). A total of 14 manuscripts were 

finally included after applying the inclusion and exclusion criteria. Two of the 

manuscript 43,44 included 2 studies in the same manuscript, resulting a total of 16 

studies. We found no studies conducted in participants with metabolic syndrome 

or type II diabetes. Notably, some studies did not report information regarding 

the season in which the study was conducted 45–47, whereas others were 

conducted completely 40,43,44,48–50 or partially 51–53 in winter. Due to the high 

heterogeneity of the identified studies, no quality-assessment scale systems were 

used to evaluate the quality of our eligible studies. 

 

The most-studied bioactive ingredients were capsinoids (n = 6 studies) 
40,43,48,49,54, followed by tea catechins (n = 3 studies) 44,50 and ephedrine (n = 3 

studies) 45,52,55. Other studies focused on bile acids and different plant and 

seaweed extracts 46,47,53,56. All studies were published between 2012 and 2018. The 

Japanese group headed by Dr. Saito conducted nearly half of the studies in this 

field (n = 6; 35%) 40,44,46–48. A total of n = 12 (75%) of the studies were performed 

in Asians 40,43,44,46–50,54,56 and 25 % (n = 4) 45,52,53,55 were conducted in Caucasians. 

Notably, only 3 43,52,56 out of the 16 studies conducted  18F-FDG PET/CT scans 

before and after the intervention (Table 1). Another 3 studies (19%) performed 

the 18F-FDG PET/CT scan only after the intervention 45,53,55. A total of 13 (81%) 

studies used the 18F-FDG PET/CT scan to quantify BAT activity and/or volume 

before and/or after the intervention (Table 1). Two studies 43,50 (n = 2; 12,5%) 

used near-infrared time-resolved spectroscopy (NIRTRS), whereas only one study 

used infrared thermography (IRT) (n = 1; 6%) 49 to quantify BAT activity. No 



120 
 

 120 

study conducted biopsies. All studies were conducted in adults under the age of 

35 y 40,43,53,55,56,44–50,52, 14 studies were conducted in healthy and lean humans 
40,43,55,44,46–50,52,53 and 2 were conducted in obese humans 45,56. 
 

Figure 1. Flowchart showing the literature search and article selection process. 

Capsinoids 

All studies on capsinoids used the oral administration of 9 mg capsinoids/d 

extracted from Capsicum annum L. (CH-19 sweet chili pepper), except for a single 

study 54 that administrated 12 mg/d (acute effect). There were three chronic-

effect studies that used 9 mg capsinoids/d capsinoids (between 6 and 8 weeks) 
40,43 and three acute-effect studies 48,49. Yoneshiro et al. 40 conducted a chronic-

effect study (Table 1)  in which the participants were selected according to their 

BAT activity. After 6 wk of capsinoid treatment, the participants who had 

received capsinoids exhibited a significant increment in CIT capacity compared 

with the control group 40. Nirengi et al. 43 reported that 6 wk of capsinoid 

treatment induced an increase in BAT activity measured by 18F-FDG PET/CT 

scan 43. The same group 43 studied the effect of a capsinoid ingestion over 8 wk 

and showed that total haemoglobin (total-Hb) change (assessed by NIRTRS every 

two weeks at 27ºC in the supraclavicular region) was significantly greater in the 
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capsinoids group 43. Regarding acute-effect studies, Yoneshiro et al. 48 reported 

that acute-effect ingestion of capsinoids significantly increased resting metabolic 

rate (RMR) and supraclavicular skin temperature in the high-BAT activity group 
48. The observed increase in RMR was associated with an increase in BAT activity 
48. Moreover, Ang et al. 49 concluded that a single ingestion of capsinoids elicited 

a significant increase in RMR and in skin temperature in the cervical-

supraclavicular region measured by infrared thermography in the capsinoid 

group 49. Finally, Sun et al. 54 used the highest dose of capsinoids (12 mg/d) in 

healthy adults and compared this treatment with mild cold exposure: no effect 

of capsinoid ingestion on BAT stimulation was observed, whereas a mild cold 

exposure did stimulate BAT 54. 

 

Tea catechins 

All studies on tea catechins used green tea extract beverages from Camellia 

Sinensis, and 2 of these studies catechin also used caffeine supplementation 44. 

Nirengi et al. 50 administrated a beverage containing 540 mg of catechins plus 77 

mg of caffeine/d daily for 12 wk, and demonstrated an increase in BAT density 

evaluated by NIRTRS 50. Yoneshiro et al. 44 administrated a beverage containing 

615 mg catechins plus 77 mg of caffeine twice daily for 5 wk. BAT activity was 

measured by 18F-FDG PET/CT scan before the intervention with a previously 

fixed cooling protocol (2 h; 19ºC) to select participants with low BAT activity 44. 

The authors demonstrated an increase in CIT in the catechin group relative to the 

control group 44. The results of the experimental group 44 also revealed that a 

single ingestion of the beverage containing catechins plus caffeine induced a 

significant increase in RMR in the catechin group compared with the placebo 

group 44. 

 

Ephedrine 

The only available chronic effect study determined that BAT activity was 

significantly reduced by a 28-d ephedrine treatment (1.5 mg ephedrine 

hydrochloride kg-1 . d-1) in the experimental group compared with the control 

group 52. The findings of the acute-effect studies are contradictory. Carey et al. 45 

measured BAT activity 60 min after ingestion of 2.5 mg ephedrine/kg, and 

revealed an increase in BAT activity in lean but not in obese humans. In contrast, 

Cypess et al. 55 detected no increase in BAT activity after an intramuscular 

injection of 1mg ephedrine/kg. 
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Other bioactive ingredients 

Three studies used plant extracts with pungent activity  46,47,56, and 1 study used 

bile acids 53. Only 1 study evaluated the chronic-effect of the bioactive ingredient 
56 and 3 studies evaluated the acute-effects 46,47,53. 

 

One study used a seaweed extract containing fucoxanthin on 2 obese adult 

women 56. The women were instructed to take 2 pills of Xanthigen (600 mg 

contained in 2 capsules; PLT Health Solutions) with fucoxanthin (3mg) and 

punicic acid (174mg) every day for 12 wk. The 18F-FDG PET/CT scan analyses, 

which were conducted before and after the 12-wk intervention, reported a visual 

(not quantitative) increase in BAT activity in 1 of the participants. Sugita et al. 46 

used a single dose of 40mg from Aframomum melegueta. The participants were 

divided into BAT-positive and negative groups. After the oral ingestion of the 

bioactive ingredients,  a significant increase of RMR was found in the BAT 

positive group 46. Matsushita et al. 47 used a single dose 100 mg of Kaempferia 

parviflora extract. All participants were men and were previously divided into 

high-BAT-activity and low-BAT-activity groups. A significant increase in RMR 

in the high-BAT was demonstrated. The acute effect of chenodeoxycholic acid (15 

mg · kg–1 ·d–1 for 2 d) was tested in young and lean women 53. They reported a 

significant increase in BAT activity and an increase in RMR in the 

chenodeoxycholic acid group 53. 

 

DISCUSSION 

We analysed all available human studies that investigated the effect of both 

chronic and acute ingestion of bioactive ingredients on BAT activity, as measured 

by 18F-FDG PET/CT, and on CIT, RMR, supraclavicular total-Hb, and 

supraclavicular skin temperature. In general, the study designs were not robust, 

because only 7 (47%) 43,45,49,50,52,53,55 used a double-blind, randomized, placebo-

controlled design, and only 3 studies 43,52,56 conducted an 18F-FDG PET/CT scan 

before and after the intervention. There is a lack of information on the effect of 

the bioactive ingredients at the molecular level in BAT, white adipose tissue, or 

muscle measured in vivo through biopsy analysis. The results of several studies  
40,43,54,56,44–50,53 suggest that it seems plausible to activate and recruit human BAT 

through the ingestion of certain bioactive ingredients in healthy adults, yet the 

current level of evidence precludes a definitive conclusion. Further studies are 

warranted to confirm this hypothesis. 
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Capsinoids 

 

Capsinoids are substances naturally present in chilli peppers, and they are 

particularly abundant in Capsicum annum L. or “CH-19 sweet” 57. Capsinoids 

include capsiate, dihydrocapsiate, and nordihydrocapsiate 58. Although 

capsinoids are structurally similar to capsaicin, they are 1/1000 less pungent but 

as potent as capsaicin tin increasing thermogenesis and RMR 48. 

 

The thermogenic activation pathways of capsinoids include TRPV1 and 

TRPA1 which have possible mechanisms of action on BAT activity, because 

capsinoids activate both receptors 59,60. In mice, intragastric administration of 

capsinoids has shown to elicit an increase in temperature in the intrascapular 

BAT region, whereas this effect was attenuated in TRPV1 deficient animals 61. 

The thermogenic response is also impaired in humans with a mutation affecting 

the TRPV1 function 62. Furthermore, capsiate is an enhancer of the UCP1 

expression 63. Consequently, it is likely that capsinoids activate BAT through the 

TRPV1-SNS-BAT axis in humans. Only 1 study on capsinoids analysed BAT 

activity before and after the intake of bioactive ingredients 43 and only one before 

the capsinoids ingestion. Notably, the first study 43 had a low sample size (n = 3; 

single-blind and crossover study design), whereas the second study 54 had a non-

blind design. Neither study 43,54 performed a personalised cooling protocol before 

the 18F-FDG PET/CT scan, and the glucose standardized uptake values were not 

individualised 43 and did not meet the recommendations of BAT analysis and 

quantification 64. 

Tea catechins 

Tea catechins are polyphenolic components present in green tea. The most 

abundant and bioactive component is the epigallocatechin gallate, which is one 

the most thoroughly studied bioactive ingredient present in green tea. Therefore, 

epigallocatechin gallate may be the best choice if only 1 catechin is encapsulated 

to test its properties on BAT activity. The thermogenic effect of tea catechins has 

repeatedly been shown in humans 65,66. Regarding the mechanism of action, 

epigallocatechin gallate and its auto-oxidation products have shown to be TRPA1 

and TRPV1 agonists 67,68. Catechins can activate and recruit BAT via TRP 

channels located in the sensory neurons of the gastrointestinal tract 69. There is 

no solid evidence that tea catechins can activate and recruit BAT in humans, 

because there are no studies in which 18F-FDG PET/CT scans were conducted 

before and after the bioactive ingredient administration. However, it seems 

biologically plausible that tea catechins plus caffeine could activate human BAT 

in both chronic and acute treatments, because this combination has shown to 

increase CIT and RMR in humans 44. Certain studies suggest that CIT may be 
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proportional to BAT-dependent thermogenic capacity 70. Therefore, the 

significant increase in CIT after the tea catechin treatment could be due to an 

increase in BAT activity. Interestingly, there is strong evidence that skeletal 

muscle is as a major contributor of CIT, so we cannot discard the possibility that 

the effects of catechins are muscle-mediated and not BAT-mediated 71,72. Nirengi 

et al. 50 quantified the change in total- Hb in the supraclavicular region after a 

chronic intake of catechins under thermoneutral conditions, which was found to 

be significantly higher in the catechin group50. This finding is in agreement with 

the results of a previous experiment performed by the same research group in 

which they demonstrated that total-Hb values under thermoneutral conditions 

were positively correlated with BAT activity 73.  Thus, it seems feasible that the 

increase in total-Hb in the supraclavicular area may be directly correlated with 

an increase in BAT activity, and that tea catechins could activate BAT even under 

thermoneutral conditions in healthy humans 

An acute-effect study 44 showed an increase in RMR after the ingestion of 

a tea catechin beverage in subjects with detectable BAT activity but not in subjects 

with undetectable BAT activity. Even though this increase in RMR was likely due 

to an increase in BAT activity, no 18F-FDG PET/CT scan was conducted after the 

intervention to confirm the finding.  

In vitro studies using tea catechins have revealed an inhibition of the 

catecholamine-degrading enzyme catechol-O-methyltransferase 74, which could 

explain the SNS- BAT connection as due to an increase in norepinephrine life 

span. Nonetheless, catechol-O-methyltransferase activity was not impaired by 

high doses of epigallocatechin gallate in humans 75. Regarding the thermogenic 

effects of caffeine, these effects may occur through the inhibition of 

phosphodiesterase (an enzyme that degrades cAMP) 76. In addition, a synergistic 

interaction has been proposed between tea catechins and caffeine, with the latter 

increasing adrenergic and lipolysis activity 77,78. Additional studies are warranted 

to clarify whether the inhibition of catechol-O- methyltransferase and 

phosphodiesterase is responsible, in part, for the thermogenic effect of tea 

catechins and to verify to what extent TRPA1 and TRPV1 activation are able to 

enhance human BAT activity. 

Ephedrine 

The bioactive ingredient ephedrine is a sympathomimetic amine found in plants 

of the Ephedra genus, which can bind to adrenergic receptors. The mechanism of 

action of ephedrine does not involve activation of the TRP receptor, but rather, 

stimulation of SNS activity and thermogenic pathways boosts BAT activity. 

Historically, ephedrine has been used to increase energy expenditure in humans 
79, and it has been linked to an increase in 18FDG-BAT uptake in mice 80; thus it 
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seems plausible that ephedrine itself could activate BAT in humans. Carey et al. 
45 showed that BAT can be activated in healthy, lean adults with a single dose of 

ephedrine. Interestingly, the same treatment administered to obese patients did 

not significantly increase BAT activity, suggesting that, at least in response to 

sympathomimetic bioactive ingredients, BAT activity may be impaired in obese 

humans. This finding is consistent with previous cold exposure studies that did 

not detect a significant increase in BAT in obese humans 4,15,24. Conversely, 

another acute-effect study performed by Cypess et al. 55 failed to stimulate BAT 

activity after ephedrine administration. However, this study used a single 

intramuscular dose of 1 mg ephedrine/kg, which was a lower dose (and a 

different route of administration) than that used by Carey et al. 45; hence, we 

cannot discern to what extent the difference between intramuscular injection and 

oral ingestion affected the outcome. Moreover, the analyses were performed over 

a wide period of time (>1 y considering all the interventions and measurements 

of all participants) so the seasonal variations in BAT activity could have 

introduced a bias. 

Chronic effects of ephedrine treatments appear to reduce BAT activity. 

Carey et al. 52 showed that BAT activity was reduced after 28 d of ephedrine 

treatment. Interestingly, this intervention was performed from spring to autumn, 

far from the winter season, which means that the warmer outdoor temperatures 

might have also inhibited BAT activity 29. Further studies are needed to 

determine whether BAT activation could be due to ephedrine itself, what the 

ideal dose and via of administration (intramuscular or orally ingested) are, and 

to what extent the duration of the treatment impairs BAT activity. 

Other bioactive ingredients 

A. melegueta seeds, also known as “Grains of Paradise,” are used as a spice for 

flavouring food and are known to have anti-inflammatory properties 81. These 

seeds are rich in 6-gingerol, 6-paradol, and 6-shogaol (all of which are non-

volatile with pungent activity) 82. It seems feasible that these bioactive ingredients 

may exert their effects by binding TRPV1 69. Sugita et al. 46 demonstrated an 

increase in RMR in BAT-positive individuals compared with BAT-negative 

individuals after am intervention with the A. melegueta 46. However, the effect of 

A. melegueta on BAT activity was not tested and is therefore unknown because 

the 18F-FDGPET/CT scan was performed only before the intervention. The 

volatile components existing in the A. melegueta extract have a vanilloid moiety, 

which can activate TRPV1 (involved in the thermic effects of capsinoids and 

catechins, as previously described). Therefore, if the increase in RMR after the 

ingestion of A. melegueta is confirmed by a parallel augmentation in BAT activity 
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assessed after ingestion of the bioactive ingredient, then the activation of the 

TRPV1- SNS-BAT axis may be the underlying mechanism of action. 

 

Regarding human BAT activity after oral ingestion of the K. parviflora 

extract, RMR increased in the BAT-positive group 46. K. parviflora has been 

demonstrated to have anti-obesity effects in type 2 diabetic obese mice 83. Dietary 

supplementation with K. parviflora prevented not only body weight increase and 

body fat accumulation but also glucose intolerance 83,84. Yoshino et al. 85 showed 

that K. parviflora ingestion increased urinary excretion of noradrenaline, UCP1 

expression, and RMR in mice. Thus, it could be expected that K. parviflora, 

similar to capsinoids, activates and recruits BAT. Nevertheless, studies with 

better methodological designs are warranted to determine whether K. parviflora 

truly enhances BAT activity in humans. 

 

Xanthigen is a weight-management ingredient combining punicic acid 

(from pomegranate) and fucoxanthin from the brown edible seaweed Undaria 

pinnatifida. The combination of Xanthigen with punicic acid appears to have 

positive effects on weight loss, body fat, and liver fat content in obese nondiabetic 

women 86. In addition, fucoxanthin from U. pinnatifida has exhibited an anti-

obesity effect through the enhancement of UCP1 expression in murine white 

adipose tissue 86. Although. Kim et al. 56 performed a before- and-after 

assessment of BAT, the sample size of their study (n = 2) precludes any firm 

conclusion. Moreover, these authors reported a visual increase (not quantified) 

in BAT activity according to PET/CT (55). 56. Thus, even though the results 

appear to support the evidence of previous studies demonstrating that Xanthigen 

increases RMR in obese patients 87 and could therefore be useful as a therapy 

against diabetes 88, a larger sample size and a better study design are needed. 

 

Chenodeoxycholic acid is one of the primary bile acids produced by the 

liver in humans, and its supplemental use has been demonstrated to be safe in 

humans easily administered 89. Chenodeoxycholic acid activates the G-protein–

coupled bile acid receptor 1 (GPBAR1), which results in an increase in the 

concentration of intracellular cAMP. This secondary messenger, cAMP, activates 

type 2 deiodinase, an enzyme that drives the conversion of the inactive thyroid 

hormone to the active form (T3). Thus, T3 is the final activator of BAT, which also 

increases RMR 90. It also appears to increase BAT activity and enhance RMR in 

murine models 91. Moreover, there is strong evidence supporting a correlation 

between circulating bile acids, BAT activity, and NST 90. Broeders et al. 53 showed 

that an administration of 15 mg chenodeoxycholic acid/d for 2 d increases BAT 

activity measured by 18F-FDG PET/CT scan under thermoneutral conditions. 
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Therefore, it would be of clinical interest to study the effects of chronic 

chenodeoxycholic acid supplementation on BAT activity.  

 

General limitations of the studies included in the review 

Homogeneous composition of bioactive ingredient extracts 

To enable interstudy comparisons, there is a need to standardize the use of 

bioactive ingredient extracts. For example, Yoneshiro et al. 44 and Nirengi et al.50 

used different concentrations of catechins in their beverages; therefore, it is not 

possible to determine to what extent the results between these studies are 

comparable. 

18F-FDG limitations 

Even though 18F-FDG uptake is a marker of BAT activity, this parameter is not 

directly proportional to energy consumption, because glucose is not the major 

fuel in BAT metabolism 92. Indeed, fatty acids, which are the main substrate of 

BAT mitochondria, are mostly provided from the inner depots, but are also 

provided from the bloodstream by the action of the lipoprotein lipase 12. Hence, 

we should use additional approaches to quantify total BAT activity, such as 

oxygen consumption 71, tracking other fatty acid derivatives such as 11C-acetate 
93, and using MRI 94–97. 

Ethnicity 

There is evidence that BAT volume is dependent on ethnicity 98. The majority of 

the studies included in the review were conducted in south Asians (75%; n = 12) 
40,43,44,46–50,56 compared with 25% in Caucasians (n = 4) 45,52,53,55. Therefore, caution 

must be used when translating the results from one ethnic group to another. 

Seasonality  

Seasonal changes in BAT and CIT could be due to some environmental factors 

such as outdoors temperatures 99 and photoperiod 100. In addition, not only CIT 

but also cold-induced fat oxidation have shown to be greater in winter compared 

with summer, and this change is more notable in high-BAT subjects than in low-

BAT subjects 101. Considering all this evidence, the involvement of BAT in the 

seasonal variations of CIT in healthy humans is another variable warrants 

consideration to optimize study designs (i.e., crossover with wash-out for acute-

effect studies; control group with placebo for chronic-effects studies). 

Dose adjustment 

 Only chenodeoxycholic acid 53 and ephedrine studies 45,52,55 adjusted the 

bioactive ingredient dose according to the weight of each participant.   
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Authorship 

Notably, all studies using capsinoids and catechins were conducted by Japanese 

researcher groups 40,43,44,46–50, with Dr. Saito leading a  significant fraction of the 

studies using bioactive ingredients (n = 6; 35%) 40,44,46–48. To date, there is no 

confirmation of the results by an independent research group, except for Sun et 

al. 54 who studies capsinoids.  

CONCLUSIONS 

Although it is biologically plausible that the ingestion of food ingredients 

increases human BAT activity, the current level of evidence supporting this 

hypothesis is low. More and better-designed studies (e.g., double-blind, 

randomized, placebo-controlled, and season-matched, with a personalized 

cooling protocol prior to PET/CT or MRI scan) are needed to understand 

whether bioactive ingredients are an effective treatment to activate and recruit 

human BAT. 
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ABSTRACT 

Activation of brown adipose tissue (BAT) and promotion of white adipose tissue 

(WAT) browning is considered a potential tool to combat obesity and 

cardiometabolic disorders. The use of plant-based dietary components has 

become one of the most used strategies for activating BAT and promoting WAT 

browning in rodents. The main reason is because plant-based dietary 

components are usually recognized as safe when the dose is properly adjusted, 

and they can easily be administrated by being added to the diet or dissolved in 

water. The present systematic review aimed to study the effects of plant-based 

dietary components on activation of BAT and promotion of WAT browning in 

rodents. A systematic search of PubMed and Scopus (from 1978 to 2019) 

identified eligible studies. Studies assessing the effects of plant-based dietary 

components added to diet and/or water on uncoupling protein 1 (UCP1) 

expression in BAT and/or WAT were included. Studies that used dietary 

components of animal origin, did not specify the effects on UCP1, or were 

conducted in other species different from mice or rats were excluded. Of 3919 

studies identified in the initial screening, 146 studies were finally included in the 

review. We found that tea extract catechins, resveratrol, capsaicin and 

capsinoids, cacao extract flavanols, and quercetin were the most studied 

components. Scientific evidence suggests that some of these dietary components 

activate BAT and promote WAT browning via activation of the AMP-activated 

protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These findings reveal 

that there is strong scientific evidence supporting the use of plant-based dietary 

components to activate BAT and promote WAT browning in rodents and thus to 

potentially combat obesity and cardiometabolic disorders. 
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BACKGROUND 

Obesity is a global epidemic that increases the risk of morbidity and reduces 

lifespan, being closely related to an increased risk of developing cardiometabolic 

disorders 1,2. Brown adipose tissue (BAT) is considered a target tissue to combat 

obesity 3 and cardiovascular disease (CVD) 4, as BAT activation increases energy 

expenditure, reduces adiposity, and effectively protects against diet-induced 

obesity in mice 5,6. The thermogenic capacity of BAT is driven by uncoupling 

protein 1 (UCP1) activity, located in the inner mitochondrial membrane of brown 

adipocytes 7. Interestingly, UCP1 can also be expressed in beige adipocytes 

(brown-like adipocytes within white adipose tissue, WAT), a process known as 

WAT browning 8. The resulting increase in energy expenditure due to BAT 

activation goes beyond heat generation, improving glucose and lipid metabolism 
9–11. Actually, it seems that BAT also exerts an endocrine function through the so-

called “batokines” (adipokines released by brown adipocytes) which could in 

part be responsible for the observed improvements in metabolism 12,13. The 

existence of UCP1-independent thermogenic mechanisms is also known, yet 

their relevance in terms of energy expenditure remains poorly understood 14. 

Cold exposure is the canonical stimulus for BAT activation 14, this being 

primarily mediated through beta-3 adrenergic receptor (β3-AR) stimulation in 

rodents 15. Nevertheless, there are other ways to stimulate BAT activation and 

promote WAT browning (both understood as an increase in UCP1 expression), 

such as the pharmacologic agonism of the β3-ARs 16 and the glucagon-like 

peptide 1 (GLP1) receptor 17. Increasing evidence suggests that plant-based 

dietary components, which can easily be added to the diet or dissolved in water 
18, can also boost BAT activation and promote WAT browning 19–21. Moreover, a 

significant fraction of these dietary components is generally recognized as safe 

(GRAS) in The United States, which results in a large list of potential candidates. 

This could explain, at least in part, the massive increase in the number of 

publications on this topic.  

Therefore, the main goal of the present systematic review is to study the 

effects of plant-based dietary components on BAT activation and promotion of 

WAT browning in rodents.   

METHODS  

This systematic review was conducted following the Preferred Reporting Items 

for Systematic Reviews and Metanalysis (PRISMA) statement 22. 
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Inclusion and exclusion criteria  

The inclusion criteria were as follows: 1) meeting the definition of plant-based 

dietary components: natural occurring isolated dietary component, selected 

isolated fraction of plant extracts or whole plant extracts of vegetal origin, and 

thus excluding those of animal origin (i.e., conjugated linoleic, fish oil, or omega-

3 fatty acids from animal origin); 2) administration: orally via mixture with diet 

or dissolved in water; 3) type of rodent: mice and rats; 4) UCP1 expression: 

measurements of UCP1 gene/protein expression in BAT or WAT; 5) original 

papers (not reviews); and 6) articles written in the English language.  

The exclusion criteria were studies that: 1) included dietary components 

categorized as toxic (i.e., alcohol or ephedrine); 2) included a control group with 

a different type of diet from the intervention group; 3) included housed animals 

at different temperatures from the intervention group. Eligibility for inclusion 

and exclusion criteria was evaluated by reading 1) title and abstract (n = 3,919),  

and 2) full text (when the information provided in the title and abstract was not 

enough to make an inclusion or exclusion decision) (approximately 300 

publications).  

Data collection process 

The following data were extracted from each included study depicted in 

Supplemental Table 2: 1) plant-based dietary component; 2) daily dose (single 

dose for acute studies); 3) species (sex); 4) age (at the beginning of the 

intervention, weeks); 5) time of intervention with the plant-based dietary 

component (weeks); 6) housing temperature (º Celsius); 7) light cycle (lights on: 

light off); 8) humidity (%); 9) food and water access (e.g. ad libitum or time-

restricted); 10) type of diet 11); sample size (intervention group); 12) activation of 

BAT and promotion of WAT browning, studies that measured UCP1 at gene 

(qRT-PCR) and/or protein (immunoblot and immunostaining assays) expression 

levels in one or both tissues; 13) reference.  

Search strategy 

We employed three different term resources from the National Library of 

Medicine (NLM) controlled vocabulary thesaurus used for indexing articles for 

PubMed in our search: i) Medical Subject Headings (MeSH) terms: used for 

ceiling the search to publications where that term is the major focus of the content 

of the article; ii) Text Words (TW): it includes all words and numbers in the title, 

abstract, MeSH terms, MeSH Subheadings, publication types, and other relevant 

sections; iii) Supplementary concept: it includes chemical or organism-specific 

indexed terms. Search terms related to the main goal of the current systematic 
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review were combined using the following strategy in PubMed: ("Adipose 

Tissue, Brown"[Mesh] OR "Adipocytes, Brown"[Mesh] OR "browning"[tw] OR 

"beigeing"[tw] OR (("brown"[tw] OR "beige"[tw] OR "brite"[tw]) AND ("fat"[tw] 

OR "adipose"[tw] OR "adipocyte"[tw] OR "adipocytes"[tw] OR 

"thermogenesis"[tw])) OR "Uncoupling Protein 1"[Mesh] OR "Uncoupling 

Protein 1"[tw] OR "UCP1"[tw] OR "Ucp1 protein, rat" [Supplementary Concept] 

OR "Ucp1 protein, mouse" [Supplementary Concept]) AND ("Food"[Mesh] OR 

"food"[tw] OR "foods"[tw] OR "condiment"[tw] OR "condiments"[tw] OR 

"spice"[tw] OR "spices"[tw] OR "dietary"[tw] OR "diet"[tw] OR "diets"[tw] OR 

"carbohydrate"[tw] OR "carbohydrates"[tw] OR "grain"[tw] OR "grains"[tw] OR 

"fiber"[tw] OR "fibers"[tw] OR "prebiotic"[tw] OR "prebiotics"[tw] OR 

"probiotic"[tw] OR "probiotics"[tw] OR "fruit"[tw] OR "fruits"[tw] OR "seed"[tw] 

OR "seeds"[tw] OR "nuts"[tw] OR "intake"[tw] OR "vegetable"[tw] OR 

"vegetables"[tw] OR "flavoring"[tw] OR "flavouring"[tw] OR "Flavonoids"[Mesh] 

OR "Flavonoids"[tw] OR "Flavonoid"[tw ] OR "Anthocyanins"[tw] OR 

"Anthocyanin"[tw] OR "Catechins"[tw] OR "Catechin"[tw] OR "Flavanones"[tw] 

OR "Flavanone"[tw] OR "Flavones"[tw] OR "Flavone"[tw] OR 

"Flavonolignans"[tw] OR "Flavonolignan"[tw] OR "Isoflavones"[tw] OR 

"Isoflavone"[tw]) AND ("Animal Experimentation"[Mesh] OR "Murinae"[Mesh] 

OR "murinae"[tw] OR "rat"[tw] OR "rats"[tw] OR "mouse"[tw] OR "mice"[tw] OR 

"murine"[tw] OR "rodent"[tw] OR "rodents"[tw]) NOT ("humans"[mesh] NOT 

"murinae"[mesh]). Publication date range was set from the identification of UCP1 

as the inner mitochondria component driving the thermogenic process in BAT in 

1978 23, until November 30th, 2019.  

 

RESULTS 

A total of 3919 publications were identified in the search (Fig. 1). No additional 

studies meeting the inclusion criteria were identified after adapting the search 

terms to the Scopus database (data not shown). A total of 143 publications 

(including 146 different studies) were included after applying the inclusion and 

exclusion criteria. Supplemental Table 1 depicts all the plant-based dietary 

components included, sorted by the number of studies and name of the dietary 

component, whereas Supplemental Table 2 shows the study set-ups and the 

main results of the 146 studies included in this systematic review. Notably, 98 of 

146 studies (67%) employed an isolated dietary component or a selected isolated 

fraction of the plant extracts, whereas the rest (n = 48, 33%) used the whole plant 

extract. Because of the heterogeneity of the methods and information availability 

of the included studies, no quality assessment scale system was applied.  
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Figure 1. Flowchart of the literature search and study selection process.  

 

General results 

For a better comprehension of the results and due to the elevated number of 

selected studies, we next focused on those plant-based dietary components that 

were investigated in 6 or more studies. The most studied plant-based dietary 

components were: i) tea extract catechins (n = 9 studies) 24–32; ii) resveratrol (n = 8 

studies) 33–40; iii) capsaicin & capsinoids (n = 8 studies) 41–48; iv) cacao extract 

flavanols (n = 7 studies) 49–55; and v) quercetin (n = 6 studies) 56–61, which 

constitute a subset of n = 38 studies to be considered for the next analysis.  (Fig. 

2 and Table 1). We repeated these analyses using a less strict threshold (n ≥ 3) 

and the studies using monosaccharides/sweeteners, curcumin, leucine, menthol, 

garlic, and puerariae flowers were included (Fig. 3). Of the 86 different dietary 

components included in the 146 studies, 14% were studied twice and 73% were 

studied only once. Among the subset of 38 selected studies, 96% of the studies 

that measured UCP1 expression reported a significant activation of BAT 24,25,29–

35,37–39,41,42,45,49–55,57, whereas 84% of studies that measured UCP1 expression 

reported a significant promotion of WAT browning 24,26–28,36,40,42–44,46,56–61. Some 

studies found that an upregulation in adenosine monophosphate–activated 

protein kinase (AMPK) signalling was involved in BAT activation 29,31,38,39,50,52,54,55 

and promotion of WAT browning 36,56,57,59. Accordingly, other studies found that 
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an upregulation of the Sirtuin 1 (SIRT1) signaling was involved in BAT activation 
30,33–35,45 and promotion of WAT browning 44. 

Figure 2. Process to select the most studied plant-based dietary components that activate BAT and/or 
promote WAT browning in rodents. (A) The number of isolated dietary components & selected fraction of 
plant extract studies versus plant extracts studies after the initial screening. (B) Histogram depicting isolated 
the dietary components & selected fractions of plant extracts studies (n ≥ 6) (left) and plant studies (right). 
(C) Donut diagram depicting the most studied dietary components. BAT, brown adipose tissue; WAT, white 

adipose tissue. 
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Figure 3. Donut diagram depicting the most studied dietary components after applying a less strict 
threshold (n ≥ 3 studies).  

 

 

Tea catechins, resveratrol, capsaicin, and capsinoids promote BAT activation 

and WAT browning 

Tea extract catechins promoted BAT activation in 6 of 9 studies 24,25,29–32 and 

increased WAT browning in 4 studies 24,26–28, whereas resveratrol promoted BAT 

activation in 6 of 8 studies 33–35,37–39, and increased WAT browning in 2 studies 
36,40. Capsaicin and capsinoids promoted BAT activation in 4 of 8 studies 41,42,45,48, 

while one study showed no BAT activation 43. Among these 8 studies, 5 reported 

that capsaicin and capsinoids promoted WAT browning 42–44,46,48, while 3 

reported no significant effects on WAT browning 41,43,48.  

Cacao extract flavanols activate BAT and quercetin promotes WAT browning  

Cacao extract flavanols promoted BAT activation in all studies (n = 7) 49–55, while 

none of them evaluated the effect on WAT browning. Quercetin promoted BAT 

activation in one of 6 studies 57, while one study reported no BAT activation 58.  
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DISCUSSION 

In this systematic review, we investigated rodent studies evaluating the effects 

of plant-based dietary components on the activation of BAT and promotion of 

WAT browning. Tea extract catechins were the most studied plant-based dietary 

component, followed by resveratrol, capsaicin and capsinoids, cacao flavanols, 

and quercetin. 67% of the studies used isolated dietary components or a selected 

fraction of the plant extracts, whereas the remaining 33% used whole plant 

extracts. AMPK and SIRT1 upregulation were linked to the activation of BAT and 

promotion of WAT browning. Collectively, these findings support the use of 

plant-based dietary components as tools to activate BAT and promote WAT 

browning in rodents and thus potentially combat obesity and cardiometabolic 

disorders. 

Tea consumption from plants of Camellia sinensis is one of the world’s most 

consumed beverages 62. The thermogenic response to tea extract catechins seems 

to be driven by the transient receptor potential vanilloid subfamily member 1 

(TRPV1) and TRP ankyrin 1 (TRPA1) channels expressed in the gut 63, and brown 

and white adipocytes’ membranes 64. Interestingly, the most abundant and 

bioactive tea catechin, epi-gallocatechin gallate (EGCG), and its autoxidation 

products can activate TRPV1 and TRPA1 in intestinal enteroendocrine cells at 

equivalent doses to those expected in the gut after tea catechins ingestion 65,66. 

Therefore, it is likely that tea catechins could activate BAT via TRP channels 

located in the sensory neurons of the gut via a gut-sympathetic nervous system 

(SNS)-BAT axis (68). BAT activation by tea catechins will be ultimately driven via 

sympathetic activation of β-ARs on brown adipocytes and by the inhibition of 

catechol-O-methyl transferase (COMT) by tea catechins, a catecholamine-

degrading enzyme 67,68. However, COMT activity is not inhibited by high doses 

of EGCG in humans, indicating a negligible role of COMT in the catechin effects 

in vivo 69,70. This is explained because of the much lower circulating levels of 

catechins after single ingestion (∼0.1µM at maximum) 71 compared with the half-

maximal inhibitory concentration for the COMT activity (∼14µM) 72. Notably, 

green tea leaves extracts are also rich in caffeine, a phosphodiesterase inhibitor 
73. phosphodiesterase enzyme that degrades cAMP and that could enhance the 

protein kinase A (PKA) thermogenic pathway, as PKA is positively allosterically 

modulated by cAMP 74. Nonetheless, further studies are needed to confirm a link 

between tea extract catechins and the activation of the gut-SNS-BAT axis.  

Capsaicinoids is a term that refers to a sub-group of secondary metabolites 

of the genus capsicum plant, known for being pungent. The most important 

capsaicinoid is capsaicin, being responsible for the pungent effects of chili 

peppers through the activation of TRPV1 channels in the gut 75. Capsinoids, 
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which include capsiate, dihydro-capsiate, and nor-dihydro-capsiate, activate 

TRPV1 and TRPA1 channels being significantly less pungent than capsaicin 76. 

We observed that capsaicin and capsinoids activated BAT and promoted WAT 

browning in rodents, probably via SNS adrenal catecholamine secretion 77. 

Congruently, the intragastric administration of capsinoids promoted BAT 

activation via TRPV1 agonism and sympathetic activation 77. However, BAT 

activation after capsinoids treatment was abolished after vagal afferent 

denervation 78 or in UCP1-KO mice 48. These results strengthen the idea that 

capsaicin and capsinoids effects rely on a gut-SNS-BAT axis. 

Resveratrol is one of the most well-known polyphenols with antioxidant 

properties. It can mainly be found in grapes’ skin and seeds, but also in berries 

and nuts. Resveratrol activates BAT 33–35,37–39 and promotes WAT browning in 

mice and rats 36,40, but the gut-SNS-BAT connection has not yet been 

demonstrated. Instead, it seems that the thermogenic properties of resveratrol are 

directly mediated at the intracellular level, by an up-regulation of the 

thermogenic pathways and related-makers such as FNDC5 (type I membrane 

protein) and SIRT1 79. Nevertheless, further investigation is warranted to confirm 

which mechanisms are driving BAT activation after resveratrol ingestion.  

Cacao beans are rich in flavonoids that constitute up to 10% of the dry 

weight of the bean 80. Cacao extract flavanols promote BAT activation, but the 

extent that cacao flavanols can promote WAT browning remains unexplored. 

BAT activation by cacao extract flavanols is driven by an increase in 

catecholamine secretion and the consequent activation of the β-ARs on brown 

adipocytes 52–54. Furthermore, it is important to consider that cacao extract 

flavanols can also be a source of theobromine and caffeine, substances that can 

boost sympathetic response 81 and thereby affect BAT activation. Even though 

BAT activation seems to be mediated by adrenergic activation, further studies are 

needed to confirm this hypothesis.   

Quercetin is the most abundant flavonoid in onions, yet it can also be 

found in other vegetables and fruits. Similar to cacao flavanols, quercetin seems 

to drive its thermogenic activation through sympathetic stimulation 57. The 

promotion of WAT browning by quercetin could be explained by a higher 

sensibilization of white adipocytes to catecholamines, as quercetin upregulates 

β3-AR in WAT 57. However, the thermogenic mechanisms explaining the 

promotion of WAT browning by quercetin remain to be elucidated.  

Lastly, we have analyzed in-depth those studies included after applying 

the sensitivity threshold of n ≥ 3, i.e., monosaccharides/sweeteners, curcumin, 

leucine, menthol, garlic, and puerariae flowers. However, the current evidence is 
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not strong enough to support these plant-based dietary components as BAT 

activators and promoters of WAT browning and further investigation is 

warranted to confirm these findings. 

AMPK is considered one of the major controllers of the cellular response 

to energetic stress and mitochondrial homeostasis 82, playing a significant role in 

the development and metabolism of brown and beige adipocytes 83. Previous 

AMPK-null mice studies have shown that AMPK is necessary for cold-induced 

and β-adrenergic BAT activation and WAT browning 84. Congruently, the 

specific pharmacological activation (A-769662) of AMPK has been shown to 

promote WAT browning 85. SIRT1, which also has fuel-sensing properties similar 

to AMPK, is important for the activation of BAT and promotion of WAT 

browning 86. A whole-body SIRT1 heterozygous knockout (SIRT1+/−) mouse 

model study showed a decrease in BAT activity, higher adiposity, and insulin 

resistance 86, suggesting that SIRT1 activation is needed for normal BAT function. 

Several of the studies reviewed herein reported that AMPK and SIRT1 pathways 

were upregulated by dietary components in both BAT and WAT.  

BAT has an important endocrine role orchestrated by the release of 

batokines, with an impact on metabolism both at local and systemic levels 12,13. 

Therefore, it is not surprising that many the of studies included in this systematic 

review also reported significant improvements in glucose and lipid metabolism 

along with BAT activation/recruitment and/or WAT browning. Collectively, 

these findings suggest that the potential clinical relevance of dietary components 

goes beyond  thermogenic effects, as BAT activation and WAT browning might 

be driving the additional metabolic improvements potentially through BAT-

mediated endocrine mechanisms. Future studies should address the connection 

between the secretory role of BAT and the metabolic improvements elicited by 

dietary components.  

Limitations of the systematic review  

Selected dietary components: It is important to highlight that although we 

considered a reasonably wide spectrum of dietary components, the search 

strategy focused on a select group of compounds (see Methods section). Thus, 

certain groups of compounds, such as carotenoids were not explicitly included. 

Species included in the search: The present systematic review is focused on 

studies conducted exclusively in rodent models (mice and rats). Thereby, these 

findings could not be transferable to other species.  

In the light of the aforementioned limitations, we contend that future 

systematic reviews on this topic should focus on specific and well-defined groups 
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of dietary components. This would strengthen the scope of the studies by 

allowing them to employ more specific search strategies and to include a wider 

spectrum of animal models (i.e., non-rodent).  

Limitations and possible bias of the included studies 

Heterogenous composition of plant-based dietary component extracts: For 

instance,  There were differences in the composition of those studies using tea 

extract catechins 24–29 and cacao extract flavanols 50,53,55. Thus, a comparison of the 

results between these studies should be done carefully. Future studies should 

standardize the composition of plant-based dietary components to enable a 

critical comparison of the results. 

Dose: Dose variations of the plant-based dietary components used in the studies 

also complicate the comparison of results between studies.  

Authorship: It is of note that 5 of 7 studies that used cacao extract flavanols were 

conducted by the same lab 49,51–54. The Ajinomoto Company was involved in 3 of 

4 studies using capsinoids 43,47,48, whereas 2 of 3 capsaicin studies were conducted 

by members of the same lab 44,45. 2 of 8 resveratrol studies were conducted by a 

USA-China collaboration 36,39, while a Spanish group conducted 2 of 8 studies 
34,37. Therefore, these findings should be replicated by independent labs. 

Analysis of thermogenic pathways: Given that AMPK and SIRT1 assessments 

were dependent on the arbitrary selection of this outcome by authors, no firm 

conclusions could be drawn from this data until further studies using unbiased 

approaches (e.g., RNA sequencing and proteomics) confirm these hypotheses.  

Assessment of BAT activity: The studies included lack of evaluation of actual 

BAT activity through either 18F-FDG-PET/CT scans (the current gold standard 
87), direct interscapular BAT (IBAT) temperature measurements, or infrared 

thermography assessments. Notably, it is important to consider that many of the 

studies only measured UCP1 at the gene expression level, which cannot be 

considered a proxy of thermogenesis. While mRNA/protein ratio is thought to 

be constant 88, it could vary depending on specific tissues and genes. Thus, future 

studies should include UCP1 protein assessments in their analysis. 

BAT activation and BAT recruitment: Most of the studies evaluated the effects 

of plant-based dietary components over a period of time by measuring UCP1 

mRNA or protein levels in BAT, which reflects BAT recruitment. Even though 

BAT recruitment is likely a consequence of repeated BAT activation, only a 

capsinoids study (42) and two cacao flavanol extract studies (53,55) showed an 

acute activation of pre-existing BAT. Thus, since for BAT to display anti-obesity 
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effects, it also needs to be active, future studies should prove an actual BAT 

activation (and not only recruitment) after chronic plant-based dietary 

components interventions. 

Safety of plant-based dietary components: It has been shown that certain 

catechins at concentrations may be responsible for the hepatoxic effects of green 

tea extract 70, or β-carotene supplementation could increase the risk of lung 

cancer in smokers 89. Thus, future studies investigating the safety of 

supplementations with plant-based dietary components are needed. 

Translational research: future lines 

Only two studies have evaluated the effect of oral tea extract catechins on 

human BAT activity 90,91, showing that tea extract catechins increase cold-induced 

thermogenesis, resting metabolic rate, and BAT density in BAT-positive 

individuals. Sun et al. reported a significant increase in BAT glucose uptake after 

capsinoids ingestion 92. In light of the present results, resveratrol, cacao extract 

flavonols and quercetin could be potential activators of human BAT, although 

their properties have never been tested as BAT activators in humans. 

Furthermore, whether plant-based dietary components promote WAT browning 

in humans remains unexplored. Experimental procedures, robust study designs, 

and use of the gold standard techniques for assessing BAT activity, and WAT 

browning (biopsies; transcriptomics, and proteomics) must be used in future 

studies. 

CONCLUSION  

To date, the most studied plant-based dietary components for activating 

BAT and promoting WAT browning in mice and rats are tea extract catechins, 

resveratrol, capsaicin and capsinoids, cacao extract flavanols and quercetin. The 

findings of the present systematic review support the use of plant-based dietary 

components as tools to activate BAT and promote WAT browning in rodents and 

thus potentially combat obesity and cardiometabolic disorders. It seems that a 

part of these effects could be dependent on the upregulation of AMPK and SIRT1 

signaling, yet further studies are needed to confirm the mechanisms driving 

these results. Studies in humans are warranted to understand the impact of plant-

based dietary components on BAT metabolism and WAT browning.  
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SUPPLEMENTARY MATERIAL (STUDY IV) 

SUPPLEMENTARY MATERIAL  

Supplemental Table 1. List of plant-based dietary components (isolated dietary components, 

selected isolated fraction of the plant extracts, and whole plant extracts), sorted by number of 

studies.  

Dietary component 
Number of 

studies 
Reference 

Tea extract catechins 9 1–9 

Capsaicin and capsinoids 8 10–16 

Resveratrol 8 17–24 

Cacao extract flavanols 7 25–31 

Quercetin 6 32–37 

Monosaccharides and sweeteners 5 38–42 

Curcumin 4 43–46 

Garlic 3 47–49 

Leucine 3 50–52 

Menthol 3 53–55 

Puerariae flower extract 3 56–58 

B-laphacone 2 59,60 

Bofutsushosan 2 61,62 

Calcium 2 63,64 

Cinnamaldehyde 2 65,66 

Fucoxanthin 2 67,68 

Guarana 2 69,70 

Luteolin 2 71,72 

Oleuropein aglycone 2 73,74 

Olive oil 2 75,76 

Platycodon grandiflorus Root Ethanol Extract 2 77,78 

Raspberry 2 79,80 

Vitamin A 2 81,82 
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Albiflorin 1 83 

Allicin 1 84 

Artepillin C 1 85 

Atractylodes macrocephala Koidzumi 1 86 

Barley Extracts with Lactobacillus Plantarum dy-1 1 87 

Berberine 1 88 

Bilberry (fiber) 1 89 

Bitter melon seed oil 1 90 

Black Soybean Seed Coat Extract 1 91 

Blueberry Extract 1 92 

Borage oil 1 93 

Butein 1 94 

Capsaicin + Hesperidin 1 95 

Caulis Spatholobi 1 96 

Chrysanthemum Leaf Ethanol Extract 1 72 

Cinnamon 1 97 

Citrus reticulata 1 98 

Cordycepin 1 99 

Curcumin + Artepillin C 1 100 

Ellagic acid 1 101 

Formononetin 1 102 

Genistein 1 103 

Ginger 1 104 

Glucoraphanin 1 105 

Grape pomace extract 1 106 

Grape seed proanthocyanidin extract 1 107 

Gypenosides 1 108 

Histidine 1 109 
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Inorganic Nitrate 1 110 

Jinlida 1 111 

Kaempferia parviflora extract 1 112 

Limonoid 7-Deacetoxy-7-oxogedunin (Carapa guianensis) 1 113 

Lyophilized Maqui (Aristotelia chilensis) 1 114 

Matured hop bittering components 1 115 

Melinjo (Gnetum gnemon L.) seed extract 1 116 

Momordica charantia 1 117 

Mulberry leaves 1 118 

Myrciaria dubia 1 119 

Nigella sativa extract 1 120 

Nitzschia laevis extract 1 121 

Octacosanol and policosanol 1 122 

Omija fruit extract 1 123 

Oolang , black and pu-erh tea extract 1 124 

Out of season orange 1 125 

Panax ginseng 1 126 

Phaeodactylum tricornutum extract 1 127 

Phosphate 1 128 

Phytol 1 129 

Plantago asiatica extract 1 130 

Psoralea corylifolia L. (Prenylated flavonoid-standardized 

extract) 
1 131 

Quercetin + resveratrol 1 132 

Rojal Jelly and Bee Larva Powder 1 133 

Rose hip 1 134 

Rubi Fructus (Rubus coreanus) 1 135 

Rutin 1 136 

Sesaminol diglucoside 1 137 
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Soy Isoflavones 1 138 

Thymoquinone 1 120 

Undaria pinnatifida 1 68 

Vanillic Acid 1 139 

Wheat gluten 1 140 

α/γ-Tocoferol 1 141 

α-Monoglucosyl Hesperidin and Hesperidin 1 142 

The black line in the middle shows the threshold of n≥6, and the dash line shows the threshold 

(n≥3) used for sensitivity analyses. 
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ABSTRACT 

Background: Prior evidence suggests that capsinoids ingestion may increase 

resting energy expenditure (EE) and fat oxidation (FATox) in humans, yet 

whether they can modulate those parameters during exercise conditions remains 

poorly understood.  

Aim: To determine the effects of dihydrocapsiate (DHC) ingestion on EE and 

FATox during an acute bout of aerobic exercise at FATmax intensity (the 

intensity that elicits maximal fat oxidation during exercise [MFO]) in men with 

overweight/obesity. 

Methods: A total of 24 sedentary men (age = 40.2 ± 9.2 years-old; body mass index 

= 31.6 ± 4.5 kg/m2) participated in this randomized, triple-blinded, placebo-

controlled, crossover trial (registered under ClinicalTrials.gov Identifier no. 

NCT05156697). On the first day, participants underwent a submaximal exercise 

test in a cycloergometer to determine their MFO and FATmax intensity during 

exercise. After 72 hours had elapsed, the participants returned in 2 further days 

(≥ 72 hours apart) and performed a 60 min steady-state exercise bout (i.e., cycling 

at their FATmax, constant intensity) after ingesting either 12 mg of DHC or 

placebo; these conditions were randomized. Respiratory gas exchange was 

monitored by indirect calorimetry. Serum markers concentrations (i.e., glucose, 

triglycerides, and non-esterified fatty acids (NEFAs), and skin temperature, 

thermal perception, heart rate and perceived fatigue were assessed.  

Results: There were no significant differences (P>0.05) between DHC and placebo 

conditions in the EE and FATox during exercise. Similarly, no significant changes 

were observed in glucose, triglycerides or NEFAs serum levels, neither in the 

skin temperature or thermal perception across conditions. Heart rate and 

perceived fatigue did not differ between conditions. 

Conclusion: Our findings do not support the use of DHC as a tool to further 

increase EE and FATox during exercise at FATmax in men with 

overweight/obesity. 
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BACKGROUND 

Poor nutritional habits, sedentarism and physical inactivity are among the 

foremost modifiable risk factors related to cardiovascular disease (CVD) and all-

cause mortality 1. Optimizing any of these components is key to improve 

cardiometabolic health and weight loss success in the long term 2. In this regard, 

the use of nutraceuticals and natural food ingredients aiming to increase energy 

expenditure (EE) and fat oxidation (FATox) has attracted a great deal of attention 

over the past decade, especially among overweight/obese individuals 3.  

The ingestion of capsaicin has been shown to elicit significant increases in 

EE and FATox in humans 4. Nonetheless, tolerance to capsaicin varies between 

individuals, and its ingestion in high doses could lead to pain, swelling, and 

gastrointestinal problems 5. Capsinoids, which include capsiate, dihydrocapsiate 

(DHC), and nordihydrocapsiate, are significantly less pungent chemical analogs 

of capsaicin 6. The ingestion of capsaicin and capsinoids activates the transient 

receptor potential vanilloid subfamily member 1 (TRPV1) in the gastrointestinal 

tract 7. In fact, ingestion of CH-19 sweet pepper, a capsinoid-rich variety of 

pepper, increases core body temperature 8,9 and oxygen consumption 8, which is 

likely to be explained by increased sympathetic nervous activity and 

catecholamines levels 9,10. The use of purified capsinoids has been suggested to 

yield similar effects, although this needs to be further examined 11–13.  

Given that endurance training programs effectively help in weight loss 

and maintenance, and cardiometabolic risk management in adults with 

overweight/obesity 14, the use of capsinoids as potential coadjutants to increase 

EE or FATox during exercise is of particular interest. Thus far, only one study has 

investigated  the effect of capsinoids ingestion on EE and FATox during aerobic 

exercise in healthy active young men, showing a lack of effect 15. Importantly, 

this study was conducted in normal-weight adults, yet it appears that capsinoids 

intake could enhance EE and FATox particularly in individuals with 

overweight/obesity 16. Therefore, we hypothesized that DHC ingestion could 

further increase the EE and FATox during an exercise bout designed to elicit 

maximal fat oxidation (MFO) in sedentary men with overweight/obesity. 

The aim of the present study was to investigate the acute effects of the 

ingestion of 12 mg of DHC (the highest dose approved by the European Food 

Safety Authority, EFSA), on EE and FATox during a bout of 60 min of aerobic 

exercise at FATmax intensity in men with overweight/obesity. As a secondary 

aim, we investigated the effects of DHC on other physiological parameters, such 

as blood markers, skin temperature, thermal perception, heart rate and perceived 

fatigue. 
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METHODS 

Study subjects and experimental design 

The current work was conducted within the framework of the ACTIFOX 

(ACTIvating Fat OXidation through capsinoids) study, a randomized, triple-

blinded, placebo-controlled, crossover trial designed to determine the effect of 

DHC on EE and FATox during aerobic exercise (ClinicalTrials.gov ID: 

NCT05156697). A total of 24 men with overweight or obesity (40.2 ± 9.2 years-

old, body mass index (BMI) >25 kg/m2) participated in the study. The caption 

flow of the participants to the ACTIFOX study is depicted in Fig. 1 

. 

  

Figure  1. Caption flow of the ACTIFOX study. 

Inclusion criteria were to be male and 18-55 years-old, to be sedentary (subjects 

reported <20 min moderate to vigorous physical activity on <3 days/week), to 

be non-smoker, not being under medication that could affect energy metabolism, 

and to have a stable body weight over the preceding 3 months (<3 kg change). 

Exclusion criteria were: having been diagnosed with diabetes, hypertension or 

any medical or cardiometabolic condition(s) that could interfere with or be 

aggravated by exercise, presenting a family history of CVD, to have an abnormal 



214 
 

214 
 

electrocardiogram, regular and high consumption of spicy foods, and being 

frequently exposed to cold temperatures (e.g., indoors/outdoors workspace with 

low-temperatures, such as cold-storage works, ski/snow monitors, etc.). All 

participants gave their written informed consent. The study protocol and design 

were approved by the Human Research Ethics Committee of the University of 

Granada (n°839/CEIH/2019) and the Servicio Andaluz de Salud and adhered to 

the tenets of the Declaration of Helsinki as revised in 2013. The study was carried 

out in Granada (Spain), from October 2019 to March 2020.  

Procedures 

Overall procedures 

Fig. 2 shows the overall-design of the study. Data for each participant were 

collected over 4 visits at the research centre within 3 weeks.  

Figure 2. Overview of the ACTIFOX study procedures. Abbreviations: DHC: dihydrocapsiate, DXA: dual 

energy X-ray absorptiometry test, MFO: maximal fat oxidation, VO2peak: peak oxygen consumption. 

 



215 
 

215 
 

Participants were asked to confirm having commuted to the research 

center by car, bus, tram, or motorcycle, having slept as usual, having refrained 

from stimulant beverages within 24 h, and having avoided any moderate or 

vigorous physical activity within 24 h and 48 h (respectively). Other specific pre-

experimental conditions were established for each visit are detailed in the 

following sections. 

Briefly, in the first visit, sociodemographic and lifestyle data were 

registered, a medical screening was performed, blood samples were collected, 

and anthropometry and body composition measures were taken. On the second 

visit, the MFO during exercise and cardiorespiratory fitness (VO2 peak) were 

respectively assessed through a submaximal exercise test coupled to a maximal 

effort test. On visits third and fourth, participants performed a 60 min steady-

state exercise bout on a cycloergometer at FATmax intensity (i.e., at the intensity 

at which MFO is elicited) after having ingested either 12 mg of DHC or placebo. 

The conditions (DHC or placebo) on visits 3 and 4 were randomized. The 

washout period between visits 3 and 4 was ≥72 h. Of note, all exercise tests took 

place at a strictly controlled temperature of 22-23 ºC, given that environmental 

temperature largely influences EE and FATox 17. 

Medical screening, sociodemographic data collection, and anthropometry and 

body composition assessments 

On the first visit, participants arrived at the research center at 08:00 h, in fasting 

conditions (8 h). They were informed about the study protocols and gave their 

oral and written informed consent to participate in the study. Sociodemographic 

data and details related to their dietary habits (including pungent consumption), 

appetite, physical activity levels, sleep, and other lifestyle habits were recorded 

by questionnaires. Dietary intake was assessed using a previously validated food 

frequency questionnaire (FFQ) and three 24 h-recalls undertaken on three non-

consecutive days, as previously described 18. Afterwards, a medical doctor 

conducted an anamnesis to ensure that each participant was in suitable physical 

conditions to participate in the study, and to perform exercise. Subsequently, 

participants underwent an electrocardiogram in resting conditions conducted by 

an expert medical doctor. Systolic and diastolic blood pressure were also 

measured with an automatic sphygmomanometer (Omrom M2; Omron 

Healthcare, Kyoto, Japan). Measurements were repeated in 3 consecutives 

occasions and the average systolic and diastolic blood pressure calculated. Only 

participants presenting a non-risk medical history and normal electrocardiogram 

were allowed to participate in the study. 

Blood samples were obtained from the antecubital vein in the morning 

(8.00–9.00 am), with subjects sat and in resting conditions. Blood samples were 
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collected in serum Vacutainer Tubes® (Vacutainer® SST™ II Advance tubes) and 

centrifuged following the manufacturer instructions. Afterwards, serum samples 

were sent to the hospital lab for the analysis of the analytes of interest.  

Anthropometry and body composition assessments also took place on the 

first visit. Body weight and height were measured (no shoes, light clothing) using 

a model 799 Seca scale and stadiometer (Seca, Hamburg, Germany). Waist 

circumference was assessed twice at the minimum perimeter area with a 

measuring tape (mm precision), and the mean value calculated. For those 

participants with abdominal obesity, waist circumference was measured just 

above the umbilicus (horizontal plane). Body fat mass and percentage, lean body 

mass and visceral adipose tissue (VAT) mass were then measured by whole-body 

dual-energy X-ray absorptiometry (HOLOGIC, Discovery Wi, Marlborough, 

MA). Body mass, lean mass, and fat mass indexes were calculated as kg/m2. 

Exercise tests 

On the second visit, individuals arrived at the research center, between 15:30 and 

19:00. Participants confirmed having met the above stated pre-experimental 

conditions, as well as to arrive in fasting conditions (5-6 h) and having carried 

out a standardized diet that they were instructed to follow during the previous 

day. Then, they emptied their bladders, dressed standardized t-shirts and shorts, 

and entered in a quiet, warm (22-23 °C) room. A submaximal-graded exercise test 

(to determine the MFO) plus a maximum effort test (used to reach the VO2peak) 

were performed employing an Ergoselect 200 cycle ergometer (Ergoline GmbH, 

Lindenstrasse, Germany). The exercise protocol, coupled to indirect calorimetry, 

started with a 3 min stage at 20 watts (W) as a warm-up, followed by increments 

of 20 W every 3 min, until respiratory exchange ratio (RER) was ≥1 at least for 30 

s (as determined by indirect calorimetry) 19,20. At this point, the maximal exercise 

protocol started (with no interruptions), implementing further increments of 20 

W every 1 min until (i) volitional exhaustion was reached, or (ii) participants had 

to stop because of peripherical fatigue. Of note, the cycling power values (W) at 

which MFO happened for each individual were used as the target exercise 

intensity (i.e., FATmax) for the subsequent steady-state tests. Through the 

exercise test, participants’ perceived fatigue was assessed using rating of the 

reported perceived exertion (RPE) scale, and heart rate was measured using a 

Polar RS800 heart-rate monitor (Polar Electro Inc., Woodbury, NY, USA). 

Respiratory gas exchange was monitored with a CPX Ultima CardioO2 system 

(Medical Graphics Corp., St Paul, MN) with a facemask model 7400 (Hans 

Rudolph Inc., Kansas City, MO), and a preVent™ metabolic flow sensor (Medical 

Graphics Corp.) 21. Oxygen consumption (VO2) was measured using a galvanic 

fuel cell and carbon dioxide production (VCO2) was assessed using a non-
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dispersive infra-red sensor 21. According to the manufacturer’s 

recommendations, the gas analyzer was calibrated using standard gas 

concentrations immediately before each test. Of note, an experienced medical 

doctor continuously monitored the hearth rhythm and electrical activity through 

the whole exercise test by means of an electrocardiogram, being the test stop if 

required by the doctor based on medical criteria.  

Steady-state exercise bout   

On the third visit (≥72 h after the second day), and on the fourth visit (≥72 h later 

after the third visit to avoid carry-out effects), participants came to the laboratory 

and underwent the steady-state tests after the ingestion of DHC or placebo, in a 

randomized order. Participants arrived at the same time than on the second visit, 

and confirmed having met exactly the same pre-experimental conditions. Fig. 3 

shows the design of the steady-state exercise tests.  

Figure 3. Overview of the steady-state exercise bouts. Abbreviations: DHC: dihydrocapsiate, DXA: dual 
energy X-ray absorptiometry test, MFO: maximal fat oxidation,VO2peak: peak oxygen consumption. VE: 
minute ventilation, RER: respiratory exchange ratio, RPE: rated perceived exertion, VCO2: volume of carbon 
dioxide production, VO2: volume of oxygen consumption. 
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Participants urinated, dressed in standard clothing, and entered in a quiet, 

warm(22-23 °C) room. A Polar RS800 heart-rate monitor was placed on their 

chest using a chest wrap band. Then, a set of 16 DS-1922 L iButtonTM wireless 

thermometers (Thermochron, Dallas, TX, USA) were attached to the subject's 

skin in different places to monitor skin temperature changes through the 

experiment. They were put on the forehead, left pectoralis, left elbow region, left 

index fingertip, left forearm, rear neck central area, right clavicula, right deltoid, 

right shinbone, right sub-clavicular area, right supra-clavicular area, right thigh, 

and upper breastbone. Afterwards, participants sat and stay relaxed for 10 min 

(resting period, timepoint -20´), time during which they were instructed not to 

move nor cross their arms and legs, and their baseline skin temperature and heart 

rate measures were taken.  

The first intravenous blood sample was collected 10 min before starting the 

steady-state test (timepoint -10’). Immediately 3 min after the first blood 

collection (timepoint -7’), participants ingested either 12 mg of DHC (4 pills 3 mg 

each one) or placebo. Then they sat in the cycloergometer where the steady-state 

tests would be performed, and they put on their faces a gas mask for the gases 

exchange measurement. The same metabolic cart than on the second visit was 

used. The gas collection started 1 min before the beginning of the steady-state 

test (timepoint -1’) with the participants sat in the cycle ergometer without 

pedaling. After 1 min of gases recording in resting conditions, the steady-state 

test at FATmax intensity started and continued (constant intensity) until the 

minute 60, moment at which the test finished. Gases exchange and heart rate 

were continuously monitored. At time points 15, 30, 45 and 60 min, blood 

samples were collected to determine serum levels of glucose, triglycerides, and 

non-esterified fatty acids (NEFAs). Simultaneously, participants completed the 

ASHRAE scale to record their thermal perception. Every 5 min, participants were 

asked to report their fatigue perception using RPE scales.  

Test substances: dihydrocapsiate and placebo  

We employed Capsiate Gold™ soft-gel capsules from Ajinomoto® (Ajinomoto 

Health & Nutrition North America, Inc, JP) These capsules consisted of 3 mg of 

purified DHC vehiculated with canola oil, modified corn starch, vegetable 

glycerin, carrageenan, water, disodium hydrogen phosphate and soy lecithin. 

Microcrystalline cellulose powder (Fagron Ibérica, Terrassa, SP) was used as 

placebo. Both DHC and hemicellulose were encapsulated by independent 

manufacturers, and put in different containers by an independent researcher (not 

involved in the current study). Each container was labelled with a different code 

(0 or 1) and, thus, evaluators were not aware of the administered substance – 

therefore preventing bias. Of note, both DHC and placebo capsules looked 
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exactly similar to unable the identification of the content by either researchers or 

participants.  

 

Outcomes 

MFO, FATmax and cardiorespiratory fitness 

Gas exchange data were obtained and exported from the metabolic carts Breeze 

Suite (8.1.0.54 SP7) software (MGC Diagnostics Corp.) to Excel for Windows. 

During the submaximal exercise test, VO2 and VCO2 data were averaged over the 

last 60 s of each 3 min stage 22, and FATox was estimated from these values by 

using Frayn stoichiometric equations 23 (shown below; urinary nitrogen excretion 

was assumed to be negligible) 24. The obtained FATox values (g/min) from the 

different stages of the submaximal exercise test were plotted against the relative 

exercise intensity (W). A third-degree polynomial regression was subsequently 

built to determine the absolute maximal fat oxidation (MFO, g/min). FATmax 

was calculated as a function of VO2peak (i.e., % VO2peak) by selecting the VO2 

value at the temporal moment at which MFO was elicited, and plotting this value 

against the estimated VO2peak, expressing it as a percentage. Maximal VO2 

(VO2max) was defined as a respiratory exchange ratio of ≥1.1, once a VO2 plateau 

was reached and having attained a heart rate values within 10 beats/min of the 

individuals’ age-predicted maximum (209-0.73×age) 25 during the maximal 

exercise test. However, participants did not achieve the VO2max criteria, and 

therefore VO2 peak was determined as the highest VO2 value that was not an 

artifact. This value was provided relative to body mass.  

Gases exchange parameters during steady-state tests 

Gas exchange data were downloaded and averaged every 1 min as above stated. 

Then, VO2 and VCO2 for each selected data point were used to estimate EE, RER, 

and nutrient oxidation rates – comprised of carbohydrate oxidation (CHOox) and 

FATox. EE was estimated using Weir's abbreviated equation 26. Frayn's 

stoichiometric equations 23 were used for estimating the CHOox and FATox. 

Urinary nitrogen excretion was assumed to be negligible, and therefore was not 

included in the formula 27. 

Energy expenditure (Kcal/min) = (1.106∗VCO2) + (3.941∗ VO2) 

RER = (VCO2/VO2) 

CHOox (g/min) = (4.55∗VCO2) – (3.21∗VO2) 

FATox (g/min) = (1.67∗VO2) – 1.67∗VCO2) 
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To calculate the EE variables that were used in the analyses, the 60 min-

duration steady stage was split into 5 min stages, and the average EE of each 

stage calculated. Therefore, a total of 12 mean EE values (one per each stage) were 

obtained. These values were used for the analyses examining the kinetics of EE. 

Next, the area under the curve (AUC, trapezoidal rule) and the AUC expressing 

it as a percentage of its baseline - AUC  (% baseline) - were calculated. The same 

procedure was followed to calculate the RER, CHOox, and FATox during the 

steady state test. The obtained parameters were used in the subsequent analyses.  

Serum parameters 

Serum glucose, NEFAs, total cholesterol (TC), high-density lipoprotein-

cholesterol (HDL-C), triglycerides (TG), and liver enzymes (alkaline phosphatase 

[ALP], gamma-glutamyl-transferase [GGT], and glutamate-pyruvate 

transaminase [GPT]) were assessed following standard methods using an 

AU5832 automated analyzer (Beckman Coulter Inc., Brea, CA, USA). Low-

density lipoprotein-cholesterol (LDL-C) was estimated as [TC – HDL-C – 

(TG/5)], with all units expressed in mg/dL 28. Serum insulin was measured using 

the Access Ultrasensitive Insulin chemiluminescent immunoassay kit (Beckman 

Coulter Inc., Brea, CA, USA). The homeostatic model assessment for insulin 

resistance index (HOMA-Index) was calculated as [insulin (μU/mL) × glucose 

(mmol/L)/22.5 29], whereas fatty liver index was calculated using a commonly 

used procedure 30. C-reactive protein was measured by an immunoturbidimetric 

assay using an AU5832 automated analyzer (Beckman Coulter Inc., Brea, CA, 

USA).  

 

Skin temperature  

A total of 16 iButtons® were attached to the skin in different spots (as 

previously explained). Skin temperature measurements during the steady-state 

were taken every 60 s using DS-1922 L Thermochron iButtons® (resolution: 

0.0625 ◦C) (Maxim, Dallas, USA) 31. The iButtons® programming, as well as the 

downloading and pre-processing of raw data were conducted using 

Temperatus® software 32. After conducting the experiment, data were 

downloaded every 60s for each iButton, in an csv file. Atypical data were 

eliminated by suppressing the time points for which the rate of change with 

respect to the previous value was higher than the interquartile distance between 

quartiles 1 and 3 for all data (percentiles 25 and 75, respectively; 33). Then, these 

data were divided in blocks of 5 min, and their average was calculated, obtaining 

12 mean values (one for each 5 min-block of the 60 min steady-state test). Finally, 

the overall mean 34, proximal 35, and distal skin temperatures were calculated 

using the Temperatus® software - see references 17,36 for further information. The 
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validity and reliability of this system have been established for the assessment of 

skin temperature in humans 33,37. The equations used (see below) have been 

described elsewhere 36. 

Overall mean skin temperature = (Forehead*0.07) + (Right Scapula*0.175) + (Left 

Chest*0.175) + (Right Deltoid*0.07) + (Left Elbow*0.07) + (Left Hand*0.05) + 

(Right Thigh*0.19) + (Right Gastrocnemius*0.2). 

Proximal skin temperature = (Right Thigh*0.383) + (Right Clavicular*0.293) + 

(Right Abdomen*0.324). 

Distal skin temperature = (Left Hand+Right Instep)/2 

Thermal perception 

Thermal perception was assessed using the scale from the American Society of 

Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), which is 

composed of 7 items in which subjects are asked about their thermal perception 

over the whole body and different body regions (the clavicular and abdominal 

regions, arms, hands, legs, and feet). Each scale´s item ranges from cold (-3), cool 

(-2), slightly cool (-1), neutral (0), slightly warm (1), warm (2), to hot (3). Shivering 

perception was measured using a numerical scale which ranges from 0 to 10, 

where 0 means “I am not shivering” and 10 means “I am shivering a lot”.  

Sample size 

Based on previous studies 38, a total of 12 participants per group would be needed 

to be able of establishing statistical differences between conditions (placebo vs. 

DHC) in EE (~10%) and FATox (~10-15%) in resting conditions (80% statistical 

power; α=0.05). Since this is a cross-over study - each participant serves as its 

own control - the minimum of participants required is n=12.  

Randomization  

Participants ingested DHC or placebo prior to the steady-state test in a 

randomized order. This randomization was performed with Excel's Data 

Randomizer Function (without blocking for any variable or imposing 

restrictions) by FJAG – who did not participate in the assessments nor 

experiments.  

Blinding 

The triple-blinding design consisted of: i) an independent third researcher (not 

directly involved in this study) conducted the encapsulation of both DHC and 

placebo in standard pills to unable the identification of the substance by either 

participants or researchers. These pills were named condition 1 or condition 2 
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pills; ii) none of the researchers involved in the experimental phases and 

assessments knew whether the condition 1 or 2 corresponded to DHC or placebo, 

neither did the participants; iii) during the data and statistical analyses, no one 

of the team members were aware of the content of conditions 1 and 2, except 

FAM, who was the coordinator of data analysis (i.e. data analysis was also 

blinded); v) only when all the statistical analyses were conducted and finalized 

by FJOP, the content of condition 1 and 2 pills was unveiled. 

Statistical analysis  

Descriptive statistics of the study subjects are shown as mean ± standard 

deviation. Data normality was assessed using the Shapiro-Wilk test, histograms, 

and Q-Q plots. The parameters that did not follow a normal distribution (i.e., 

gases parameters) were log10-transformed to achieve normal data distribution. 

Gases exchange parameters during aerobic exercise in the DHC vs. placebo 

condition were compared using T-test for paired samples. Linear mixed model 

analyses were used to examine the kinetics of gases exchange parameters during 

exercise after DHC or placebo ingestion. These analyses (i.e., paired T-tests and 

linear mixed models) were replicated with the serum analytes, skin temperature 

and thermal perception across conditions. The level of significance was set at 

P<0.05. The statistical analyses were performed using the Statistical Package for 

the Social Sciences v.26.0 (IBM Corporation, Chicago, IL, USA). GraphPad Prism 

version 8.0.0 (GraphPad Software, San Diego, CA) was used to plot the figures 

including respiratory exchange and blood parameters.  

 

RESULTS  

As shown in the Fig. 1, from the 32 subjects who were recruited from October 

2019 to February 2020 and completed the basal assessment and fulfilled the 

conditions after the medical check (i.e., they met the inclusion criteria and were 

therefore enrolled), 5 of them refused to continue because of problems with 

adhering to the time schedule and experimental conditions. Other 3 subjects were 

excluded after being randomized and undergoing the steady-state test, due to 

problems or abnormalities during these tests. Therefore, a final sample size was 

included for our main analyses (n=24), having all participants valid and complete 

gases exchange data collection. The sample size varied for the measures related 

to the secondary aim. The characteristics of the participants are shown in Table 

1.  
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Table 1. Descriptive data of the study subjects (n=24). 

  

 N Mean  SD 

Age (years) 24 40  9 

Anthropometry and body composition 

Body mass index (kg/m2) 24 31.6 ± 4.5 

Waist circumference (cm) 24 107.1 ± 11.1 

Lean body mass (kg) 24 58.1 ± 6.6 

Lean mass index (kg/m2) 24 19.0 ± 2.3 

Fat mass (kg) 24 33.7 ± 8.6 

Fat mass index (kg/m2) 24 11.0 ± 2.7 

Body fat percentage (%) 24 35.3 ± 4.9 

Visceral adipose tissue mass (g) 24 818 ± 320 

Fasting cardiometabolic profile 

Glucose (mg/dL) 23 94 ± 8 

Insulin (μIU/mL) 23 11 ± 6 

HOMA-index 22 2.6 ± 1.4 

GTP (IU/L) 23 33 ± 15 

GGT (IU/L) 23 42 ± 29 

ALP  (IU/L) 23 72 ± 21 

Total cholesterol (mg/dL) 23 201 ± 28 

HDL-C (mg/dL) 22 48 ± 9 

LDL-C (mg/dL) 22 130 ± 21 

Triglycerides (mg/dL) 23 129 ± 51 

Systolic blood pressure (mmHg) 24 126 ± 14 

Diastolic blood pressure (mmHg) 24 86 ± 11 

MFO, FATmax and cardiorespiratory fitness   

MFO (g/min) 24 0.24 ± 0.09 

MFO/LM (mg/kg/min) 24 4.05 ± 1.43 

FATmax (%VO2peak) 24 33 ± 7 

VO2peak (mL/min) 24 2845 ± 473 

VO2peak/lean mass (mL/kg/min) 24 30 ± 6 

 

Data are presented as mean and standard deviation (SD). ALP, alanine phosphatase, GGT: gamma-glutamyl 

transferase, GPT: glutamate-pyruvate transaminase, HDL-C: High density lipoprotein-cholesterol, HOMA: 

homeostatic model assessment, LDL-C: Low density lipoprotein-cholesterol, LM: lean mass, MFO: maximal 

fat oxidation, VO2: volume of oxygen.  
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Dihydrocapsiate ingestion does not increase energy expenditure or fat oxidation 

during aerobic exercise at FATmax intensity 

No differences across conditions were found in the AUC (% baseline) of EE, 

FATox and CHOox during exercise (Fig. 4; Panels A-C) (All P≥0.219).  

Figure 4. Effects of dihydrocapsiate ingestion on EE, FATox and CHOox during aerobic exercise at FATmax 

intensity in men with overweight/obesity (n=24). Panels A, B, and C show the total AUC (an indicator of 

the overall change) of the EE, FATox and CHOox in the placebo vs. dihydrocapsiate conditions; P values 

from paired t-test comparing AUC expressed as a percentage of its baseline. Panels D, E, and F show the 

kinetics of EE, FATox and CHOox across these conditions; P values from linear mixed model analyses. AUC: 

area under the curve, CHOox: carbohydrate oxidation, EE: energy expenditure, FATox: fat oxidation. In 

panels D, E and F, each single point (blue) or square (orange) represents the mean value of each 5 min period.  
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Figure 5. Effects of dihydrocapsiate on VO2, VCO2, RER, and VE during exercise in men with overweight/obesity 

(n=24). Panels A, B, C and D show the total AUC of VO2, VCO2, RER, and VE in the placebo vs dihydrocapsiate 

conditions; P values from paired t-test comparing AUC expressed as a percentage of its baseline. Panels E, F, G and 

H show the kinetics of VO2, VCO2, RER, and VE across these conditions. AUC: area under the curve, VE: minute 

ventilation, RER: respiratory exchange ratio, VCO2: volume of carbon dioxide production VO2: volume of oxygen 

consumption.  
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Additionally, when the AUC (% baseline) of more raw estimates (i.e., VO2, 

CO2, RER, or the minute ventilation (VE)) during exercise was examined, no 

differences were either observed across conditions (Figure 5; Panels A-D) (All 

P≥0.327). The kinetics of gases exchanges parameters showed that their values 

rapidly changed at the beginning (first 5 min) of the steady state (effect of time, 

P<0.001; Fig. 4, Panels D-F; Fig. 5, Panels E-H) but they remained stable from 

there on. Neither the condition nor the interaction condition*time had a 

significant effect on EE, FATox and CHOox (Fig. 4; Panels D-F) (All P≥0.216) nor 

on VO2, CO2, RER and VE (Fig. 5, Panels E-H) (All P>0.404). Results also revealed 

that the ingestion of DHC had no effect on heart rate (Fig 6, Panels A-B) or 

perceived fatigue (data not shown), confirming that all participants underwent 

the exercise test under steady state conditions.  

Figure  6. Effects of dihydrocapsiate on heart rate in men with overweight/obesity (n=24). Panel A shows 
the total AUC of heart rate in placebo vs. dihydrocapsiate conditions; P value from paired t-test comparing 
AUC expressed as a percentage of its baseline. Panel B shows the kinetics of heart rate across these 
conditions. AUC: area under the curve.  

  

Dihydrocapsiate ingestion does not affect blood parameters, skin temperature or 

thermal percept ion during aerobic exercise at FATmax 

The ingestion of DHC had no effect on serum levels of glucose, triglycerides or 

NEFA kinetics during exercise (Fig 7, Panels A-C) (All P≥0.192). Further, the 

kinetics of mean, proximal and distal skin temperatures during exercise were 

similar between DHC and placebo conditions (Fig 8, Panels A-C) (All P≥0.328), 

as was the case for the thermal perception of the participants in the whole body, 

hands, feet and abdominal areas (Fig. 9, Panels A-D) (All P≥0.724). 
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Figure 7. Effects of dihydrocapsiate ingestion on blood parameters during aerobic exercise at FATmax 
intensity in men with overweight/obesity. Panels A, B and C respectively show the kinetics of the serum 
levels of glucose (n=22), triglycerides (n=22), and NEFA (n=16) during exercise in the placebo vs. 
dihydrocapsiate condition. NEFA: non-esterified fatty acids. P values from linear mixed model analyses. 
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Figure 8. Effects of dihydrocapsiate ingestion on skin temperature during aerobic exercise at FATmax 
intensity in men with overweight/obesity. Panels A, B and C respectively show the kinetics of distal (n=22), 
proximal (n=17), and mean (n=18) skin temperatures during exercise in the placebo vs. dihydrocapsiate 
condition. Each single point (blue) or square (orange) represents the mean value of each 5 min period. P 
values from linear mixed model analyses. 
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Figure 9. Effects of dihydrocapsiate ingestion on thermal perception during aerobic exercise at FATmax 

intensity in men with overweight/obesity. Panel A, B, C and D respectively show the kinetics of thermal 

perception on body (n=17), hands (n=18), feet (n=18) and abdominal region (n=18). P values from linear 

mixed model analyses. 

 

DISCUSSION 

This study investigated the acute effects of 12 mg of DHC ingestion on EE and 

FATox during a 60 min steady-state exercise bout at FATmax intensity in men 

with overweight/obesity. DHC ingestion did not increase EE or FATox as 

compared with placebo and had no impact on the kinetics of serum levels of 

glucose, triglycerides, or NEFA. Similarly, DHC had no effect on skin 

temperature or temperature perception. These findings do not support the use of 

DHC to increase EE or FATox during aerobic exercise at FATmax intensity in 

men with overweight/obesity. 
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Our results concur with those reported by the previous study of Josse et 

al. 15. In this study, they tested the ingestion of 10 mg of capsinoids, consisting in 

a combination of capsiate, DHC, and nordihydrocapsiate (70:23:7 ratio, 

respectively), in 12 healthy young sedentary and lean men (24.3 ± 3 years old, 

BMI = 25.5 ± 2 kg/m2), at rest, during 90 min of cycling at 55% at VO2 peak, and 

for 30 min of recovery. Participants ingested capsinoids 30 min before to exercise. 

Despite the fact they showed that capsinoids increased EE and FATox at rest, 

there were no significant effects of capsinoids on these parameters during 

exercise or recovery vs. the placebo condition 15. Even though there were 

important differences regarding the participants characteristics and exercise 

protocols, the findings of Josse AR et al. agree with our results in terms of the 

absence of effects of capsinoids on EE, FATox, serum NEFA levels, heart rate and 

perceived fatigue during the exercise.  

On the other hand, in a cross-over study by Costa et al., it was 

demonstrated that the ingestion of 12 mg of capsinoids (capsiate) improved the 

time-trial performance (400 and 3000 m) in physically active men (28.6±5.4 years 

old, BMI~24.8) 39. Participants ingested either 12 mg of capsiate or placebo 45 min 

before the 400- or 3,000-meter running time trial. The time spent in completing 

the trial was significantly shorter in those participants who took the capsiate vs. 

those who took the placebo, but there were no statistical differences in the heart 

rate or RPE across conditions. Thus, it may happen that capsinoids are not likely 

to affect EE and FATox during low-intensity exercise activities, but they have an 

ergogenic role in aerobic exercises that majorly relies on glycolysis as main source 

of energy, yet the mechanisms are uncertain. However, capsinoids did not 

improve total time in completing a longer (10,000 m) running time trial 40. In this 

study, Von Ah Morano et al. evaluated the effects of 24 mg of capsiate or a 

placebo in a double-blinded crossover trial in 21 young and lean amateur male 

athletes (29.3 ± 5.5 years old, BMI~24). Participants ingested 24 mg of capsiate or 

placebo 45 min before starting the trial, but no differences were found across 

conditions for the time spent in the tests. Similarly, heart rate or RPE did not 

differ across conditions 40, which concurs with our results.  

Previous evidence has shown that capsinoids intake could enhance resting 

EE and FATox in humans, particularly in individuals with overweight/obesity 
16. Based on that, we hypothesized that capsinoids intake in combination with 

aerobic exercise at FATmax intensity would further increase the EE and FATox 

in men with overweight/obesity. Taken all the results together, it appears that 

capsinoids are not likely to increase EE nor FATox during low-intensity aerobic 

exercise, neither in lean nor obese populations – which may be explained because 

the relative fat oxidation during this lipolytic stimuli is already high (e.g., 

FATmax) and overshadows any additional contribution of capsinoids. To date, 
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the clinical potential of capsinoids to maximize the exercise benefits from a 

metabolic perspective is limited. Nevertheless, the role of capsinoids as ergogenic 

supplements in glycolytic-dependent aerobic exercise is still to be discerned.  

Last but not least, the knowledge about the metabolism and bioavailability 

of orally ingested capsaicinoids in rodents is well-documented, yet the 

pharmacokinetics of orally ingested capsinoids is poorly understood 41. There is 

solid evidence in humans of capsaicin ingestion increasing performance in 

aerobic and resistance exercises compared to placebo conditions 4. Indeed, orally 

ingested capsaicin is absorbed in the intestine and pass to the bloodstream 42, and 

thereby it can activates TRPV1 in peripheral muscles 4. The fact that orally 

ingested capsaicin can exert its TRPV1 agonism not only within the gut, but also 

in peripheral tissues, could be explained because capsaicin exerts a greater 

response than capsinoids in terms of metabolic and ergogenic effects 4. 

Contrarily, there is no evidence showing that capsinoids can actually pass into 

the bloodstream in humans after being orally ingested. Actually, plasma levels 

of capsinoids and their metabolite, vanillyl alcohol, were below the lower limit 

of quantitation after ingestion of soft gel capsules containing either 15 or 30 mg 

of capsinoids 43. In the light of the current evidence, the mechanisms by which 

capsinoids could increase EE and FATox - at least when capsinoids are orally 

ingested in doses below 30 mg- are likely to be explained by TRPV1 activation 

solely within the gastrointestinal tract 7,44. Whether the use of higher capsinoids 

doses or the implementation of systems can increase the bioavailability of 

capsinoids, and potentially EE and FATox remains to be elucidated.  

Strengths and limitations 

The main strengths of our study are: i) the study design (i.e., randomized, triple-

blinded, placebo-controlled, crossover trial); ii) a well-phenotyped cohort of men 

with overweight/obesity- a population in which capsinoids could exert a greater 

effect in terms of increasing EE and FATox 16 - and therefore have a bigger clinical 

potential; and iii) an accurate monitoring of EE and FATox during exercise, 

including blood sampling to compare the kinetics of energy substrates; iv) the 

fact that we employed the highest dose approved by the EFSA in order maximize 

the response elicited by DHC. However, our study also suffers from limitations: 

i) no women were included in the trial, so we cannot have any insight about the 

effects of capsinoids in female participants; and ii) our results cannot be 

extrapolated to those obtained with different exercise protocols (i.e., having a 

different exercise type, volume or intensity).  
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Future research  

There are no studies evaluating the effect or aerobic training interventions in 

combination with capsinoids supplementation on EE and FATox in humans. 

These studies are needed to unveil whether the chronic ingestion of capsinoids 

could provide additional positive effects in these variables or other health-related 

outcomes (e.g., weight loss or cardiometabolic health) in combination with 

aerobic exercise training. The inclusion of female participants in future studies is 

also mandatory, since to date no study has evaluated the effects of capsinoids 

during exercise in women. As estrogen and progesterone strongly influence the 

physiological responses to exercise, particularly FATox could be highly 

influenced by sex, and thereby the effects of capsinoids in women’ FATox could 

be significantly different.  

 

CONCLUSION 

Our results do not support the use of DHC for increasing EE or FATox during 

aerobic exercise at FATmax intensity in men with overweight/obesity. Further 

studies are needed to investigate if these results replicate in other populations 

and with other exercise types and intensities.  
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INTEGRATIVE DISCUSSION OF THE MAIN FINDINGS   

The present International Doctoral Thesis aimed to understand the impact of 

exercise and bioactive ingredients on novel CMR factors and energy metabolism 

in adults. The findings from the studies included in the Section I revealed that 

plasma succinate levels might be a promising novel CMR marker in young, 

sedentary adults, yet succinate levels were not modified after a 24-week of an 

exercise training program. On the other hand, in Study II we demonstrated that 

acute exercise impacts plasma levels of BA - which also have been proposed as 

novel CMR markers  1 - and that these levels rapidly decreases after a bout of 

exercise in an exercise-type specific manner in young, sedentary adults. Notably, 

individuals with higher CRF levels showed a unique response of primary BA CA 

and CDCA after EE that seems to be reflective of their better health status in 

comparison to their low CRF levels counterparts (Study II). Overall, the results 

from Section II do not support the ingestion of bioactive ingredients for 

increasing human BAT volume and/or activity in healthy adults, except for 

capsinoids (Study III). Nonetheless, strong scientific evidence from rodent 

models supports the use bioactive ingredients to activate BAT and promote WAT 

browning and thus to potentially combat obesity and cardiometabolic disorders 

(Study IV). Finally, in Study V we evaluated the effect of dihydrocapsiate during 

endurance exercise, concluding that the ingestion of dihydrocapsiate does not 

increase EE or FATox during aerobic exercise at FATmax intensity in men with 

overweight/obesity.  

 
Impact of exercise on novel markers of cardiometabolic risk in young adults 

The world is witnessing an alarming increase in the incidence of cardiometabolic 

diseases across young and middle-aged adults 2,3 . This situation calls for the 

identification and implementation of novel CMR markers for identifying 

individuals at higher risk of developing cardiometabolic diseases and 

establishing adequate prevention and treatment strategies 4–6. Recent advances 

in omics techniques have led to the identification of novel circulating markers 

associated with CMR risk, yet only a small fraction have the potential of 

becoming important diagnostic tools in clinical practice 7,8.  

Circulating succinate has aroused as a novel CMR marker in middle-aged 

adults, accumulating strong evidence that support its implementation in the 

clinical practice because of its unique metabolic properties 9. However, whether 

plasma succinate levels could serve as a novel CMR marker in young individuals 

has not been addressed. Findings form Study I revealed that individuals with 

higher succinate levels had higher levels of traditional CMR makers, such as 

visceral adipose tissue (VAT) mass, triglycerides, C-reactive protein, and 

diastolic blood pressure, and higher levels of novel CMR makers such as pro-
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inflammatory omega-6 oxylipins than individuals with lower succinate levels, 

suggesting that it might be useful as a novel clinical tool to identify young 

individuals at higher CMR risk. Nowadays, cross-sectional imaging with 

magnetic resonance image (MRI) or DXA are the reference standard for VAT 

quantification 10,11, while plasma oxylipins are typically determined by (LC- 

MS/MS) 11. None of these techniques are implemented in the clinic as routine 

assessments because they present a relatively high-cost, require qualified 

personal to handle the instruments and are time-consuming procedures. In this 

sense, succinate levels can be easily measured through colorimetric assays and 

even be included in the automatized blood analytics of clinics and hospital, 

which could provide a valuable proxy of VAT levels and inflammatory status of 

the individuals. Indeed, since higher levels of circulating omega-6 oxylipins have 

shown to be indicative of subclinical inflammation even before observed changes 

to classic pro-inflammatory cytokines 12, the implementation of the assessment of 

plasma succinate levels on a daily basis could help to improve the evaluation and 

stratification of the inflammatory status of individuals.  

Previous studies have shown that diet and surgical weight interventions 

lead to a decrease of plasma succinate levels 13,14. In the light of these results, we 

hypothesized that a 24-weeks exercise-intervention program would reduce on 

plasma succinate levels in a similar fashion. However, plasma succinate levels 

were not modified after 24-weeks of exercise. These finding findings concur with 

unpublished data from our group that shows that the levels of traditional CMR 

markers such as glucose, total cholesterol or LDL-C were neither reduced after 

24-weeks exercise in the same cohort of young individuals. In fact, similar studies 

in in relatively healthy adults have retrieved similar results 15–17. Hence, we 

believe that the lack of impact of exercise training on plasma succinate levels 

might be related to the young age and relatively healthy status of our 

participants. Nevertheless, several studies have demonstrated that a single bout 

of endurance or resistance transiently increases circulating succinate levels 18. 

Actually, it seems that succinate response to exercise is reflective of an improved 

glucose metabolism of the individuals, since the peak in circulating succinate 

measured in the muscle femoral vein during EE was strongly associated with 

insulin sensitivity post-exercise in young healthy adults 19. In line with this, the 

increases in plasma succinate levels were associated with a better glucose and 

insulin response during a mixed-meal tolerance test (MTT) 13. Altogether, the 

integrated information derived from the succinate response to acute 

physiological stimuli, such as exercise and MTT, seems to be reflective of the 

cardiometabolic status of the individuals. Future studies are needed to determine 

the validity of succinate levels as novel CMR marker and the impact of acute 

exercise on young individuals.  
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Similar to succinate, several studies have shown that higher levels of circulating 

BA are linked to an increased risk of obesity and a higher incidence of T2D 20. 

Results from our research group has demonstrated, for the first time, that plasma 

levels of BA are associated with higher levels of CMR makers in young and 

relatively healthy adults 1. However, whether exercise can modulate circulating 

levels of BA remains unexplored. To gain more insights into this topic, in Study 

II we investigated the acute effects of EE and RE on plasma levels of BA in young, 

sedentary adults. We found that a single bout of exercise rapidly decreases 

plasma levels of BA in an exercise-type specific manner in young, sedentary 

adults. Surprisingly, those individuals with higher CRF levels showed a unique 

increase in plasma levels of the primary BA CA and CDCA 120 min after EE that 

seems to be reflective of their better health status in comparison to their low CRF 

levels counterparts. These findings suggest that the response of circulating levels 

of BA to EE response are linked to the cardiometabolic status of the individuals. 

Similar to succinate, unpublished data from our group concluded the same 24-

weeks exercise-intervention of Study I did not modify plasma levels of BA in this 

population, which strengthens the idea that exercise training interventions do not 

impact circulating levels of these novel CMR markers in young and relatively 

healthy populations. The integrative view of the findings of Study I and Study 

II highlights the clinical relevance of studying of the acute effects of exercise on 

circulating levels of novel CMR markers such as succinate and BA in young 

individuals, as they might be reflective of the cardiometabolic status of the 

individuals. Finally, exercise training interventions appears not to have an 

impact on the circulating levels of these CMR markers in young and relatively 

healthy individuals. Further studies are needed to determine whether the 

implementation of these type of acute exercise studies may serve to identify 

individuals at high risk of developing cardiometabolic disease and to evaluate 

the response of these individuals to therapeutic interventions, such as exercise 

and diet interventions  21,22.  

Given that gut microbiota is a source circulating succinate levels and plays 

a role in the BA metabolism 23,24, we included fecal microbiota diversity and 

composition analyses in both Study I-II. Nonetheless, we found no association 

between plasma succinate levels and succinate-producing or succinate-

consuming bacteria in Study I and neither in the fecal microbiota composition 

between individuals with low and high CRF levels in Study II. It is important to 

consider that fecal microbiota and composition is highly variable between 

individuals 25 and thereby, the results from Studies I-II should be interpreted 

with caution. Further research is warranted to unveil whether gut microbiota 

composition is a contributor of succinate circulating levels and whether it 

impacts the acute exercise response of circulating BA in humans.  
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Impact of bioactive ingredients and exercise on energy metabolism in humans  

Bioactive ingredients counteract obesity and cardiometabolic diseases by 

targeting different pathways that lead to increases in energy expenditure and 

reduction of circulating glucose and/or lipid levels 26. Hence, the use of bioactive 

ingredients for the activation of BAT and promotion of WAT browning could 

yield extra benefits beyond the increase in energy expenditure, constituting a 

promising tool to treat obesity and cardiometabolic diseases 27.  

 

In Study III, we analysed human studies that investigated the effect of 

both acute and chronic ingestion of bioactive ingredients on BAT activity. 

Capsinoids, tea extract catechins and ephedrine where the most studied bioactive 

ingredients. However, capsinoids were the only bioactive ingredient that 

increased BAT activity in terms of a significant increase of 18F-FDG uptake, yet to 

a lesser degree than cold exposure 28. Although it seems plausible to activate 

human BAT through the ingestion of certain bioactive ingredients in healthy 

adults, the current level of evidence precludes us from drawing firm conclusions. 

Remarkably, none of these studies were conducted in individuals with 

cardiometabolic complications. In this regard, a recent study demonstrated that 

1-month of berberine supplementation increased BAT mass and activity, reduced 

body weight, and improved insulin sensitivity in mildly overweight patients 

with non-alcoholic fatty liver disease 29. Thereby, future bioactive ingredients 

intervention studies should focus on populations with overweight/obesity and 

cardiometabolic complications. Study III also revealed a lack of evidence-based 

systematic consensus on which bioactive ingredients could be the most effective 

for increasing BAT activity and/or WAT browning in humans. This fact set up 

the rationale of Study IV, where we analysed rodent studies that evaluated the 

effects of bioactive ingredients on the activation of BAT and promotion of WAT 

browning. We found that the most studied bioactive ingredients were tea extract 

catechins, capsaicin and capsinoids, cacao flavanols, and quercetin. Collectively, 

the results of Study III-IV support the use of capsinoids and tea extract catechins 

as potential activators of BAT and WAT browning. Moreover, most of the studies 

included in Study IV were conducted in diet—induced obesity models, and a 

posterior analysis of the effects of bioactive ingredients in CMR markers revealed 

that the increase in BAT activation and/or WAT browning was accompanied by 

improvements in cardiometabolic health. Hence, future bioactive ingredients 

intervention studies should focus on individuals with obesity and 

cardiometabolic diseases. Further, from a mechanistic point of view, Study IV 

indicated that AMPK and SIRT1 upregulation were linked to the activation of 

BAT and promotion of WAT browning, which concurs with the finding from 

previous studies 30,31. Since both AMPK and SIRT1 are considered therapeutic 

targets in cardiometabolic diseases  32,33, and given the potential role of BAT in 

the promotion of cardiometabolic health in humans 34, targeting these pathways 
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to co-activate BAT and WAT browning by using a synergistic combination of 

bioactive ingredients is still a promising strategy to combat obesity and 

cardiometabolic disorders in humans.  

 

Impact of bioactive ingredients and exercise on energy metabolism  

Some of the bioactive ingredients identified in Study III and Study IV, like 

capsaicin and capsinoids, also seems to enhance exercise performance in humans 
35,36. Among these bioactive ingredients, capsinoids were the only bioactive 

ingredients identified in Study III and Study IV that proved to activate BAT and 

to improve exercise performance in both rodent and human models 35,37,38. 

However, the aforementioned studies were conducted exclusively in lean and 

trained individuals, but not in individuals at risk of developing cardiometabolic 

diseases, such as sedentary individuals with overweight/obesity 39. This 

prompted us to conduct Study V to investigate whether dihydrocapsiate 

ingestion, a type of capsinoid, could further increase energy expenditure and fat 

oxidation during endurance exercise at FATmax intensity in men with 

overweight/obesity. Contrary to our results, dihydrocapsiate ingestion did not 

increase energy expenditure or fat oxidation. However, these results are not 

extrapolable to other types (i.e., running) and intensities of endurance exercise 

(higher than FATmax intensity) in which capsiate have demonstrated to improve 

exercise performance 40. Future acute and chronic capsinoids studies are needed 

to confirm whether capsinoids ingestion could enhance the benefits of exercise in 

individuals with obesity and cardiometabolic diseases.  

Interestingly, results from Study IV suggest that the mechanism of action 

of capsinoids involves the activation of a TRPV1 channels in the gastrointestinal 

tract 41,42. TRP channels are ubiquitously expressed and they act as transducers 

for a wide range of both physical and chemical stimuli 43. In addition to TPRV1, 

other TRP channels such as TRPA1 and TRPM8 are involved the regulation 

energy expenditure and body weight regulation 44. Recent and accumulative 

evidence suggest that TRP channels are in fact involved in the pathogenesis of 

obesity and cardiometabolic disorders,  and are considered as promising 

therapeutic targets in the treatment of obesity and cardiometabolic diseases 45. 

The existence of various types of TRP also raise the possibility synergistic 

strategies to activate two or more types of TPR simultaneously. Indeed, a recent 

study evaluated the anti-obesity potential of a combination capsaicin (TRPV1 

agonist), menthol (TRPM8 agonist), and cinnamaldehyde (TRPA1 agonist) for 12-

weeks in high-fat diet (HFD)-fed mice 46. The TRP treatment resulted in activation 

of BAT and promotion WAT browning and was accompanied the prevention of 

the increase in body gain together with an improvement in glucose homeostasis 
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46. Similarly, TRP activation through bioactive ingredients could be used in 

study-designs like Study V. Regarding TPR and exercise, TRP agonism has 

shown to be effective for improving thermal perception 47 and to prevent as 

cramps during exercise 48.  Thereby, future studies targeting TRP channels 

through some of the bioactive ingredients identified in Study IV are strategies of 

interest to increase energy expenditure and improve cardiometabolic status and 

could help to increase the metabolic benefits of exercise and exercise 

performance.   

 
General limitations  

The studies included in this International Doctoral Thesis should present several  

limitations that should be acknowledged: 

• The cross-sectional design of Study I precludes the establishment of any 

cause-effect between plasma succinate levels and the circulating levels of 

classic and novel CMR markers.  

 

• Studies I-II were carried out in young, sedentary, and relatively healthy 

adults. Thereby, the results from these studies are not extrapolable to older 

populations (i.e., middle-aged, elderly) or those with obesity or 

cardiometabolic diseases. 

 

• Fecal microbiota diversity and composition parameters are highly 

variable between individuals 25. Therefore, the results from Studies I-II 

should be interpreted with caution 

 

• The BAT assessments of Study I, Study II and part of the studies included 

in Study III were performed using 18F-FDG uptake as marker of BAT 

activity. Although 18F-FDG uptake is the current gold-standard for BAT 

quantification, it also has limitations in the assessment of BAT metabolic 

activity and volume 49.  

 

• The differences in the composition of bioactive ingredients, ethnicity, and 

the lack of control of the seasonality effect of the studies include in Study 

III difficulted its inter-study comparison.  

 

• Similarly, the differences in the composition of bioactive ingredients, dose, 

and assessments of BAT activity and/or WAT browning difficulted inter-

study comparison and interpretation of the results of Study IV.  
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• The systematic search in Study III and Study IV was as exhaustive and 

precise as possible; however, due to the heterogenicity of the term 

“bioactive ingredient” and its synonyms,  and the problems related to the 

heterogenicity in the indexing of these studies in PubMed and Web of 

Science, it was virtually impossible including all the studies analysing the 

effects of bioactive ingredients on BAT activity and/or WAT browning in 

rodent and human models.  

 

• Study V was conducted in middle-aged adults with overweight/obesity. 

Whether these results are transferable to populations of different age-

range and cardiometabolic status, sex, or whether are replicable upon 

different exercise type (i.e., running) and intensities (i.e., higher than 

FATmax) should be addressed in future studies.  
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SPECIFC CONCLUSIONS  

 
The present International Doctoral Thesis aimed to evaluate the impact of 
exercise on novel CMR markers (Section I) and the impact of bioactive 
compounds and exercise on energy metabolism (Section II). The specific 
conclusions derived from the studies included in each of the abovementioned 
sections are presented below. 
 

Section 1: Impact of exercise on novel cardiometabolic risk markers 

• Plasma succinate levels are linked to a specific pro-inflammatory omega-

6 signature pattern and higher visceral adipose tissue levels, and might be 

useful as a novel clinical tool to identify young individuals at higher 

cardiometabolic risk. Further prospective studies are needed to confirm 

its clinical relevance and predictive value as a cardiometabolic risk maker 

(Study I). 

 

• A 24-week supervised exercise training intervention does not modify 

plasma succinate levels in young, sedentary adults. This could be 

explained because succinate levels are already in within relatively normal 

ranges, or because our exercise intervention did not affect the mechanisms 

that contribute to the elevation of plasma succinate levels (Study I).  

 

• A bout of exercise rapidly decreases plasma levels of BA in an exercise-

type specific manner in young, sedentary adults (Study II). 

 

• Individuals with higher CRF levels showed an increase in plasma levels 

of the primary BA CA and CDCA above their baseline levels at 120 min 

after EE. These increases in CA and CDCA after EE seems to be reflective 

of the better health status of these individuals in comparison to their low 

CRF levels counterparts (Study II). 

Section 2: Impact of bioactive ingredients and exercise on energy metabolism  

• The current level of evidence does not support the ingestion of bioactive 

ingredients for increasing human BAT volume and/or activity in healthy 

adults. Future studies warranted to understand whether bioactive 

ingredients can activate BAT in humans (Study III). 

 

• There is strong scientific evidence supporting the use of bioactive 

ingredients to activate BAT and promote WAT browning and thus to 

potentially combat obesity and cardiometabolic disorders in rodents. The 

most studied bioactive ingredients in rodent are extract catechins, 
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resveratrol, capsaicin and capsinoids, cacao extract flavanols, and 

quercetin (Study IV). 

 

• The molecular mechanism by which bioactive ingredients activate BAT 

and promote WAT browning seems to involve the activation of the AMP-

activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways (Study 

IV). 

 

• Acute ingestion of 12 mg of does not increase energy expenditure of fat 

oxidation during endurance exercise at FATmax intensity in men with 

overweight/obesity and neither impacts the circulating levels of glucose, 

triglycerides, or non-esterified fatty acids (Study V).  

 

GENERAL CONCLUSION 

 

In summary, the present International Doctoral Thesis provides new insights into 

the impact of acute and long terms effects of exercise on circulating levels of novel 

CMR markers. Furthermore, the use of bioactive ingredients is a promising 

strategy to activate brown adipose tissue in individuals with obesity and 

cardiometabolic diseases, while their beneficial effects during exercise remains to 

be further explored. 
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FUTURE PERSPECTIVES  

• Study I: 

 

o Prospective studies are needed to confirm the succinate clinical 

relevance and predictive value as a CMR marker, an whether other 

type of exercise interventions could have an impact on plasma 

succinate levels.  

 

o Future studies should investigate the impact of acute endurance 

and resistance exercise on plasma succinate levels and evaluate 

whether they are associated with the metabolic status of the 

individuals in both healthy and unhealthy individuals.  

 

• Study II:  

 

 

o The pool of bile acids measured in future studies should be also 

standardized (i.e., measuring primary, secondary, and both 

conjugated and unconjugated species of BA) in order to allow 

comparisons between individuals bile acids and its different gluco- 

and tauro-conjugated forms.  

 

o Studies comparing healthy individuals vs. individuals with 

cardiometabolic complications are warranted to confirm whether 

the plasma BA levels response to exercise is actually associated 

with the metabolic status of the individual, and which mechanism 

are involved in their regulation. 

 

o Given that plasma bile acids levels seem to be sex-dependent, it 

remains to be explored the impact of sex on the acute response of 

plasma bile acids to exercise.  

 

• Study III:  

 

o Future acute and chronic studies evaluating the effects of bioactive 

ingredients must be conducted in individuals with obesity and 

cardiometabolic complications.  

 

o There is a total lack of information on the effect of the bioactive 

ingredients at the molecular level in BAT and WAT that should be 

considered in future studies (i.e., subcutaneous and visceral 

adipose tissue biopsies, brown adipose tissue biopsies).  
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• Study IV: 

 

o Despite mRNA/protein ratio is thought to be constant 88, it could 

vary depending on specific tissues and genes. Thus, future studies 

should include UCP1 protein assessments in their analysis to 

enable inter-study comparison at UPC1 levels.  

 

o To gain more insight into the mechanism driving the effects of 

bioactive ingredients, future studies should include unbiased 

approaches (e.g., RNA sequencing and proteomics) in the analysis 

of thermogenic pathways.  

 

• Study V:  

 

o Studies evaluating the effect of aerobic training interventions in 

combination with capsinoids supplementation on energy 

expenditure and fat oxidations are warranted.  

 

o As both estrogen and progesterone levels strongly influence fat 

oxidation in humans, future studies must be conducted in female 

individuals to evaluate whether the previous results in men are 

replicated.  

 

o Finally, given the wide list of bioactive ingredients with 

thermogenic and potential ergogenic properties, future studies 

must consider evaluating the effects of other bioactive ingredients 

and the explore whether it could exist synergic effects when 

combining two or more than two in the same extract. 
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