UNIVERSIDAD DE GRANADA Programa de Doctorado en Estadística Matemática y

Aplicada

Tesis Doctoral

Modelos lineales multivariantes en

espacios de funciones

Felícita Doris Miranda Huaynalaya

Tesis supervisada por Prof. María Dolores Ruiz Medina

Granada, febrero, 2022

Editor: Universidad de Granada. Tesis Doctorales Autor: Felícita Doris Miranda Huaynalaya ISBN: 978-84-1117-302-5 URI: <u>http://hdl.handle.net/10481/74570</u>

Agradecimientos

Esta tesis es el resultado de mis estudios llevados a cabo en la Universidad de Granada, gracias a la financiación del Programa Nacional de Innovación para la Competitividad y Productividad para becarios de Doctorado en el extranjero de Innóvate Perú.

Primero, quiero agradecer a mi directora María Dolores Ruiz Medina (Lola) por enseñarme a investigar, por introducirme a este mundo de la investigación, por tu tiempo, por tu paciencia, por confiar en mi desde el máster, sin tu ayuda no hubiera podido ni escribir un artículo, por tu esfuerzo sin importar el día u hora para poder lograr terminar esta tesis. Gracias por compartir esta pasión que es la investigación que ahora es parte de mi vida, por animarme a seguir adelante cuando más lo necesitaba. Eres una gran mujer e investigadora admirable, a quién admiro y respeto, un modelo a seguir. Es mi mentora y espero llegar algún día ser como ella.

Segundo, dar las gracias infinitas al Instituto de Matemáticas de la Universidad de Granada IMAG, que ha sido mi segundo hogar, donde se me proporcionó un buen ambiente de trabajo para poder investigar y desarrollar todos los trabajos logrados en esta etapa de investigación para poder terminar la tesis. En especial al director Joaquín Pérez quien siempre me ha apoyado, así como también José y Magdalena por estar siempre pendientes de mí. A mis amigos: Fátima, Beatriz, Jose, Marcos, Alejandro, Eddygledson, Sebastian, Esko por los buenos momentos que hemos compartidos y en especial las tardes de café en la terraza del IMAG, por hacerme sonreír cuando me veían triste, por el gran soporte emocional y por motivarme en todo este proceso. También por los gratos momentos compartidos Adelia, Mohamed, Antonio, Álvaro, Salah y a todos los amigos del IMAG. También, agradezco al Departamento de Estadística e Investigación Operativa, por su apoyo durante todo este tiempo y a mis compañeros del doctorado. Gracias infinitas a Catalina y su familia por recibirme, y por todo su apoyo.

Tercero, a mis amigos(as) de Química Analítica, que me adoptaron desde el inicio en esta aventura doctoral, mi gran amiga Alegría, Jordi, Santiago, Lucía, Teresa, Adil, Romina, Marta, Elena y Carlos, por tantos momentos compartidos en el seminario y la becaría, por su apoyo incondicional que han sido mi soporte en todo momento. A mis amigas hermanas: Nayla, Sofía, Claudia, Lyghia, Coro, Fernanda, Bogi, Sara, Estela, Carmen, María, Aránzazu, Esther, Margarita, Editha, Raquel, Miriam, Regina, Josefina, Fabiola, Vanessa, Andrea y Diana que han sido mis compañeras y amigas incondicionales que me han apoyado emocionalmente en todo este largo periodo y en especial a mi amiga Pilar que me ha apoyado siempre y sin olvidar a todos(as) los amigos(as) que he conocido durante todo este periodo y siempre los tengo en mi corazón. Gracias David por tu constante apoyo emocional y motivación, a pesar de la distancia. No podía olvidar de agradecer por motivarme a emprender en esta aventura y por sus valiosos consejos a Gutty, Arturo, Jorge y Paola, y a todos mis amigos de la PUCP, en especial a los de Ciencias. Un agradecimiento muy especial a Óscar por estar siempre presente y apoyándome en todo.

Por último y el más importante, agradecer a mi familia que me apoya siempre en cada decisión que tomo, aunque la distancia sea muy larga la comunicación ha sido fundamental para no caer emocionalmente porque la etapa del doctorando es como la montaña rusa. Esta tesis se la dedico a mis padres Amador y Esperanza por educarme, por enseñarme ser arriesgada, por sus consejos que no existe límite ni obstáculos para lograr tus sueños, por motivarme a seguir adelante, a mis hermanos Miguel, Hanmer, Gaby, Nilton y Edson por apoyarme y compartir cada momento a pesar de la distancia, a mis sobrinos(as): Salomé que pronto inicia su aventura universitaria, Kiara, Fabrizio, Maryed, Gadiel, Myriam y Matheo a quienes quiero mucho y son mi alegría de cada día, y a mis cuñadas. En especial a mi Mamá Juana (abuela) que soy aventurera como ella y a mi abuelo Demetrio Huaynalaya que es mi ángel desde que empezó la pandemia, y, a toda la familia y amigos que ya no están y se unieron a mi abuelo, ellos han velado, cuidado y fortalecido en esta última etapa. Gracias a tíos(as) y primos(as) por apoyarme siempre y estar pendiente de mi en todo momento.

Índice general

A	grade	ecimientos	Ι
\mathbf{Li}	sta d	le figuras	IV
\mathbf{Li}	sta d	le tablas	XI
1.	Intr	oducción	1
2.	Mo	delos FANOVA Multivariantes	9
	2.1.	Introducción	9
	2.2.	El Modelo de efectos fijos multivariante Hilbert-valuado	10
	2.3.	Componentes Funcionales de la Varianza de FANOVA	14
		2.3.1. Funciones generadora de momentos de los componentes de la	
		varianza	17
		2.3.2. Funciones características de los componentes de la varianza	18
	2.4.	Modelo de efectos fijos multivariante Hilbert–valuado con término de	
		error $ARH(1)$	21
	2.5.	Comentarios finales	27
3.	Reg	resión funcional con regresores tipo núcleo y errores correlados	29
	3.1.	El modelo	34
	3.2.	Estimación de parámetros de regresión funcional	43
		3.2.1. Normalidad asintótica	45
		3.2.2. Consistencia fuerte	46
	3.3.	Implementación práctica	48
	3.4.	Estudio de Simulación	51

	3.5.	Aplica	ción	55
	3.6.	Come	ntario final	59
	3.7.	Apéno	lice 1: Estudio de Simulación	61
		3.7.1.	Modelo 1	61
		3.7.2.	Modelo 2	68
		3.7.3.	Modelo 3	71
		3.7.4.	Modelo 4	79
		3.7.5.	Modelo 5	88
		3.7.6.	Modelo 6	95
	3.8.	Apéno	lice 2: Aplicación de datos reales	103
		3.8.1.	Aplicación de datos reales. Principales pasos	103
		3.8.2.	Endeudamiento medio de la empresa por comunidad, y apalan-	
			camiento suavizado Beals, mapas	110
		3.8.3.	Errores LOOCV para diferentes órdenes de truncamiento	115
		3.8.4.	Mapas de error LOOCV para $k_N = 1$	119
4.	Reg	gresión	Bayesiana funcional dinámica versus regresión espectra	l
4.	Reg espa	gresión acial d	Bayesiana funcional dinámica versus regresión espectra e curvas	l 121
4.	Reg espa 4.1.	gresión acial d Introd	Bayesiana funcional dinámica versus regresión espectra e curvas .ucción	121 122
4.	Reg espa 4.1. 4.2.	gresión acial d Introd Regres	Bayesiana funcional dinámica versus regresión espectral e curvas ucción	121 122 126
4.	Reg espa 4.1. 4.2.	gresión acial d Introd Regres 4.2.1.	Bayesiana funcional dinámica versus regresión espectral e curvas ucción	121 122 126 129
4.	Reg espa 4.1. 4.2.	gresión acial d Introd Regres 4.2.1. 4.2.2.	Bayesiana funcional dinámica versus regresión espectral e curvas ucción	121 122 126 129 132
4.	Reg espa 4.1. 4.2.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq	Bayesiana funcional dinámica versus regresión espectral e curvas ucción	121 122 126 129 132 133
4.	Reg espa 4.1. 4.2. 4.3.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1.	Bayesiana funcional dinámica versus regresión espectral e curvas aucción	122 122 126 129 132 133 138
4.	Reg espa 4.1. 4.2. 4.3. 4.4.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1. Anális	Bayesiana funcional dinámica versus regresión espectral e curvas aucción	l 122 126 129 132 133 138 138
4.	Reg espa 4.1. 4.2. 4.3. 4.4.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1. Anális 4.4.1.	Bayesiana funcional dinámica versus regresión espectral e curvas aucción	l 122 126 129 132 133 138 139 139
4.	Reg espa 4.1. 4.2. 4.3. 4.4.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1. Anális 4.4.1. 4.4.2.	Bayesiana funcional dinámica versus regresión espectral e curvas ucción	l 122 126 129 132 133 138 139 139 144
4.	Reg espa 4.1. 4.2. 4.3. 4.4. 4.5.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1. Anális 4.4.1. 4.4.2. Come	Bayesiana funcional dinámica versus regresión espectral e curvas ucción sión dinámica funcional múltiple bajo un enfoque Bayesiano Predictor funcional Bayesiano Algoritmo de estimación 1 ue de regresión múltiple funcional espacial en el dominio espectral Algoritmo de estimación 2 is de incidencia de COVID-19 español Algoritmo de estimación uno Algoritmo de estimación dos	l 122 126 129 132 133 138 139 139 144 148
4.	Reg espa 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1. Anális 4.4.1. 4.4.2. Come: Apéno	Bayesiana funcional dinámica versus regresión espectral e curvas ucción sión dinámica funcional múltiple bajo un enfoque Bayesiano Predictor funcional Bayesiano Algoritmo de estimación 1 ue de regresión múltiple funcional espacial en el dominio espectral Algoritmo de estimación 2 uis de incidencia de COVID-19 español Algoritmo de estimación uno Algoritmo de estimación dos Algoritmo de estimación dos Algoritmo de estimación dos	l 122 126 129 132 133 138 139 139 144 148 150
4.	Reg espa 4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	gresión acial d Introd Regres 4.2.1. 4.2.2. Enfoq 4.3.1. Anális 4.4.1. 4.4.2. Come: Apéno 4.6.1.	Bayesiana funcional dinámica versus regresión espectral e curvas ucción sión dinámica funcional múltiple bajo un enfoque Bayesiano Predictor funcional Bayesiano Algoritmo de estimación 1 ue de regresión múltiple funcional espacial en el dominio espectral Algoritmo de estimación 2 uis de incidencia de COVID-19 español Algoritmo de estimación dos Algoritmo de estimación dos Mapas de incidencia del algoritmo de estimación uno	l 122 126 129 132 133 138 139 139 144 148 150 150

4.6.3.	Errores of	le validación	cruzada	•••	 •••	•••	 •••	 •••	164
Líneas abi	ertas								169

5.

Índice de figuras

3.1.	Modelo 1. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y los valores de la respuesta estimada $\widehat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho)	61
3.2.	Modelo 1. ECMEC basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 200$, considerando el orden de truncamiento $k_N = 4$	62
3.3.	Modelo 1. ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 200$, considerando el orden de truncamiento $k_N = 3$	63
3.4.	<i>Modelo 1.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 200$, considerando el orden de truncamiento $k_N = 2$	64
3.5.	<i>Modelo 1.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 600$, considerando el orden de truncamiento $k_N = 3.$	65
3.6.	<i>Modelo 1.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 600$, considerando el orden de truncamiento $k_N = 2. \dots \dots$	66
3.7.	<i>Modelo 1.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 1000$, considerando el orden de truncamiento $k_{\rm H} = 3$	67
	Function $\kappa_{N} \equiv 0$, $\kappa_{N} = 0$.	0.1

3.8.	Modelo 1. ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}=1000,$ considerando el orden de	
	truncamiento $k_N = 2$	68
3.9.	Modelo 2. Los valores de la respuesta original $Y_n(x), x \in (0, 60), n =$	
	$1,\ldots,200$ (lado izquierdo), y los valores de respuesta estimados $\widehat{Y}_n(x)$,	
	$x \in (0, 60), n = 1, \dots, 200$ (lado derecho)	68
3.10.	<i>Modelo 2.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 4$	69
3.11.	<i>Modelo 2.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 2$	70
3.12.	<i>Modelo 2.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}=1000,$ considerando el orden de	
	truncamiento $k_N = 2. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	71
3.13.	Modelo 3. Los valores de la respuesta original $Y_n(x), x \in (0, 60), n =$	
	$1,\ldots,200$ (lado izquierdo), y los valores de la respuesta estimada $\widehat{Y}_n(x),$	
	$x \in (0, 60), n = 1, \dots, 200$ (lado derecho)	72
3.14.	<i>Modelo 3.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}$ = 200, considerando el orden de	
	truncamiento $k_N = 4$	73
3.15.	<i>Modelo 3.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}$ = 200, considerando el orden de	
	truncamiento $k_N = 3. \ldots \ldots$	74
3.16.	Modelo 3. ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}$ = 200, considerando el orden de	
	truncamiento $k_N = 2$	75
3.17.	<i>Modelo 3.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}$ = 600, considerando el orden de	
	truncamiento $k_N = 3. \ldots \ldots$	76

3.18. <i>Modelo 3.</i> ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}$ = 600, considerando el orden de	
truncamiento $k_N = 2$	7
3.19. Modelo 3. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 3$	7
3.20. Modelo 3. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 2$	7
3.21. Modelo 4. Los valores de la respuesta original $Y_n(x), x \in (0, 60), n =$	
$1, \ldots, 200$ (lado izquierdo), y la respuesta estimada $\widehat{Y}_n(x), x \in (0, 60),$	
$n = 1, \dots, 200$ (lado derecho).	8
3.22. Modelo 4. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 4$	8
3.23. Modelo 4. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 3$	8
3.24. Modelo 4. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 2$	8
3.25. Modelo 4. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 3. \ldots \ldots$	8
3.26. <i>Modelo</i> 4. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 2$	8
3.27. Modelo 4. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 3$	8

3.28. Modelo 4. ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 2.$	87
3.29. Modelo 5. Los valores de la respuesta original $Y_n(x), x \in (0, 60), n = 1, \ldots, 200$ (lado izquierdo), y los valores de la respuesta estimada $\widehat{Y}_n(x)$,	
$x \in (0, 60), n = 1, \dots, 200$ (lado derecho)	88
3.30. Modelo 5. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 4$	89
3.31. Modelo 5. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 3. \ldots \ldots$	90
3.32. Modelo 5. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 2. \ldots \ldots$	91
3.33. Modelo 5. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 3.$	92
3.34. Modelo 5. ECMEC, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 2$	93
3.35. Modelo 5. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 2.$	94
3.36. Modelo 6. Los valores de la respuesta original $Y_n(x), x \in (0, 60), n =$	
$1,\ldots,200$ (lado izquierdo), y los valores de respuesta estimada $\widehat{Y}_n(x),$	
$x \in (0, 60), n = 1, \dots, 200$ (lado derecho).	95
3.37. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 4$.	96

3.38. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 3. \dots $	97
3.39. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 2. \dots $	98
3.40. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}$ = 600, considerando el orden de	
truncamiento $k_N = 3.$	99
3.41. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}$ = 600, considerando el orden de	
truncamiento $k_N = 2$	100
3.42. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}=1000,$ considerando el orden de	
truncamiento $k_N = 3. \ldots \ldots$	101
3.43. Modelo 6. ECMEC, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}=1000,$ considerando el orden de	
truncamiento $k_N = 2$	102
3.44. Tamaño de la empresa. En el eje z, el tamaño de la empresa es re-	
presentado para los años en el periodo 1999-2007 analizado. El eje $\mathbf x$	
refleja los 215 valores del argumento radial $r \in [45,225]$ (tamaño del	
paso de discretización, Δ = 0,837), donde el tamaño de la empresa ha	
sido interpolado. El eje y muestra las 15 localizaciones espaciales de las	
comunidades autónomas españolas estudiadas. En las tres primeras fi-	
las, se muestran los efectos de la industria, la comunidad y el tiempo,	
mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se	

107

- 3.47. Crecimiento de la empresa. En el eje z, se representa el crecimiento de la empresa para los años del período 1999-2007 analizados. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta = 0.837$), donde se ha interpolado el crecimiento de la empresa. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de la industria.

3.48.	Riesgo de la empresa. En el eje z, el riesgo de la empresa está represen-	
	tado para los años del período 1999-2007 analizados. El eje x refleja los	
	215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de dis-	
	cretización, $\Delta=0,\!837),$ donde se ha interpolado el riesgo de la empresa.	
	El eje y muestra las 15 localizaciones espaciales de las comunidades au-	
	tónomas españolas estudiadas. En las tres primeras filas, se muestran	
	los efectos de la industria, la comunidad y el tiempo, mientras que, en	
	las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el	
	efecto de la industria	108
3.49.	<i>Edad de la empresa.</i> En el eje z, se representa la edad de la empresa para	
	los años del período 1999-2007 analizados. El eje x refleja los 215 valores	
	del argumento radial $r \in [45,225]$ (tamaño del paso de discretización,	
	Δ = 0,837), donde se ha interpolado la edad de la empresa. El eje y	
	muestra las 15 localizaciones espaciales de las comunidades autónomas	
	españolas estudiadas. En las tres primeras filas, se muestran los efectos	
	de la industria, la comunidad y el tiempo, mientras que, en las tres	
	últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de	
	la industria.	109
3.50.	Sector Fábrica. Endeudamiento de los datos funcionales suavizados	110
3.51.	Sector Fábrica. La media empírica del endeudamiento de la empresa	
	por comunidad (arriba) y los mapas del endeudamiento suavizado Beals	
	(abajo)	111
3.52.	Sector Construcción. La media empírica del endeudamiento de la em-	
	presa por comunidad (arriba) y los mapas del endeudamiento suavizado	
	Beals (abajo)	112
3.53.	Sector Comercio. La media empírica del endeudamiento de la empresa	
	por comunidad (arriba) y los mapas del endeudamiento suavizado Beals	
	(abajo)	113
3.54.	Sector Servicios. La media empírica del endeudamiento de la empresa	
	por comunidad (arriba) y los mapas del endeudamiento suavizado Beals	
	(abajo)	114

3.55. Sector Fábrica. Mapa de error LOOCV en el año 2000 (arriba a la iz-	
quierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo a	
la izquierda) y mapa de error LOOCV promediado en el tiempo en la	
parte inferior derecha.	119

3.56. <i>Sector Construcción</i> . Mapa de error LOOCV en el año 2000 (arriba a la	
izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo	
a la izquierda) y mapa de error LOOCV promediado en el tiempo en la	
parte inferior derecha.	119

3.57. Sector Comercio. Mapa de error LOOCV en el año 2000 (arriba a la	
izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo	
a la izquierda) y mapa de error LOOCV promediado en el tiempo en la	
parte inferior derecha.	120

3.58. Sector Servicios. Mapa de error LOOCV en el año 2000 (arriba a la	
izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo	
a la izquierda) y mapa de error LOOCV promediado en el tiempo en la	
parte inferior derecha.	120

4.1. Mapa µ_Y empírico de log-riesgo de COVID-19, para Extremadura, Castilla La Mancha, Murcia y Andalucía (Lado izquierdo), Cataluña, Aragón, Madrid, Castilla-León Sur y Comunidad Valenciana (Centro), y Galicia, Asturias, Cantabria, País Vasco, Navarra y Castilla-León Norte (Lado derecho).
141

- 4.3. Operador de autocorrelación empírica de residuos. Estimación empírica basada en el método de los momentos en el lado izquierdo y estimación basada en el método de los momentos, tras el tapering en el lado derecho.143
- 4.4. Regresores tipo núcleo para el valor del parámetro p = 7. Dada la interpolación espacial calculada para una cuadrícula espacial regular 10 × 10, los gráficos de contorno reflejan el ajuste polinomial 2-D por mínimos cuadrados para aproximar los regresores de tipo núcleo sobre la cuadrícula regular resultante de 100 × 100 después de aplicar la función vec. 144

4.6.	El valor de la curva original (línea roja), y su estimación espectral fun-	
	cional espacial (línea azul discontinua) se muestran en los nodos espa-	
	ciales $(2,3), (2,4), (2,5), (2,6), (8,9), (8,10), (9,9) y (9,10).$	147
4.7.	Mapas de datos originales de casos por COVID-19 promediados men-	
	sualmente en la Comunidad de Andalucía (primera y tercera columnas),	
	y sus estimaciones mediante regresión funcional Bayesiana (segunda y	
	cuarta columnas), a dos meses por fila	151
4.8.	Mapas de datos originales de casos por COVID-19 promediados men-	
	sualmente en la Comunidad de Aragón (primera y tercera columnas),	
	y sus estimaciones mediante regresión funcional Bayesiana (segunda y	
	cuarta columnas).	152
4.9.	Mapas de datos originales de casos por COVID-19 promediados mensual-	
	mente en la Comunidad de Castilla y León (primera y tercera columnas),	
	y sus estimaciones mediante regresión funcional Bayesiana (segunda y	
	cuarta columnas).	153
4.10.	Mapas de datos originales de casos por COVID-19 promediados men-	
	sualmente en la Comunidad de Castilla-La Mancha (primera y tercera	
	columnas), y sus estimaciones mediante regresión funcional Bayesiana	
	(segunda y cuarta columnas).	154
4.11.	Mapas de datos originales de casos por COVID-19 promediados men-	
	sualmente en la Comunidad de Cataluña (primera y tercera columnas),	
	y sus estimaciones mediante regresión funcional Bayesiana (segunda y	
	cuarta columnas).	155
4.12.	Mapas de datos originales de casos por COVID-19 promediados mensual-	
	mente en la Comunidad de Extremadura (primera y tercera columnas),	
	y sus estimaciones mediante regresión funcional Bayesiana (segunda y	
	cuarta columnas).	156
4.13.	Mapas de datos originales de casos por COVID-19 promediados men-	
	sualmente en la Comunidad de Galicia (primera y tercera columnas),	
	y sus estimaciones mediante regresión funcional Bayesiana (segunda y	
	cuarta columnas).	157

4.14.	Mapas de datos originales de casos por COVID-19 promediados men- sualmente en la Comunidad de País Vasco (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas)	158
4.15.	Mapas de datos originales de casos por COVID-19 promediados men- sualmente en la Comunidad Valenciana (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).	158
4.16.	Curvas de riesgo de COVID-19 interpoladas y suavizadas temporales (lado izquierdo) y sus estimaciones de regresión funcional Bayesiana (lado derecho).	160
4.17.	Curvas de riesgo de COVID-19 interpoladas y suavizadas temporales (lado izquierdo) y sus estimaciones de regresión funcional Bayesiana	
4.18.	(lado derecho)	161
4.19.	(arriba) y Catatana (abajo) (Maaria se na exclutato en estos graficos). Operador de covarianza espacial empírico $\widehat{\mathcal{R}}_{\mathbf{z}}$, para $\mathbf{z} = (0,1)$ (arriba a la izquierda) y para $\mathbf{z} = (1,1)$ (arriba a la derecha). Operador de co- varianza espacial empírico de largo rango $\widehat{\mathcal{R}}_{(\mathbf{N})}$, $\mathbf{N} = 100$, en la parte inferior izquierda, y los cinco autovectores empíricos derechos seleccio- nados, asociados con los valores empíricos singulares más grandes en la	102
4.20.	parte inferior derecha El estimador no paramétrico proyectado del operador de densidad espec- tral, $\widehat{f}^{(\mathbf{N})}_{\omega}(\psi_k)(\psi_l)$, para $k = 2$ y $l = 1$ (lado superior izquierda), para k = 1 and $l = 2$ (lado centro izquierdo), y para $k = 1$ y $l = 3$ (lado inferior izquierdo). Las correspondientes estimaciones del operador de covarianza espacial proyectada se muestran respectivamente en el lado derecho	163 164
4.21.	Gráficos de contorno de los errores absolutos de validación cruzada en	
	los tiempos $T = 100, 300, 500, 700, 400, 600, 800, 1000$	165

4.22. Promedio en el tiempo de errores absolutos de validación cruzada ... 167

Índice de tablas

3.1.	Modelo 1. Errores Cuadráticos Medios Funcionales Empíricos (ECM-	
	FE), basado en $r = 100$ repeticiones de una muestra de la respuesta	
	funcional de tamaño $N = 200$, considerando el orden de truncamiento	
	$k_N = 4.$	55
3.2.	Modelo 2. Errores Cuadráticos Medios Funcionales Empíricos (EFMQE), basado en $r = 100$ repeticiones de una muestra de la respuesta funcional	
	de tamaño $N = 200$, considerando el orden de truncamiento $k_N = 4$	55
3.3.	Sector Fábrica. Errores LOOCV en cada una de las Comunidades Au- tónomas españolas analizadas, para los años estudiados, en el período 1999 - 2007	56
3.4.	Sector Construcción. Errores LOOCV en cada una de las Comunidades	
	Autónomas españolas analizadas, para los años estudiados, en el período 1999 — 2007	58
3.5.	Sector Commercio. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período	
	1999 – 2007	59
3.6.	Sector Servicio. Errores LOOCV en cada una de las Comunidades Au- tónomas españolas analizadas, para los años estudiados, en el período	-
	1999 - 2007	59
3.7.	Modelo 1. ECMFE, basado en $R = 100$ repeticiones de una muestra de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 3$	62

3.8.	Modelo 1. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}$ = 200, considerando el orden de	
	truncamiento $k_N = 2$	63
3.9.	Modelo 1. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 600$, considerando el orden de	
	truncamiento $k_N = 3.$	64
3.10	. Modelo 1. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 600$, considerando el orden de	
	truncamiento $k_N = 2$	65
3.11	. Modelo 1. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño ${\cal N}$ = 1000, considerando el orden de	
	truncamiento $k_N = 3$	66
3.12	. Modelo 1. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
	truncamiento $k_N = 2$	67
3.13	. Modelo 2. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 2$	69
3.14	. Modelo 2. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
	truncamiento $k_N = 2$	70
3.15	. Modelo 3. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 4$.	72
3.16	. Modelo 3. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 3$.	73
3.17	. Modelo 3. ECMFE, basado en $R = 100$ repeticiones de una muestra	
	de respuesta funcional de tamaño $N = 200$, considerando el orden de	
	truncamiento $k_N = 2$	74

3.18. <i>Modelo 3.</i> ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 3$	75
3.19. Modelo 3. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 2$	76
3.20. Modelo 3. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 3$	77
3.21. Modelo 3. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 2$	78
3.22. Modelo 4. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 4$	80
3.23. Modelo 4. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 3.$	81
3.24. Modelo 4. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 2$	82
3.25. <i>Modelo</i> 4. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 3$	83
3.26. <i>Modelo</i> 4. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 2$	84
3.27 Modelo / ECMFE basado en $R = 100$ repeticiones de una muestra	-
de respuesta funcional de tamaño $N = 1000$ considerando el orden de	
truncamiento $k_N = 3$	85

3.28. Modelo 4. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}=$ 1000, considerando el orden de	
truncamiento $k_N = 2$	87
3.29. Modelo 5. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 4$	89
3.30. Modelo 5. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
$\operatorname{truncamiento} k_N = 3. \ldots \ldots$	90
3.31. Modelo 5. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 2$	90
3.32. Modelo 5. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 3. \ldots \ldots$	91
3.33. Modelo 5. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 600$, considerando el orden de	
truncamiento $k_N = 2$	92
3.34. Modelo 5. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 2$	94
3.35. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 4$	96
3.36. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 3.$	97
3.37. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 200$, considerando el orden de	
truncamiento $k_N = 2$	98

3.38. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño ${\cal N}$ = 600, considerando el orden de	
truncamiento $k_N = 3. \ldots \ldots$	99
3.39. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño N = 600, considerando el orden de	
truncamiento $k_N = 2$	100
3.40. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 3.$	101
3.41. Modelo 6. ECMFE, basado en $R = 100$ repeticiones de una muestra	
de respuesta funcional de tamaño $N = 1000$, considerando el orden de	
truncamiento $k_N = 2$	102
3.42. Sector Fábrica. Errores LOOCV en cada una de las Comunidades Au-	
tónomas españolas analizadas, para los años estudiados, en el período	
1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) =$	
$\ln(9) \simeq 2 \ldots \ldots$	115
3.43. Sector Fábrica. Errores LOOCV en cada una de las Comunidades Au-	
tónomas españolas analizadas, para los años estudiados, en el período	
1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$	115
3.44. Sector Construcción. Errores LOOCV en cada una de las Comunidades	
Autónomas españolas analizadas, para los años estudiados, en el período	
1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) =$	
$\ln(9) \simeq 2 \ldots \ldots$	116
3.45. Sector Construcción. Errores LOOCV en cada una de las Comunidades	
Autónomas españolas analizadas, para los años estudiados, en el período	
1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$	116
3.46. Sector Comercio. Errores LOOCV en cada una de las Comunidades Au-	
tónomas españolas analizadas, para los años estudiados, en el período	
1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) =$	
$\ln(9) \simeq 2$	117

- 3.47. Sector Comercio. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 - 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$ 117
- 3.49. Sector Servicios. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 - 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$ 118
- 4.1. Errores LOOCV. Códigos de comunidades y provincias (entre paréntesis): Andalucía (AN) (Almería (AL), Cádiz (CA), Córdoba (CO), Granada (GR), Huelva (H), Jaén (J), Málaga (MA), Sevilla (SE)); Extremadura (EX) (Badajoz (BA), Cáceres (CC)); Castilla La Mancha (CM) (Albacete (AB), Ciudad Real (CR), Cuenca (CU), Guadalajara (GU), Toledo (TO)); Comunidad de Murcia (CMU) (Murcia (MU)); Comunidad Valenciana(VC) (Alicante (A), Castellón (CS), Valencia (V)); Castilla y León (CL) (Ávila, (AV), Burgos (BU), León (LE), Palencia (P), Salamanca (SA), Segovia (SG), Soria (SO), Valladolid (VA), Zamora (ZA)); Comunidad de Madrid (CMA) (Madrid (MD)); La Rioja (LR) (Logroño (LG)); Galicia (GA) (A Coruña (C), Lugo (LU), Ourense (OR), Pontevedra (PO)); Asturias (AS) (Oviedo (OV)); Cantabria (CB) (Santander (ST)); País Vasco (PV) (Vizcaya (BI), Guipúzcoa (SS), Alava (VI); Comunidad de Navarra (CN) (Pamplona (PA)); Aragón (AR), (Huesca (HU), Teruel (TE), Zaragoza (Z)); Cataluña (CT)

4.4.	Errores absolutos de validación cruzada en una cuadrícula de 9×9 en	
	$el \ tiempo \ T = 400 \ \dots \$	166
4.5.	Errores absolutos de validación cruzada en una cuadrícula de 9×9 en	
	$el \ tiempo \ T = 750 \ \dots \ $	166
4.6.	Errores absolutos de validación cruzada en una cuadrícula de 9×9 en	
	$el \ tiempo \ T = 1000 \ \ldots $	166

Capítulo 1

Introducción

En estos últimos años, la regresión funcional se ha convertido en un campo muy importante en la investigación estadística, cuya aplicación en diversas áreas tales como, la economía, climatología, teledetección, lingüística, oceanografía y medicina, se ha intensificado con el desarrollo de técnicas computacionales para su implementación a partir de datos reales. Varios autores destacan las ventajas del marco de regresión funcional sobre los enfoques multivariantes discretos (ver, por ejemplo, Cuevas, Febrero y Fraiman [35]; Marx y Eilers [100]; Ramsay y Silverman [121]). La regresión funcional surge cuando las respuestas y/o las covariables toman sus valores en un espacio de dimensión infinita, cuyo objetivo es explicar las variaciones o predecir valores de la respuesta.

En la formulación del modelo de regresión funcional con respuesta escalar, se considera un vector aleatorio (X, Y) con valores en el espacio producto $Z = H \times \mathbb{R}$, donde Hes un espacio Hilbert separable de dimensión infinita. Laloë [89] establece la consistencia débil del estimador propuesto para la función de regresión, basado en el método de los k-vecinos más próximos. De hecho, esta técnica se aplica en dimensión finita sobre el subespacio generado por las d primeras componentes que aproximan la variable funcional regresora, tras el truncamiento de su expansión en serie. En este mismo contexto, Shin y Hsing [132] derivan la razón de convergencia del predictor lineal óptimo, basado en mínimos cuadrados. En Febrero-Bande, Galeano y González-Manteiga [47] se analiza la influencia de las observaciones en el modelo lineal funcional con respuesta escalar, y mide sus efectos, en la estimación y predicción del modelo, mediante el método de componentes principales funcionales; proponen tres métodos estadísticos, que son generalizaciones del modelo lineal funcional y un método basado en bootstrap suavizado para estimar los cuantiles de las medidas de influencia, que permite señalar las observaciones que son más influyentes. Aplican la metodología de Análisis de Componentes Principales Funcionales (FPCA) para lograr un estimador de la pendiente funcional (ver, por ejemplo Cardot y Sarda [26]; Imaizumi y Kato [76]). En González-Manteiga y Martínez-Calvo [61] proponen el procedimiento Bootstrap para obtener intervalos de confianza del operador de regresión en el modelo lineal funcional y analizan las propiedades asintóticas (ver también, Khademnoe, Mohammad y Hosseini-Nasab [82]). En Febrero-Bande, Galeano y González-Manteiga [48] desarrollan una descripción general del modelo de regresión lineal funcional con respuesta escalar, mediante el análisis de componentes principales funcionales, así como del modelo de regresión funcional por mínimos cuadrados parciales, en la estimación de parámetros del modelo lineal funcional con respuesta escalar. Existe una amplia literatura sobre el análisis asintótico de las propiedades de los estimadores de la función de regresión, citaremos, entre otros, los trabajos de Cai y Hall [19]; Cardot et al. [22]; Cardot y Sarda [23]; Hall y Horowitz [65]; Müller y Stadmüller [111]. Se destacan asimismo las contribuciones de Crambes, Kneip y Sarda [32] y Wang, Lin y Zhang [136]. Crambes, Kneip y Sarda [32] derivan un estimador basado en *splines* de la función de regresión, en el modelo de regresión lineal functional con respuesta escalar y predictores functionales. En Wang, Lin y Zhang [136] proponen una técnica para linealizar la relación entre la respuesta y la variable explicativa, utilizando splines. En el modelo de regresión funcional con respuesta escalar, donde las covariables se observan con un error de medición en los puntos marcados por el diseño estadístico, Long [97] deriva un método de estimación en dos pasos, bajo ciertas condiciones de regularidad, que es evaluado mediante un estudio de simulación.

Un enfoque lineal parcial semifuncional para la regresión, basado en series temporales no paramétricas, se considera en Aneiros-Pérez y Vieu [6]; [7]. Destacaremos asimismo en este contexto las referencias de Ferraty y Vieu [50]; Ferraty et al. [53]. En el contexto de métodos de selección de variables para la regresión funcional, en

Matsui y Konishi [108] proponen un criterio de selección del modelo para elegir los parámetros de regularización involucrados en el método de máxima verosimilitud penalizada, basado en SCAD (Smoothly Clipped Absolute Deviation). En Collazos, Dias y Zambom [31] proponen un contraste de significación para la selección de covariables, basado en la expansión ortogonal de las covariables y aplicación de un test de la razón de verosimilitud, para el modelo de regresión con respuesta escalar y covariables funcionales. Berrendero, Bueno-Larraz y Cuevas [13] presentan un enfoque, basado en el espacio del núcleo reproductor (RKHS). En Goia y Vieu [59] adoptan un enfoque semiparamétrico, en un Modelo de Índice Unico Funcional Particionado de dos términos. Ver también la perspectiva general presentada en Cuevas [36] sobre temas de relevancia en el análisis de datos funcionales (FDA), que incluyen, entre otros, la definición y estimación de los parámetros de centralidad; y las principales vertientes en regresión, clasificación y reducción de la dimensión. En Ahmedou, Marion y Pumo [3] se define el modelo lineal funcional generalizado con derivada (GFLMD), para predecir la variable respuesta escalar Y en término de un predictor funcional X y su derivada X' mediante un operador monótono no lineal r. De hecho, este modelo GFLMD es en particular el modelo lineal funcional generalizado (GFLM) que incluye la primera derivada del predictor X. Adicionalmente, se generaliza a este contexto, la estimación mediante mínimos cuadrados totales (FTLS), a partir de covariables observadas con ruido. En Cardot et al. [24] se realiza una estimación de la función pendiente basada en *splines*, a partir de la observación de la respuesta y de las covariables, y, posteriormente, se deriva el método FTLS a partir de la observación de las covariables con ruido, para realizar una estimación simultánea de las covariables y la función de regresión. En Li y Hsing [92] analizan la tasa de convergencia de la estimación por mínimos cuadrados penalizados en un modelo de regresión lineal funcional, a partir de observaciones discretas y afectadas por ruido. En Reiss y Ogden [122] se introduce la versión funcional de las técnicas de reducción de la dimensión basadas en componentes principales (PC) y método de estimación mínimo cuadrática parcial (PLS). En Cardot y Johannes [25] proponen un método de estimación basado en proyección en bases ortonormales, que involucran técnicas thresholding, que aseguran la consistencia de los estimadores de regresión, en el modelo linear funcional con respuesta escalar, bajo un

conjunto de condiciones más flexible y amplio. En particular, en el contexto de espacios de Sobolev y bases trigonométricas se obtiene la razón de convergencia del predictor. Maronna y Yohai [99] proponen un estimador no paramétrico robusto para el modelo de regresión lineal funcional. La eficiencia del estimador propuesto se compara con el estimador de regresión basado en pérdidas L_2 y el estimador de regresión de mínimos cuadrados parciales robustos. En el contraste de análisis de series funcionales con un enfoque paramétrico, en García-Portugués, González-Manteiga y Febrero-Bande [57] proponen una prueba estadística (goodness-of-fit) para el modelo lineal funcional con respuesta escalar, basado en una versión funcional de la prueba estadística de ajuste, previamente formulada para modelos de regresión, con covariables vectoriales, basada en proyecciones aleatorias, en el contexto Gaussiano (ver también Cuesta-Albertos et al. [34]; Patilea, Sánchez-Sellero y Saumard [116]).

En el contexto de los modelos de regresión funcional con respuesta y covariables funcionales, Yao, Müller y Wang [138] adoptan un enfoque basado en el análisis de componentes principales funcional (FPCA). He et al. [66] obtienen una expansión canónica del núcleo de la regresión, basada en los componentes canónicos de las funciones aleatorias involucradas. Bücher, Dette y Wieczorek [17] proponen pruebas estadísticas para contrastar la forma funcional del núcleo de la regresión y la varianza funcional, basadas en distancia L^2 . En Crambes y Mas [33] se obtiene el error cuadrático medio asintótico para el estimador formulado, con constantes óptimas, basado en el análisis de componentes principales funcional (FPCA). La selección del parámetro de truncamiento se aborda asimismo, en relación con el tamaño de muestra funcional. La variable regresora funcional puede ser regular o singular, probándose un teorema del límite central para el predictor funcional. En el contexto no paramétrico, para respuesta y regresora funcionales, destacamos la contribución de Ferraty, Keilegom y Vieu [52], donde se deriva un estimador tipo núcleo del operador de la regresión y se obtiene su normalidad asintótica puntual. En Lian [91] se deriva un predictor *pluq-in* penalizado, en la regresión funcional con respuesta y covariable funcional, basado en la estimación penalizada del operador de regresión, calculada a partir de la norma involucrada en un RKHS. Se analizan asimismo las tasas de convergencia del predictor. En Chiou, Yang y Chen [30] derivan una versión multivariante del modelo de regresión funcional con respuesta y covariable funcional, permitiendo la incorporación de correlaciones cruzadas entre las funciones aleatorias involucradas. Estos autores obtienen asimismo la consistencia y normalidad asintótica del estimador formulado para la matriz funcional de regresión. En Benhenni, Hedli-Griche y Rachdi [12] obtienen un estimador tipo núcleo no paramétrico, versión funcional del estimador de Nadaraya–Watson, para aproximar la esperanza condicionada de la función aleatoria, que define la respuesta funcional, condicionada al regresor funcional, cuando el término de error se modeliza, mediante un proceso estacionario en el tiempo, cubriéndolos dos escenarios, correspondientes a memoria corta y larga.

En relación con las series temporales funcionales paramétricas en un contexto de espacios de estados, destacaremos las monografías de Bosq [14] y Bosq y Blanke [15], donde se adopta un enfoque, basado en estimadores de momentos, mediante proyección numérica, para la predicción *plug-in* funcional, en series de tiempo lineales evaluadas en espacios de Hilbert y Banach. Se estudian asimismo las propiedades asintóticas, consistencia y normalidad asintótica, de los estimadores derivados. Guillas [63] estudia la consistencia en media cuadrática de los estimadores y predictores plug-in propuestos, en el contexto de modelos autorregresivos Hilbertianos de orden uno (ARH(1)). Mas [104] deriva propiedades asintóticas del estimador formulado para el operador de autocorrelación, cuando dicho operador es compacto, pero no pertenece a la clase de operadores Hilbert-Schmidt. Damon y Guillas [39] introduce el modelo autorregresivo Hilbertiano con variables exógenas. Se analizan las propiedades asintóticas de los estimadores formulados componente a componente, mediante proyección, a partir de la expresión matricial funcional de la ecuación que define el modelos ARHX(1). Mas [105] prueba la distribución normal asintótica del estimador del operador de autocorrelación, después de la regularización del problema de estimación inversa correspondiente.

Una nueva clase de los modelos lineales funcionales generalizados con interacciones semiparamétricas se introduce en Li, Wang y Carroll [93], donde utiliza modelos de índice único para modelar interacciones de predictores escalares y funcionales, considerando las proyecciones de los datos funcionales en bases ortonormales. En Chiou y

Müller [29] desarrollan un método de diagnóstico de regresión para modelos de regresión funcional, basado en el proceso residual mediante el análisis de componentes principales funcionales (FPCA), formulando una prueba estadística, para determinar si el proceso residual depende de la respuesta. La versión funcional del test de independencia para contrastar la nulidad del operador de regresión en el modelo lineal funcional constituye un tema central, en particular, en el contexto de las series funcionales. Destacamos, en este sentido, la contribución de Kokoszka et al. [84], quienes proponen una prueba estadística basada en la descomposición en componentes principales (ver también Bosq [14]). Se prueba asimismo, que el estadístico del test se distribuye asintóticamente según una chi-cuadrado. Modelos de regresión funcional aditivos, cuando las respuestas son escalares o funcionales con predictores funcionales se analizan en Müller y Yao [112] quienes prueban la consistencia asintótica de las estimaciones de los componentes del modelo aditivo funcional, basadas en FPCA. En el contexto del modelo aditivo de respuesta funcional con predictores funcionales multivariantes, Fan et al. [46] proponen un método de regresión funcional no lineal (FRAME), basado en el criterio de optimización de mínimos cuadrados penalizados. En Radchenko et al. [119] proponen la estimación funcional del modelo de índice escaso (Sparse Index Model Functional *Estimation* (SIMFE)) para tratar los predictores escasamente observados.

La contribución esencial de esta tesis reside en la formulación de un modelo de regresión múltiple multivariante, con errores correlados, cuyas covariables funcionales son operadores integrales de Hilbert-Schmidt, que van cambiando en el tiempo. La respuesta y covariables se evalúan en un espacio de Hilbert separable. El término de error se modeliza mediante un proceso ARH(1). Se derivan las condiciones suficientes para la consistencia y normalidad asintótica de los estimadores de los operadores de regresión, obtenidos mediante el método de mínimos cuadrados generalizados y mínimos cuadrados ordinarios. Este último implementado cuando los parámetros que caracterizan la distribución del término de error son desconocidos. En tal caso, el proceso residual asociado a la estimación mínimo cuadrática ordinaria es utilizado en el cálculo de los estimadores de momentos de los parámetros funcionales, que caracterizan la estructura de dependencia del término de error.

Como segunda contribución de la tesis, se presenta una nueva aportación, en el modelo de regresión múltiple funcional, donde se adopta un enfoque Bayesiano, para la estimación de las entradas funcionales, que definen el operador matricial de autocorrelación del término de error. También se deriva la estimación no paramétrica espacial funcional, basada en operador periodograma, del operador densidad espectral, que caracteriza la estructura de dependencia espacial funcional del término de error en el modelo de regresión múltiple funcional, bajo la suposición de estacionariedad espacial. Este enfoque consiste en estudiar el problema a través del análisis de Fourier usando la Transformada Discreta de Fourier funcional (fDFT), formulando el modelo en el dominio de frecuencias para datos funcionales débilmente dependientes. Posteriormente, se ilustran las dos metodologías, respectivamente basadas en el espectro puntual puro espacial y el espectro continuo espacial, para predecir la incidencia de COVID-19 a partir de un marco Bayesiano y no paramétrico, respectivamente.

El esquema de la tesis es la siguiente. En el Capítulo 2. proporciona un resumen sobre el modelo FANOVA, que se extiende a un contexto más flexible y general la presente tesis. En el Capítulo 3, se presenta la contribución fundamental de esta tesis, anteriormente descrita sobre el modelo de regresión múltiple funcional con regresores tipo núcleo y errores funcionales correlados en el tiempo. En el Capítulo 4, se desarrolla una nueva aportación para la estimación del operador matricial de covarianza del término de error, en el modelo de regresión múltiple funcional introducido en el capítulo 3, adoptando un enfoque Bayesiano, así como un enfoque espacial funcional espectral no paramétrico. En el Capítulo 5, se describen las principales líneas abiertas a abordar en nuestra investigación futura.
Capítulo 2

Modelos FANOVA Multivariantes

2.1. Introducción

En este capítulo se introduce los modelos de Análisis de Varianza Funcional (FA-NOVA) multivariante. En estas últimas décadas existe una extensa literatura sobre las técnicas de análisis de datos funcionales. En Abramovich et al. [1] consideran el problema de diseño de una prueba estadística en un modelo FANOVA con efectos fijos para desarrollar procedimientos de contraste asintóticamente óptimos (minimax) para los efectos principales funcionales y las interacciones funcionales. Como extensión de los resultados sobre el modelo FANOVA de efectos fijos, en Abramovich y Angelini [2] consideran el modelo FANOVA de efectos mixtos que surgen en diversas aplicaciones que involucran datos longitudinales y desarrollan los procedimientos de contraste asintóticamente óptimos (*minimax*), para probar la importancia de la tendencia global funcional y los efectos fijos funcionales basados en los coeficientes empíricos respecto a una base de *wavelets* de los datos. Zoglat [139] estudia el modelo de Análisis de Varianza Funcional (FANOVA) como una extensión de las técnicas estadísticas del modelo de Análisis de Varianza Multivariante (MANOVA), donde los datos son vectores en \mathbf{R}^{d} , cuya formulación infinito-dimensional, en términos de funciones, se considera en los modelos FANOVA. En Rady, Kilany y Eliwa [120] consideran el problema de estimación en el modelo FANOVA de efectos mixtos y derivan los estimadores de máxima verosimilitud de los parámetros funcionales y los componentes de la varianza del modelo. Un enfoque de efectos fijos en espacios de Hilbert es adoptado en Ruiz-Medina [128],

para el análisis de FANOVA bajo errores dependientes. En este trabajo, se derivan las condiciones que garantizan la finitud casi segura de las componentes funcionales de la varianza: la suma de cuadrados total (SCT), la suma de cuadrados de error residual (SCE) y la suma de cuadrados debido a la regresión (SCR). En el modelo considerado, se supone que el vector de errores funcional tiene componentes correladas en el tiempo y deriva la prueba estadística para contrastar la significación de los parámetros de efectos fijos funcionales. La extensión de la formulación de este modelo se puede ver en Álvarez-Liébana y Ruiz-Medina [4], donde, en particular, se analiza el efecto del dominio espacial en el análisis FANOVA de datos funcionales con soporte espacial.

2.2. El Modelo de efectos fijos multivariante Hilbertvaluado

En esta sección se analiza el modelo FANOVA multivariante adoptando el enfoque basado en modelos de efectos fijos para variables Hilbert-valuadas, resumiéndose los resultados fundamentales derivados en Ruiz-Medina [128]. Se define H como un espacio de Hilbert separable real con producto interno $\langle \cdot, \cdot \rangle_{H}$. Se considera el modelo de efectos fijos multivariante Hilbert-valuado definido mediante la siguiente ecuación:

$$Y(\cdot) = X\beta(\cdot) + \sigma\varepsilon(\cdot), \qquad (2.1)$$

donde la matriz del diseño X es una matriz $n \times p$ real-valuada, y el vector de parámetro o efectos fijos funcionales, evaluado en H^p , se denota por,

$$\beta(\cdot) = [\beta_1(\cdot), \dots, \beta_p(\cdot)]^T \in H^p$$

Asimismo, se consideran las observaciones de la respuesta funcional, definidas mediante el vector,

$$Y(\cdot) = [Y_1(\cdot), \dots, Y_n(\cdot)]^T$$

que se asume distribuido según una variable aleatoria funcional gaussiana evaluada en H^n . Nótese que $E[Y] = X\beta$. El término de error H^n -valuado

$$\varepsilon(\cdot) = [\varepsilon_1(\cdot), \dots, \varepsilon_n(\cdot)]^T$$

tiene media cero y operador de covarianza matricial dado por:

$$R_{\varepsilon\varepsilon} = E[[\varepsilon_{1}(\cdot), \dots, \varepsilon_{n}(\cdot)]^{T}[\varepsilon_{1}(\cdot), \dots, \varepsilon_{n}(\cdot)]]$$

$$= \begin{bmatrix} E[\varepsilon_{1} \otimes \varepsilon_{1}] & \dots & E[\varepsilon_{1} \otimes \varepsilon_{n}] \\ \vdots & \vdots & \vdots \\ E[\varepsilon_{n} \otimes \varepsilon_{1}] & \dots & E[\varepsilon_{n} \otimes \varepsilon_{n}] \end{bmatrix}$$

$$= \begin{bmatrix} R_{\varepsilon_{1}\varepsilon_{1}} & \dots & R_{\varepsilon_{1}\varepsilon_{n}} \\ \vdots & \vdots & \vdots \\ R_{\varepsilon_{n}\varepsilon_{1}} & \dots & R_{\varepsilon_{n}\varepsilon_{n}} \end{bmatrix}$$
(2.2)

donde $R_{\varepsilon_i\varepsilon_i}$, i = 1, ..., n, son operadores compactos y autoadjuntos en H, en la clase traza. El parámetro de la varianza funcional se denota por σ , bajo estacionariedad. Se asume que $R_{\varepsilon_i\varepsilon_i}$, i = 1, ..., n, son estrictamente positivo. Para $i \neq j$, con $i, j \in 1, ..., n$, $R_{\varepsilon_i\varepsilon_i}$ denota el operador covarianza cruzada entre ε_i y ε_j .

Ruiz-Medina [128] plantea la siguiente Suposición A0, que proporciona la definición semiparamétrica de los elementos de la clase de operadores de matriz covarianza que caracterizan la estructura de correlación del término de error vectorial funcional.

Suposición A0 Los operadores autocovarianza $R_{\varepsilon_i\varepsilon_i}$, $i = 1, \ldots, n$, admite una descomposición espectral en términos de una base ortonormal de autovectores $\{\phi_k\}_{k\geq 1}$ de Hproporcionando la siguiente resolución de la identidad $\sum_{k=1}^{\infty} \phi_k \otimes \phi_k$. Sea $\{\eta_{ki}, k \ge 1\}$, $i=1,\ldots,n,$ una secuencia de variables aleatorias independientes e idénticamente distribuidas según unanormal con media cero у varianza uno tal que $\{\langle \varepsilon_i, \phi_k \rangle_H = \sqrt{\lambda_{ki}} \eta_{ki}, k \geq 1\}, \text{ con } R_{\varepsilon_i \varepsilon_i} \phi_k = \lambda_{ki} \phi_k, \text{ para } i = 1, \dots, n, \text{. Se supone}$ que se cumple la siguiente condición de ortogonalidad:

$$E[\eta_{ki}\eta_{pj}] = \delta_{k,p}, \quad k, p \in \mathcal{N} - \{0\} \ i, j = 1, \dots, n,$$
(2.3)

donde δ denota la función delta de Kronecker.

Bajo A0, se tiene la siguiente descomposición ortogonal del término de error:

$$\varepsilon_i = \sum_{k=1}^{\infty} \sqrt{\lambda_{ki}} \eta_{ki} \phi_k, \quad i = 1, \dots, n$$
 (2.4)

Además, utilizando la supuesta condición de ortogonalidad (2.3) y de la ecuación (2.4), se tiene:

$$R_{\varepsilon_i\varepsilon_j} = E[\varepsilon_i \otimes \varepsilon_j] = \sum_{k=1}^{\infty} \sqrt{\lambda_{ki}\lambda_{kj}}\phi_k \otimes \phi_k, \quad i, j = 1, \dots, n$$
(2.5)

Por lo tanto, se puede reescribirse el operador de covarianza matricial (2.2) como sigue:

$$R_{\varepsilon\varepsilon} = \begin{bmatrix} \sum_{k=1}^{\infty} \lambda_{k1} \phi_k \otimes \phi_k & \dots & \sum_{k=1}^{\infty} [\lambda_{k1} \lambda_{kn}]^{1/2} \phi_k \otimes \phi_k \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \sum_{k=1}^{\infty} [\lambda_{kn} \lambda_{k1}]^{1/2} \phi_k \otimes \phi_k & \dots & \sum_{k=1}^{\infty} \lambda_{kn} \phi_k \otimes \phi_k \end{bmatrix}$$

Lema 2.1 El inverso del operador covarianza matricial $R_{\varepsilon\varepsilon}^{-1}$ satisface

$$R_{\varepsilon\varepsilon}^{-1}(\psi)(\varphi) = \sum_{k\geq 1}^{\infty} \varphi_k^T \Lambda_k^{-1} \psi_k, \qquad (2.6)$$

para todo $\psi, \varphi \in R^{1/2}_{\varepsilon\varepsilon}(\mathcal{H})$. Equivalentemente a $R^{-1}_{\varepsilon\varepsilon}$ es tal que

$$\Phi^* R_{\varepsilon\varepsilon}^{-1} \Phi = (\Lambda_k^{-1})_{k \ge 1}.$$
(2.7)

Demostración. Ver en Ruiz-Medina [128]

El sistema de autovector $\{\phi_k, k \ge 1\}$ y la sucesión matricial $\{\Lambda_k, k \ge 1\}$ se suponen conocidos para la estimación del parámetro β *H*-valuado. El espacio de Hilbert del núcleo reproductor (RKHS) $\mathcal{H}(\varepsilon)$ de ε se define como la clausura de $R_{\varepsilon\varepsilon}^{1/2}(\mathcal{H})$. A partir del Lema 1, se tiene

$$\|Y - X\beta\|_{R_{\varepsilon\varepsilon}^{-1}}^{2} = R_{\varepsilon\varepsilon}^{-1}(Y - X\beta)(Y - X\beta)$$

$$= \Phi^{*}R_{\varepsilon\varepsilon}^{-1}\Phi(\Phi^{*}(Y - X\beta))(\Phi^{*}(Y - X\beta))$$

$$= \sum_{k=1}^{\infty} [Y_{k} - [X\beta]_{k}]^{T}\Lambda_{k}^{-1}[Y_{k} - [X\beta]_{k}]$$

$$= \sum_{k=1}^{\infty} \|\varepsilon_{k}(\beta_{k})\|_{\Lambda_{k}^{-1}}^{2}, \qquad (2.8)$$

donde $\varepsilon = Y - X\beta$, y $\varepsilon_k(\beta_k) = [Y_k - [X\beta]_k] = \Phi_k^*(Y - X\beta), \ k \ge 1$. Esta ecuación se minimiza si, y solo si, para cada $k \ge 1$, la norma $\|\cdot\|_{\Lambda_k^{-1}}$ de $\varepsilon_k(\beta_k)$ se minimiza.

El estimador de mínimos cuadrados generalizados, minimiza $\|\varepsilon_k(\beta_k)\|_{\Lambda_k^{-1}}^2$ con respecto a β_k para cada $k \ge 1$, y, por tanto, se tiene

$$\widehat{\beta}_k = (\widehat{\beta}_{k1}, \dots, \widehat{\beta}_{kp})^T = (X^T \Lambda_k^{-1} X)^{-1} X^T \Lambda_k^{-1} Y_k, \quad k \ge 1.$$
(2.9)

Es decir, el estimador del parámetro vectorial β , viene dado por

$$\widehat{\beta} = \Phi((\widehat{\beta})_{k \ge 1}) = \left(\sum_{k=1}^{\infty} \widehat{\beta}_{k1} \phi_k, \dots, \sum_{k=1}^{\infty} \widehat{\beta}_{kp} \phi_k\right)^T.$$
(2.10)

La expresión anterior proporciona un estimador de β , si se cumple la siguiente condición:

$$\sum_{k=1}^{\infty} \sum_{i=1}^{p} \widehat{\beta}_{ki}^{2} = \sum_{k=1}^{\infty} [(X^{T} \Lambda_{k}^{-1} X)^{-1} X^{T} \Lambda_{k}^{-1} Y_{k}]^{T} [(X^{T} \Lambda_{k}^{-1} X)^{-1} X^{T} \Lambda_{k}^{-1} Y_{k}] < \infty, \quad (2.11)$$

es decir, si $\widehat{\beta} \in H^p$.

Una condición suficiente que asegura que $\hat{\beta}$ es el estimador de mínimos cuadrados generalizados del vector funcional paramétrico β , se deriva en la siguiente proposición.

Proposición 2.1 Si

$$\sum_{k=1}^{\infty} traza(X^T \Lambda_k^{-1} X)^{-1} < \infty, \qquad (2.12)$$

entonces se satisface la ecuación (2.11) y consecuentemente, $\hat{\beta}$ en la ecuación (2.10)

define un estimador de mínimos cuadrados generalizados para β .

Demostración. Ver en Ruiz-Medina [128]

En Ruiz-Medina [128] presenta caso particular, cuando

• X es una matriz identidad:

$$\sum_{k=1}^{\infty} traza(X^T \Lambda_k^{-1} X)^{-1} = \sum_{k=1}^{\infty} traza(\Lambda_k) < \infty.$$

Si X es una matriz unitaria tal que XX^T = I, entonces, la condición (2.12) que se asume en la Proposición 1 se satisface cuando se tiene que

$$\sum_{k=1}^{\infty} traza(X^T \Lambda_k^{-1} X)^{-1} = \sum_{k=1}^{\infty} traza(X X^T \Lambda_k^{-1})^{-1} = \sum_{k=1}^{\infty} traza(\Lambda_k) < \infty.$$

2.3. Componentes Funcionales de la Varianza de FA-NOVA

Nos referiremos ahora a las componentes funcionales de la varianza (ver Sección 4 de Ruiz-Medina [128]). A partir de las ecuaciones (2.9) y (2.10), que definen $\hat{\beta}$ se tiene

$$Y - X\widehat{\beta} = \Phi((Y_k - X(X^T \Lambda_k^{-1} X)^{-1} X^T \Lambda_k^{-1} Y_k))_{k \ge 1}$$

= $\Phi(((I_{n \times n} - X(X^T \Lambda_k^{-1} X)^{-1} X^T \Lambda_k^{-1}) Y_k)_{k \ge 1})$
= $\Phi((\mathcal{M}_k Y_k)_{k \ge 1})$
= $\left(\sum_{k=1}^{\infty} \left[\sum_{i=1}^{\infty} \mathcal{M}_k(1, i) Y_{ki}\right] \phi_k, \dots, \sum_{k=1}^{\infty} \left[\sum_{i=1}^{\infty} \mathcal{M}_k(n, i) Y_{ki}\right] \phi_k\right)^T,$
(2.13)

donde $I_{n \times n}$ es la matriz de identidad $n \times n$.

Ahora se procede a calcular los componentes de la varianza funcional

• La suma de cuadrados del error residual, denotada como SCE, se escribe como sigue a partir del producto escalar del RKHS de ε , aplicando el Lema 1 y la

ecuación (2.13):

$$SCE = \langle Y - \widehat{Y}, Y - \widehat{Y} \rangle_{R_{\varepsilon\varepsilon}^{-1}}$$

$$= \langle Y - X\widehat{\beta}, Y - X\widehat{\beta} \rangle_{R_{\varepsilon\varepsilon}^{-1}}$$

$$= R_{\varepsilon\varepsilon}^{-1} (Y - X\widehat{\beta}, Y - X\widehat{\beta})$$

$$= \sum_{k=1}^{\infty} [\mathcal{M}_k Y_k]^T \Lambda_k^{-1} \mathcal{M}_k Y_k. \qquad (2.14)$$

donde, para cada $k \ge 1$, \mathcal{M}_k se ha introducido en la ecuación (2.13). Se observa que la distribución de $\langle Y - X\beta, Y - X\beta \rangle_{R_{\varepsilon\varepsilon}^{-1}}$ coincide con la distribución de $\sum_{k=1}^{\infty} X_k$, siendo $X_k \sim \chi^2(n)$, para $k \ge 1$.

La suma de cuadrados total (SCT) se calcula bajo el Suposición A0 y el Lema
 2.1 como sigue

$$SCT = \langle Y, Y \rangle_{R_{\varepsilon\varepsilon}^{-1}} = \sum_{k=1}^{\infty} Y_k^T \Lambda_k^{-1} Y_k, \qquad (2.15)$$

Los momentos de **SCT** no son finitos, es decir,

$$E[SCT] = \sum_{k=1}^{\infty} traza(\Lambda_k^{-1}\Lambda_k) + \beta^T X^T \Lambda_k^{-1} X \beta = \infty$$
$$Var(SCT) = \sum_{k=1}^{\infty} 2traza(\Lambda_k^{-1}\Lambda_k \Lambda_k^{-1} \Lambda_k) + 4\beta^T X^T \Lambda_k^{-1} \Lambda_k \Lambda_k^{-1} X \beta = \infty.$$

Por lo tanto, para que la suma de cuadrados total (\widetilde{SCT}) sea finita, se considera una transformación lineal del vector funcional **Y** en la ecuación (2.1). Dicha transformación se denota por $W : H^n \longrightarrow H^n$, y por lo tanto, la ecuación transformada viene dada por

$$\widetilde{Y} = WY(\cdot) = WX\beta(\cdot) + W\varepsilon(\cdot).$$
(2.16)

Las condiciones de la construcción del operador matricial de pesos W se pueden ver en detalle en Ruiz-Medina [128], para asegurar la finitud de los componentes de la varianza funcional.

En el modelo (2.16), la suma de cuadrados total \widetilde{SCT} es finita y bajo la ecuación (38)

de la Sección 4 en Ruiz-Medina [128], se tiene

$$E[\widetilde{SCT}] = \sum_{k=1}^{\infty} traza(W_k^T \Lambda_k^{-1} W_k \Lambda_k) + \beta_k^T X^T W_k^T \Lambda_k^{-1} W_k X \beta_k < \infty.$$
(2.17)

La finitud del componente de varianza funcional (SCT), se deriva en la Proposición 2 de Ruiz-Medina [128], donde se tiene que $E[\widetilde{SCT}] < \infty$. Por lo tanto, \widetilde{SCT} es finita casi seguramente. La prueba de dicha proposición se proporciona en el Apéndice 1 en Ruiz-Medina [128].

 La suma de cuadrados debido a la regresión (SCR) para el modelo transformado viene dada por

$$\widetilde{SCR} = \widetilde{SCT} - \widetilde{SCE}$$

$$= R_{\varepsilon\varepsilon}^{-1}(\widetilde{Y})(\widetilde{Y}) - R_{\varepsilon\varepsilon}^{-1}(\widetilde{Y} - WX\widehat{\beta})(\widetilde{Y} - WX\widehat{\beta})$$

$$= \sum_{k=1}^{\infty} Y_k^T W_k^T \Lambda_k^{-1} W_k Y_k - Y_k^T W_k^T \mathcal{M}_k^T \Lambda_k^{-1} \mathcal{M}_k W_k Y_k$$

$$= \sum_{k=1}^{\infty} Y_k^T [W_k^T \Lambda_k^{-1} W_k - W_k^T \mathcal{M}_k^T \Lambda_k^{-1} \mathcal{M}_k W_k] Y_k.$$
(2.18)

Para la finitud de la suma de cuadrados debido a la regresión (o varianza explicada) SCR, es suficiente considerar

$$w_p(W_k) = \mathcal{O}(k^{-(\tilde{\rho}(p)+\varrho(p))}), \quad k \longrightarrow \infty$$
 (2.19)

donde $w_p(W_k)$ representa el p-ésimo autovalor de W_k , con el comportamiento asintótico especificado en la ecuación (2.19), siendo $\varrho(p) > 1$, y $\tilde{\rho}(p) > 1$ para cada $p = 1, \ldots, n$, y $w_p(\Lambda_k) \ge C(k, p)$, con $C(k, p) = \mathcal{O}(k^{-\tilde{\rho}(p)})$, $k \longrightarrow \infty, p = 1, \ldots, n$, y eligiendo el parámetro $\tilde{\rho}(p)$ independiente de p, con $\varrho > 1$, condición requerida para la construcción de W (ver Sección 4,1,1 en Ruiz-Medina [128]). Esta construcción de W asegura que $\sum_{k=1}^{\infty} traza(\Lambda_k^{-1}W_k) < \infty$, y, por tanto, $E[\widetilde{SCR}] < \infty$, como se indica en la Proposición 3 (ver en detalle la demostración en Ruiz-Medina [128]). Como en la Proposición 2, W satisface $W_k = W_k^T$, y $E[\widetilde{SCR}] < \infty$. Por lo tanto, \widetilde{SCR} es finito. Finalmente, por las Proposiciones 2 y 3 de Ruiz-Medina [128], se obtiene que \widetilde{SCE} es también finito bajo el modelo transformado.

2.3.1. Funciones generadora de momentos de los componentes de la varianza

En Ruiz-Medina [128], el Teorema 1 establece las condiciones suficientes para la existencia de las funciones generatriz de momentos de los estadísticos \widetilde{SCT} , \widetilde{SCR} y \widetilde{SCE} en el modelo de datos funcional transformado. Además, para cada $k \geq 1$, los elementos del sistema de autovalores

$$\{\xi_{i}(W_{k}^{T}\Lambda_{k}^{-1}W_{k}\Lambda_{k}), i = 1, ..., n\},\$$

$$\{\xi_{i}(W_{k}^{T}\Lambda_{k}^{-1}X(X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k}\Lambda_{k}), i = 1, ..., n\},\$$

$$\{\xi_{i}((W_{k}^{T}\Lambda_{k}^{-1}W_{k} - W_{k}^{T}\Lambda_{k}^{-1}X(X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k})\Lambda_{k}), i = 1, ..., n\}$$

de las matrices $W_k^T \Lambda_k^{-1} W_k \Lambda_k$, $W_k^T \Lambda_k^{-1} X (X^T \Lambda_k^{-1} X)^{-1} X^T \Lambda_k^{-1} W_k \Lambda_k$ y $(W_k^T \Lambda_k^{-1} W_k - W_k^T \Lambda_k^{-1} X (X^T \Lambda_k^{-1} X)^{-1} X^T \Lambda_k^{-1} W_k) \Lambda_k$ son considerados menor que uno. Entonces, las funciones generatrices de momentos de los estadísticos \widetilde{SCT} , \widetilde{SCR} y \widetilde{SCE} vienen dadas por

$$M_{\widetilde{SCT}}\left(\frac{t}{2}\right) = E\left[exp\left(\frac{t}{2(\widetilde{SCT})}\right)\right]$$
$$= \prod_{k=1}^{\infty} \left[det(I_{n\times n} - tW_k^T\Lambda_k^{-1}W_k\Lambda_k)\right]^{-1/2}$$
$$\times exp\left(-\frac{1}{2}\beta_k^TX^T(I_{n\times n} - (I_{n\times n} - tW_k^T\Lambda_k^{-1}W_k\Lambda_k)^{-1})\Lambda_k^{-1}X\beta_k\right).$$
(2.20)

$$M_{\widetilde{SCR}}\left(\frac{t}{2}\right) = E\left[exp\left(\frac{t}{2(\widetilde{SCR})}\right)\right]$$
$$= \prod_{k=1}^{\infty} \left[det(I_{n\times n} - tW_k^T\Lambda_k^{-1}X(X^T\Lambda_k^{-1}X)^{-1} \times X^T\Lambda_k^{-1}W_k\Lambda_k)\right]^{-1/2} \times exp\left(-\frac{1}{2}\beta_k^TX^T(I_{n\times n} - (I_{n\times n} - tW_k^T\Lambda_k^{-1}X(X^T\Lambda_k^{-1}X)^{-1} \times X^T\Lambda_k^{-1}W_k\Lambda_k)^{-1})\Lambda_k^{-1}X\beta_k\right).$$
(2.21)

$$M_{\widetilde{SCE}}\left(\frac{t}{2}\right) = E\left[exp\left(\frac{t}{2(\widetilde{SCE})}\right)\right]$$
$$= \prod_{k=1}^{\infty} \left[det(I_{n\times n} - tW_k^T\Lambda_k^{-1}W_k - W_k^T\Lambda_k^{-1}X(X^T\Lambda_k^{-1}X)^{-1}X^T\Lambda_k^{-1}W_k)\Lambda_k)\right]^{-1/2}$$
$$\times exp\left(-\frac{1}{2}\beta_k^TX^T(I_{n\times n} - (I_{n\times n} - t(W_k^T\Lambda_k^{-1}W_k - W_k^T\Lambda_k^{-1}X(X^T\Lambda_k^{-1}X)^{-1} + X(X^T\Lambda_k^{-1}X)^{-1} + X(X^T\Lambda_k^{-1}X)^{-1} + X(X^T\Lambda_k^{-1}W_k)\Lambda_k)^{-1})\Lambda_k^{-1}X\beta_k\right).$$
(2.22)

La demostración en detalle se puede ver en Ruiz-Medina [128].

2.3.2. Funciones características de los componentes de la varianza

El Lema 2 de Ruiz-Medina [128] contempla el caso Gaussiano Hilbert-valuado para el caso especial del espacio de Hilbert $\mathcal{H} = H^n$. En el siguiente teorema establece condiciones suficientes para la definición explícita de las funciones características de los estadísticos \widetilde{SCT} , \widetilde{SCR} y \widetilde{SCE} . **Teorema 2.1** Bajo el Suposición A0 y las condiciones (2.12) y (2.19), se tienen las siguientes afirmaciones:

i) La función característica de \widetilde{SCT} está definida como sigue

$$F_{\widetilde{SCT}}(i\omega) = E[exp(i\omega\widetilde{SCT})]$$

$$= \prod_{k=1}^{\infty} [det(I_{n\times n} - 2i\omega\Lambda_k^{1/2}W_k^T\Lambda_k^{-1}W_k\Lambda_k^{1/2})]^{-1/2}$$

$$\times exp\left(-4\omega^2\sum_{k=1}^{\infty}\beta_k^TX^TW_k^T\Lambda_k^{-1}W_k\Lambda_k^{1/2}\right)$$

$$\times (I_{n\times n} - 2i\omega\Lambda_k^{1/2}W_k^T\Lambda_k^{-1}W_k\Lambda_k^{1/2})^{-1}$$

$$\times \Lambda_k^{1/2}W_k^T\Lambda_k^{-1}W_kX\beta_k\right)$$

$$\times exp\left(i\omega\sum_{k=1}^{\infty}\beta_k^TX^TW_k^T\Lambda_k^{-1}W_kX\beta_k\right). \quad (2.23)$$

ii) La función característica de \widetilde{SCR} admite la siguiente expresión:

$$\begin{split} F_{\widetilde{SCR}}(i\omega) &= E[exp(i\omega\widetilde{SCR})] \\ &= \prod_{k=1}^{\infty} [det(I_{n\times n} - 2i\omega\Lambda_k^{1/2}W_k^T\Lambda_k^{-1}X \\ &\times (X^T\Lambda_k^{-1}X)^{-1}X^T\Lambda_k^{-1}W_k\Lambda_k^{1/2})]^{-1/2} \\ &\times exp\left(-4\omega^2\sum_{k=1}^{\infty}\beta_k^TX^TW_k^T\Lambda_k^{-1}X \\ &\times (X^T\Lambda_k^{-1}X)^{-1}X^T\Lambda_k^{-1}W_k\Lambda_k^{1/2}(I_{n\times n} \\ &-2i\omega\Lambda_k^{1/2}W_k^T\Lambda_k^{-1}X(X^T\Lambda_k^{-1}X)^{-1} \\ &\times X^T\Lambda_k^{-1}W_k\Lambda_k^{1/2})^{-1}\Lambda_k^{1/2}W_k^T\Lambda_k^{-1}X \\ &\times (X^T\Lambda_k^{-1}X)^{-1}X^T\Lambda_k^{-1}W_kX\beta_k\right) \\ &\times exp\left(i\omega\sum_{k=1}^{\infty}\beta_k^TX^TW_k^T\Lambda_k^{-1}X \\ &\times (X^T\Lambda_k^{-1}X)^{-1}X^T\Lambda_k^{-1}W_kX\beta_k\right). \end{split}$$
(2.24)

iii) La función característica de \widetilde{SCE} se escribe como sigue

$$\begin{split} F_{\widetilde{SCE}}(i\omega) &= E[exp(i\omega\widetilde{SCE})] \\ &= \prod_{k=1}^{\infty} [det(I_{n\times n} - 2i\omega\Lambda_{k}^{1/2}(W_{k}^{T}\Lambda_{k}^{-1}W_{k} \\ &-W_{k}^{T}\Lambda_{k}^{-1}X(X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k})\Lambda_{k}^{1/2})]^{-1/2} \\ &\times exp\left(-4\omega^{2}\sum_{k=1}^{\infty}\beta_{k}^{T}X^{T}W_{k}^{T}\Lambda_{k}^{-1}W_{k} \\ &-W_{k}^{T}\Lambda_{k}^{-1}X(X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k})\Lambda_{k}^{-1/2} \\ &\times (I_{n\times n} - 2i\omega\Lambda_{k}^{1/2}(W_{k}^{T}\Lambda_{k}^{-1}W_{k} \\ &-W_{k}^{T}\Lambda_{k}^{-1}X(X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k})\Lambda_{k}^{1/2})^{-1} \\ &\times \Lambda_{k}^{1/2}(W_{k}^{T}\Lambda_{k}^{-1}W_{k} - W_{k}^{T}\Lambda_{k}^{-1}X \\ &\times (X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k})X\beta_{k}\right) \\ &\times exp\left(i\omega\sum_{k=1}^{\infty}\beta_{k}^{T}X^{T}(W_{k}^{T}\Lambda_{k}^{-1}W_{k} - W_{k}^{T}\Lambda_{k}^{-1}X \\ &\times (X^{T}\Lambda_{k}^{-1}X)^{-1}X^{T}\Lambda_{k}^{-1}W_{k})X\beta_{k}\right). \end{split}$$
(2.25)

La demostración está desarrollada en detalle en el Apéndice 4 de Ruiz-Medina [128]. Una versión extendida al caso infinito-dimensional del estadístico Fisher (F), mide la magnitud relativa entre la suma de cuadrados empírica explicativa del modelo transformado funcional y la suma de cuadrados residual, que viene dado por:

$$F = \frac{\widetilde{SCR}}{\widetilde{SCE}} \tag{2.26}$$

En la siguiente sección, se presenta la extensión de la formulación del modelo de efectos fijos multivariante Hilbert-valuado estudiado en Ruiz-Medina [128], al caso, donde los componentes funcionales correlacionados del término de error se definen mediante un proceso autorregresivo Hilbert-valuado de orden uno (Proceso ARH(1)) (ver en Álvarez-Liébana y Ruiz-Medina [4]). Se analiza el efecto del dominio espacial en el análisis FANOVA a partir de datos funcionales con soporte espacial. Esta formulación, considera los núcleos de autocovarianza y covarianza cruzada no separables en el espectro puntual con soporte compacto, extendiendo el caso separable estudiado en Ruiz-Medina [128].

2.4. Modelo de efectos fijos multivariante Hilbertvaluado con término de error ARH(1)

Sea H un espacio Hilbert separable real con producto interno $\langle \cdot, \cdot \rangle_H$, y la norma asociado $\|\cdot\|_H$. Se define el siguiente modelo de efectos fijos multivariante Hilbertvaluado con término de error ARH(1).

$$Y(\cdot) = X\beta(\cdot) + \varepsilon(\cdot), \qquad (2.27)$$

donde $Y(\cdot) = [Y_1(\cdot), \ldots, Y_n(\cdot)]^T$ representa la respuesta gaussiana H^n -valuada con $E\{Y\} = X\beta$. Donde X es una matriz $n \times p$ real-valuada, que denota, como antes, la matriz del diseño de efectos fijos y $\beta(\cdot) = [\beta_1(\cdot), \ldots, \beta_p(\cdot)]^T \in H^p$ representa el vector de parámetros de efectos fijos. El término de error H^p -valuado $\varepsilon(\cdot) = [\varepsilon_1(\cdot), \ldots, \varepsilon_p(\cdot)]^T$ es un proceso ARH(1) sobre el espacio de probabilidad básico (Ω, \mathcal{A}, P) , es decir, es un proceso gaussiano Hilbert-valuado, estacionario en el tiempo que satisface (ver en Bosq [14])

$$\varepsilon_m(\cdot) = \rho(\varepsilon_{m-1})(\cdot) + \nu_m(\cdot), \quad m \in \mathbb{Z},$$
(2.28)

donde $E\{\varepsilon_m\} = 0$, para cada $m \in \mathbb{Z}$, y ρ representa el operador autocorrelación del proceso de error ε , que pertenece al espacio de operadores lineales acotados en H. El proceso $\nu = \{\nu_m, m \in \mathbb{Z}\}$ es un ruido Gaussiano en sentido fuerte; es decir, ν es un proceso estacionario con media cero Hilbert-valuado, con componentes independientes e identicamente distribuidas en el tiempo, y con $\sigma^2 = E\{\|\nu_m\|_H^2\} < \infty$, para todo $m \in \mathbb{Z}$.

Entonces, las entradas funcionales no nulas de la matriz de operador covarianza $R_{\varepsilon\varepsilon}$ de $\varepsilon(\cdot) = [\varepsilon_1(\cdot), \ldots, \varepsilon_p(\cdot)]^T$ se definen a partir de los siguientes operadores:

• Operador autocovarianza R_0

$$E\{\varepsilon_i \otimes \varepsilon_i\} = R_0, \quad si \quad i = j,$$

• Operador covarianza cruzada R_1

$$E\{\varepsilon_i \otimes \varepsilon_j\} = R_1, \quad si \quad j-i=1,$$

y $E\{\varepsilon_i \otimes \varepsilon_j\} = R_1^*$, si i - j = 1, representa el adjunto del operador covarianza cruzada para el proceso ARH(1) $\varepsilon = \{\varepsilon_i, i \in \mathbb{Z}\}$. Se asume que ρ es suficientemente regular. En particular, ρ es tal que $\|\rho^2\|_{\mathcal{L}(H)} \simeq 0$.

Equivalentemente, el operador de covarianza matricial $R_{\varepsilon\varepsilon}$ viene dado por:

$$R_{\varepsilon\varepsilon} = E\left\{ \begin{bmatrix} \varepsilon_{1}(\cdot), \dots, \varepsilon_{n}(\cdot) \end{bmatrix}^{T} \begin{bmatrix} \varepsilon_{1}(\cdot), \dots, \varepsilon_{n}(\cdot) \end{bmatrix} \right\}$$
$$= \begin{bmatrix} E\{\varepsilon_{1} \otimes \varepsilon_{1}\} & \cdots & E\{\varepsilon_{1} \otimes \varepsilon_{n}\} \\ \vdots & \ddots & \vdots \\ E\{\varepsilon_{n} \otimes \varepsilon_{1}\} & \cdots & E\{\varepsilon_{n} \otimes \varepsilon_{n}\} \end{bmatrix}$$
$$= \begin{bmatrix} R_{0} & R_{1} & 0_{H} & 0_{H} & \cdots & 0_{H} & 0_{H} & 0_{H} \\ R_{1}^{*} & R_{0} & R_{1} & 0_{H} & \cdots & 0_{H} & 0_{H} & 0_{H} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0_{H} & 0_{H} & 0_{H} & 0_{H} & \dots & R_{1}^{*} & R_{0} & R_{1} \\ 0_{H} & 0_{H} & 0_{H} & 0_{H} & \dots & 0_{H} & R_{1}^{*} & R_{0} \end{bmatrix}$$

donde 0_H representa la función nula en la norma de H.

En el espacio $\mathcal{H} = H^n$, se considera el producto interno

$$\langle f,g \rangle_{H^*} = \sum_{i=1}^n \langle f_i,g_i \rangle_H, \quad f,g \in H^n.$$

Asimismo, se tiene la descomposición espectral diagonal (ver Bosq [14])

$$R_0 = \sum_{k=1}^{\infty} \lambda_k \phi_k \otimes \phi_k,$$

en términos de un sistema de autovectores ortonormal completo $\{\phi_k, k \ge 1\}$, que define en H una resolución de la identidad $\sum_{k=1}^{\infty} \phi_k \otimes \phi_k$. Se tiene que el k-ésimo autovalor de R_0 satisface $\lambda_k = \lambda_k(R_0)$ para cada $k \ge 1$, con $R_0(\phi_k) = \lambda_k(R_o)\phi_k$.

Por lo tanto, en el sentido media cuadrática, se tiene la expansión de la serie:

$$\varepsilon_i = \sum_{k=1}^{\infty} \langle \varepsilon_i, \phi_k \rangle_H \phi_k = \sum_{k=1}^{\infty} \sqrt{\lambda_k} \eta_k(i) \phi_k, \ i = 1, \dots, n,$$

donde $\eta_k(i) = \frac{1}{\sqrt{\lambda_k}} \langle \varepsilon_i, \phi_k \rangle_H$, para $k \ge 1$ y $i \in \mathbb{N}$.

En Álvarez-Liébana y Ruiz-Medina [4] plantea la siguiente suposición: **Suposición A0:** La sucesión de variables aleatorias gaussianas estándar $\{\eta_k(i), k \ge 1, i \in \mathbb{N}\},$ con

$$\sqrt{\lambda_k}\eta_k(i) = \langle \varepsilon_i, \phi_k \rangle_H, \text{ para cada } k \ge 1, i \in \mathbb{N}$$

satisface la siguiente condición de ortogonalidad, para cada $i,j\in\mathbb{N},$

$$E\{\eta_k(i)\eta_p(j)\} = \delta_{k,p}, k, p \in \mathbb{N},$$

donde δ denota la función delta de Kronecker, y

$$R_1 = \sum_{k=1}^{\infty} \lambda_k(R_1) \phi_k \otimes \phi_k,$$

$$R_1^* = \sum_{k=1}^{\infty} \lambda_k(R_1^*) \phi_k \otimes \phi_k.$$

Bajo la Suposición A0, se calcula el estimador de mínimos cuadrados generalizados de $[\beta_1(\cdot), \ldots, \beta_p(\cdot)]^T$ que se obtiene a partir de la proyección en la base ortogonal de autovectores { $\phi_k, k \ge 1$ } del operador autocovarianza R_0 del proceso ARH(1) $\varepsilon = \{\varepsilon_i, i \in \mathbb{Z}\}.$

El operador de proyección en el sistema de autovector $\{\phi_k, k \ge 1\}$ se representa como antes por Φ^* , y aplicado a una función vectorial $f \in \mathcal{H} = H^n$ se define como sigue (ver Ejemplo 2.1, de Ruiz-Medina [128])

$$\Phi^{*}(f) = \{\Phi_{k}^{*}(f), k \ge 1\}
= \{(\langle f_{1}, \phi_{k} \rangle, \dots, \langle f_{n}, \phi_{k} \rangle)^{T}, k \ge 1\}
= \{(f_{k1}, \dots, f_{kn})^{T}, k \ge 1\}
= \{f_{k}^{T}, k \ge 1\},$$
(2.29)

donde $\Phi\Phi^* = Id_{\mathcal{H}=H^n}$, con

$$\Phi(\left\{\mathbf{f}_k^T, \ k \ge 1\right\}) = \left(\sum_{k=1}^{\infty} f_{k1}\phi_k, \dots, \sum_{k=1}^{\infty} f_{kn}\phi_k\right)^T.$$

El operador matricial $A = \{A_{i,j}\}_{i=1,\dots,n}^{j=1,\dots,n}$ tal que, para cada $i, j = 1,\dots,n$, sus entradas funcionales está dado por

$$A_{i,j} = \sum_{k=1}^{\infty} \gamma_{kij} \phi_k \otimes \phi_k$$

con $\sum_{k=1}^{\infty}\gamma_{kij}^2<\infty.$ Se tiene la siguiente identidad:

$$\Phi^* A \Phi = \{ \Gamma_k, k \ge 1 \}, \quad \Phi \{ \Gamma_k, k \ge 1 \} \Phi^* = A,$$
(2.30)

donde, para cada $k \ge 1$, las entradas de Γ_k son $\Gamma_{kij} = \gamma_{kij}$, para $i, j = 1, \ldots, n$.

Aplicando las ecuaciones (2.29) y (2.30) se obtiene

$$\Phi^* R_{\varepsilon \varepsilon} \Phi = \{ \Lambda_k, \ k \ge 1 \},$$

también su inversa

$$\Phi^* R_{\varepsilon\varepsilon}^{-1} \Phi = \{\Lambda_k^{-1}, \ k \ge 1\},$$

 ${\rm donde}$

$$\begin{aligned} R_{\varepsilon\varepsilon}^{-1}(f,g) &= \Phi^* R_{\varepsilon\varepsilon}^{-1} \Phi(\Phi^* f, \Phi^* g) \\ &= \langle f,g \rangle_{R_{\varepsilon\varepsilon}^{-1}} \\ &= \sum_{k=1}^{\infty} f_k^T \Lambda_k^{-1} g_k, \quad f,g \in R_{\varepsilon\varepsilon}^{1/2}(H^n), \\ \|f\|_{R_{\varepsilon\varepsilon}^{-1}}^2 &= \sum_{k=1}^{\infty} f_k^T \Lambda_k^{-1} f_k, \quad f \in R_{\varepsilon\varepsilon}^{1/2}(H^n), \end{aligned}$$
(2.31)

entonces, para cada $k\geq 1,$

$$A_{k} = \Phi_{k}^{*}R_{\varepsilon\varepsilon}\Phi_{k}$$

$$= \begin{bmatrix} \lambda_{k}(R_{0}) & \lambda_{k}(R_{1}) & 0 & 0 & \cdots & 0 & 0 & 0 \\ \lambda_{k}(R_{1}^{*}) & \lambda_{k}(R_{0}) & \lambda_{k}(R_{1}) & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_{k}(R_{1}^{*}) & \lambda_{k}(R_{0}) & \lambda_{k}(R_{1}) \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda_{k}(R_{1}^{*}) & \lambda_{k}(R_{0}) \end{bmatrix}$$

$$(2.32)$$

y la matriz inversa se denota por A_k^{-1} para cada $k \geq 1..$

Suposición A1: La matriz diseño de efectos fijos X es una matriz no cuadrada ortogonal.

$$X^T X = Id_p, \quad ID_p \in \mathbb{R}^{p \times p}.$$

De la ecuación (2.31) se tiene

$$E\left\{ \|Y - X\beta\|_{R_{\varepsilon\varepsilon}^{-1}}^{2} \right\} = R_{\varepsilon\varepsilon}^{-1}(\varepsilon)(\varepsilon)$$

$$= \sum_{k=1}^{\infty} E\left\{ \|\varepsilon_{k}(\beta_{k})\|_{\Lambda_{k}^{-1}}^{2} \right\}$$

$$\simeq \sum_{k=1}^{\infty} E\left\{ \|\varepsilon_{k}(\beta_{k})\|_{\widehat{\Lambda}_{k}^{-1}}^{2} \right\}$$
(2.33)

para cada $k \ge 1$, y la matriz $\widehat{\Lambda}_k$ representa la versión empírica de la matriz Λ_k cuyos elementos son los operadores de autocovarianza y covarianza cruzada empíricos $\widehat{R_0}, \widehat{R_1}$ y $\widehat{R_1}^*$

$$\widehat{R_0} = \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i \otimes \varepsilon_i$$
$$\widehat{R_1} = \frac{1}{n-1} \sum_{i=1}^{n-1} \varepsilon_i \otimes \varepsilon_{i+1}$$
$$\widehat{R_1}^* = \frac{1}{n-1} \sum_{i=2}^{n} \varepsilon_i \otimes \varepsilon_{i-1}$$

que aproximan los operadores R_0 y R_1 cuando son desconocidos.

Si R_0 y R_1 son conocidos, en la estimación por mínimos cuadrados generalizados de $[\beta_1(\cdot), \ldots, \beta_p(\cdot)]^T$, minimizando la correspondiente función de pérdida se tiene:

$$\widehat{\beta}_{k} = \left(\widehat{\beta_{k1}}, \dots, \widehat{\beta_{kp}}\right)^{T}$$
$$= (X^{T} \Lambda_{k}^{-1} X)^{-1} X^{T} \Lambda_{k}^{-1} Y_{k}$$

La respuesta estimada viene dada, como antes, por $\widehat{Y} = X\widehat{\beta}$, donde

$$\widehat{\beta} = \Phi\left(\left\{\widehat{\beta}_{k}, k \ge 1\right\}\right)$$
$$= \left(\sum_{k=1}^{\infty} \widehat{\beta}_{k1} \phi_{k}, \dots, \sum_{k=1}^{\infty} \widehat{\beta}_{kp} \phi_{k}\right)^{T}$$

Por otro lado, bajo la Suposición A1, se tiene

$$E\left\{\sum_{k=1}^{\infty}\sum_{i=1}^{p}\widehat{\beta}_{ki}^{2}\right\} = \sum_{k=1}^{\infty}Tr(X^{T}\Lambda_{k}^{-1}X)^{-1} + \|\beta\|_{H^{p}}^{2} < \infty$$
(2.34)

es decir, $\widehat{\beta} \in H^p$ (ver en Ruiz-Medina [128]).

El resto se obtiene mediante aplicación de los resultados en Ruiz-Medina [128]. En particular, las componentes de la varianza funcional del modelo de Análisis de Varianza Funcional (2.27) y (2.28) mediante la transformación lineal de los datos funcionales, (ver en detalle en Ruiz-Medina [128]) es la siguiente:

$$WY = WX\beta + W\varepsilon, \tag{2.35}$$

Según hemos comentado antes, a partir de la transformación lineal de la respuesta funcional mediante el operador de pesos W, se obtiene la descomposición de la varianza funcional como sigue:

$$\widetilde{SCT} = \langle WY, WY \rangle_{R_{\varepsilon\varepsilon}^{-1}} \\ = \sum_{k=1}^{\infty} Y_k^T W_k^T \Lambda_k^{-1} W_k Y_k, \\ \widetilde{SCE} = \left\langle W \left(Y - \widehat{Y} \right), W \left(Y - \widehat{Y} \right) \right\rangle_{R_{\varepsilon\varepsilon}^{-1}} \\ = \sum_{k=1}^{\infty} (M_k W_k Y_k)^T \Lambda_k^{-1} M_k W_k Y_k, \\ \widetilde{SCR} = \widetilde{SCT} - \widetilde{SCE}$$

donde para $M_k = ID_{n\times n} - X(X^T\Lambda_k^{-1}X)^{-1}X^T\Lambda_k^{-1},$ para cada $k\geq 1.$

2.5. Comentarios finales

Nótese que en Ruiz-Medina [128] se obtiene por primera vez el desarrollo formal de la descomposición de la varianza en el modelo FANOVA multivariante analizado, tras derivar las condiciones que permiten dicha descomposición. Finalmente, resaltar la importancia del contraste lineal general formulado, que posteriormente se aplica en el trabajo de Álvarez-Liébana y Ruiz-Medina [4], en el contexto del análisis de Imágenes de Resonancia Magnética funcionales.

El modelo de efectos fijos multivariante Hilbert-valuado con término de error definido por un proceso Autorregresivo Hilbertiano de orden uno (proceso ARH(1)) estudiado en Álvarez-Liébana y Ruiz-Medina [4] es una extensión de la formulación del modelo de efectos fijos multivariante Hilbert-valuado estudiado en Ruiz-Medina [128]. Este enfoque proporciona el Análisis de la Varianza Funcional (FANOVA) de datos correlados Hilbert-valuados con soporte espacial. Presenta una prueba estadística alternativa basada en la proyección aleatoria para contrastar la significancia de los parámetros de efectos fijos funcional. En particular, se aplica, según se ha comentado, al análisis de datos de Imagen de Resonancia Magnética funcional (IRMf). En este caso, el rango de dependencia temporal del término de error es controlado por la dinámica ARH(1), mientras el rango de dependencia espacial es controlado por las condiciones en la frontera (ver en Álvarez-Liébana y Ruiz-Medina [4]).

Específicamente, de los enfoques del modelo de efectos fijos multivariante Hilbert valuado de Ruiz-Medina [128] y del modelo de efectos fijos multivariante Hilbert-valuado con término de error ARH(1) estudiado en Álvarez-Liébana y Ruiz-Medina [4], se sientan las bases fundamentales para la formulación del modelo Regresión funcional con regresores tipo núcleo y errores correlados (ver en Ruiz-Medina, Miranda y Espejo [130]). Este modelo es la extensión de ambos modelos estudiados en este capítulo. En el siguiente capítulo se puede ver en detalle la derivación de dicho modelo de regresión y los resultados fundamentales asociados al mismo sobre propiedades asintóticas de los estimadores de los parámetros funcionales del modelo propuesto.

Capítulo 3

Regresión funcional con regresores tipo núcleo y errores correlados

El contenido de este capítulo se han publicado en el trabajo de Ruiz-Medina, M.D., Miranda, D., and Espejo, R. M. (2019). Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors. TEST. 28(3), 943–968. DOI: 10. 1007/s11749-018-0614-2.

En las últimas décadas, varios autores han destacado las ventajas del enfoque del modelo de regresión funcional multivariantes discretos. De hecho, solo en el ajuste funcional, podemos incorporar suposiciones de suavidad en los predictores y el espacio de los parámetros de regresión. En particular, Crambes, Kneip y Sarda [32] que derivan un estimador de suavizado basado en *splines* para el parámetro pendiente funcional. Demuestran que la tasa de convergencia del error de predicción depende de la suavidad de la función de la pendiente y de la estructura de los predictores. En Febrero-Bande, Galeano y González-Manteiga [48] presentan una descripción general de la regresión basada en Análisis de Componentes Principales Funcional (ACPF) y la regresión parcial por mínimos cuadrados funcional, en la estimación de los parámetros de regresión del modelo lineal funcional con respuesta escalar. Existe una extensa literatura sobre las propiedades asintóticas de los estimadores de regresión funcional, en el caso de la respuesta escalar y los regresores funcionales (ver, por ejemplo, Cai y Hall [19], y sus referencias). Aplicando la Regresión de Búsqueda de Proyección, la aproximación de la función de regresión en el caso de un predictor funcional y una respuesta escalar se aborda en Ferraty et al. [53] (ver también Ferraty y Vieu [50]; Ferraty y Vieu [51]). En el contexto no paramétrico, se estudia el caso de la respuesta funcional y el predictor, por ejemplo, en Ferraty, Keilegom y Vieu [52] donde se deriva un estimador de tipo de núcleo del operador de regresión y se obtiene su normalidad asintótica puntual según se ha comentado en la introducción general de esta tesis. Cuevas [36] discute temas centrales en Análisis de Datos Funcionales (FDA), relacionados con las herramientas probabilísticas, la definición y estimación de los parámetros de centralidad y las principales tendencias en regresión, clasificación, reducción de dimensiones y métodos de arranque para la FDA. Los avances recientes en el análisis estadístico de datos de alta dimensión, bajo un enfoque funcional paramétrico, semiparamétrico y no paramétrico, se recopilan en la Edición especial de Goia y Vieu [60].

La formulación tipo núcleo de los parámetros de regresión generalmente se adopta en la literatura de regresión lineal paramétrica con respuesta y regresores funcionales (ver, por ejemplo, Chiou, Müller y Wang [28]; Ruiz-Medina [125]; [126]; [127], y sus referencias). En Morris [110] se puede encontrar una revisión extensa y referencias adicionales para los enfoques de regresión funcional, incluido el caso de respuesta y regresores funcional. Ver también la monografía de Hsing y Eubank [75], donde se presentan varias herramientas analíticas funcionales, para la estimación de elementos aleatorios en espacios funcionales. El concepto de procesos aproximados $L^r - m$ también permite modelar la dependencia temporal en los errores funcionales de regresión (ver, por ejemplo, Horváth v Kokoszka [71]). Un tema central en este libro es el análisis de datos funcionales, que presentan las estructuras dependientes en el tiempo y el espacio según se describe en el Capítulo 2,. Un enfoque de efectos fijos evaluados en espacios de Hilbert es adoptado en Ruiz-Medina [128], para el análisis de FANOVA bajo errores dependientes. Para la regresión simple, con variables explicativas que toman valores en algún espacio abstracto de funciones, la tasa de convergencia del error cuadrático medio de la versión funcional del estimador del núcleo de Nadaraya-Watson se deriva, en Benhenni, Hedli-Griche y Rachdi [12], cuando los errores están representados por un proceso de memoria estacionario, corto o largo.

La presente tesis considera la respuesta funcional y los regresores tipo núcleo, y adopta el marco del proceso ARH(1) (ver Bosq [14]), para representar la correlación

temporal de los errores funcionales. La eficiencia, la consistencia y la normalidad asintótica de un estimador de proyección, basado en los momentos empíricos del operador de autocorrelación residual se pueden obtener, a partir de los resultados obtenidos, en el marco del proceso ARH(1) (ver, por ejemplo, Bosq [14]; Bosq y Ruiz-Medina [16]; Guillas [63]; Mas [104]; y Mas, [105]). El modelo de series de tiempo no paramétrico introducido en Ferraty, Goia y Vieu [49] también podría adoptarse en la representación de la dependencia temporal mostrada por el término de error de regresión. Sin embargo, este trabajo se centra en el marco de las series temporales paramétricas lineales. El enfoque paramétrico, adoptado en el presente capítulo, permite analizar las propiedades asintóticas del estimador del vector de parámetros funcional de regresión, evitando algunos problemas de selección de modelos que aparecen bajo el enfoque no paramétrico. Es bien conocido que el modelo estadístico no paramétrico funcional ofrece un marco más flexible, pero sufre la llamada maldición de la dimensionalidad, causada por la escasez de datos en espacios de alta dimensión, que afectan a las propiedades asintóticas, en particular, de estimadores de regresión no paramétrica. Geenens [58] propone estimadores ligeramente modificados, considerando un enfoque semiparamétrico para medir la proximidad entre dos elementos aleatorios en un espacio de dimensión infinita. En la implementación del enfoque basado en ponderación local se requiere la selección previa de un parámetro de suavizado y un núcleo adecuado. Recientemente, Kara et al. [79] investiga varios modelos no paramétricos, incluida la regresión, la distribución condicional, la densidad condicional y la función de riesgo condicional, cuando las covariables son de dimensión infinita. La selección del ancho de banda a partir de los datos también se discute para las aplicaciones.

Los problemas inversos pueden describirse como ecuaciones funcionales, donde el valor de la función es conocido o fácilmente estimable, pero el argumento es desconocido. En el caso de dimensión finita, la estimación de parámetros del modelo lineal general constituye un ejemplo de problema inverso, donde el argumento desconocido de la matriz de diseño, el parámetro de regresión, debe ser aproximado. La definición bidimensional habitual de la matriz de diseño incluye el tamaño de la muestra y las dimensiones de la población de la covariable. En el análisis de datos funcionales, surgen modelos de dependencia más complejos, que involucran distribuciones condicionales en espacios abstractos. Nos referimos al lector a la reciente contribución de Chaouch, Laib y Louani [27], sobre la estimación del modo condicional del núcleo, a partir de datos ergódicos estacionarios funcionales, en el contexto de elementos aleatorios en espacios abstractos semimétricos (véase también Ling, Liu y Vieu [95]).

En este capítulo se considera el problema de estimación de regresión funcional lineal múltiple, cuando la respuesta toma valores en un espacio de Hilber separable abstracto H y los regresores son operadores sobre H. La dependencia temporal de los errores se representan en términos de un modelo de series de tiempo ARH(1). De hecho, el enfoque presentado proporciona una formulación funcional de la parte paramétrica, que aparece en el modelo semiparamétrico anteriormente mencionado adoptado en Aneiros Pérez y Vieu [6]; [7].

La motivación práctica de la formulación tipo núcleo de los regresores se basa en la incorporación de posibles correlaciones entre la respuesta y los regresores en diferentes escalas y dominios en el tiempo, el espacio o la profundidad, entre otros. Por ejemplo, los experimentos diseñados podrían ejecutarse a lo largo del tiempo, con el control de los regresores sobre el espacio y la profundidad, en un período de tiempo. Este tipo de modelos surgen, por ejemplo, en la estimación de los mapas de temperatura de la superficie del océano a lo largo del tiempo, a partir de la evolución de las covariables funcionales relacionadas observadas a diferentes intervalos de profundidad del océano (ver Espejo, Fernández-Pascual y Ruiz-Medina [44]). En esta tesis, se analiza un conjunto de datos del panel financiero. El mapeo de apalancamiento de la empresa, durante un período de tiempo determinado, en las comunidades españolas de la Península Ibérica, se aborda desde una perspectiva funcional. Los regresores tipo núcleo son los factores determinantes de la empresa, involucrados en el análisis de las decisiones de financiación de la empresa, según el área industrial muestreada y la comunidad española estudiada. El enfoque de estimación funcional propuesto implica dos pasos: Estimación de parámetros de regresión por mínimos cuadrados generalizados y análisis de correlación residual ARH(1), para la estimación funcional de la respuesta. Se deriva la consistencia fuerte del estimador del parámetro de regresión funcional por mínimos cuadrados generalizados. En el caso en el que se desconoce el operador matricial de autocovarianza del término de error, también se obtiene la consistencia fuerte del correspondiente estimador *plug-in* por mínimos cuadrados. Se prueba la normalidad asintótica del estimador del parámetro funcional por mínimos cuadrados generalizado, en el caso de que los errores funcionales siguen una distribución gaussiana de dimensión infinita conocida.

En este capítulo, se reflejan una de las principales contribuciones de la presente tesis. Más concretamente, se introduce el modelo de regresión funcional con término de error ARH(1), para representar la correlación temporal de los errores funcionales. Se derivan asimismo las propiedades asintóticas del estimador del vector funcional de parámetros de regresión. El análisis de correlación se basa en un estimador por componentes del operador de autocorrelación residual. Específicamente, cuando se desconoce la estructura de correlación del término de error, se estima dicha estructura a partir de los residuos obtenidos tras aplicar la estimación por mínimos cuadrados ordinarios. Mediante un estudio de simulación se ilustran las propiedades del predictor funcional de regresión bajo diferentes escenarios de regularidad local. Finalmente, se ilustra la metodología propuesta mediante una aplicación a datos reales en el contexto de la Economía Financiera.

El presente capítulo consta de las siguientes secciones: La Sección 3.1 introduce los elementos del modelo de regresión múltiple dinámico con regresores tipo núcleo y con término de error dado por un proceso ARH(1). En la Sección 3.2, se deriva el estimador paramétrico por mínimos cuadrados generalizado. Cuando los parámetros funcionales que caracterizan las propiedades de segundo orden del término de error son desconocidos, se aplica el método de los momentos para la estimación de los mismos, a partir de los residuos obtenidos en la estimación por mínimos cuadrados ordinaria, en la Sección 3.3. El estudio de simulación abordado en la Sección 3.4 permite ilustrar los resultados sobre estimación, previamente derivados. Una aplicación de datos reales se desarrolla en la Sección 3.5, en el contexto de datos de panel financieros.

3.1. El modelo

Sea (Ω, \mathcal{A}, P) el espacio de probabilidad básico y sea H un espacio Hilbert separable real. Se propone el siguiente modelo de regresión múltiple funcional dinámico:

$$Y_n = X_n^1(\beta_1) + \dots + X_n^p(\beta_p) + \varepsilon_n, \quad n \in \mathbb{Z},$$
(3.1)

donde $\boldsymbol{\beta} = (\beta_1(\cdot), \dots, \beta_p(\cdot))^T \in H^p; X_n^j \in \mathcal{S}(H), j = 1, \dots, p, n \in \mathbb{Z}$, siendo $\mathcal{S}(H)$ el espacio de los operadores Hilbert-Schmidt sobre H, e $Y_n, \varepsilon_n \in H$, para cada $n \in \mathbb{Z}$. Dada una base ortonormal $\{\varphi_k\}_{k\geq 1}$ de H, denotaremos

$$\left\langle X_n^j(\varphi_k), \varphi_l \right\rangle_H = x_{k,l}^j(n), \quad k, l \ge 1, \ \forall n \in \mathbb{Z}, \quad j = 1, \dots, p.$$
 (3.2)

Como $X_n^j \in \mathcal{S}(H)$, entonces, $\sum_{k,l} [x_{k,l}^j(n)]^2 < \infty$, y además

$$X_n^j(f) = \sum_{k,l} x_{k,l}^j(n) \langle f, \varphi_l \rangle_H \varphi_k, \quad \forall f \in H,$$
(3.3)

para cada $n \in \mathbb{Z}, j = 1, \ldots, p$, donde $=_{H}$ significa la igualdad en la norma de H.

El término de error $\varepsilon \equiv \{\varepsilon_n, n \in \mathbb{Z}\}$ satisface

$$E\left[\varepsilon_n | X_n^1, \dots, X_n^p\right] = 0, \quad \forall n \in \mathbb{Z}.$$
(3.4)

Además, se supone que ε es un proceso ARH(1) con media cero, es decir,

$$\varepsilon_n = \rho(\varepsilon_{n-1}) + \delta_n, \ n \in \mathbb{Z},$$
(3.5)

donde ρ denota el operador de autocorrelación, que pertenece al espacio de operadores lineales acotados $\mathcal{L}(H)$ sobre H, satisfaciendo $\|\rho\|_{\mathcal{L}(H)}^k < 1$, para $k \ge k_0$, para cierto $k_0 \in \mathbb{N}$. Aquí, $\{\delta_n, n \in \mathbb{Z}\}$ es una secuencia de variables aleatorias con media cero H-valuadas independientes e identicamente distribuidas, con un operador de autocovarianza traza, es decir, que definen un ruido blanco en sentido fuerte con valores en H. Las componentes aleatorias de dicho proceso funcional no están correlacionadas con la condición inicial aleatoria H-valuada (ver Bosq [14]).

Observación 3.1 Según se probará en la Sección 3.2 posterior, cuando la estructura de segundo orden del proceso de innovación H-valuado es conocida, el estimador paramétrico de regresión, calculado mediante mínimos cuadrados generalizados, se distribuye según una normal asintóticamente.

Se puede obtener una generalización de la prueba estadística lineal clásica, para verificar la significación β_1, \ldots, β_p (ver, por ejemplo, el Teorema 3 en la Sección 6, en Ruiz-Medina [128]). De hecho, bajo este escenario gaussiano, la selección adaptativa de variables regresoras en el tiempo, podría derivarse mediante una prueba estadística de significación, teniendo en cuenta la estructura ARH(1) del término de error (véase, por ejemplo, Kara et al. [80], donde las mismas ideas motivan el uso de estimadores basados en kNN, en la regresión no paramétrica).

Denotamos por

$$R_0 = E[\varepsilon_0 \otimes \varepsilon_0] = E[\varepsilon_n \otimes \varepsilon_n], \quad \forall n \in \mathbb{Z}$$

el operador traza de autocovarianza, y por

$$R_1 = E[\varepsilon_0 \otimes \varepsilon_1] = E[\varepsilon_n \otimes \varepsilon_{n+1}], \quad \forall n \in \mathbb{Z},$$

el operador nuclear de covarianza cruzada.

Se ejecuta el experimento y se selecciona una muestra funcional Y_1, \ldots, Y_N de tamaño N de la respuesta (3.1), bajo el control de los regresores tipo núcleo, X_i^1, \ldots, X_i^p , para los tiempos $i = 1, \ldots, N$. De las ecuaciones (3.1), (3.4) y (3.5),

$$\mu_{n,\mathcal{X}} = E[Y_n | X_n^1, \dots, X_n^p] = X_n^1(\beta_1) + \dots + X_n^p(\beta_p), \quad n = 1, \dots, N$$
$$E[(Y_i - \mu_{i,\mathcal{X}}) \otimes (Y_j - \mu_{j,\mathcal{X}})] = E[\varepsilon_i \otimes \varepsilon_j] = \rho^{|j-i|} R_0, \quad (3.6)$$

para $i, j \in \{1, ..., N\}$, donde, \mathcal{X} denota el vector de valores de las covariables, a las que estamos condicionando. Además, en la última ecuación, hemos aplicado que

$$\varepsilon_n = \sum_{j=0}^k \rho^j \delta_{n-j} + \rho^{k+1}(\varepsilon_{n-k-1}), \quad k \ge 1$$

(ver ecuación (3.11) en Bosq [14]). Por lo tanto, la estructura de covarianza de los errores funcionales $Y_1 - \mu_{1,\mathcal{X}}, \ldots, Y_N - \mu_{N,\mathcal{X}}$, la podemos expresar, en forma de un operador matricial, de la siguiente manera:

$$\mathbf{C} := E \left[((Y_{1} - \mu_{1,\chi}), \dots, (Y_{N} - \mu_{N,\chi}))^{T} \\ \otimes ((Y_{1} - \mu_{1,\chi}), \dots, (Y_{N} - \mu_{N,\chi}))] \right] \\ = \begin{bmatrix} R_{0} & \rho R_{0} & \rho^{2} R_{0} & \dots & \rho^{N-1} R_{0} \\ \rho R_{0} & R_{0} & \rho R_{0} & \dots & \rho^{N-2} R_{0} \\ \vdots & \dots & \ddots & \ddots & \vdots \\ \rho^{N-1} R_{0} & \rho^{N-2} R_{0} & \dots & \dots & R_{0} \end{bmatrix} \\ = \begin{bmatrix} I & \rho & \rho^{2} & \dots & \rho^{N-1} \\ \rho & I & \rho & \dots & \rho^{N-2} \\ \vdots & \dots & \dots & \vdots \\ \rho^{N-1} & \rho^{N-2} & \dots & \dots & I \end{bmatrix} \\ \times \begin{bmatrix} R_{0} & 0 & 0 & \dots & 0 \\ 0 & R_{0} & 0 & \dots & 0 \\ \vdots & \dots & \dots & R_{0} \end{bmatrix} = \rho \mathbf{R}_{0}. \quad (3.7)$$

donde I denota el operador de identidad en H.

Observación 3.2 El enfoque propuesto puede extenderse fácilmente al término de error ARH(p), $p \ge 2$, reemplazo el operador ρ por

$$\rho' = \begin{bmatrix} \rho_1 & \rho_2 & \dots & \rho_p \\ I & 0 & \dots & 0 \\ 0 & I & 0 & \dots \\ 0 & \dots & I & 0 \end{bmatrix}$$

donde, como antes, I denota el operador de identidad en H (ver Bosq [14], p.128).

Si C^{-1} existe, entonces

$$\mathbf{C}^{-1} = \mathbf{R}_0^{-1} \boldsymbol{\rho}^{-1}. \tag{3.8}$$

,

Por otro lado, está claro que \mathbf{R}_0^{-1} existe si, y solo si R_0^{-1} existe, donde

$$\mathbf{R}_{0}^{-1} := \begin{bmatrix} R_{0}^{-1} & 0 & 0 & \dots & 0 \\ 0 & R_{0}^{-1} & 0 & \dots & 0 \\ \vdots & \dots & \dots & \vdots \\ 0 & 0 & \dots & \dots & R_{0}^{-1} \end{bmatrix}$$

Denotamos por $\{\phi_k\}_{k\geq 1}$ y $\{\lambda_k(R_0)\}_{k\geq 1}$ los autovalores y autovectores de R_0 , respectivamente. Haremos las siguientes suposiciones:

Suposición A1. El sistema de autovalores de R_0 satisfacen

$$\lambda_1(R_0) > \lambda_2(R_0) > \ldots > \lambda_m(R_0) > \ldots > 0.$$

Suposición A2. El operador de autocorrelación ρ del término de error ε es un operador compacto autoadjunto en H.

Bajo la **Suposición A1**, podemos formalmente definir el núcleo k_{R_0} del inverso R_0^{-1} de R_0 por $k_{R_0} = \sum_{m=1}^{\infty} \frac{1}{\lambda_m(R_0)} \phi_m \otimes \phi_m$. (ver Dautray y Lions [40], pp. 112-126). Dado que R_0 es un operador traza, tendremos que $\frac{1}{\lambda_k(R_0)} \to \infty$, cuando $k \to \infty$. Por lo tanto, para poder calcular explícitamente $R_0^{-1}(f)$, para cada $f \in H$ necesitamos encontrar una base ortonormal adecuada de H en $R_0^{1/2}(H)$. En caso contrario, R_0^{-1} solo puede ser definido sobre las funciones del RKHS $R_0^{1/2}(H)$ de ε_n , para cada $n \in \mathbb{Z}$ (ver Bosq [14]; Da Prato y Zabczyk [41], Capítulo 1, pp. 12-16).

Por otro lado, bajo la **Suposición A2**, consideramos el sistema de autovectores $\{\psi_k\}_{k\geq 1}$ del operador de autocorrelación ρ satisfaciendo

$$\rho(\psi_k) = \lambda_k(\rho)\psi_k, \ k \ge 1; \quad \rho(g) = \sum_{k=1}^{\infty} \lambda_k(\rho) \langle g, \psi_k \rangle_H \psi_k, \ \forall g \in H.$$
(3.9)

Lema 3.1 Sea ρ el operador matricial introducido en (3.7). Bajo la Suposición A2,

 $\boldsymbol{\rho}$ admite la siguiente representación en serie en H^N : Para cada $\mathbf{f} = (f_1, \ldots, f_N),$

$$\boldsymbol{\rho}(\mathbf{f}) = \sum_{k \ge 1} \boldsymbol{\Psi}_k \begin{bmatrix} 1 & \lambda_k(\rho) & \dots & [\lambda_k(\rho)]^{N-1} \\ \lambda_k(\rho) & 1 & \dots & [\lambda_k(\rho)]^{N-2} \\ \vdots & \dots & \dots & \vdots \\ [\lambda_k(\rho)]^{N-1} & \dots & \dots & 1 \end{bmatrix} \boldsymbol{\Psi}_k^*(\mathbf{f}), \quad (3.10)$$

donde para $\mathbf{g} = (\mathbf{g}_1, \dots, \mathbf{g}_N)^T \in H^N, \ y \ k \ge 1,$

$$\Psi_{k}^{\star}(\mathbf{g}) := \operatorname{diag} (\psi_{k}, \dots, \psi_{k})_{N \times N} (\mathbf{g}) = \mathbf{g}_{k}$$

$$\Psi_{k}\Psi_{k}^{\star}(\mathbf{g}) = \begin{bmatrix} \langle \mathbf{g}_{1}, \psi_{k} \rangle_{H} \psi_{k} \\ \langle \mathbf{g}_{2}, \psi_{k} \rangle_{H} \psi_{k} \\ \vdots \\ \langle \mathbf{g}_{N}, \psi_{k} \rangle_{H} \psi_{k} \end{bmatrix}$$

$$\Psi_{k}^{\star}\Psi_{k} = \operatorname{diag} (\langle \psi_{k}, \psi_{k} \rangle_{H}, \dots, \langle \psi_{k}, \psi_{k} \rangle_{H})_{N \times N} = I_{N \times N}. \quad (3.11)$$

Aquí, $\mathbf{g}_k = (\langle \mathbf{g}_1, \psi_k \rangle_H, \dots, \langle \mathbf{g}_N, \psi_k \rangle_H)^T$, $k \ge 1$, y, como antes diag $(\cdots)_{N \times N}$ corresponde a una matriz diagonal funcional de dimensión N. También, $[\cdot]^*$ representa el adjunto del operador matricial $[\cdot]$, e $I_{N \times N}$ denota la matriz identidad $N \times N$.

Demostración. Bajo la **Suposición A2**, a partir de la ecuación (3.9), consideremos la identidad

$$\rho^{j} = \sum_{k=1}^{\infty} \left[\lambda_{k}(\rho) \right]^{j} \psi_{k} \otimes \psi_{k}, \quad j = 1, \dots, N-1,$$

en la ecuación (3.7), para $\mathbf{f} = (f_1, \ldots, f_N)^T$, entonces $\boldsymbol{\rho}$ se puede expresar como

$$\boldsymbol{\rho}(\mathbf{f}) = \sum_{k\geq 1} \begin{bmatrix} \psi_k & 0 & \dots & 0 \\ 0 & \psi_k & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \psi_k \end{bmatrix} \begin{bmatrix} 1 & \lambda_k(\rho) & \dots & [\lambda_k(\rho)]^{N-1} \\ \lambda_k(\rho) & 1 & \dots & [\lambda_k(\rho)]^{N-2} \\ \vdots & \dots & \dots & \vdots \\ [\lambda_k(\rho)]^{N-1} & \dots & \dots & 1 \end{bmatrix} \\ \times \begin{bmatrix} \psi_k & 0 & \dots & 0 \\ 0 & \psi_k & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \psi_k \end{bmatrix}^* \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{bmatrix}$$
$$= \sum_{k\geq 1} \Psi_k \Lambda_k \Psi_k^*(\mathbf{f}), \qquad (3.12)$$

donde

$$\mathbf{\Lambda}_{k} := \begin{bmatrix} 1 & \lambda_{k}(\rho) & \dots & [\lambda_{k}(\rho)]^{N-1} \\ \lambda_{k}(\rho) & 1 & \dots & [\lambda_{k}(\rho)]^{N-2} \\ \vdots & \dots & \dots & \vdots \\ \left[\lambda_{k}(\rho)\right]^{N-1} & \dots & \dots & 1 \end{bmatrix}, \quad k \ge 1.$$

Entonces,

$$\Psi_k^{\star} \boldsymbol{\rho} \Psi_k = \boldsymbol{\Lambda}_k = \boldsymbol{\Lambda}_k^T \boldsymbol{\Lambda}_k, \quad k \ge 1.$$

 con

$$\mathbf{A}_{k} = \begin{bmatrix} 1 & \lambda_{k}(\rho) & \lambda_{k}^{2}(\rho) & \dots & \lambda_{k}^{N-1}(\rho) \\ 0 & \sqrt{1 - \lambda_{k}^{2}(\rho)} & \frac{-\lambda_{k}^{3}(\rho) + \lambda_{k}(\rho)}{\sqrt{1 - \lambda_{k}^{2}(\rho)}} & \dots & \frac{-\lambda_{k}^{N}(\rho) + \lambda_{k}^{N-2}(\rho)}{\sqrt{1 - \lambda_{k}^{2}(\rho)}} \\ \vdots & \dots & \ddots & & \vdots \\ \vdots & \dots & \ddots & & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{1 - \lambda_{k}^{2}(\rho)} & \frac{-\lambda_{k}^{3}(\rho) + \lambda_{k}(\rho)}{\sqrt{1 - \lambda_{k}^{2}(\rho)}} \\ 0 & 0 & \dots & \dots & \sqrt{1 - \lambda_{k}^{2}(\rho)} \end{bmatrix}$$
(3.13)

Observación 3.3 Por el Lema 3.1, ρ admite una representación diagonal infinitodimensional, con respecto al sistema funcional de matrices ortonormales $\{\Psi_k\}_{k\geq 1}$, con matriz diagonal de entradas Λ_k , $k \geq 1$. Equivalentemente, para $k \geq 1$,

$$\boldsymbol{\Lambda}_{k} = E\left[\left(\langle (Y_{1} - \mu_{1,\mathcal{X}}), \psi_{k} \rangle_{H}, \dots, \langle (Y_{N} - \mu_{N,\mathcal{X}}), \psi_{k} \rangle_{H}\right)^{T} \\
\times \left(\langle (Y_{1} - \mu_{1,\mathcal{X}}), \psi_{k} \rangle_{H}, \dots, \langle (Y_{N} - \mu_{N,\mathcal{X}}), \psi_{k} \rangle_{H}\right)\right] \left[\boldsymbol{\Psi}_{k}^{\star} \mathbf{R}_{0} \boldsymbol{\Psi}_{k}\right]^{-1} \\
= E\left[\left(\langle \varepsilon_{1}, \psi_{k} \rangle_{H}, \dots, \langle \varepsilon_{N}, \psi_{k} \rangle_{H}\right)^{T} \left(\langle \varepsilon_{1}, \psi_{k} \rangle_{H}, \dots, \langle \varepsilon_{N}, \psi_{k} \rangle_{H}\right)\right] \left[\boldsymbol{\Psi}_{k}^{\star} \mathbf{R}_{0} \boldsymbol{\Psi}_{k}\right]^{-1}.$$
(3.14)

El siguiente lema se aplicará en la definición formal de la norma del RKHS de ε , en el modelo (3.1), definiendo la función de pérdida cuadrática a partir de la ecuación (3.24), involucrada en el cálculo del estimador de mínimos cuadrados generalizados $\hat{\beta}_N$ del parámetro β , en la siguiente sección.

Lema 3.2 Para i, j = 1...N, las entradas funcionales $\tilde{\rho}_{i,j}$ de $\rho^{-1} = (\tilde{\rho}_{i,j})_{i,j=1...N}$ se definen formalmente como sigue:

$$\widetilde{\rho}_{1,1} = \widetilde{\rho}_{N,N} = (I - \rho^2)^{-1}$$

$$\widetilde{\rho}_{i,i+1} = \widetilde{\rho}_{j,j-1} = -(I - \rho^2)^{-1}\rho, \quad i = 1, \dots, N - 1, \ j = 2, \dots, N$$

$$\widetilde{\rho}_{i,i} = (I - \rho^2)^{-1}(I + \rho^2), \quad i = 2, \dots, N - 1.$$
(3.15)

Demostración. El operador ρ es invertible si y solo si $[\Lambda_k]_{N \times N}$, es invertible, para $k \geq 1$. El inverso ρ^{-1} admite entonces una representación diagonal infinito-dimensional con respecto a $\{\Psi_k\}_{k\geq 1}$, con matriz diagonal de entradas

$$\mathbf{\Lambda}_{k}^{-1} = \begin{bmatrix} 1 & \lambda_{k}(\rho) & \dots & [\lambda_{k}(\rho)]^{N-1} \\ \lambda_{k}(\rho) & 1 & \dots & [\lambda_{k}(\rho)]^{N-2} \\ \vdots & \dots & \ddots & \vdots \\ [\lambda_{k}(\rho)]^{N-1} & \dots & \dots & 1 \end{bmatrix}_{N \times N}^{-1} = \begin{bmatrix} \mathbf{A}_{k}^{T} \mathbf{A}_{k} \end{bmatrix}^{-1} = \mathbf{A}_{k}^{-1} [\mathbf{A}_{k}^{T}]^{-1},$$

donde

$$\mathbf{A}_{k}^{-1} = \frac{1}{\sqrt{1 - \lambda_{k}^{2}(\rho)}} \begin{bmatrix} \sqrt{1 - \lambda_{k}^{2}(\rho)} & -\lambda_{k}(\rho) & 0 & \dots & 0\\ 0 & 1 & -\lambda_{k}(\rho) & \dots & 0\\ \vdots & \dots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & -\lambda_{k}(\rho)\\ 0 & 0 & \dots & \dots & 1 \end{bmatrix}_{N \times N}, \quad k \ge 1$$
(3.16)

(ver, por ejemplo, Fitzmaurice, Laird y Ware [54]). Así, ρ^{-1} en (3.8) admite la siguiente representación en serie: por cada $\mathbf{f} = (f_1, \ldots, f_N)^T \in H^N$,

$$\boldsymbol{\rho}^{-1}(\mathbf{f}) = \sum_{k \ge 1} \boldsymbol{\Psi}_k \boldsymbol{\Lambda}_k^{-1} \boldsymbol{\Psi}_k^{\star}(\mathbf{f}), \qquad (3.17)$$

donde, para cada $k \geq 1$, la matriz Λ_k^{-1} está dada por

$$\boldsymbol{\Lambda}_{k}^{-1} = \frac{1}{1 - \lambda_{k}^{2}(\rho)} \begin{bmatrix} 1 & -\lambda_{k}(\rho) & 0 & \dots & 0 \\ -\lambda_{k}(\rho) & 1 + \lambda_{k}^{2}(\rho) & -\lambda_{k}(\rho) & 0 & \dots & 0 \\ \vdots & \dots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & -\lambda_{k}(\rho) & 1 + \lambda_{k}^{2}(\rho) & -\lambda_{k}(\rho) \\ 0 & 0 & \dots & \dots & -\lambda_{k}(\rho) & 1 \end{bmatrix}.$$
(3.18)

Las entradas funcionales de ρ^{-1} en (3.15) se definen a partir de (3.17)-(3.18), mediante aplicación de los resultados sobre cálculo espectral para funciones continuas de un operador autoadjunto sobre un espacio de Hilbert separable (ver Dautray y Lions [40], pp. 112-126 y p.140)

Además, de (3.8)-(3.15), las entradas funcionales \widetilde{C}_{ij} , i, j = 1, ..., N, de $\mathbf{C}^{-1} = \left(\widetilde{C}_{ij}\right)_{i,j=1...,N}$ se definen formalmente como $\widetilde{C}_{1,1} = \widetilde{C}_{N,N} = R_0^{-1}(I - \rho^2)^{-1}$ $\widetilde{C}_{i,i+1} = \widetilde{C}_{j,j-1} = -R_0^{-1}(I - \rho^2)^{-1}\rho, \quad i = 1, ..., N - 1, \ j = 2, ..., N$ $\widetilde{C}_{i,i} = R_0^{-1}(I - \rho^2)^{-1}(I + \rho^2), \quad i = 2, ..., N - 1.$ (3.19)

Se considera adicionalmente la siguiente suposición:

Suposición A3. Los autovectores $\{\psi_k\}_{k\geq 1}$ de ρ satisfacen $\{\psi_k\}_{k\geq 1} \subset R_0^{1/2}(H)$.

Bajo la **Suposición A3**, el siguiente lema proporciona una expansión en serie de las entradas funcionales de \mathbf{C}^{-1} , lo que nos lleva a la derivación del estimador de mínimos cuadrados generalizados $\hat{\boldsymbol{\beta}}_N$ de $\boldsymbol{\beta}$, bajo la **Suposición A4** que se formulará posteriormente.

Lema 3.3 Bajo la **Suposición A3**, las entradas funcionales del operador matricial en (3.19) admiten la siguiente expansión de serie en la norma de H :

$$\widetilde{C}_{1,1}(f) = \widetilde{C}_{N,N}(f) = R_0^{-1}(I - \rho^2)^{-1}(f)
= \sum_{k,l} \frac{1}{1 - \lambda_k^2(\rho)} R_0^{-1}(\psi_k)(\psi_l) \langle \psi_k, f \rangle_H \psi_l
= \sum_{k,l} a_{l,k} \langle \psi_k, f \rangle_H \psi_l, \quad \forall f \in H
\widetilde{C}_{i,i+1}(f) = \widetilde{C}_{j,j-1}(f) = -R_0^{-1}(I - \rho^2)^{-1}\rho(f)
= -\sum_{k,l} \frac{\lambda_k(\rho)}{1 - \lambda_k^2(\rho)} R_0^{-1}(\psi_k)(\psi_l) \langle \psi_k, f \rangle_H \psi_l
= \sum_{k,l} b_{l,k} \langle \psi_k, f \rangle_H \psi_l, \quad \forall f \in H, \ i = 1, \dots, N - 1, \ j = 2, \dots, N
\widetilde{C}_{i,i}(f) = R_0^{-1}(I - \rho^2)^{-1}(I + \rho^2)(f)
= \sum_{k,l} \frac{1 + \lambda_k^2(\rho)}{1 - \lambda_k^2(\rho)} R_0^{-1}(\psi_k)(\psi_l) \langle \psi_k, f \rangle_H \psi_l
= \sum_{k,l} c_{l,k} \langle \psi_k, f \rangle_H \psi_l, \quad \forall f \in H, \ i = 2, \dots, N - 1. \quad (3.20)$$

La demostración de este lema es inmediata a partir de la **Suposición A3** y la aplicación de los Teoremas Espectrales para operadores compactos autoadjuntos (ver Dautray y Lions [40], pp. 112-126).

Notamos que de (3.8)-(3.20), \mathbf{C}^{-1} admite una representación en serie: Para cada

$$\mathbf{f} = (f_1, \dots, f_N)^T, \text{ y } \mathbf{g} = (g_1, \dots, g_N)^T \in H^N,$$

$$\mathbf{C}^{-1}(\mathbf{f})(\mathbf{g}) = \sum_{k,l} [\mathbf{\Psi}_{l}^{*}(\mathbf{g})]^{T} \mathbf{H}_{l,k} \mathbf{\Psi}_{k}^{*}(\mathbf{f}) \qquad (3.21)$$
$$\mathbf{H}_{l,k} := \begin{bmatrix} a_{l,k} & b_{l,k} & 0 & \dots & 0 \\ b_{l,k} & c_{l,k} & b_{l,k} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & b_{l,k} & c_{l,k} & b_{l,k} \\ 0 & 0 & \dots & b_{l,k} & a_{l,k} \end{bmatrix}, \qquad (3.22)$$

donde $a_{l,k}, b_{l,k}, c_{l,k}, k, l \ge 1$, se han introducido en la ecuación (3.20) del Lema 3.3. La norma en el RKHS $\mathcal{H}(\boldsymbol{\varepsilon})$ de $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_N)^T$, viene dada por

$$\|\mathbf{f}\|_{\mathcal{H}(\boldsymbol{\varepsilon})}^{2} = \mathbf{C}^{-1}(\mathbf{f})(\mathbf{f}) = \sum_{k,l} [\boldsymbol{\Psi}_{l}^{\star}(\mathbf{f})]^{T} \mathbf{H}_{l,k} \boldsymbol{\Psi}_{k}^{\star}(\mathbf{f}), \quad \forall \mathbf{f} \in \mathcal{H}(\boldsymbol{\varepsilon}).$$
(3.23)

3.2. Estimación de parámetros de regresión funcional

Bajos condiciones apropiadas, el estimador por mínimos cuadrados generalizados del vector de parámetros β viene dado por la siguiente expresión, calculada a partir de (3.23):

$$\widehat{\boldsymbol{\beta}}_{N} := \min_{\boldsymbol{\beta} \in H^{p}} L^{2}(\boldsymbol{\beta}) = \min_{\boldsymbol{\beta} \in H^{p}} \|\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})\|_{\mathcal{H}(\boldsymbol{\varepsilon})}^{2}$$

$$= \min_{\boldsymbol{\beta} \in H^{p}} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta}))^{T} \mathbf{C}^{-1} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta}))$$

$$= \min_{\boldsymbol{\beta} \in H^{p}} \sum_{k,l} [\boldsymbol{\Psi}_{l}^{\star} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})]^{T} \mathbf{H}_{l,k} \boldsymbol{\Psi}_{k}^{\star} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})), \qquad (3.24)$$

donde

$$\mathbf{X} := \begin{bmatrix} \mathbf{X}_{1}^{T} \\ \vdots \\ \mathbf{X}_{N}^{T} \end{bmatrix} = \begin{bmatrix} X_{1}^{1} & \dots & X_{1}^{p} \\ \vdots & \vdots & \vdots \\ X_{N}^{1} & \dots & X_{N}^{p} \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{1}, \dots, \mathbf{X}^{p} \end{bmatrix}$$
$$\mathbf{X}_{i}^{T} := (X_{i}^{1}, \dots, X_{i}^{p}), \quad i = 1, \dots, N,$$
$$\mathbf{X}^{j} = (X_{1}^{j}, \dots, X_{N}^{j})^{T}, \quad j = 1, \dots, p \qquad (3.25)$$
$$X_n^i(f)(g) = \sum_{k,l} x_{k,l}^i(n) \langle f, \psi_l \rangle_H \langle g, \psi_k \rangle_H,$$

$$\forall f, g \in H, \quad i = 1, \dots, p, \ n = 1, \dots, N$$
(3.26)

$$\mathbf{Y} := (\mathbf{Y}_1, \dots, \mathbf{Y}_N)^T \quad \boldsymbol{\beta} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_p)^T.$$
(3.27)

Para derivar las ecuaciones normales que permiten el cálculo del estimador de las componentes del vector de parámetros funcionales β , dadas por

$$\boldsymbol{\beta} = \left(\sum_{k\geq 1} \langle \beta_1, \psi_k \rangle_H \psi_k, \dots, \sum_{k\geq 1} \langle \beta_p, \psi_k \rangle_H \psi_k\right)^T$$
$$= \left(\sum_{k\geq 1} \beta_{1k} \psi_k, \dots, \sum_{k\geq 1} \beta_{pk} \psi_k\right)^T,$$

se considera la siguiente suposición:

Suposición A4. Asumir las condiciones de regularidad que aseguran las siguientes identidades:

$$\frac{\partial \Psi_k^{\star} \mathbf{X}(\boldsymbol{\beta})}{\partial \beta_{j_0 h_0}} = \left(\sum_{j=1}^p \sum_{h=1}^\infty \frac{\partial x_{k,h}^j(1) \beta_{jh}}{\partial \beta_{j_0 h_0}}, \dots, \sum_{j=1}^p \sum_{h=1}^\infty \frac{\partial x_{k,h}^j(N) \beta_{jh}}{\partial \beta_{j_0 h_0}} \right)^T \\
= \left(x_{k,h_0}^{j_0}(1), \dots, x_{k,h_0}^{j_0}(N) \right)^T,$$
(3.28)

con convergencia uniforme con respecto a $k \ge 1$, para $j_0 = 1, \ldots, p$, y $h_0 \ge 1$.

Bajo la **Suposición A4**, denotamos, para $j_0 = 1, \ldots, p$,

$$\frac{\partial \boldsymbol{\Psi}_{k}^{\star} \mathbf{X}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}_{j_{0}}} = \left(\left(\sum_{j=1}^{p} \sum_{h=1}^{\infty} \frac{\partial x_{k,h}^{j}(1) \beta_{jh}}{\partial \beta_{j_{0}h_{0}}} \right)_{h_{0} \geq 1}, \dots, \left(\sum_{j=1}^{p} \sum_{h=1}^{\infty} \frac{\partial x_{k,h}^{j}(N) \beta_{jh}}{\partial \beta_{j_{0}h_{0}}} \right)_{h_{0} \geq 1} \right)^{T} \\ = \left(\left(x_{k,h_{0}}^{j_{0}}(1) \right)_{h_{0} \geq 1}, \dots, \left(x_{k,h_{0}}^{j_{0}}(N) \right)_{h_{0} \geq 1} \right)^{T} \equiv \boldsymbol{\Psi}_{k}^{\star} \mathbf{X}^{j_{0}}, \qquad (3.29)$$

donde \mathbf{X}^{j_0} se ha introducido en las ecuaciones (3.25)-(3.26), y \equiv denota la identificación $[l^2]^N \equiv H^N$ establecida por la isometría definida en términos de la base ortonormal $\{\psi_k\}_{k\geq 1}$. Entonces, bajo la **Suposición A4**, a partir de las ecuaciones (3.24)-(3.29), para cada $j_0 = 1, \ldots, p$,

$$\frac{\partial \|\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})\|_{\mathcal{H}(\boldsymbol{\varepsilon})}^{2}}{\partial \boldsymbol{\beta}_{j_{0}}} = \sum_{k,l} \frac{\partial [\boldsymbol{\Psi}_{l}^{\star}(\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})]^{T} \mathbf{H}_{l,k} \boldsymbol{\Psi}_{k}^{\star}(\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta}))}{\partial \boldsymbol{\beta}_{j_{0}}}$$
$$= -\sum_{k,l} [\mathbf{X}^{j_{0}}]^{T} \boldsymbol{\Psi}_{l} \mathbf{H}_{l,k} \boldsymbol{\Psi}_{k}^{\star}(\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})) + [\boldsymbol{\Psi}_{l}^{\star}(\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})]^{T} \mathbf{H}_{l,k} \boldsymbol{\Psi}_{k}^{\star} \mathbf{X}^{j_{0}}.$$
(3.30)

A partir de la ecuación (3.30), el minimizador de (3.24) con respecto a $\boldsymbol{\beta}$, es decir, el estimador de mínimos cuadrados generalizados $\hat{\boldsymbol{\beta}}_N$ de $\boldsymbol{\beta}$ viene dado por la solución de la siguiente ecuación funcional matricial:

$$-\mathbf{X}^{T}\mathbf{C}^{-1}(\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})) = \mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}(\boldsymbol{\beta}) - \mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{Y} = \mathbf{0}$$
$$-(\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta}))^{T}\mathbf{C}^{-1}\mathbf{X} = \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X} - \mathbf{Y}^{T}\mathbf{C}^{-1}\mathbf{X} = \mathbf{0}.$$
(3.31)

Además, bajo la condición de existencia del inverso del operador matricial $(\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X})^{-1}$, la solución de (3.31) se define como sigue:

$$\widehat{\boldsymbol{\beta}}_{N} = \left(\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{C}^{-1}(\mathbf{Y}_{N})$$
$$= \boldsymbol{\beta} + \left(\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon}_{N}).$$
(3.32)

Entonces, de (3.32), se deduce

$$E[\widehat{\boldsymbol{\beta}}_{N}] = \boldsymbol{\beta}, \quad E[(\widehat{\boldsymbol{\beta}}_{N} - \boldsymbol{\beta})(\widehat{\boldsymbol{\beta}}_{N} - \boldsymbol{\beta})^{T}] = \left(\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}\right)^{-1}$$
$$\widehat{\boldsymbol{\beta}}_{N} \in H^{p} \iff \boldsymbol{\varepsilon}^{T}\mathbf{C}^{-1}\mathbf{X}\left(\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}\right)^{-1}\left(\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{C}^{-1}\boldsymbol{\varepsilon} < \infty, \quad \text{c.s.},$$

donde c.s. denota la igualdad casi segura, y la última condición en (3.33) se debe asumir para la definición adecuada del estimador del parámetro $\hat{\beta}_N$.

3.2.1. Normalidad asintótica

A partir de (3.33), aplicando el Teorema 2.7 en Bosq [14], el siguiente Teorema Central del Límite proporciona la distribución normal asintótica del estimador de mínimos cuadrados generalizados $\hat{\beta}_N$, cuando $N \to \infty$. **Teorema 3.1** Bajo las **Suposiciones A1-A4**, sea $\widehat{\beta}_N$ el estimador de mínimos cuadrados generalizados definido en (3.32) que satisface (3.33). Supongamos que $\{\delta_n, n \in \mathbb{Z}\}$ es un ruido blanco fuerte gaussiano en H. Entonces, cuando $N \to \infty$,

$$\frac{\left(\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}\right)^{1/2}\left(\widehat{\boldsymbol{\beta}}_{N}-\boldsymbol{\beta}\right)}{\sqrt{N}}\rightarrow_{D}\mathcal{N}\left(\mathbf{0},\mathbf{I}_{N\times N}\right),$$

donde $\mathbf{I}_{N \times N}$ denota el operador de identidad en H^N .

Demostración. La demostración se deriva directamente del Teorema 2.7 en Bosq [14], ya que, a partir de la ecuación (3.33), las componentes *H*-valuadas del vector funcional

$$oldsymbol{\mathcal{Z}} = \left(egin{array}{c} \mathcal{Z}_1 \ dots \ \mathcal{Z}_N \end{array}
ight) = \left(\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X}
ight)^{1/2} \left(\widehat{oldsymbol{eta}}_N - oldsymbol{eta}
ight)$$

son variables aleatorias de H-valuadas independientes e idénticamente distribuidas, satisfaciendo

$$\mathcal{Z}_{i} = \sum_{j=1}^{N} B_{i,j}(\varepsilon_{j}) \sim \mathcal{N}(\mathbf{0}, I), \qquad (3.33)$$

para i = 1, ..., p, y j = 1, ..., N, $B_{i,j}$ denota la entrada funcional (i, j) de $(\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X})^{1/2} (\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{C}^{-1}$. Como antes, I denota el operador de identidad en H. Por tanto, se tienen las condiciones requeridas para la aplicación del Teorema Central del Límite, dado en el Teorema 2.7 en Bosq [14] que conducen al resultado deseado.

3.2.2. Consistencia fuerte

Requerimos las siguientes condiciones:

Suposición A5. Existe $Q \in \mathcal{L}(H^p)$ tal que

$$\left\| \left(\frac{\mathbf{X}^T \mathbf{C}^{-1} \mathbf{X}}{N} \right)^{-1} - \mathbf{Q} \right\|_{\mathcal{L}(H^p)} \to 0, \quad N \to \infty,$$
(3.34)

donde $\mathcal{L}(H^p)$ denota el espacio de operadores lineales acotados sobre H^p .

Suposición A6. Para cada $N \ge 2$, X es tal que $\mathbf{C}^{-1}\mathbf{X}\mathbf{X}^T\mathbf{C}^{-1} \in \mathcal{L}(H^N)$, con $\mathcal{L}(H^N)$ denotando el espacio de operadores lineales acotados sobre H^N .

Teorema 3.2 Según las **Suposiciones A1-A6**, el estimador de mínimos cuadrados generalizados $\hat{\boldsymbol{\beta}}_N$ satisfaciendo (3.32)-(3.33) es consistente en sentido fuerte en la norma de H^p , es decir,

$$\|\widehat{\boldsymbol{\beta}}_N - \boldsymbol{\beta}\|_{H^p} \to_{a.s.} 0, \quad N \to \infty.$$
(3.35)

A partir de las ecuaciones (3.32) y (3.34), cuando $N \to \infty$:

$$\left\|\widehat{\boldsymbol{\beta}}_{N}-\boldsymbol{\beta}\right\|_{H^{p}}^{2} \leq \left\|\left(\frac{\mathbf{X}^{T}\mathbf{C}^{-1}\mathbf{X}}{N}\right)^{-1}\right\|_{\mathcal{L}(H^{p})}^{2} \left\|\frac{\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon})}{N}\right\|_{H^{p}}^{2} \quad \text{c.s.}$$

$$(3.36)$$

Además, aplicando la desigualdad de Cauchy-Schwarz, las siguientes identidades se satisfacen c.s.:

$$\left\|\frac{\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon})}{N}\right\|_{H^{p}}^{2} = \left\langle\frac{\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon})}{N}, \frac{\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon})}{N}\right\rangle_{H^{p}}$$
$$= \frac{1}{N^{2}}\left\langle\mathbf{C}^{-1}\mathbf{X}\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon}), \boldsymbol{\varepsilon}\right\rangle_{H^{N}}$$
$$\leq \frac{1}{N^{2}}\left\|\mathbf{C}^{-1}\mathbf{X}\mathbf{X}^{T}\mathbf{C}^{-1}(\boldsymbol{\varepsilon})\right\|_{H^{N}}\left\|\boldsymbol{\varepsilon}\right\|_{H^{N}}$$
$$\leq \frac{1}{N^{2}}\left\|\mathbf{C}^{-1}\mathbf{X}\mathbf{X}^{T}\mathbf{C}^{-1}\right\|_{\mathcal{L}(H^{N})}\left\|\boldsymbol{\varepsilon}\right\|_{H^{N}}^{2}.$$
(3.37)

Ahora, consideramos

$$E \|\boldsymbol{\varepsilon}\|_{H^{N}}^{2} = \sum_{j=1}^{N} E \|\varepsilon_{j}\|_{H}^{2} = N \|R_{0}\|_{\mathcal{N}(H)}, \qquad (3.38)$$

donde $\|\cdot\|_{\mathcal{N}(H)}$ denota la norma del operador nuclear o traza. De (3.38),

$$\frac{\|\boldsymbol{\varepsilon}\|_{H^N}^2}{N^2} \to_{a.s.} 0, \quad N \to \infty.$$
(3.39)

De las ecuaciones (3.37) y (3.39), bajo la Suposición A6,

$$\left\|\frac{\mathbf{X}^T \mathbf{C}^{-1}(\boldsymbol{\varepsilon})}{N}\right\|_{H^p}^2 \to_{c.s.} 0, \quad N \to \infty.$$
(3.40)

Bajo la **Suposición A5**, de las ecuaciones (3.36) y (3.40), se obtiene la consistencia fuerte en la norma H^p de $\hat{\beta}_N$.

3.3. Implementación práctica

En la práctica, cuando R_0 y R_1 son desconocidos, primero aplicamos mínimos cuadrados ordinarios, es decir, se calcula el estimador paramétrico de $\boldsymbol{\beta}$ dado por, $\tilde{\boldsymbol{\beta}}_N = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{Y})$. Los momentos empíricos funcionales de los residuos proporcionan una aproximación de los operadores de autocovarianza y covarianza cruzada del término de error como sigue:

$$\widetilde{R}_{0}^{N} := \frac{1}{N} \sum_{m=1}^{N} [\mathbf{Y}_{m} - \mathbf{X}_{m}^{T}(\widetilde{\boldsymbol{\beta}}_{N})] \otimes [\mathbf{Y}_{m} - \mathbf{X}_{m}^{T}(\widetilde{\boldsymbol{\beta}}_{N})]$$

$$\widetilde{R}_{1}^{N-1} := \frac{1}{N-1} \sum_{m=1}^{N-1} [\mathbf{Y}_{m} - \mathbf{X}_{m}^{T}(\widetilde{\boldsymbol{\beta}}_{N})] \otimes [\mathbf{Y}_{m+1} - \mathbf{X}_{m+1}^{T}(\widetilde{\boldsymbol{\beta}}_{N})]. \quad (3.41)$$

En un segundo paso, estos operadores de covarianza empíricos se consideran en el cálculo de la ecuación (3.32), en términos de una base empírica ortonormal adecuada en H. Consideremos, en particular, $\{\phi_{jN}\}_{j\geq 1}$ el sistema de autovectores del operador de autocovarianza empírica \widetilde{R}_0^N , que satisface (ver Bosq [14], pp. 102–103)

$$\widetilde{R}_{0}^{N}\phi_{jN} = \lambda_{jN}\phi_{jN}, \ j \ge 1,$$

$$\lambda_{1N} \ge \cdots \ge \lambda_{NN} \ge 0 = \lambda_{N,N+1} = \lambda_{N,N+2}, \dots, \qquad (3.42)$$

donde $\{\lambda_{jN}\}_{j\geq 1}$ es el sistema de autovalores de \widetilde{R}_0^N . Los operadores $[\widetilde{R}_0^N]^{-1}$ y $\widehat{\widetilde{\rho}}_N = \widetilde{R}_1^{N-1} [\widetilde{R}_0^N]^{-1}$ pueden ser calculados en términos de tales autovectores empíricos. Así, consideramos los residuos *H*-valuados

$$\widetilde{\varepsilon}_n := Y_n - \widetilde{Y}_n = Y_n - X_n^1(\widetilde{\boldsymbol{\beta}}_1^N) - \dots - X_n^p(\widetilde{\boldsymbol{\beta}}_p^N), \quad n = 1, \dots, N,$$
(3.43)

asociados al estimador por mínimos cuadrados ordinarios $\widetilde{\boldsymbol{\beta}}_N = (\widetilde{\boldsymbol{\beta}}_1^N, \dots, \widetilde{\boldsymbol{\beta}}_p^N)^T$ para el cálculo del siguiente estimador del operador autocorrelación del proceso error:

$$\widehat{\widetilde{\rho}}_{k_N} := \sum_{i=1}^{k_N} \sum_{j=1}^{k_N} \widehat{\widetilde{\rho}}_{i,j,N} \phi_{iN} \otimes \phi_{jN}; \ \widehat{\widetilde{\rho}}_{i,j,N} = \frac{1}{N-1} \sum_{n=1}^{N-1} \langle \widetilde{\varepsilon}_n, \phi_{iN} \rangle_H \frac{\langle \widetilde{\varepsilon}_{n+1}, \phi_{jN} \rangle_H}{\lambda_{jN}}.$$
(3.44)

Aquí, k_N denota el parámetro de truncamiento, con $k_N \leq N, k_N \to \infty$, y $\frac{k_N}{N} \to 0$, $N \to \infty$ (ver Bosq [14]). El estimador (3.44) tiene las mismas propiedades asintóticas que el estimador de ρ , calculado a partir de { $\varepsilon_n, n = 1, ..., N$ }, en el caso donde el estimador de mínimos cuadrados ordinarios $\widetilde{\beta}_N$ de β es fuertemente consistente en la norma de H^p . En particular, $\widehat{\rho}_{k_N}$ es también fuertemente consistente en la norma $\mathcal{L}(H)$ (véase el Capítulo 8 en Bosq [14]). Notamos que

$$\widetilde{\varepsilon}_{n} = Y_{n} - X_{n}^{1}(\widetilde{\boldsymbol{\beta}}_{1}^{N}) - \dots - X_{n}^{p}(\widetilde{\boldsymbol{\beta}}_{p}^{N})$$

$$= \varepsilon_{n} + X_{n}^{1}\left(\boldsymbol{\beta}_{1} - \widetilde{\boldsymbol{\beta}}_{1}^{N}\right) + \dots + X_{n}^{p}\left(\boldsymbol{\beta}_{p} - \widetilde{\boldsymbol{\beta}}_{p}^{N}\right)$$

$$= \varepsilon_{n} + o_{a.s.}(1), \quad N \to \infty,$$

en vista de la consistencia fuerte de $\widetilde{\boldsymbol{\beta}}_N$, se tiene, por tanto,

$$\widetilde{R}_{0}^{N} = \frac{1}{N} \sum_{n=1}^{N} \widetilde{\varepsilon}_{n} \otimes \widetilde{\varepsilon}_{n} = \frac{1}{N} \sum_{n=1}^{N} \varepsilon_{n} \otimes \varepsilon_{n} + o_{a.s.}(1) = R_{0}^{N} + o_{a.s.}(1)$$

$$\widetilde{R}_{1}^{N-1} = \frac{1}{N-1} \sum_{n=1}^{N-1} \widetilde{\varepsilon}_{n} \otimes \widetilde{\varepsilon}_{n+1} = \frac{1}{N-1} \sum_{n=1}^{N-1} \varepsilon_{n} \otimes \varepsilon_{n+1} + o_{a.s.}(1)$$

$$= R_{1}^{N-1} + o_{a.s.}(1),$$
(3.45)

lo que también implica la consistencia fuerte de \widetilde{R}_0^N , y \widetilde{R}_1^{N-1} , involucrados en el cálculo de (3.32), cuando R_0 y R_1 son desconocidos. Para la consistencia fuerte del estimador del parámetro de mínimos cuadrados ordinarios $\widetilde{\beta}_N$, bajo errores dependientes, se asumen las siguientes condiciones suficientes: Suposición $\widetilde{A5}$. Existe $\widetilde{Q} \in \mathcal{L}(H^p)$ tal que

$$\left\| \left(\frac{\mathbf{X}^T \mathbf{X}}{N} \right)^{-1} - \widetilde{Q} \right\|_{\mathcal{L}(H^p)} \to 0, \quad N \to \infty.$$
(3.46)

Suposición $\widetilde{A6}$. X es tal que $\mathbf{XX}^T \in \mathcal{L}(H^N)$, para cada $N \geq 2$.

Proposición 3.1 Bajo las Suposiciones $\widetilde{A5}$ - $\widetilde{A6}$, el estimador paramétrico por mínimos cuadrados ordinarios $\widetilde{\beta}_N$ es fuertemente consistente.

Bajo las **Suposiciones** A5-A6, la prueba de la Proposición 3.1 se obtiene, de manera similar al Teorema 3.2, aplicando la siguiente desigualdad:

$$\|\widetilde{\boldsymbol{\beta}}_{N} - \boldsymbol{\beta}\|_{H^{p}}^{2} \leq \left\| \left(\frac{\mathbf{X}^{T} \mathbf{X}}{N} \right)^{-1} \right\|_{\mathcal{L}(H^{p})}^{2} \left\| \frac{\mathbf{X}^{T}(\boldsymbol{\varepsilon})}{N} \right\|_{H^{p}}^{2} \quad c.s.$$
(3.47)

Observación 3.4 Cuando R_0 y R_1 son desconocidos, las entradas funcionales \widetilde{C}_{ij} , i, j = 1, ..., N, de $\mathbf{C}^{-1} = \left(\widetilde{C}_{ij}\right)_{i,j=1...,N}$ en (3.19) pueden ser reemplazados por \widetilde{R}_0^N y $\widehat{\rho}_{k_N} = F(\widetilde{R}_1^{N-1}, \widetilde{R}_0^N) = \pi_{k_N}^* \widetilde{R}_1^{N-1} [\widetilde{R}_0^N]^{-1} \pi_{k_N}$ (ver las ecuaciones (3.41)-(3.44))). Aquí, π_{k_N} denota el proyector ortogonal en el subespacio de H generado por los autovectores $\{\phi_{jN}, j = 1, ..., k_N\}$ de \widetilde{R}_0^N con $k_N \leq N, k_N \to \infty, y \frac{k_N}{N} \to 0, N \to \infty$, como antes. Las **Suposiciones** $\widetilde{A5}$ - $\widetilde{A6}$ aseguran la consistencia fuerte del estimador por mínimos cuadrados ordinarios $\widetilde{\beta}_N$ de β . De la ecuación (3.45), los autovectores $\{\phi_{jN}, j = 1, ..., k_N\}$ de \widetilde{R}_0^N convergen c.s. a los autovectores de $\widehat{R}_0^N = \frac{1}{N} \sum_{n=1}^N \varepsilon_n \otimes \varepsilon_n$, cuando $N \to \infty$, ya que $\widetilde{R}_0^N \to_{a.s.} \widehat{R}_0^N, N \to \infty$. (También $\widetilde{R}_1^{N-1} \to_{a.s.} \widehat{R}_1^{N-1}, N \to \infty$). Bajo las condiciones del Teorema 8.8 en Bosq [14] (ver Sección 8.3 en Bosq [14]), la consistencia fuerte de $\widehat{\rho}_{k_N}$ en (3.44) se obtiene, cuando ρ es un operador de Hilbert-Schmidt, bajo k_N tal que

$$\frac{N\lambda_{k_N}^2(R_0)}{\left(\sum_{j=1}^{k_N} a_j\right)^2 \log(N)} \to \infty, \qquad N \to \infty, \tag{3.48}$$

donde

$$a_{1} = 2\sqrt{2}(\lambda_{1}(R_{0}) - \lambda_{2}(R_{0}))^{-1}$$

$$a_{j} = 2\sqrt{2}\max\left[(\lambda_{j-1}(R_{0}) - \lambda_{j}(R_{0}))^{-1}, (\lambda_{j}(R_{0}) - \lambda_{j+1}(R_{0}))^{-1}\right], \ j \ge 2.$$

Por lo tanto, la consistencia fuerte del correspondiente estimador por mínimos cuadrados generalizados plug-in, $\hat{\beta}_N$, se da a partir de la consistencia fuerte de $\hat{\beta}_N$, bajo las condiciones del Teorema 8.8 en Bosq [14].

Estimación basada en ARH(1) de la respuesta funcional

Se considera el siguiente predictor *H*-valuado de la respuesta:

$$\widehat{Y}_N := X_N^1(\widehat{\boldsymbol{\beta}}_1^N) + \dots + X_N^p(\widehat{\boldsymbol{\beta}}_p^N) + \widehat{\widetilde{\rho}}_{k_N}(\widehat{\varepsilon}_{N-1}), \qquad (3.49)$$

donde $\widehat{\widetilde{\rho}}_{k_N}(\widehat{\varepsilon}_{N-1})$ se calcula de manera similar a (3.44), a partir de los residuos $\widehat{\varepsilon}_n = Y_n - X_n^1(\widehat{\beta}_1^N) - \cdots - X_n^p(\widehat{\beta}_p^N)$, $n = 1, \ldots, N$, con $\widehat{\beta}_i^N$, $i = 1, \ldots, p$, siendo los estimadores de mínimos cuadrados generalizados de los componentes de β , basados en la observación de $\mathbf{Y}_1, \ldots, \mathbf{Y}_N$, calculados en términos de \mathbf{C}^{-1} , o su versión empírica, en el caso donde R_0 y R_1 son desconocidos, como se indicó anteriormente.

3.4. Estudio de Simulación

La ilustración de la metodología presentada se realizará en el caso de que los autovectores del operador de autocovarianza del proceso de error son desconocidos, como suele ocurrir en la práctica. El modelo 2 que se genera y analiza a continuación (ver también los modelos 3 y 4 en el Apéndice 1), también se ilustra el hecho de que la suposición de Hilbert-Schmidt en los regresores se puede relajar, sustituyéndola por la condición, más débil, de compacidad de los regresores, a partir de un diseño espectral diagonal. Limitemos nuestra atención al caso gaussiano, y al espacio de Hilbert separable real $H = L^2((a, b))$, el espacio de funciones de cuadrados integrables en (a, b), con (a, b) = (0, 60). Se consideran los siguientes sistemas de autovectores y autovalores:

$$\phi_j(x) = \frac{2}{b-a} \sin\left(\frac{\pi j x}{b-a}\right), \quad j \ge 1$$
(3.50)

$$R_{0}(f)(x) = \sum_{k=1}^{\infty} \lambda_{k}(R_{0}) \int_{a}^{b} \phi_{k}(x)\phi_{k}(y)f(y)dy$$
(3.51)

$$R_{\delta}(f)(x) = \sum_{k=1}^{\infty} \lambda_k(R_{\delta}) \int_a^b \phi_k(x)\phi_k(y)f(y)dy \qquad (3.52)$$

$$\rho(f)(x) = \sum_{k=1}^{\infty} \lambda_k(\rho) \int_a^b \phi_k(x)\phi_k(y)f(y)dy, \qquad (3.53)$$

$$X_{n}^{i}(\beta_{i})(x) = \sum_{k=1}^{\infty} x_{k}^{i}(n) \int_{a}^{b} \phi_{k}(x)\phi_{k}(y)\beta_{i}(y)dy, \quad i = 1, \dots, p$$

$$\beta_{i}(x) = \sum_{k=1}^{\infty} \langle \beta_{i}, \phi_{k} \rangle_{L^{2}((a,b))} \phi_{k}(x) = \sum_{k=1}^{\infty} \beta_{i}(k)\phi_{k}(x), \quad i = 1, \dots, p.$$
(3.54)

La ecuación (3.50) define $\{\phi_j\}_{j\geq 1}$ como los autovectores del operador Laplaciano negativo las condiciones de Dirichlet sobre el intervalo (a, b). Las secuencias $\{\lambda_k(R_0)\}_{k\geq 1}$, $\{\lambda_k(R_\delta)\}_{k\geq 1}$ y $\{\lambda_k(\rho)\}_{k\geq 1}$ denotan, respectivamente, los sistemas de autovalores de R_0 , R_δ y ρ . Nótese, que en los siguientes ejemplos, $\{\psi_k\}_{k\geq 1}$ coincide con los autovectores $\{\phi_k\}_{k\geq 1}$ de R_0 . Se han analizado seis modelos, mostrando diferentes órdenes de regularidad. Las observaciones Y_1, \ldots, Y_N de la respuesta se generan a partir de las ecuaciones (3.1)-(3.5), en términos de (3.50)-(3.54) (una realización de una muestra funcional de tamaño N = 200 de la respuesta y su estimación se representa en el Apéndice 1, para los seis modelos analizados). Los resultados para los escenarios más regulares y singulares se muestran aquí, correspondientes a los Modelos 1 y 2, respectivamente (se muestran asimismo los resultados en los Modelos 3-6, para $k_N = 2, 3, 4, y N = 200, 600, 1000$, en la sección sobre Apéndice 1). Las Tablas 3.1 y 3.2 muestran los errores cuadráticos medios funcionales empíricos

$$ECMFE(n) = \frac{1}{r} \sum_{i=1}^{r} \frac{1}{60} \sum_{x \in (0,60)} [Y_n^i(x) - \widehat{Y}_n^i(x)]^2, \qquad (3.55)$$

para el caso más desfavorable, es decir, para el valor del parámetro de truncamiento

más grande $k_N = 4$, y el tamaño de muestra más pequeño N = 200. Aquí, r denota el número de repeticiones generadas. Ver también el Apéndice 1, donde se muestran los resultados obtenidos para valores de los parámetros de truncamiento y tamaños de muestras adicionales. Los ECMECs,

$$ECMEC(x,n) = \frac{1}{r} \sum_{i=1}^{r} [Y_n^i(x) - \widehat{Y}_n^i(x)]^2, \ x \in (0,60), \ n = 1, \dots, N,$$

también están representados, en ese apéndice. Aquí, $Y_n^i(x)$ denota el valor de la respuesta en el punto $x \in (0, 60)$, e $\widehat{Y}_n^i(x)$ es su valor estimado, para tiempos $n = 1, \ldots, N =$ 200, calculado a partir de la *i*-ésima generación de una muestra funcional de tamaño N, para $i = 1, \ldots, r$. Como se indica en la nota 3.4, el k_N óptimo se determina a partir del tamaño de la muestra, la tasa de convergencia a cero de los autovalores empíricos de R_0 , y la distancia entre los autovalores empíricos de R_0 . De hecho, el valor k_N óptimo se encuentra en el intervalo [2, 4], para N = 200, 600, 1000 (ver el Apéndice 1).

Los modelos 1 y 2 se definen a partir de los siguientes valores de los parámetros: para cada $k \ge 1$, y $n \ge 1$,

$$\begin{aligned} \mathbf{Modelo 1} \quad \lambda_k(R_0) &= \frac{1}{(k+1)^3}, \ \lambda_k(R_\delta) = \frac{1}{(k+1)^4}, \ \lambda_k(\rho) = \frac{1}{(k+1)} \\ x_k^1(n) &= \exp(-nk^{1/10}), \quad x_k^2(n) = \exp(-nk^{15/100}), \\ x_k^3(n) &= \exp(-nk^{2/10}), \quad \langle \beta_1, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{3/5}}, \\ \langle \beta_2, \phi_k \rangle_{L^2(a,b)} &= \frac{1}{(k+1)^{7/10}}, \quad \langle \beta_3, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{4/5}}. \end{aligned}$$

$$\begin{aligned} \mathbf{Modelo \ 2} \quad \lambda_k(R_0) &= \frac{1}{(k+1)^{11/10}}, \ \lambda_k(R_\delta) = \frac{1}{(k+1)^{12/10}} \\ \lambda_k(\rho) &= \frac{1}{(k+1)^{51/100}} \\ x_k^1(n) &= \frac{1}{n(k+1)^{1/10}}, \ \ x_k^2(n) = \frac{1}{n(k+1)^{2/100}} \\ x_k^3(n) &= \frac{1}{n(k+1)^{3/100}}, \ \ \langle \beta_1, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{3/5}} \\ \langle \beta_2, \phi_k \rangle_{L^2(a,b)} &= \frac{1}{(k+1)^{7/10}}, \ \ \langle \beta_3, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{4/5}}. \end{aligned}$$

$$(3.57) \end{aligned}$$

La velocidad de caída de los autovalores de los operadores de autocovarianza y autocorrelación es más rápida en el modelo 1 que en el modelo 2, más singular. Adicionalmente, el modelo 2 corresponde a un escenario más singular, donde los regresores se definen a partir de operadores compactos, pero no Hilbert-Schmidt. Los errores cuadráticos medios funcionales empíricos, obtenidos para r = 100 realizaciones de una muestra funcional de tamaño N = 200, se muestran en la Tabla 3.1 para el modelo 1 y en la Tabla 3.2 para el modelo 2, considerando los tiempos n = 10t, t = 1, ..., 20, muestreados de la observaciones funcionales, que conforman la muestra global de tamaño N = 200. Las propiedades de regularidad, es decir, las propiedades de continuidad y diferenciabilidad de las funciones, que definen los parámetros de regresión, y así como del operador de autocovarianza de la respuesta y las innovaciones, y el operador de autocorrelación junto con los regresores tipo núcleo, determinan, en parte, la precisión del estimador propuesto. Para los tamaños de muestra N = 200,600,1000, y valores de parámetros de truncamiento $k_N = 2, 3, 4$, probados, el mejor rendimiento corresponde al modelo 1, que proporciona el escenario paramétrico más regular. Los peores resultados se observan en el modelo 2, que corresponde al escenario más singular, lo que conduce a los valores más grandes de $\Lambda_{k_N} = \sup_{j=1,\dots,k_N} \frac{1}{\lambda_j(R_0) - \lambda_{j+1}(R_0)}$. Ver Teorema 2 de Guillas 63, que proporciona la convergencia a cero del error medio cuadrático funcional, en la norma de $\mathcal{L}(H)$. Tengase en cuenta que según este resultado, la elección óptima de k_N es tal que

$$\lambda_{k_N}^{4+2\gamma}(R_0) = \frac{c\Lambda_{k_N}^2}{N^{1-2\epsilon}}, \quad c > 0, \ \epsilon < 1/2, \ \gamma \ge 1.$$

La tasa de convergencia en media cuadrática es entonces de orden.

$$\lambda_{k_N}^2(R_0) \simeq \left[\frac{\Lambda_{k_N}^2}{N^{1-2\epsilon}}\right]^{1/(\gamma+2)}$$

(Ver Apéndice 1, para una comparación con los modelos 3-6).

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0075	110	0.0030
20	0.0072	120	0.0038
30	0.0058	130	0.0023
40	0.0039	140	0.0036
50	0.0048	150	0.0018
60	0.0042	160	0.0033
70	0.0020	170	0.0052
80	0.0062	180	0.0056
90	0.0036	190	0.0023
100	0.0031	200	0.0045

Tabla 3.1: Modelo 1. Errores Cuadráticos Medios Funcionales Empíricos (ECMFE), basado en r = 100 repeticiones de una muestra de la respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.2960	110	0.0652
20	0.3068	120	0.0629
30	0.2970	130	0.0625
40	0.3145	140	0.0588
50	0.2289	150	0.0372
60	0.2491	160	0.0655
70	0.2339	170	0.0709
80	0.1496	180	0.1048
90	0.1200	190	0.1011
100	0.0922	200	0.1237

Tabla 3.2: Modelo 2. Errores Cuadráticos Medios Funcionales Empíricos (EFMQE), basado en r = 100 repeticiones de una muestra de la respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

3.5. Aplicación

En esta sección, se analiza un panel de pequeñas y medianas empresas españolas, en diferentes áreas industriales de las 15 comunidades autónomas españolas, en la Península Ibérica, durante el período 1999 — 2007, considerando 4 sectores industriales (Fábricas, Construcción, Comercio y Servicio). Los datos fueron recogidos de la base de datos SABI (Sistema de Análisis de Balances Ibéricos). Los factores determinantes del endeudamiento de la empresa, considerados en el análisis de las decisiones financieras, son: Tamaño de la empresa, Estructura del activo, Rentabilidad, Crecimiento, Riesgo de la empresa, Edad. Específicamente, el endeudamiento se mide como la proporción de la deuda total de los activos totales; el tamaño de la empresa se mide como el registro de los activos totales; la estructura de activos consiste en los activos fijos netos divididos por los activos totales de la empresa; la rentabilidad se calcula como la proporción entre beneficio antes de intereses, impuestos, depreciación y amortización, y el total de activos; el crecimiento se mide en términos del crecimiento de los activos, calculado como el cambio anual de los activos totales de la empresa; el riesgo de la empresa viene dado por el riesgo del negocio y se define como la desviación estándar del beneficio antes de intereses e impuestos sobre el valor contable de los activos totales, durante el período de muestra; y, finalmente, la edad se mide como el logaritmo del número de años que la empresa ha estado operando. Estos factores determinantes dependen de la comunidad española estudiada (localización espacial en la Península Ibérica) y del área industrial muestreada (situado por el argumento radial, en la comunidad autónoma correspondiente). Según se ha comentado, los registros corresponden al periodo 1999-2007 (ver Apéndice 2, donde la respuesta y estos regresores tipo núcleo están representados para el sector Fábrica).

SCC	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.0053	0.0066	0.0136	0.0141	0.0050	0.0061	0.0095	0.0030	0.0182
2 (Asturias)	0.0559	0.0492	0.0285	0.0366	0.0299	0.0273	0.0198	0.0252	0.0280
3 (Cantabria)	0.0487	0.0213	0.0288	0.0384	0.0197	0.0175	0.0169	0.0146	0.0256
4 (P. Vasco)	0.0038	0.0051	0.0102	0.0070	0.0065	0.0035	0.0037	0.0052	0.0092
5 (Navarra)	0.0110	0.0127	0.0097	0.0106	0.0065	0.0088	0.0173	0.0106	0.0141
6 (Aragón)	0.0162	0.0069	0.0161	0.0208	0.0105	0.0107	0.0115	0.0078	0.0180
7 (Cataluña)	0.0058	0.0039	0.0186	0.0121	0.0043	0.0037	0.0046	0.0037	0.0204
8 (Cast. León)	0.0070	0.0052	0.0267	0.0309	0.0057	0.0061	0.0124	0.0058	0.0376
9 (La Rioja)	0.0662	0.0515	0.0237	0.0372	0.0221	0.0265	0.0585	0.0352	0.0237
10 (Extremadura)	0.0326	0.0273	0.0467	0.0501	0.0453	0.0452	0.0445	0.0417	0.0537
11 (Madrid)	0.0087	0.0021	0.0086	0.0057	0.0076	0.0096	0.0086	0.0059	0.0082
12 (Cast. Mancha)	0.0062	0.0087	0.0102	0.0220	0.0054	0.0053	0.0060	0.0036	0.0107
13 (C. Valenciana)	0.0129	0.0073	0.0104	0.0103	0.0094	0.0109	0.0179	0.0099	0.0240
14 (Andalucía)	0.0170	0.0097	0.0249	0.0235	0.0048	0.0053	0.0085	0.0063	0.0440
15 (Murcia)	0.0123	0.0086	0.0130	0.0137	0.0112	0.0102	0.0127	0.0057	0.0170

Tabla 3.3: Sector Fábrica. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007.

El suavizado Beals ha sido considerado tradicionalmente en Ecología para predecir la probabilidad de aparición de diferentes especies en las unidades de muestra (ver, por ejemplo, Cáceres y Legendre [18]). La estructura global de la empresa de las comunidades españolas estudiadas, durante el período temporal analizado, se ha tenido en cuenta, en el procedimiento de selección de objetivo adecuado "subsectores de la industria", en nuestra implementación del suavizado Beals. Específicamente, el siguiente objetivo "subsectores industriales" (es decir, objetivo 'especies') se consideran 11 subsectores industriales en el sector Fábrica (alimentos; bebidas y tabaco; papel, cartón, escritorio y artes gráficas; artículos y automotriz; confección textil y calzado; fabricante de construcción y equipamiento; industria de madera, corcho y muebles; industria metalmecánica; industria química y paraquímica; diversas industrias; tecnología de la información y economía del conocimiento), 3 subsectores industriales en el sector Construcción (actividades de construcción especializadas; edificación; y obra civil), 9 subsectores industriales en el sector Comercio (artículos para el hogar, muebles y electrodomésticos; equipos y componentes electrónicos, informáticos y de telecomunicaciones; ferretería, vidrio y materiales de construcción; maquinaria, mobiliario y equipos para actividades agrícolas e industriales; materias primas, agrícolas, para la industria y materiales de desecho; productos farmacéuticos, perfumería, accesorios de vestir; libros y otros; productos textiles y calzado; y vehículos, motores, repuestos, combustibles y lubricantes) y 6 subsectores industriales en el sector Servicio (hostelería; servicio a la empresa; servicio de distribución; servicio social; servicios al consumidor; y transporte). Los valores de probabilidad estimada (por suavizamiento Beals) que un determinado subsector industrial ocurre en una unidad de muestreo específico desempeña el papel de ponderaciones, en el cálculo de una versión espacial suavizada del endeudamiento de la empresa observada (ver el endeudamiento medio de la empresa por comunidad, y la representación mediante mapas del endeudamiento suavizado Beals en el Apéndice 2). La interpolación espacial se realiza en una cuadrícula regular. El modelo regresión funcional propuesto se ajusta a partir de dicho conjunto de datos suavizados e interpolados espacialmente, en términos de autovectores y autovalores empíricos (ver Apéndice 2 para obtener más detalles). Dado que el tamaño de la muestra funcional N = 9 es pequeño y la distancia entre los autovalores empíricos del operador autocovarianza de los residuos, asociados con el estimador de mínimos cuadrados ordinarios (ver Sección 3.3), solo un autovector empírico $(k_N = 1)$ es considerado en la ecuación (3.44) (ver también Bosq [14]). Se aplica el método de validación cruzada (Leave-One-Out Cross-

Validation (LOOCV)) para analizar la capacidad predictiva del modelo ajustado. Los errores medios LOOCV en las 15 comunidades españolas, para los años en el periodo 1999 - 2007, se muestran, en las Tablas 3.3, 3.4, 3.5 y 3.6, para los cuatro sectores de la industria estudiados, respectivamente. Nótese, que el peor ajuste del modelo es observado para los truncamientos $k_N = 2$ y $k_N = 3$ (ver el Apéndice 2). El mejor resultado corresponde al sector Fábrica seguido por los sectores Construcción y Comercio, donde los subsectores objetivo de la empresa parecen ser seleccionados, según la estructura empresarial de la mayoría de las comunidades españolas. Mientras que en el sector Industrial Servicios se observan los peores resultados, ya que este sector incluye una mayor diversidad de áreas industriales con poca dependencia espacial. A pesar de estos efectos observados del suavizamiento Beals, la magnitud de los errores medios LOOCV es bastante estable a través del tiempo y el espacio (veáse también la representación mediante mapas de los errores medios LOOCV en el Apéndice 2, para $k_N = 1$). Dada la ausencia de registros en la base de datos utilizada, en el sector Construcción en Cantabria, y en el sector Comercio en La Rioja, omitimos estas líneas, en las correspondientes tablas de los errores medios LOOCV. El efecto de estos datos faltantes se puede observar en el mapa de los errores medios LOOCV en el Apéndice 2. El desarrollo del enfoque presentado, bajo un enfoque de datos faltantes u omitidos, constituyen un tema de trabajo para el futuro.

SCC	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.0238	0.0163	0.0332	0.0359	0.0154	0.0169	0.0261	0.0378	0.0157
2 (Asturias)	0.0628	0.0680	0.0703	0.0494	0.0715	0.0937	0.0648	0.0445	0.0557
4 (P. Vasco)	0.0416	0.0301	0.0382	0.0474	0.0336	0.0165	0.0376	0.0477	0.0365
5 (Navarra)	0.0290	0.0301	0.0261	0.0808	0.0191	0.0399	0.0898	0.0756	0.0389
6 (Aragón)	0.0245	0.0163	0.0375	0.0370	0.0122	0.0507	0.0407	0.0480	0.0158
7 (Cataluña)	0.0148	0.0136	0.0230	0.0276	0.0195	0.0149	0.0177	0.0471	0.0216
8 (Cast. León)	0.0540	0.0538	0.0664	0.0465	0.0684	0.0314	0.0610	0.1226	0.0795
9 (La Rioja)	0.0639	0.0457	0.0636	0.1043	0.0554	0.0937	0.0599	0.1636	0.0498
10 (Extremadura)	0.0294	0.0306	0.0337	0.0311	0.0260	0.0330	0.0487	0.0689	0.0461
11 (Madrid)	0.0199	0.0333	0.0190	0.0255	0.0143	0.0092	0.0144	0.0418	0.0147
12 (Cast. Mancha)	0.0251	0.0248	0.0316	0.0262	0.0246	0.0315	0.0432	0.0600	0.0222
13 (C. Valenciana)	0.0226	0.0224	0.0300	0.0310	0.0190	0.0190	0.0190	0.0179	0.0177
14 (Andalucía)	0.0335	0.0504	0.0546	0.0620	0.0298	0.0289	0.0245	0.1275	0.0336
15 (Murcia)	0.0316	0.0321	0.0413	0.0432	0.0092	0.0397	0.0225	0.0332	0.0560

Tabla 3.4: Sector Construcción. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007.

SCC	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.0094	0.0100	0.0071	0.0092	0.0089	0.0090	0.0113	0.0120	0.0078
2 (Asturias)	0.0259	0.0258	0.0233	0.0247	0.0208	0.0250	0.0260	0.0270	0.0223
3 (Cantabria)	0.0211	0.0236	0.0153	0.0153	0.0180	0.0236	0.0274	0.0251	0.0154
4 (P. Vasco)	0.0049	0.0052	0.0052	0.0047	0.0054	0.0064	0.0057	0.0064	0.0051
5 (Navarra)	0.0879	0.0850	0.0821	0.0789	0.0833	0.0877	0.0810	0.0826	0.0794
6 (Aragón)	0.0129	0.0172	0.0126	0.0128	0.0149	0.0166	0.0188	0.0171	0.0109
7 (Cataluña)	0.0042	0.0057	0.0045	0.0067	0.0060	0.0061	0.0048	0.0064	0.0058
8 (Cast. León)	0.0176	0.0165	0.0178	0.0175	0.0169	0.0157	0.0169	0.0148	0.0187
10 (Extremadura)	0.0084	0.0085	0.0106	0.0093	0.0082	0.0094	0.0090	0.0105	0.0097
11 (Madrid)	0.0099	0.0101	0.0105	0.0100	0.0114	0.0130	0.0190	0.0145	0.0132
12 (Cast. Mancha)	0.0099	0.0138	0.0068	0.0052	0.0072	0.0122	0.0183	0.0205	0.0074
13 (C. Valenciana)	0.0079	0.0075	0.0082	0.0079	0.0093	0.0110	0.0092	0.0082	0.0088
14 (Andalucía)	0.0236	0.0239	0.0206	0.0209	0.0235	0.0251	0.0228	0.0241	0.0197
15 (Murcia)	0.0088	0.0090	0.0072	0.0069	0.0086	0.0110	0.0106	0.0106	0.0074

Tabla 3.5: *Sector Commercio.* Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007.

SCC	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.0578	0.0577	0.0547	0.0595	0.0296	0.0442	0.0464	0.0437	0.0526
2 (Asturias)	0.0351	0.0085	0.0157	0.0253	0.1956	0.0228	0.0157	0.0341	0.0440
3 (Cantabria)	0.0360	0.0385	0.0354	0.0334	0.3637	0.0357	0.0480	0.0406	0.0449
4 (P. Vasco)	0.0190	0.0257	0.0214	0.0341	0.2277	0.0197	0.0191	0.0253	0.0307
5 (Navarra)	0.0674	0.0379	0.0397	0.0711	0.2124	0.0416	0.0407	0.0389	0.0472
6 (Aragón)	0.0207	0.0311	0.0376	0.0578	0.7336	0.0279	0.0363	0.0298	0.0305
7 (Cataluña)	0.0440	0.0401	0.0109	0.0373	0.0876	0.0192	0.0232	0.0351	0.0371
8 (Cast. León)	0.0215	0.0264	0.0137	0.0714	0.5700	0.0308	0.0136	0.0204	0.0202
9 (La Rioja)	0.0406	0.0592	0.0689	0.0707	0.2736	0.0732	0.0560	0.0533	0.0631
10 (Extremadura)	0.0464	0.0479	0.0315	0.1038	0.1239	0.0416	0.0364	0.0450	0.0514
11 (Madrid)	0.0647	0.0259	0.0333	0.0292	0.0718	0.0259	0.0183	0.0418	0.0433
12 (Cast. Mancha)	0.0273	0.0288	0.0206	0.0465	0.1548	0.0556	0.0243	0.0569	0.0532
13 (C. Valenciana)	0.0190	0.0330	0.0315	0.0554	0.4012	0.0475	0.0399	0.0398	0.0392
14 (Andalucía)	0.0624	0.0092	0.0223	0.0237	0.2590	0.0245	0.0351	0.0307	0.0483
15 (Murcia)	0.0247	0.0346	0.0116	0.0240	0.3455	0.0468	0.0277	0.0848	0.0948

Tabla 3.6: Sector Servicio. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007.

3.6. Comentario final

Este capítulo extiende los resultados de la estimación por mínimos cuadrados generalizados obtenidos en Ruiz-Medina [128], en el análisis FANOVA de modelos de efectos fijos Hilbert-valuados, bajo errores dependientes. Específicamente, el enfoque presentado permite el análisis de las respuestas funcionales durante un período de tiempo, bajo el control de regresores tipo núcleo definidos durante dicho periodo. Mientras que, en Ruiz-Medina [128], se considera una matriz del diseño de efectos fijos escalar. En Benhenni et al. [12], se asume un diseño aleatorio funcional en regresión simple bajo errores dependientes. El enfoque presentado en este capítulo, permite desarrollar el análisis estadístico funcional a partir de un diseño aleatorio tipo núcleo bajo un modelo de regresión múltiple con errores dependientes. Además, se obtienen condiciones suficientes para la derivación explícita del estimador funcional del parámetro de regresión por mínimos cuadrados generalizados, más allá de la restricción considerada en Ruiz-Medina [128], sobre la diagonalización espectral de los parámetros funcionales, en términos de un sistema autovectores común. En la implementación práctica de la metodología propuesta, se debe considerar una base ortonormal adecuada $\{\varphi_k = \psi_k, k \ge 1\}$ de H. Cuando H es un elemento de la escala del espacios de Sobolev fraccionarios, incluyendo el espacio L^2 , las bases wavelet proporcionan bases incondicionales para estos espacios. En particular, como base de funciones $\{\psi_k, k \ge 1\}$ se puede considerar una base wavelet ortonormal que proporcione un análisis multirresolución [s] + 1 regular de un espacio L^2 , para un adecuado s > 0, permitiendo la inversión continua del operador autocovarianza R_0 . Aquí [·] denota la parte entera. El estudio de simulación destaca la interacción entre las propiedades de regularidad de los datos funcionales y el rendimiento del enfoque presentado, dependiendo del orden de truncamiento y el tamaño de la muestra. Por otro lado, en el ejemplo desarrollado a partir de datos reales, se ilustra el comportamiento de los estimadores de regresión funcional para tamaños pequeños de muestra. Se ilustra asimismo el papel de los regresores tipo núcleo. En nuestro ejemplo, suavizan el efecto de las áreas industriales, en la representación de los mapas del endeudamiento de las empresas con suavizamiento Beals anual (respuesta), como la salida de un filtro lineal, con entrada los parámetros de regresión, incorporando la información de los factores determinantes de la empresa (regresores tipo núcleo), dependiendo del área industrial muestreada, y de la comunidad española estudiada.

3.7. Apéndice 1: Estudio de Simulación

Se presenta los errores cuadráticos medios empíricos para los valores óptimos del parámetro de truncamiento k_N ; con N = 200,600,1000. Se estudian seis modelos, incluyendo los considerados en la Sección 3.4, para $H = L^2((0,60))$.

3.7.1. Modelo 1

Se considera en primer lugar el modelo 1 introducido en la Sección 3.4 de este capítulo. En la Figura 3.1, se muestra una realización de la respuesta original y estimada.

Figura 3.1: Modelo 1. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y los valores de la respuesta estimada $\widehat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho).

Se presenta los Errores Cuadráticos Medios Funcionales Empíricos (ECMFE), para órdenes de truncamiento $k_N = 2, 3$, y los tamaños de muestras N = 200, 600, 1000. Los Errores Cuadráticos Medios Empíricos Puntuales (ECMEC) son también representados, incluyendo el valor del parámetro de truncamiento $k_N = 4$ considerado en la Sección 3.4

Figura 3.2: *Modelo 1*. ECMEC basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0045	110	0.0027
20	0.0041	120	0.0030
30	0.0032	130	0.0034
40	0.0037	140	0.0036
50	0.0038	150	0.0031
60	0.0037	160	0.0031
70	0.0035	170	0.0035
80	0.0040	180	0.0033
90	0.0036	190	0.0031
100	0.0031	200	0.0038

Tabla 3.7: *Modelo 1*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Figura 3.3: *Modelo 1*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0043	110	0.0026
20	0.0037	120	0.0033
30	0.0032	130	0.0030
40	0.0036	140	0.0025
50	0.0032	150	0.0029
60	0.0032	160	0.0026
70	0.0026	170	0.0030
80	0.0028	180	0.0030
90	0.0029	190	0.0027
100	0.0028	200	0.0028

Tabla 3.8: *Modelo 1*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Figura 3.4: Modelo 1. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECMFE	Tiempo	ECMFE	Tiempo	ECMFE
10	0.0031	210	0.0035	410	0.0029
20	0.0035	220	0.0031	420	0.0031
30	0.0033	230	0.0032	430	0.0027
40	0.0031	240	0.0026	440	0.0030
50	0.0032	250	0.0037	450	0.0031
60	0.0029	260	0.0037	460	0.0030
70	0.0035	270	0.0029	470	0.0030
80	0.0030	280	0.0032	480	0.0030
90	0.0032	290	0.0022	490	0.0027
100	0.0029	300	0.0030	500	0.0029
110	0.0031	310	0.0033	510	0.0028
120	0.0033	320	0.0027	520	0.0029
130	0.0033	330	0.0023	530	0.0028
140	0.0034	340	0.0031	540	0.0028
150	0.0032	350	0.0034	550	0.0025
160	0.0036	360	0.0032	560	0.0034
170	0.0028	370	0.0025	570	0.0034
180	0.0028	380	0.0033	580	0.0028
190	0.0024	390	0.0030	590	0.0024
200	0.0026	400	0.0033	600	0.0031

Tabla 3.9: *Modelo 1*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Figura 3.5: *Modelo 1*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECMFE	Tiempo	ECMFE	Tiempo	ECMFE
10	0.0065	210	0.0046	410	0.0029
20	0.0059	220	0.0041	420	0.0033
30	0.0060	230	0.0034	430	0.0030
40	0.0064	240	0.0037	440	0.0032
50	0.0060	250	0.0035	450	0.0041
60	0.0048	260	0.0030	460	0.0033
70	0.0068	270	0.0033	470	0.0041
80	0.0045	280	0.0038	480	0.0034
90	0.0055	290	0.0036	490	0.0028
100	0.0063	300	0.0034	500	0.0032
110	0.0052	310	0.0032	510	0.0037
120	0.0055	320	0.0026	520	0.0028
130	0.0050	330	0.0027	530	0.0031
140	0.0047	340	0.0038	540	0.0029
150	0.0047	350	0.0036	550	0.0039
160	0.0036	360	0.0032	560	0.0036
170	0.0047	370	0.0041	570	0.0034
180	0.0043	380	0.0037	580	0.0037
190	0.0034	390	0.0031	590	0.0041
200	0.0040	400	0.0029	600	0.0034

Tabla 3.10: Modelo 1. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Figura 3.6: *Modelo 1*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0037	260	0.0038	510	0.0035	760	0.0037
20	0.0042	270	0.0038	520	0.0034	770	0.0037
30	0.0046	280	0.0040	530	0.0040	780	0.0036
40	0.0046	290	0.0045	540	0.0037	790	0.0050
50	0.0041	300	0.0035	550	0.0035	800	0.0041
60	0.0034	310	0.0033	560	0.0037	810	0.0029
70	0.0051	320	0.0037	570	0.0032	820	0.0041
80	0.0047	330	0.0042	580	0.0041	830	0.0030
90	0.0043	340	0.0031	590	0.0031	840	0.0039
100	0.0039	350	0.0036	600	0.0034	850	0.0036
110	0.0036	360	0.0041	610	0.0032	860	0.0030
120	0.0038	370	0.0046	620	0.0037	870	0.0033
130	0.0043	380	0.0043	630	0.0034	880	0.0043
140	0.0033	390	0.0040	640	0.0040	890	0.0034
150	0.0040	400	0.0041	650	0.0037	900	0.0039
160	0.0043	410	0.0038	660	0.0040	910	0.0035
170	0.0038	420	0.0036	670	0.0036	920	0.0039
180	0.0043	430	0.0040	680	0.0034	930	0.0036
190	0.0037	440	0.0038	690	0.0033	940	0.0042
200	0.0055	450	0.0034	700	0.0028	950	0.0030
210	0.0051	460	0.0045	710	0.0040	960	0.0036
220	0.0037	470	0.0041	720	0.0045	970	0.0038
230	0.0037	480	0.0039	730	0.0031	980	0.0035
240	0.0036	490	0.0030	740	0.0045	990	0.0033
250	0.0036	500	0.0035	750	0.0033	1000	0.0038

Tabla 3.11: *Modelo 1*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Figura 3.7: *Modelo 1*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0041	260	0.0033	510	0.0029	760	0.0040
20	0.0039	270	0.0038	520	0.0035	770	0.0030
30	0.0039	280	0.0041	530	0.0044	780	0.0036
40	0.0036	290	0.0035	540	0.0035	790	0.0034
50	0.0053	300	0.0039	550	0.0042	800	0.0039
60	0.0036	310	0.0030	560	0.0032	810	0.0035
70	0.0059	320	0.0038	570	0.0025	820	0.0035
80	0.0043	330	0.0030	580	0.0040	830	0.0047
90	0.0044	340	0.0042	590	0.0033	840	0.0046
100	0.0042	350	0.0037	600	0.0037	850	0.0030
110	0.0037	360	0.0032	610	0.0045	860	0.0034
120	0.0051	370	0.0039	620	0.0047	870	0.0031
130	0.0035	380	0.0034	630	0.0039	880	0.0034
140	0.0052	390	0.0037	640	0.0037	890	0.0033
150	0.0038	400	0.0037	650	0.0030	900	0.0032
160	0.0042	410	0.0033	660	0.0041	910	0.0040
170	0.0041	420	0.0030	670	0.0030	920	0.0034
180	0.0031	430	0.0051	680	0.0033	930	0.0043
190	0.0032	440	0.0031	690	0.0030	940	0.0041
200	0.0033	450	0.0033	700	0.0035	950	0.0047
210	0.0039	460	0.0035	710	0.0034	960	0.0037
220	0.0031	470	0.0029	720	0.0030	970	0.0040
230	0.0041	480	0.0039	730	0.0034	980	0.0034
240	0.0048	490	0.0027	740	0.0037	990	0.0035
250	0.0041	500	0.0038	750	0.0034	1000	0.0037

Tabla 3.12: *Modelo 1*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

Figura 3.8: *Modelo 1*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

3.7.2. Modelo 2

Una realización de la respuesta original y estimada del Modelo 2, introducida en la Sección 3.4, se muestra en la Figura 3.9.

Figura 3.9: Modelo 2. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y los valores de respuesta estimados $\hat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho).

Se presenta los Errores Cuadráticos Medios Funcionales Empíricos (ECMFE), para el óptimo $k_N = 2$, cuando se considera el tamaño de muestra N = 200, 1000. Los Errores Cuadráticos Medios Empíricos por Componente (ECMEC) son también representado por $k_N = 2, 4, y N = 200, 1000$.

Figura 3.10: *Modelo 2.* ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.3769	110	0.0636
20	0.3855	120	0.0544
30	0.3546	130	0.0408
40	0.3718	140	0.0288
50	0.3051	150	0.0304
60	0.2372	160	0.0378
70	0.1812	170	0.0661
80	0.1465	180	0.0740
90	0.1157	190	0.1004
100	0.0874	200	0.1514

Tabla 3.13: *Modelo 2.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Figura 3.11: Modelo 2. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0296	260	0.0654	510	0.0371	760	0.0318
20	0.0611	270	0.0775	520	0.0366	770	0.0263
30	0.0714	280	0.0840	530	0.0343	780	0.0344
40	0.0760	290	0.0657	540	0.0440	790	0.0255
50	0.0883	300	0.0711	550	0.0349	800	0.0337
60	0.0768	310	0.0625	560	0.0329	810	0.0336
70	0.0921	320	0.0644	570	0.0324	820	0.0329
80	0.0891	330	0.0452	580	0.0252	830	0.0343
90	0.0851	340	0.0534	590	0.0271	840	0.0354
100	0.0758	350	0.0574	600	0.0349	850	0.0279
110	0.0817	360	0.0546	610	0.0284	860	0.0366
120	0.0893	370	0.0597	620	0.0356	870	0.0342
130	0.0877	380	0.0461	630	0.0323	880	0.0441
140	0.0792	390	0.0486	640	0.0255	890	0.0339
150	0.0878	400	0.0451	650	0.0255	900	0.0321
160	0.0758	410	0.0506	660	0.0250	910	0.0367
170	0.0721	420	0.0579	670	0.0272	920	0.0364
180	0.0883	430	0.0464	680	0.0229	930	0.0490
190	0.0884	440	0.0425	690	0.0270	940	0.0364
200	0.0711	450	0.0414	700	0.0311	950	0.0576
210	0.0825	460	0.0375	710	0.0338	960	0.0490
220	0.0662	470	0.0435	720	0.0287	970	0.0380
230	0.0827	480	0.0490	730	0.0251	980	0.0409
240	0.0700	490	0.0353	740	0.0299	990	0.0504
250	0.0668	500	0.0431	750	0.0272	1000	0.0436

Tabla 3.14: *Modelo 2.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

Figura 3.12: *Modelo 2*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

3.7.3. Modelo 3

Los parámetros funcionales involucrados en este ejemplo son más singulares que en los modelos 4–6, pero más regulares que en el modelo 2. Específicamente, consideramos, para cada $k \ge 1$, y $n \ge 1$,

$$\begin{split} \lambda_k(R_0) &= \frac{1}{(k+1)^{3/2}}, \ \lambda_k(R_\epsilon) = \frac{1}{(k+1)^{5/2}} \\ \lambda_k(\rho) &= \frac{1}{(k+1)^{3/4}}, \ x_k^1(n) = \frac{1}{n(k+1)^{1/10}}, \\ x_k^2(n) &= \frac{1}{n(k+1)^{2/100}}, \ x_k^3(n) = \frac{1}{n(k+1)^{3/100}}, \\ \langle \beta_1, \phi_k \rangle_{L^2(a,b)} &= \frac{1}{(k+1)^{3/5}}, \ \langle \beta_2, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{7/10}} \\ \langle \beta_3, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{4/5}}. \end{split}$$

Los valores generados de la respuesta y su estimación se representa en la Figura 3.13. Se consideran R = 100 repeticiones de una muestra funcional de tamaño N = 200, los Errores Cuadráticos Medios Funcionales Empíricos (ECMFE), en tiempos n = 10t, t = 1, ..., 20, se recogen en la Tabla 3.15, para $k_N = 4$.

Figura 3.13: Modelo 3. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y los valores de la respuesta estimada $\hat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho).

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0154	110	0.0128
20	0.0180	120	0.0119
30	0.0234	130	0.0109
40	0.0113	140	0.0091
50	0.0158	150	0.0124
60	0.0097	160	0.0114
70	0.0220	170	0.0080
80	0.0102	180	0.0101
90	0.0179	190	0.0140
100	0.0089	200	0.0166

Tabla 3.15: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

En la Figura 3.14, los correspondientes valores puntuales de los ECMFE $\{CEMQE(x,n)\}_{x\in(0,60),\ n=1,\dots,200}$, son representados, en cada punto x del intervalo (0,60), por cada tiempo n analizado.

Figura 3.14: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Los ECMFEs se muestran ahora para $k_N = 2, 3$, y para tamaños de muestra N = 200,600,1000.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0694	110	0.0193
20	0.0853	120	0.0165
30	0.0824	130	0.0116
40	0.0720	140	0.0105
50	0.0576	150	0.0116
60	0.0448	160	0.0151
70	0.0525	170	0.0189
80	0.0386	180	0.0209
90	0.0304	190	0.0240
100	0.0217	200	0.0367

Tabla 3.16: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Figura 3.15: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.2406	110	0.0369
20	0.2811	120	0.0236
30	0.2499	130	0.0152
40	0.2279	140	0.0104
50	0.1957	150	0.0098
60	0.1645	160	0.0162
70	0.1230	170	0.0271
80	0.1041	180	0.0408
90	0.0745	190	0.0583
100	0.0541	200	0.0860

Tabla 3.17: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Figura 3.16: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0440	210	0.0715	410	0.0110
20	0.0873	220	0.0649	420	0.0110
30	0.1196	230	0.0568	430	0.0103
40	0.1278	240	0.0527	440	0.0107
50	0.1376	250	0.0493	450	0.0115
60	0.1317	260	0.0447	460	0.0127
70	0.1335	270	0.0478	470	0.0142
80	0.1382	280	0.0354	480	0.0131
90	0.1390	290	0.0349	490	0.0138
100	0.1290	300	0.0294	500	0.0174
110	0.1210	310	0.0292	510	0.0179
120	0.1196	320	0.0249	520	0.0237
130	0.1132	330	0.0237	530	0.0222
140	0.1121	340	0.0209	540	0.0251
150	0.1092	350	0.0194	550	0.0350
160	0.0923	360	0.0147	560	0.0332
170	0.0892	370	0.0136	570	0.0377
180	0.0888	380	0.0130	580	0.0434
190	0.0782	390	0.0130	590	0.0454
200	0.0680	400	0.0119	600	0.0537

Tabla 3.18: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Figura 3.17: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0110	210	0.0088	410	0.0070
20	0.0126	220	0.0095	420	0.0094
30	0.0076	230	0.0098	430	0.0079
40	0.0087	240	0.0085	440	0.0082
50	0.0110	250	0.0095	450	0.0091
60	0.0093	260	0.0113	460	0.0093
70	0.0090	270	0.0105	470	0.0089
80	0.0090	280	0.0080	480	0.0104
90	0.0095	290	0.0086	490	0.0092
100	0.0074	300	0.0108	500	0.0098
110	0.0109	310	0.0104	510	0.0088
120	0.0095	320	0.0098	520	0.0099
130	0.0099	330	0.0098	530	0.0087
140	0.0088	340	0.0091	540	0.0093
150	0.0096	350	0.0089	550	0.0088
160	0.0071	360	0.0101	560	0.0097
170	0.0089	370	0.0091	570	0.0089
180	0.0097	380	0.0107	580	0.0097
190	0.0089	390	0.0107	590	0.0102
200	0.0083	400	0.0094	600	0.0093

Tabla 3.19: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

=

Figura 3.18: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0145	260	0.0288	510	0.0144	760	0.0116
20	0.0166	270	0.0266	520	0.0135	770	0.0118
30	0.0250	280	0.0305	530	0.0122	780	0.0105
40	0.0258	290	0.0254	540	0.0121	790	0.0097
50	0.0356	300	0.0231	550	0.0117	800	0.0136
60	0.0333	310	0.0246	560	0.0134	810	0.0131
70	0.0360	320	0.0230	570	0.0124	820	0.0121
80	0.0376	330	0.0223	580	0.0121	830	0.0131
90	0.0360	340	0.0210	590	0.0104	840	0.0124
100	0.0364	350	0.0211	600	0.0113	850	0.0136
110	0.0385	360	0.0209	610	0.0096	860	0.0147
120	0.0354	370	0.0208	620	0.0118	870	0.0129
130	0.0361	380	0.0201	630	0.0121	880	0.0138
140	0.0340	390	0.0184	640	0.0116	890	0.0149
150	0.0329	400	0.0174	650	0.0102	900	0.0143
160	0.0341	410	0.0198	660	0.0102	910	0.0151
170	0.0326	420	0.0160	670	0.0110	920	0.0144
180	0.0327	430	0.0160	680	0.0104	930	0.0131
190	0.0332	440	0.0158	690	0.0096	940	0.0149
200	0.0317	450	0.0158	700	0.0110	950	0.0161
210	0.0302	460	0.0190	710	0.0104	960	0.0202
220	0.0289	470	0.0162	720	0.0115	970	0.0177
230	0.0281	480	0.0153	730	0.0098	980	0.0181
240	0.0301	490	0.0181	740	0.0104	990	0.0178
250	0.0299	500	0.0183	750	0.0092	1000	0.0182

Tabla 3.20: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Figura 3.19: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0133	260	0.0081	510	0.0106	760	0.0095
20	0.0081	270	0.0082	520	0.0092	770	0.0072
30	0.0085	280	0.0092	530	0.0109	780	0.0088
40	0.0110	290	0.0071	540	0.0076	790	0.0099
50	0.0106	300	0.0101	550	0.0086	800	0.0116
60	0.0107	310	0.0116	560	0.0105	810	0.0098
70	0.0122	320	0.0089	570	0.0084	820	0.0112
80	0.0093	330	0.0096	580	0.0112	830	0.0106
90	0.0111	340	0.0077	590	0.0114	840	0.0103
100	0.0086	350	0.0110	600	0.0083	850	0.0104
110	0.0097	360	0.0088	610	0.0079	860	0.0092
120	0.0103	370	0.0085	620	0.0104	870	0.0079
130	0.0093	380	0.0107	630	0.0077	880	0.0094
140	0.0111	390	0.0094	640	0.0098	890	0.0110
150	0.0100	400	0.0080	650	0.0085	900	0.0110
160	0.0096	410	0.0087	660	0.0118	910	0.0101
170	0.0101	420	0.0100	670	0.0092	920	0.0083
180	0.0084	430	0.0104	680	0.0100	930	0.0099
190	0.0097	440	0.0085	690	0.0098	940	0.0105
200	0.0093	450	0.0095	700	0.0090	950	0.0104
210	0.0083	460	0.0102	710	0.0096	960	0.0091
220	0.0081	470	0.0082	720	0.0075	970	0.0079
230	0.0096	480	0.0082	730	0.0084	980	0.0103
240	0.0086	490	0.0118	740	0.0100	990	0.0091
250	0.0103	500	0.0098	750	0.0089	1000	0.0111

Tabla 3.21: *Modelo 3*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

Figura 3.20: *Modelo 3*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

3.7.4. Modelo 4

En este ejemplo, se consideran los núcleos de autocovarianza y autocorrelación más regulares que en el modelo 2. Por lo tanto, están más lejos del límite del espacio del parámetro funcional correspondiente. Específicamente,

$$\begin{split} \lambda_k(R_0) &= \frac{1}{(k+1)^3}, \ \lambda_k(R_\epsilon) = \frac{1}{(k+1)^4}, \ \lambda_k(\rho) = \frac{1}{(k+1)} \\ x_k^1(n) &= \frac{1}{n(k+1)^{1/10}}, \quad x_k^2(n) = \frac{1}{n(k+1)^{2/100}}, \\ x_k^3(n) &= \frac{1}{n(k+1)^{3/100}}, \quad \langle \beta_1, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{3/5}}, \\ \langle \beta_2, \phi_k \rangle_{L^2(a,b)} &= \frac{1}{(k+1)^{7/10}}, \quad \langle \beta_3, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{4/5}}, \end{split}$$

por cada $k \ge 1$, y $n \ge 1$. Los valores de la respuesta original y estimada se muestran en la Figura 3.21. Un muestreo de los Errores Cuadráticos Medios Funcionales Empíricos (ECMFE) en diferentes tiempos n = 10t, t = 1, ..., 20, se reflejan en la Tabla 3.22. En la Figura 3.22, los correspondientes valores puntuales de los ECMFE se representan en cada punto x en el intervalo (0,60), para cada tiempo n analizado.

Figura 3.21: Modelo 4. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y la respuesta estimada $\widehat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho).

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0045	110	0.0019
20	0.0030	120	0.0031
30	0.0029	130	0.0037
40	0.0033	140	0.0036
50	0.0028	150	0.0032
60	0.0021	160	0.0039
70	0.0028	170	0.0028
80	0.0027	180	0.0021
90	0.0069	190	0.0035
100	0.0030	200	0.0052

Tabla 3.22: *Modelo 4*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Figura 3.22: *Modelo 4*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

También, como en los modelos anteriores, se muestran los ECMFEs y ECMECs, para $k_N = 2, 3$, y para los tamaños de muestra N = 200,600,1000. En la estimación del modelo 4.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0039	110	0.0028
20	0.0042	120	0.0026
30	0.0038	130	0.0034
40	0.0033	140	0.0031
50	0.0038	150	0.0029
60	0.0035	160	0.0035
70	0.0033	170	0.0033
80	0.0032	180	0.0031
90	0.0033	190	0.0034
100	0.0030	200	0.0037

Tabla 3.23: *Modelo 4*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Figura 3.23: *Modelo* 4. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0110	110	0.0038
20	0.0098	120	0.0038
30	0.0099	130	0.0032
40	0.0086	140	0.0035
50	0.0083	150	0.0037
60	0.0073	160	0.0032
70	0.0063	170	0.0031
80	0.0057	180	0.0039
90	0.0048	190	0.0048
100	0.0040	200	0.0051

Tabla 3.24: *Modelo 4*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Figura 3.24: *Modelo* 4. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0042	210	0.0030	410	0.0030
20	0.0038	220	0.0035	420	0.0025
30	0.0040	230	0.0031	430	0.0030
40	0.0046	240	0.0036	440	0.0032
50	0.0032	250	0.0031	450	0.0027
60	0.0037	260	0.0032	460	0.0040
70	0.0038	270	0.0030	470	0.0030
80	0.0038	280	0.0035	480	0.0025
90	0.0033	290	0.0030	490	0.0034
100	0.0035	300	0.0027	500	0.0022
110	0.0033	310	0.0035	510	0.0033
120	0.0037	320	0.0024	520	0.0045
130	0.0039	330	0.0029	530	0.0035
140	0.0034	340	0.0035	540	0.0034
150	0.0041	350	0.0030	550	0.0033
160	0.0035	360	0.0034	560	0.0035
170	0.0037	370	0.0028	570	0.0024
180	0.0033	380	0.0026	580	0.0030
190	0.0033	390	0.0033	590	0.0026
200	0.0034	400	0.0030	600	0.0039

Tabla 3.25: *Modelo 4.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Figura 3.25: *Modelo* 4. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0070	210	0.0070	410	0.0027
20	0.0119	220	0.0086	420	0.0028
30	0.0140	230	0.0068	430	0.0024
40	0.0139	240	0.0069	440	0.0027
50	0.0154	250	0.0070	450	0.0031
60	0.0159	260	0.0074	460	0.0035
70	0.0148	270	0.0057	470	0.0032
80	0.0139	280	0.0057	480	0.0032
90	0.0139	290	0.0055	490	0.0036
100	0.0141	300	0.0055	500	0.0035
110	0.0141	310	0.0046	510	0.0039
120	0.0138	320	0.0049	520	0.0040
130	0.0127	330	0.0044	530	0.0037
140	0.0131	340	0.0036	540	0.0042
150	0.0098	350	0.0038	550	0.0050
160	0.0115	360	0.0037	560	0.0059
170	0.0100	370	0.0041	570	0.0045
180	0.0097	380	0.0036	580	0.0070
190	0.0101	390	0.0028	590	0.0057
200	0.0098	400	0.0032	600	0.0067

Tabla 3.26: *Modelo* 4. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

=

Figura 3.26: *Modelo 4*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0062	260	0.0193	510	0.0060	760	0.0063
20	0.0123	270	0.0202	520	0.0088	770	0.0046
30	0.0212	280	0.0205	530	0.0066	780	0.0054
40	0.0216	290	0.0180	540	0.0069	790	0.0044
50	0.0232	300	0.0165	550	0.0072	800	0.0050
60	0.0258	310	0.0168	560	0.0058	810	0.0042
70	0.0285	320	0.0139	570	0.0057	820	0.0051
80	0.0344	330	0.0168	580	0.0055	830	0.0054
90	0.0330	340	0.0159	590	0.0047	840	0.0044
100	0.0309	350	0.0153	600	0.0051	850	0.0053
110	0.0308	360	0.0163	610	0.0054	860	0.0053
120	0.0295	370	0.0128	620	0.0057	870	0.0057
130	0.0288	380	0.0128	630	0.0052	880	0.0063
140	0.0284	390	0.0133	640	0.0045	890	0.0061
150	0.0286	400	0.0128	650	0.0049	900	0.0085
160	0.0274	410	0.0097	660	0.0049	910	0.0059
170	0.0257	420	0.0115	670	0.0039	920	0.0088
180	0.0237	430	0.0098	680	0.0042	930	0.0072
190	0.0304	440	0.0107	690	0.0042	940	0.0103
200	0.0288	450	0.0072	700	0.0043	950	0.0113
210	0.0274	460	0.0095	710	0.0038	960	0.0097
220	0.0239	470	0.0089	720	0.0051	970	0.0106
230	0.0227	480	0.0086	730	0.0044	980	0.0123
240	0.0225	490	0.0079	740	0.0045	990	0.0112
250	0.0231	500	0.0076	750	0.0040	1000	0.0107

Tabla 3.27: *Modelo 4.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Figura 3.27: *Modelo 4.* ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0070	260	0.1227	510	0.0245	760	0.0048
20	0.0540	270	0.1206	520	0.0218	770	0.0078
30	0.0995	280	0.1132	530	0.0249	780	0.0049
40	0.1245	290	0.1122	540	0.0204	790	0.0082
50	0.1532	300	0.1061	550	0.0162	800	0.0111
60	0.1702	310	0.1031	560	0.0185	810	0.0128
70	0.1757	320	0.0933	570	0.0162	820	0.0095
80	0.1745	330	0.0926	580	0.0146	830	0.0157
90	0.1750	340	0.0850	590	0.0105	840	0.0168
100	0.1849	350	0.0766	600	0.0094	850	0.0173
110	0.1809	360	0.0780	610	0.0114	860	0.0201
120	0.1816	370	0.0725	620	0.0083	870	0.0251
130	0.1777	380	0.0677	630	0.0058	880	0.0216
140	0.1844	390	0.0611	640	0.0060	890	0.0278
150	0.1768	400	0.0647	650	0.0046	900	0.0298
160	0.1669	410	0.0582	660	0.0059	910	0.0312
170	0.1675	420	0.0568	670	0.0065	920	0.0333
180	0.1564	430	0.0472	680	0.0060	930	0.0373
190	0.1534	440	0.0457	690	0.0044	940	0.0323
200	0.1464	450	0.0479	700	0.0047	950	0.0387
210	0.1423	460	0.0386	710	0.0045	960	0.0508
220	0.1364	470	0.0391	720	0.0037	970	0.0523
230	0.1334	480	0.0366	730	0.0040	980	0.0548
240	0.1287	490	0.0341	740	0.0038	990	0.0519
250	0.1172	500	0.0274	750	0.0046	1000	0.0579

Tabla 3.28: *Modelo 4*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

Figura 3.28: *Modelo* 4. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

3.7.5. Modelo 5

Los siguientes parámetros definen el modelo 5: Para cada $k \ge 1$, y $n \ge 1$,

Figura 3.29: Modelo 5. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y los valores de la respuesta estimada $\hat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho).

Los núcleos de autocovarianza y autocorrelación muestran las mismas propiedades de singularidad que en el modelo 3. Sin embargo, los regresores tipo núcleo son tan regulares como en el modelo 1, y por lo tanto, menos singulares que en los modelos 2, 3 y 4. Podemos observar que la regularidad / singularidad de los núcleos de autocovarianza y autocorrelación afecta más al rendimiento de la metodología de estimación propuesta, que la regularidad / singularidad de los regresores tipo núcleo. Los valores originales y estimados de la respuesta se muestran en la Figura 3.29. Los ECMFEs, obtenidos a partir de R = 100 repeticiones de una muestra funcional de tamaño 200 se reflejan en la Tabla 3.29. La Figura 3.30 muestra los correspondientes CEMQEs. En ambas, tabla y figura, se ha considerado el valor del parámetro de truncamiento $k_N = 4$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.1915	110	0.0133
20	0.1154	120	0.0132
30	0.1123	130	0.0125
40	0.0992	140	0.0099
50	0.0673	150	0.0098
60	0.0764	160	0.0220
70	0.0483	170	0.0366
80	0.0569	180	0.0342
90	0.0281	190	0.0416
100	0.0224	200	0.0509

Tabla 3.29: *Modelo 5.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Figura 3.30: *Modelo 5*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Para $k_N = 2, 3, y N = 200, 600, 1000, los ECMFEs y ECMECs, en la estimación de Modelo 5, se muestran seguidamente.$

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0930	110	0.0140
20	0.0787	120	0.0115
30	0.0584	130	0.0111
40	0.0454	140	0.0103
50	0.0415	150	0.0119
60	0.0460	160	0.0181
70	0.0289	170	0.0230
80	0.0356	180	0.0244
90	0.0220	190	0.0264
100	0.0163	200	0.0306

Tabla 3.30: *Modelo 5.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Figura 3.31: *Modelo 5*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.1342	110	0.0109
20	0.1212	120	0.0126
30	0.0909	130	0.0112
40	0.0659	140	0.0100
50	0.0556	150	0.0134
60	0.0460	160	0.0184
70	0.0457	170	0.0210
80	0.0330	180	0.0246
90	0.0218	190	0.0410
100	0.0183	200	0.0495

Tabla 3.31: *Modelo 5.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Figura 3.32: *Modelo 5*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0313	210	0.0151	410	0.0113
20	0.0273	220	0.0130	420	0.0093
30	0.0224	230	0.0162	430	0.0106
40	0.0219	240	0.0133	440	0.0135
50	0.0180	250	0.0119	450	0.0114
60	0.0173	260	0.0114	460	0.0135
70	0.0213	270	0.0108	470	0.0131
80	0.0205	280	0.0138	480	0.0135
90	0.0184	290	0.0099	490	0.0136
100	0.0182	300	0.0116	500	0.0135
110	0.0204	310	0.0094	510	0.0131
120	0.0201	320	0.0141	520	0.0140
130	0.0176	330	0.0119	530	0.0115
140	0.0205	340	0.0126	540	0.0145
150	0.0151	350	0.0100	550	0.0163
160	0.0149	360	0.0130	560	0.0143
170	0.0141	370	0.0097	570	0.0125
180	0.0133	380	0.0111	580	0.0151
190	0.0126	390	0.0097	590	0.0159
200	0.0145	400	0.0093	600	0.0139

Tabla 3.32: *Modelo 5.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Figura 3.33: *Modelo 5*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0314	210	0.0158	410	0.0103
20	0.0231	220	0.0118	420	0.0110
30	0.0276	230	0.0138	430	0.0113
40	0.0241	240	0.0138	440	0.0116
50	0.0266	250	0.0126	450	0.0105
60	0.0212	260	0.0104	460	0.0094
70	0.0268	270	0.0103	470	0.0117
80	0.0173	280	0.0107	480	0.0096
90	0.0231	290	0.0085	490	0.0111
100	0.0150	300	0.0106	500	0.0095
110	0.0176	310	0.0103	510	0.0119
120	0.0205	320	0.0119	520	0.0111
130	0.0164	330	0.0107	530	0.0120
140	0.0167	340	0.0122	540	0.0134
150	0.0195	350	0.0089	550	0.0105
160	0.0150	360	0.0110	560	0.0132
170	0.0160	370	0.0095	570	0.0115
180	0.0172	380	0.0083	580	0.0138
190	0.0133	390	0.0095	590	0.0098
200	0.0133	400	0.0091	600	0.0104

Tabla 3.33: *Modelo 5*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Figura 3.34: *Modelo 5*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0108	260	0.0087	510	0.0101	760	0.0074
20	0.0078	270	0.0110	520	0.0098	770	0.0110
30	0.0099	280	0.0098	530	0.0090	780	0.0099
40	0.0091	290	0.0114	540	0.0092	790	0.0103
50	0.0113	300	0.0100	550	0.0097	800	0.0088
60	0.0100	310	0.0106	560	0.0093	810	0.0107
70	0.0107	320	0.0079	570	0.0100	820	0.0091
80	0.0110	330	0.0089	580	0.0104	830	0.0119
90	0.0093	340	0.0093	590	0.0110	840	0.0086
100	0.0110	350	0.0094	600	0.0095	850	0.0109
110	0.0091	360	0.0137	610	0.0094	860	0.0083
120	0.0084	370	0.0133	620	0.0081	870	0.0082
130	0.0107	380	0.0109	630	0.0103	880	0.0104
140	0.0083	390	0.0110	640	0.0088	890	0.0094
150	0.0098	400	0.0090	650	0.0130	900	0.0110
160	0.0140	410	0.0110	660	0.0081	910	0.0095
170	0.0103	420	0.0087	670	0.0106	920	0.0092
180	0.0090	430	0.0074	680	0.0096	930	0.0092
190	0.0106	440	0.0097	690	0.0081	940	0.0119
200	0.0099	450	0.0101	700	0.0062	950	0.0097
210	0.0126	460	0.0087	710	0.0081	960	0.0084
220	0.0095	470	0.0095	720	0.0099	970	0.0114
230	0.0110	480	0.0094	730	0.0090	980	0.0090
240	0.0087	490	0.0075	740	0.0082	990	0.0091
250	0.0078	500	0.0077	750	0.0091	1000	0.0094

Tabla 3.34: *Modelo 5.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

Figura 3.35: *Modelo 5*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

3.7.6. Modelo 6

Bajo el escenario más regular, dado en el modelo 1, estudiamos el efecto de considerar un pequeño espacio de parámetros de regresión funcional, conteniendo funciones vectoriales muy regulares β . Los valores de los parámetros que definen el modelo 6 están dados por, para $k \ge 1$, y $n \ge 1$,

$$\begin{split} \lambda_k(R_0) &= \frac{1}{(k+1)^3}, \ \lambda_k(R_\epsilon) = \frac{1}{(k+1)^4}, \ \lambda_k(\rho) = \frac{1}{(k+1)^4}, \\ x_k^1(n) &= \exp(-nk^{1/10}), \quad x_k^2(n) = \exp(-nk^{15/100}), \\ x_k^3(n) &= \exp(-nk^{2/10}), \quad \langle \beta_1, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{10}}, \\ \langle \beta_2, \phi_k \rangle_{L^2(a,b)} &= \frac{1}{(k+1)^{11}}, \quad \langle \beta_3, \phi_k \rangle_{L^2(a,b)} = \frac{1}{(k+1)^{12}}. \end{split}$$

Los valores de respuesta gaussianas originales y estimados se representan en la Figura 3.36.

Figura 3.36: Modelo 6. Los valores de la respuesta original $Y_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado izquierdo), y los valores de respuesta estimada $\hat{Y}_n(x)$, $x \in (0, 60)$, $n = 1, \ldots, 200$ (lado derecho).

En la Tabla 3.35, los ECMFEs calculados a partir de R = 100 repeticiones de una muestra funcional de tamaño N = 200 se muestran para $k_N = 4$. Los correspondientes valores puntuales ECMECs se representan en la Figura 3.37.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0043	110	0.0037
20	0.0027	120	0.0033
30	0.0039	130	0.0031
40	0.0030	140	0.0027
50	0.0034	150	0.0029
60	0.0022	160	0.0041
70	0.0047	170	0.0015
80	0.0020	180	0.0025
90	0.0046	190	0.0046
100	0.0022	200	0.0040

Tabla 3.35: *Modelo 6*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Figura 3.37: *Modelo 6*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 4$.

Para $k_N = 2, 3, y N = 200, 600, 1000, los ECMFEs y ECMECs son ahora calculados, después de la estimación del modelo 6.$

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0156	110	0.0037
20	0.0139	120	0.0028
30	0.0114	130	0.0035
40	0.0098	140	0.0036
50	0.0085	150	0.0038
60	0.0069	160	0.0043
70	0.0055	170	0.0035
80	0.0055	180	0.0053
90	0.0043	190	0.0062
100	0.0041	200	0.0066

Tabla 3.36: Modelo 6. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Figura 3.38: *Modelo 6*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECMFE	Tiempo	ECMFE
10	0.0026	110	0.0025
20	0.0029	120	0.0031
30	0.0029	130	0.0028
40	0.0033	140	0.0028
50	0.0029	150	0.0025
60	0.0032	160	0.0026
70	0.0031	170	0.0029
80	0.0024	180	0.0027
90	0.0028	190	0.0027
100	0.0029	200	0.0027

Tabla 3.37: *Modelo 6.* ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Figura 3.39: Modelo 6. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 200, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0067	210	0.0033	410	0.0026
20	0.0049	220	0.0035	420	0.0037
30	0.0052	230	0.0037	430	0.0031
40	0.0050	240	0.0035	440	0.0028
50	0.0044	250	0.0035	450	0.0039
60	0.0041	260	0.0042	460	0.0032
70	0.0046	270	0.0037	470	0.0028
80	0.0039	280	0.0044	480	0.0035
90	0.0036	290	0.0032	490	0.0027
100	0.0040	300	0.0034	500	0.0037
110	0.0044	310	0.0033	510	0.0031
120	0.0043	320	0.0030	520	0.0034
130	0.0049	330	0.0029	530	0.0035
140	0.0036	340	0.0026	540	0.0035
150	0.0043	350	0.0035	550	0.0034
160	0.0037	360	0.0035	560	0.0035
170	0.0041	370	0.0028	570	0.0042
180	0.0030	380	0.0030	580	0.0039
190	0.0039	390	0.0028	590	0.0036
200	0.0038	400	0.0029	600	0.0037

Tabla 3.38: *Modelo 6*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Figura 3.40: Modelo 6. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0032	210	0.0031	410	0.0028
20	0.0033	220	0.0029	420	0.0024
30	0.0035	230	0.0022	430	0.0028
40	0.0026	240	0.0029	440	0.0030
50	0.0029	250	0.0027	450	0.0030
60	0.0029	260	0.0029	460	0.0035
70	0.0031	270	0.0030	470	0.0031
80	0.0028	280	0.0028	480	0.0025
90	0.0027	290	0.0025	490	0.0027
100	0.0025	300	0.0027	500	0.0034
110	0.0037	310	0.0031	510	0.0033
120	0.0028	320	0.0030	520	0.0027
130	0.0027	330	0.0028	530	0.0026
140	0.0027	340	0.0024	540	0.0030
150	0.0026	350	0.0030	550	0.0033
160	0.0030	360	0.0029	560	0.0028
170	0.0032	370	0.0028	570	0.0029
180	0.0035	380	0.0027	580	0.0024
190	0.0027	390	0.0030	590	0.0034
200	0.0032	400	0.0030	600	0.0026

Tabla 3.39: *Modelo 6*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Figura 3.41: *Modelo 6*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 600, considerando el orden de truncamiento $k_N = 2$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0031	260	0.0041	510	0.0036	760	0.0040
20	0.0041	270	0.0039	520	0.0034	770	0.0044
30	0.0031	280	0.0032	530	0.0044	780	0.0035
40	0.0036	290	0.0040	540	0.0030	790	0.0032
50	0.0032	300	0.0031	550	0.0036	800	0.0030
60	0.0034	310	0.0037	560	0.0033	810	0.0039
70	0.0039	320	0.0033	570	0.0033	820	0.0034
80	0.0041	330	0.0038	580	0.0042	830	0.0037
90	0.0036	340	0.0037	590	0.0040	840	0.0039
100	0.0038	350	0.0036	600	0.0046	850	0.0041
110	0.0035	360	0.0035	610	0.0039	860	0.0035
120	0.0038	370	0.0034	620	0.0036	870	0.0037
130	0.0040	380	0.0028	630	0.0039	880	0.0043
140	0.0040	390	0.0037	640	0.0031	890	0.0033
150	0.0038	400	0.0038	650	0.0038	900	0.0035
160	0.0034	410	0.0039	660	0.0044	910	0.0034
170	0.0036	420	0.0035	670	0.0037	920	0.0038
180	0.0044	430	0.0029	680	0.0032	930	0.0031
190	0.0040	440	0.0028	690	0.0039	940	0.0031
200	0.0035	450	0.0032	700	0.0036	950	0.0030
210	0.0031	460	0.0038	710	0.0038	960	0.0033
220	0.0027	470	0.0038	720	0.0032	970	0.0038
230	0.0035	480	0.0031	730	0.0028	980	0.0039
240	0.0043	490	0.0033	740	0.0035	990	0.0041
250	0.0039	500	0.0037	750	0.0045	1000	0.0036

Tabla 3.40: Modelo 6. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Figura 3.42: *Modelo 6*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 3$.

Tiempo	ECE	Tiempo	ECE	Tiempo	ECE	Tiempo	ECE
10	0.0084	260	0.0046	510	0.0035	760	0.0030
20	0.0061	270	0.0052	520	0.0035	770	0.0032
30	0.0079	280	0.0043	530	0.0033	780	0.0029
40	0.0065	290	0.0049	540	0.0031	790	0.0039
50	0.0052	300	0.0045	550	0.0030	800	0.0028
60	0.0055	310	0.0055	560	0.0036	810	0.0030
70	0.0081	320	0.0048	570	0.0031	820	0.0030
80	0.0058	330	0.0041	580	0.0030	830	0.0038
90	0.0045	340	0.0041	590	0.0035	840	0.0041
100	0.0066	350	0.0035	600	0.0040	850	0.0033
110	0.0058	360	0.0040	610	0.0032	860	0.0032
120	0.0064	370	0.0039	620	0.0037	870	0.0035
130	0.0058	380	0.0032	630	0.0032	880	0.0034
140	0.0049	390	0.0038	640	0.0031	890	0.0037
150	0.0041	400	0.0041	650	0.0031	900	0.0039
160	0.0049	410	0.0038	660	0.0028	910	0.0032
170	0.0038	420	0.0031	670	0.0044	920	0.0034
180	0.0058	430	0.0036	680	0.0029	930	0.0045
190	0.0060	440	0.0036	690	0.0026	940	0.0048
200	0.0056	450	0.0040	700	0.0032	950	0.0038
210	0.0044	460	0.0039	710	0.0029	960	0.0045
220	0.0054	470	0.0037	720	0.0032	970	0.0035
230	0.0050	480	0.0035	730	0.0030	980	0.0040
240	0.0047	490	0.0031	740	0.0034	990	0.0036
250	0.0044	500	0.0034	750	0.0032	1000	0.0039

Tabla 3.41: *Modelo 6*. ECMFE, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

Figura 3.43: *Modelo 6*. ECMEC, basado en R = 100 repeticiones de una muestra de respuesta funcional de tamaño N = 1000, considerando el orden de truncamiento $k_N = 2$.

3.8. Apéndice 2: Aplicación de datos reales

Se proporcionan los detalles sobre el conjunto de datos analizados en la Sección 3.5 y la implementación del enfoque propuesto. La capacidad predictiva de la metodología de regresión funcional propuesta se contrasta para tamaños muestrales pequeños, en términos de los errores LOOCV calculados.

3.8.1. Aplicación de datos reales. Principales pasos

Los principales pasos involucrados en la implementación práctica en la Sección 3.5 son las siguientes:

- Paso 1 Aplicar una técnica de suavizamiento e interpolación espacial, para aproximar los valores funcionales de la respuesta con soporte espacial, para cada uno de los tiempos observados.
- Paso 2 Interpolación radial espacial de los regresores.
- Paso 3 Calcular las versiones empíricas de los operadores de autocovarianza y covarianza cruzada de los residuos. El estimador de proyección (o componente a componente) del operador autocorrelación se obtiene entonces, para un adecuado orden de truncamiento k_N (ver la Sección 3.3)
- Paso 4 Cálculo del estimador paramétrico por mínimos cuadrados generalizados *plug-in* $\hat{\boldsymbol{\beta}}_N$ de $\boldsymbol{\beta}$, a partir del paso 3 y la ecuación (3.32).
- Paso 5 Calcular el predictor dado en la ecuación (3.49) para la respuesta.

Sector Fábrica. Regresores tipo núcleo dependiente del tiempo

Tamaño de empresa: El registro de los activos totales

Figura 3.44: Tamaño de la empresa. En el eje z, el tamaño de la empresa es representado para los años en el periodo 1999-2007 analizado. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta = 0.837$), donde el tamaño de la empresa ha sido interpolado. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de industria.

 $Estructura\ de\ activos:$ Los activos fijos netos divididos por los activos totales de la empresa

Figura 3.45: Estructura del activo. En el eje z, la estructura de activos está representada, para los años del período 1999-2007 analizados. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta = 0,837$), donde la estructura del activo se ha interpolado. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de la industria.

Rentabilidad de la empresa: La proporción entre beneficio antes de intereses, impuestos, depreciación y amortización, y el total de activos

Figura 3.46: Rentabilidad de la empresa. En el eje z, la rentabilidad está representada para los años del período 1999-2007 analizados. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta = 0,837$), donde la rentabilidad de la empresa ha sido interpolada. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de la industria.

Crecimiento de la empresa: El crecimiento de los activos, calculado como la variación anual de los activos totales de la empresa.

Figura 3.47: Crecimiento de la empresa. En el eje z, se representa el crecimiento de la empresa para los años del período 1999-2007 analizados. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta =$ 0,837), donde se ha interpolado el crecimiento de la empresa. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de la industria.

Riesgo de la empresa: La desviación estándar del beneficio antes de intereses e impuestos sobre el valor contable de los activos totales, durante el período muestreado

Figura 3.48: Riesgo de la empresa. En el eje z, el riesgo de la empresa está representado para los años del período 1999-2007 analizados. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta = 0,837$), donde se ha interpolado el riesgo de la empresa. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de la industria.

Edad de la empresa: El logaritmo del número de años que la empresa ha estado operando

Figura 3.49: Edad de la empresa. En el eje z, se representa la edad de la empresa para los años del período 1999-2007 analizados. El eje x refleja los 215 valores del argumento radial $r \in [45, 225]$ (tamaño del paso de discretización, $\Delta = 0.837$), donde se ha interpolado la edad de la empresa. El eje y muestra las 15 localizaciones espaciales de las comunidades autónomas españolas estudiadas. En las tres primeras filas, se muestran los efectos de la industria, la comunidad y el tiempo, mientras que, en las tres últimas filas (cuarta fila hasta la sexta fila), se ha eliminado el efecto de la industria.

3.8.2. Endeudamiento medio de la empresa por comunidad, y apalancamiento suavizado Beals, mapas

Los datos funcionales del endeudamiento suavizado, observados en el período 1999-2007, se muestran seguidamente.

Figura 3.50: Sector Fábrica. Endeudamiento de los datos funcionales suavizados

La media empírica del endeudamiento de la empresa por comunidad, y los mapas del endeudamiento suavizados Beals, durante el período analizado para los cuatro sectores industriales estudiados, también se muestran posteriormente.

Figura 3.51: Sector Fábrica. La media empírica del endeudamiento de la empresa por comunidad (arriba) y los mapas del endeudamiento suavizado Beals (abajo)

Figura 3.52: *Sector Construcción*. La media empírica del endeudamiento de la empresa por comunidad (arriba) y los mapas del endeudamiento suavizado Beals (abajo)

Figura 3.53: *Sector Comercio*. La media empírica del endeudamiento de la empresa por comunidad (arriba) y los mapas del endeudamiento suavizado Beals (abajo)

Figura 3.54: *Sector Servicios*. La media empírica del endeudamiento de la empresa por comunidad (arriba) y los mapas del endeudamiento suavizado Beals (abajo)

3.8.3. Errores LOOCV para diferentes órdenes de truncamiento

Para las órdenes de truncamiento $k_N = 2, 3$ (ver Sección 3.5 para $k_N = 1$), la media de los errores LOOCV se muestran seguidamente.

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.4920	0.5067	0.3385	0.4685	0.5124	0.3828	0.4121	0.4026	0.4065
2 (Asturias)	0.3974	0.3028	0.0773	0.0574	0.0672	0.0611	0.1981	0.1946	0.0624
3 (Cantabria)	0.1933	0.2154	0.0614	0.0256	0.0975	0.1261	0.4569	0.3665	0.0529
4 (Aragón)	0.0808	0.0394	0.3305	0.1136	0.1846	0.4814	0.3451	0.0167	0.1659
5 (P. Vasco)	0.4281	0.4224	0.2993	0.3565	0.3199	0.3422	0.4003	0.4626	0.3707
6 (Navarra)	0.2987	0.3646	0.2487	0.2735	0.4141	0.5166	0.5119	0.3361	0.3183
7 (Cataluñña)	0.3032	0.3244	0.2992	0.3070	0.3296	0.3861	0.3749	0.3455	0.3436
8 (Cast. León)	0.3685	0.3789	0.3126	0.3060	0.3441	0.3712	0.3552	0.3680	0.3619
9 (La Rioja)	0.0696	0.0751	0.2963	0.2678	0.2657	0.0384	0.2656	0.0885	0.2157
10 (Extremadura)	0.0500	0.0859	0.3098	0.0624	0.0552	0.3039	0.2666	0.0885	0.0483
11 (Madrid)	0.1010	0.1802	0.0856	0.0992	0.1745	0.4565	0.4882	0.2585	0.1680
12(Cast. Mancha)	0.4029	0.3533	0.4623	0.2957	0.3429	0.3485	0.3662	0.3245	0.3208
13 (C. Valenciana)	0.2874	0.3097	0.3236	0.2536	0.3215	0.3956	0.3278	0.3253	0.3629
14 (Andalucía)	0.5257	0.5047	0.4496	0.4847	0.4250	0.3856	0.4039	0.5587	0.5222
15 (Murcia)	0.5498	0.5505	0.5515	0.5445	0.5307	0.4908	0.4953	0.5403	0.5226

Tabla 3.42: Sector Fábrica. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) = \ln(9) \simeq 2$

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.4776	0.5110	0.3546	0.4546	0.5208	0.1795	0.3579	0.2048	0.3347
2 (Asturias)	0.4104	0.2657	0.0791	0.0496	0.0846	0.0881	0.0670	0.0720	0.0738
3 (Cantabria)	0.2121	0.1422	0.1311	0.0400	0.1677	0.0551	0.0344	0.0979	0.0274
4 (Aragón)	0.0935	0.0142	0.1503	0.1607	0.1123	0.0592	0.1412	0.1786	0.0920
5 (P. Vasco)	0.4379	0.4063	0.3232	0.3481	0.3367	0.4949	0.4155	0.4933	0.4382
6 (Navarra)	0.2770	0.3860	0.1691	0.2837	0.3933	0.1587	0.3155	0.1556	0.2263
7 (Cataluña)	0.3007	0.3324	0.2551	0.3151	0.3195	0.3283	0.3692	0.3766	0.3560
8 (Cast. León)	0.3620	0.3888	0.2814	0.3107	0.3376	0.3434	0.3828	0.2839	0.3322
9 (La Rioja)	0.0467	0.1244	0.3117	0.2783	0.2412	0.0410	0.0851	0.2925	0.0294
10 (Extremadura)	0.0492	0.0810	0.2395	0.0555	0.0857	0.0795	0.0798	0.1089	0.1676
11 (Madrid)	0.0902	0.1956	0.0393	0.1146	0.1423	0.1143	0.2420	0.1461	0.1021
12(Cast. Mancha)	0.4047	0.3470	0.4902	0.2930	0.3457	0.3077	0.2956	0.2193	0.2594
13 (C. Valenciana)	0.2787	0.3326	0.2469	0.2725	0.2998	0.3526	0.3990	0.3150	0.3430
14 (Andalucía)	0.5408	0.4930	0.4650	0.4821	0.4404	0.6435	0.5796	0.7292	0.6482
15 (Murcia)	0.5440	0.5512	0.5994	0.5345	0.5332	0.4815	0.5200	0.3037	0.4089

Tabla 3.43: Sector Fábrica. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$
Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.5052	0.5496	0.5404	0.5436	0.5692	0.5649	0.5634	0.5757	0.5796
2 (Asturias)	0.3748	0.3516	0.1587	0.2564	0.5464	0.6100	0.5858	0.5796	0.3499
4 (Aragón)	0.3469	0.4075	0.5545	0.3654	0.2169	0.3161	0.2154	0.2609	0.3107
5 (P. Vasco)	0.6229	0.5938	0.6105	0.7756	0.6051	0.5465	0.7435	0.6575	0.8635
6 (Navarra)	0.2615	0.2328	0.1377	0.1264	0.3594	0.0706	0.0693	0.0798	0.0579
7 (Cataluñña)	0.4622	0.4183	0.3250	0.4121	0.5302	0.5509	0.5863	0.5525	0.4810
8 (Cast. León)	0.4181	0.4248	0.3932	0.4519	0.4833	0.5096	0.5505	0.5303	0.5449
9 (La Rioja)	0.0514	0.2158	0.1543	0.1810	0.2082	0.4697	0.1527	0.2937	0.0761
10 (Extremadura)	0.7615	0.6909	0.9179	0.6588	0.3761	0.5237	0.4615	0.5275	0.6067
11 (Madrid)	0.5040	0.5183	0.5285	0.4640	0.4118	0.5145	0.4997	0.5426	0.5130
12(Cast. Mancha)	0.4232	0.5160	0.4348	0.1586	0.4687	0.5323	0.4383	0.4663	0.1283
13 (C. Valenciana)	0.3933	0.5009	0.4263	0.3442	0.6004	0.5560	0.5072	0.5595	0.4150
14 (Andalucía)	0.7167	0.6688	0.6628	0.6723	0.6361	0.6262	0.6770	0.6590	0.6596
15 (Murcia)	0.5260	0.6973	0.5258	0.0699	0.5485	0.7127	0.5526	0.6402	0.0617

Tabla 3.44: Sector Construcción. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) = \ln(9) \simeq 2$

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.5760	0.5771	0.4761	0.5197	0.5722	0.4630	0.5611	0.4959	0.5491
2 (Asturias)	0.3280	0.3247	0.5480	0.4175	0.4012	0.7044	0.4706	0.5145	0.3795
4 (Aragón)	0.2864	0.2937	0.2597	0.2434	0.2323	0.2094	0.2516	0.2612	0.3247
5 (P. Vasco)	0.8188	0.8506	0.4828	0.7696	0.7627	0.6465	0.8299	0.7791	0.8120
6 (Navarra)	0.2161	0.1402	0.1477	0.2086	0.2413	0.0459	0.0589	0.0913	0.0784
7 (Cataluña)	0.4564	0.4609	0.4884	0.5245	0.4971	0.6719	0.5497	0.6053	0.4985
8 (Cast. León)	0.4994	0.5128	0.3616	0.4866	0.5115	0.5137	0.5600	0.5426	0.5285
9 (La Rioja)	0.0736	0.0791	0.2803	0.1491	0.0965	0.1495	0.0565	0.1036	0.0912
10 (Extremadura)	0.5659	0.5756	0.6883	0.4921	0.4457	0.5917	0.6223	0.6938	0.6860
11 (Madrid)	0.4946	0.5109	0.4715	0.4157	0.3634	0.5854	0.5310	0.4445	0.5098
12(Cast. Mancha)	0.2814	0.2384	0.2747	0.1366	0.1628	0.2777	0.2307	0.2851	0.1233
13 (C. Valenciana)	0.4875	0.4557	0.2906	0.3119	0.4986	0.1898	0.4305	0.3107	0.3486
14 (Andalucía)	0.6821	0.6830	0.7102	0.6785	0.6269	0.7381	0.6887	0.7091	0.6711
15 (Murcia)	0.3222	0.2585	0.0786	0.0700	0.0797	0.4513	0.2182	0.1805	0.0696

Tabla 3.45: Sector Construcción. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.4522	0.4004	0.4098	0.4686	0.4341	0.4392	0.4529	0.4380	0.4528
2 (Asturias)	0.3405	0.3307	0.2966	0.1045	0.4416	0.4290	0.3713	0.3905	0.2678
3 (Cantabria)	0.0274	0.0298	0.0255	0.0298	0.0440	0.0383	0.1854	0.2426	0.4260
4 (Aragón)	0.2176	0.2876	0.2519	0.1441	0.2752	0.2739	0.3229	0.3502	0.2826
5 (P. Vasco)	0.1152	0.2008	0.2412	0.1428	0.0890	0.0878	0.0970	0.0773	0.0764
6 (Navarra)	0.6663	0.6870	0.6826	0.8001	0.7008	0.6999	0.6678	0.6150	0.6635
7 (Cataluña)	0.3663	0.3453	0.3391	0.3228	0.3711	0.3727	0.3952	0.3985	0.3838
8 (Cast. León)	0.6052	0.5461	0.5565	0.4843	0.5713	0.5722	0.5559	0.5645	0.5036
10 (Extremadura)	0.5703	0.5473	0.5500	0.5667	0.5626	0.5645	0.5715	0.5676	0.5716
11 (Madrid)	0.4261	0.3459	0.3557	0.3141	0.3798	0.3824	0.3824	0.4009	0.3648
12(Cast. Mancha)	0.4909	0.5635	0.5191	0.4903	0.5702	0.5678	0.5782	0.5717	0.5302
13 (C. Valenciana)	0.4396	0.4177	0.4032	0.3585	0.4293	0.4295	0.4049	0.4386	0.3767
14 (Andalucía)	0.4018	0.4128	0.3897	0.4087	0.4426	0.4411	0.4544	0.4440	0.4521
15 (Murcia)	0.4539	0.4061	0.4425	0.4720	0.4083	0.4215	0.5675	0.5424	0.6158

Tabla 3.46: Sector Comercio. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) = \ln(9) \simeq 2$

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.4934	0.4595	0.4733	0.5720	0.4239	0.4475	0.4085	0.4940	0.4482
2 (Asturias)	0.2140	0.1402	0.0655	0.0558	0.3905	0.4124	0.4660	0.2427	0.2528
3 (Cantabria)	0.0308	0.0532	0.0472	0.1059	0.0340	0.0433	0.1581	0.2317	0.3752
4 (Aragón)	0.1234	0.1428	0.0906	0.2597	0.2018	0.2660	0.4224	0.3004	0.2477
5 (P. Vasco)	0.0747	0.1182	0.1124	0.0967	0.1180	0.0919	0.0776	0.0852	0.0778
6 (Navarra)	0.7563	0.8337	0.8350	0.4923	0.8043	0.7071	0.5726	0.6393	0.7272
7 (Cataluña)	0.3489	0.3092	0.2967	0.3051	0.3512	0.3724	0.3980	0.3917	0.3765
8 (Cast. León)	0.5666	0.4684	0.4652	0.4934	0.5231	0.5703	0.5730	0.5496	0.4895
10 (Extremadura)	0.5810	0.5594	0.5627	0.5755	0.5595	0.5668	0.5553	0.5819	0.5710
11 (Madrid)	0.3933	0.2735	0.2774	0.3285	0.3356	0.3813	0.3896	0.3888	0.3494
12(Cast. Mancha)	0.4481	0.4988	0.4304	0.1594	0.5912	0.5620	0.5964	0.4994	0.5639
13 (C. Valenciana)	0.3797	0.3195	0.2999	0.4411	0.3755	0.4252	0.4599	0.3954	0.3654
14 (Andalucía)	0.4000	0.3998	0.3744	0.1083	0.4883	0.4387	0.4323	0.4030	0.4842
15 (Murcia)	0.5081	0.4816	0.5005	0.6353	0.3664	0.4335	0.4896	0.6687	0.5663

Tabla 3.47: Sector Comercio. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.3551	0.0532	0.1026	0.0522	0.1618	0.0712	0.0581	0.0920	0.0465
2 (Asturias)	0.0410	0.0659	0.0464	0.0828	0.0563	0.0661	0.0689	0.0671	0.0672
3 (Cantabria)	0.4256	0.5272	0.3405	0.8167	0.1971	0.4298	0.4299	0.4496	0.5675
4 (Aragón)	0.6483	0.6513	0.7621	0.4590	0.7138	0.6288	0.6288	0.6179	0.5895
5 (P. Vasco)	0.4100	0.1744	0.1782	0.2930	0.3956	0.2213	0.2421	0.1925	0.2616
6 (Navarra)	0.5134	0.5223	0.5403	0.5199	0.4673	0.5014	0.5298	0.5287	0.5216
7 (Cataluña)	0.2710	0.2527	0.2439	0.3239	0.2526	0.2819	0.2807	0.2817	0.2880
8 (Cast. León)	0.7298	0.6033	0.5832	0.4951	0.6765	0.6086	0.6114	0.6069	0.5783
9 (La Rioja)	0.2981	0.2344	0.2098	0.3429	0.2591	0.3171	0.3052	0.3093	0.3473
10 (Extremadura)	0.0517	0.0885	0.0705	0.3479	0.0346	0.0468	0.0355	0.0440	0.0667
11 (Madrid)	0.3244	0.3412	0.3412	0.3654	0.3744	0.3822	0.3792	0.3761	0.3696
12(Cast. Mancha)	0.5590	0.7875	0.7527	0.7423	0.6098	0.7115	0.7043	0.7219	0.7544
13 (C. Valenciana)	0.0331	0.1236	0.1072	0.2498	0.0394	0.1362	0.1224	0.1294	0.1731
14 (Andalucía)	0.3059	0.2668	0.2546	0.3369	0.3257	0.2915	0.2940	0.2875	0.2695
15 (Murcia)	0.3337	0.3749	0.3092	0.4733	0.3336	0.3618	0.3602	0.3556	0.3703

Tabla 3.48: Sector Servicios. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \ln(N) = \ln(9) \simeq 2$

Región	1999	2000	2001	2002	2003	2004	2005	2006	2007
1 (Galicia)	0.4146	0.1824	0.1686	0.1280	0.1792	0.1805	0.2193	0.2287	0.2149
2 (Asturias)	0.0387	0.0522	0.0459	0.1034	0.0584	0.0578	0.0556	0.0556	0.0559
3 (Cantabria)	0.3488	0.1824	0.2744	0.4295	0.2491	0.3002	0.2618	0.2504	0.3506
4 (Aragón)	0.6706	0.7880	0.7772	0.5988	0.7212	0.6800	0.6789	0.6922	0.6151
5 (P. Vasco)	0.4263	0.1959	0.2120	0.1760	0.2640	0.2789	0.2956	0.2811	0.3489
6 (Navarra)	0.5018	0.4951	0.5181	0.4139	0.5078	0.5177	0.4820	0.5027	0.4857
7 (Cataluña)	0.2625	0.2154	0.2282	0.2176	0.2547	0.2685	0.2677	0.2680	0.2704
8 (Cast. León)	0.7336	0.6097	0.6256	0.7513	0.6728	0.6597	0.6606	0.6623	0.6522
9 (La Rioja)	0.2721	0.1406	0.1748	0.0551	0.2028	0.2701	0.2878	0.2613	0.3743
10 (Extremadura)	0.0368	0.1034	0.0701	0.1390	0.0437	0.0705	0.0787	0.0729	0.0780
11 (Madrid)	0.3242	0.3455	0.3337	0.3419	0.3622	0.3695	0.3772	0.3732	0.3751
12(Cast. Mancha)	0.5418	0.7468	0.7243	0.6661	0.6134	0.6326	0.6312	0.6112	0.6984
13 (C. Valenciana)	0.0298	0.0481	0.0595	0.0426	0.0359	0.0633	0.0677	0.0557	0.0932
14 (Andalucía)	0.3203	0.2900	0.2716	0.4232	0.3317	0.3117	0.3153	0.3249	0.2722
15 (Murcia)	0.3260	0.3127	0.3106	0.5288	0.3520	0.3355	0.3311	0.3339	0.3032

Tabla 3.49: Sector Servicios. Errores LOOCV en cada una de las Comunidades Autónomas españolas analizadas, para los años estudiados, en el período 1999 – 2007. Se ha considerado el orden de truncamiento $k_N = \sqrt{N} = 3$

3.8.4. Mapas de error LOOCV para $k_N = 1$

Figura 3.55: *Sector Fábrica*. Mapa de error LOOCV en el año 2000 (arriba a la izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo a la izquierda) y mapa de error LOOCV promediado en el tiempo en la parte inferior derecha.

Figura 3.56: *Sector Construcción*. Mapa de error LOOCV en el año 2000 (arriba a la izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo a la izquierda) y mapa de error LOOCV promediado en el tiempo en la parte inferior derecha.

Figura 3.57: *Sector Comercio*. Mapa de error LOOCV en el año 2000 (arriba a la izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo a la izquierda) y mapa de error LOOCV promediado en el tiempo en la parte inferior derecha.

Figura 3.58: Sector Servicios. Mapa de error LOOCV en el año 2000 (arriba a la izquierda), en el año 2003 (arriba a la derecha), en el año 2007 (abajo a la izquierda) y mapa de error LOOCV promediado en el tiempo en la parte inferior derecha.

Capítulo 4

Regresión Bayesiana funcional dinámica versus regresión espectral espacial de curvas

El contenido de este capítulo se han publicado en el trabajo de Ruiz-Medina y Miranda (2022) [131], Bayesian surface regression versus spatial spectral nonparametric curve regression. Spatial Statistics. DOI: 10.1016/j.spasta.2022.100604.

Este capítulo presenta una nueva aportación de la tesis, donde se analiza la incidencia de COVID-19 en las provincias de las Comunidades españolas en la Península Ibérica durante el período febrero-octubre de 2020. Se proponen dos enfoques de regresión en un contexto infinito-dimensional, regresión de superficie y regresión espacial curva. En el primero, se adopta la estimación Bayesiana basada en la moda de la a-posteriori (MAP) en la aproximación del espectro puntual puro del operador de autocorrelación residual de la regresión temporal. Así, se deriva una alternativa a la metodología de estimación basada en momentos desarrollada en Ruiz-Medina, Miranda y Espejo [130]. Además, se considera la regresión espacial curva. Se calcula un estimador no paramétrico del operador de densidad espectral, basado en el operador periodograma espacial, para aproximar la correlación sobre los autovectores empíricos del operador de covarianza espacial de largo rango. Se implementan procedimientos de validación cruzada para probar el rendimiento de los dos enfoques de regresión funcional.

4.1. Introducción

Según se describe en la introducción, el modelo lineal funcional se ha estudiado extensamente en la literatura de Análisis de Datos Funcional (FDA) (ver, por ejemplo, Hörmann v Kokoszka [67]; Horváth v Kokoszka [71]; Ramsav v Silverman [121]). Varios enfoques contribuyen al contexto de regresión lineal funcional y por mínimos cuadrados, que involucran respuesta escalar/funcional y regresores funcionales. Solo por mencionar algunos, nos referimos a la regresión basada en suavizado *spline*, la regresión funcional basada en componentes principales o regresión funcional por mínimos cuadrados parciales (ver, por ejemplo, Cai y Hall [19]; Crambes, Kneip y Sarda [32]; Cuevas, Febrero y Fraiman [35]; Cuevas [36]; Febrero-Bande, Galeano y Gonzalez-Manteiga [48]; Marx y Eilers [100]; Ruiz-Medina [128], entre otros). Morris [110] presenta una extensa revisión sobre regresión funcional, centrándose en las técnicas más comunes respaldadas por métodos de regularización. Wang, Chiou y Müller [137] describen las metodologías usuales comunmente aplicadas en FDA, incluido el análisis de la media y covarianza, técnicas de reducción de dimensiones, como el Análisis de Componentes Principales Funcionales, y avances recientes sobre clustering/clasificación, regresión no lineal y técnicas de deformación para datos funcionales. Finalmente, nos referimos a la contribución de Jadhav, Koul y Lu [77], en el contexto de regresión multivariante funcional, donde se analiza el efecto de las covariables funcionales sobre la variable respuesta.

La regresión funcional semiparamétrica y no paramétrica constituye uno de los enfoque más flexibles en el análisis de correlaciones entre variables funcionales (ver, por ejemplo, Ferraty y Vieu [50]). Un enfoque lineal parcial semifuncional para la regresión, basado en series de tiempo no paramétricas, se considera en Aneiros-Pérez y Vieu [6]; [7]. En particular, la regresión funcional de tipo núcleo se ha aplicado ampliamente, incluyendo el caso donde ambos, la respuesta y los regresores son funciones (ver, por ejemplo, Ferraty y Vieu [51]; Ferraty, Van Keilegom y Vieu [52]). En el marco no paramétrico, en el caso de respuesta escalar y los regresores funcionales, Ferraty, Goia, Salinelli y Vieu [53] presentan un enfoque novedoso, donde se logra la elección de la dirección óptima, basada en la función de pérdida cuadrática, para la proyección de los regresores, y la función de enlace. Un marco más flexible para modelar posibles cambios estructurales se contempla en Goia y Vieu [59], reflejando los diferentes patrones de interacción entre la respuesta y regresor funcional dependiendo del intervalo de tiempo considerado. Los beneficios de compartir técnicas de análisis de datos funcionales y de alta dimensión se reflejan en el número especial editado por Goia y Vieu [60] (ver también en Gao, Shang y Yang [56]).

Para series funcionales de tiempo, la modelización lineal mediante una ecuación de estados ha sido ampliamente desarrollada desde las décadas de los 70-90 (ver, por ejemplo, Bosq [14]). En efecto, desde los trabajos pioneros de Cardot [21]; Labbas y Mourid [88]; Marion y Pumo [98] y Mas [101], se pueden encontrar diferentes métodos de regularización y análisis asintótico, en la definición de predictores lineales funcionales. Varias extensiones, como modelización condicional (modelos CARH(1)), versiones estocásticas dobles, series Banach-valuadas y diferentes aplicaciones basadas en datos dispersos, han sido tratados en una amplia literatura (ver Aue, Horváth y Pellatt [9]; Aue y Klepsch [10]; Cugliari [37]; Damon y Guillas [38]; [39]; Didericksen y Kokoszka [42]; El Hajj [43]; Ferraty, Van Keilegom y Vieu [52]; Guillas [63]; [64]; Hörmann, Horváth y Reeder [69]; Horváth, Hušková y Kokoszka [73]; Horváth, Kokoszka y Rice [74]; Kara-Terki y Mourid [78]; Kargin y Onatski [81]; Klepsch, Klüppelberg y Wei [83]; Kokoszka y Reimherr [85]; [86]; Kowal, Matteson y Ruppert [87]; Laukaitis [90]; Liu, Xiao y Chen [96]; Mas [102]; [103]; [104]; [105]; Mas y Menneteau [106], y, Mas y Pumo [107]).

Un tratamiento más general, además de los supuestos estructurales, se pueden encontrar en el libro de Hörmann y Kokoszka [68] (ver también Aue, Norinho y Hörmann [8]; Górecki, Hörmann, Horváth y Kokoszka [62]; Hörmann, Kokoszka y Nisol [70]; Horváth, Hušková y Rice [72]; Kokoszka y Reimherr [85]). El análisis de series funcionales del tiempo bajo una perspectiva no paramétrica ofrece alternativas interesantes (ver, por ejemplo, Aneiros-Pérez, Cao y Vilar-Fernández [5]; Ezzahrioui y Ould-Saïd [45]; Ferraty, Goia y Vieu [49]). Finalmente, en el contexto del análisis de series funcionales con dependencia de largo rango, destacaremos las contribuciones de Li, Robinson y Shang [94], y Ruiz-Medina [129].

Canale y Ruggiero [20], Petris [117] y Torres-Signes, Frías y Ruiz-Medina [135] adoptan un marco Bayesiano en el contexto funcional de series de tiempo. El presente trabajo también considera un enfoque Bayesiano en la estimación de los autovalores del operador de autocorrelación, caracterizando la estructura de dependencia del término error, en el modelo de regresión de superficie dinámica formulado en la ecuación (3.1) a continuación (ver Ruiz-Medina, Miranda y Espejo [130]). Específicamente, este trabajo contribuye con una metodología alternativa para estimar el operador matricial de covarianza del término error basada en la moda de la distribución a-posteriori (estimación MAP). La formulación en este capítulo de la matriz del diseño mediante un operador matricial, cuyas entradas son los regresores tipo núcleo, también constituye una contribución interesante en la práctica. Los pasos restantes en la implementación de la estimación por mínimos cuadrados generalizados del parámetro de la regresión funcional son similares a los dados en Ruiz-Medina, Miranda y Espejo [130], bajo un modelo de series de tiempo autorregresivas, con valores en un espacio de Hilbert separable para el término de error. Con respecto a otras alternativas, como el ajuste del modelo basado en la proyección spline, nuestra elección de los autovectores empíricos del operador de autocorrelación de los residuos de la regresión para la proyección permite una reducción sustancial de la dimensión, en el problema de maximización asociado con la estimación MAP.

El análisis funcional espectral es una de las principales áreas de investigación abiertas en la literatura actual sobre series temporales funcionales. En Panaretos y Tavakoli [114], bajo un escenario de dependencia débil, se deriva un estimador no paramétrico del operador de densidad espectral basado en el operador periodograma. Un ingrediente fundamental en el análisis del comportamiento asintótico de dicho estimador es el resultado previo sobre la normalidad asintótica de la transformada de Fourier discreta funcional de los datos curva, bajo condiciones adecuadas sobre el comportamiento asintótico de los cumulantes, y la sumabilidad en el tiempo de la norma traza de los elementos de la familia de operadores de covarianza (ver también Tavakoli [133]). En Panaretos y Tavakoli [115] se derivan una descomposición tipo Karhunen-Loéve en el dominio espectral funcional temporal, denominada representación de CramérKarhunen-Loéve, que proporcionan un análisis armónico en componentes principales para series funcionales en el tiempo (ver también algunas aplicaciones recientes en el contexto de regresión funcional en Pham y Panaretos [118], y, Rubin y Panaretos [123]). Además, Rubin y Panaretos [124] proponen técnicas de simulación basadas en la representación Cramér-Karhunen-Loéve. La detección de dinámicas diferentes en series funcionales en el tiempo se contrasta a través de pruebas de hipótesis en Tavakoli y Panaretos [134].

En el contexto de la regresión espacial curva, se adopta un enfoque paramétrico en el dominio espectral funcional en Frías, Torres-Signes y Ruiz-Medina [55] para estimar la estructura de correlación funcional espacial subyacente a un proceso espacial de Cox en un marco de dimensión infinita. Hasta donde sabemos, además de esta contribución paramétrica-espectral en Frías, Torres-Signes y Ruiz-Medina [55], el marco no paramétrico espectral funcional espacial aún no ha sido explotado. Nuestro trabajo contribuye a cubrir esta brecha al considerar una formulación espacial del estimador no paramétrico del operador de densidad espectral derivado en Panaretos y Tavakoli [114]. A partir de este estimador, se estiman las entradas funcionales (núcleos) de la inversa del operador matricial de covarianza espacial del error de regresión. El estimador por mínimos cuadrados generalizados plug-in del vector de parámetros de la regresión

Los dos enfoques de regresión presentados se validan en un ejemplo de datos reales, donde se analiza las incidencia de COVID-19, desde febrero a octubre, en las provincias de las Comunidades españolas: Andalucía, Aragón, Asturias, Cantabria, Castilla La Mancha, Castilla-León, Cataluña, Comunidad de Madrid, Comunidad Valenciana, Extremadura, Galicia, la Rioja, Murcia, Navarra, País Vasco. El rendimiento de ambas metodologías de regresión superficie y curva, se prueba mediante validación cruzada. Las conclusiones de nuestro estudio empírico se extrae en la Sección 4.5. En particular, el rendimiento superior observado en la implementación del modelo de regresión espacial curva frente a la regresión de la superficie temporal se debe, en parte, a la dependencia espacial débil entre curvas y la alta dimensionalidad inherente al espacio de parámetros en el marco funcional Bayesiano de series de tiempo, donde se observa un rango de correlación temporal más grande. Además, la técnica de reducción de la dimensión implementada, basada en la proyección sobre los autovectores del operador de covarianza espacial empírico de largo rango, favorece la velocidad computacional. Adicionalmente, debemos tener en cuenta las ventajas que se derivan de efectuar la computación en el dominio espectral espacial funcional, minimizando el tiempo de cómputo, por ejemplo, en la implementación de convoluciones que se transforman en productos. En el Apéndice, también se muestran la visualización de datos y algunas salidas adicionales de los algoritmos de estimación implementados.

4.2. Regresión dinámica funcional múltiple bajo un enfoque Bayesiano

En esta sección, las variables aleatorias introducidas a continuación se definen sobre el espacio probabilístico base (Ω, \mathcal{A}, P) y toman sus valores en el espacio de Hilbert separable H de funciones real-valuadas. Restringimos nuestra atención al modelo de regresión funcional dinámica (ver Ruiz-Medina, Miranda y Espejo [130]):

$$Y_n = \boldsymbol{\mu}_Y + X_n^1(\beta_1) + \dots + X_n^p(\beta_p) + \varepsilon_n, \quad n \in \mathbb{Z},$$
(4.1)

donde $\mu_Y \in H$ superficie que proporciona el valor medio en el tiempo, y $\boldsymbol{\beta} = (\beta_1(\cdot), \dots, \beta_p(\cdot))^T \in H^p$ es el vector de los parámetros de regresión funcional. Los operadores $X_n^i \in \mathcal{S}(H), i = 1, \dots, p$, son los regresores funcionales que definen la matriz de diseño en cada tiempo $n \in \mathbb{Z}$. Como en el capítulo anterior, $\mathcal{S}(H)$ denota el espacio de operadores de Hilbert-Schmidt sobre H. La respuesta Y_n y el error de regresión ε_n se encuentra en H, por cada $n \in \mathbb{Z}$.

En este capítulo, el modelo (4.1) se interpreta como un modelo dinámico para el mapeo de enfermedades, donde el valor funcional de la respuesta $Y_n(\cdot)$ proporciona la transformación logarítmica del mapa de riesgo de incidencia o mortalidad sobre un dominio espacial \mathcal{D} , para un tiempo dado $n \in \mathbb{Z}$. La respuesta se define a partir de una combinación lineal de los regresores tipo núcleo, $X_n^i = E[(Y_{n-i} - \boldsymbol{\mu}_Y) \otimes (Y_{n-i-1} - \boldsymbol{\mu}_Y)],$ $i = 1, \ldots, p$, cuyos pesos funcionales β_i , $i = 1, \ldots, p$, son los parámetros de regresión a estimar, que satisfacen la siguiente ecuación:

$$\beta_i(\mathbf{z}) = w_i \mathcal{R}_i^{-1}(Y_{n-i-1})(\mathbf{z}), \quad \mathbf{z} \in \mathcal{D}, \ \mathcal{R}_i = E[(Y_{n-i-1} - \boldsymbol{\mu}_Y) \otimes (Y_{n-i-1} - \boldsymbol{\mu}_Y)], \ i = 1, \dots, p_Y$$

para cierto vector desconocido $(w_1, \ldots, w_p) \in \mathbb{R}^p$. Como es usual, \otimes denota el producto tensorial de funciones. Es bien conocido que para $h, g \in H, h \otimes g \in \mathcal{S}(H)$.

Según se indica en el capítulo anterior (ver también Ruiz-Medina, Miranda y Espejo [130]), para una base ortonormal fija $\{\varphi_k\}_{k\geq 1}$ de H,

$$X_n^i(\varphi_k)(\varphi_l) = \left\langle X_n^i(\varphi_k), \varphi_l \right\rangle_H = x_{k,l}^i(n), \quad k, l \ge 1, \ \forall n \in \mathbb{Z}, \quad i = 1, \dots, p.$$
(4.2)

De hecho, dado que $X_n^i \in \mathcal{S}(H),$ entonces, $\sum_{k,l} [x_{k,l}^i(n)]^2 < \infty,$ y

$$X_n^i(f) = \sum_{k,l} x_{k,l}^i(n) \langle f, \varphi_l \rangle_H \varphi_k, \quad \forall f \in H,$$
(4.3)

para cada $n \in \mathbb{Z}$, i = 1, ..., p, donde $= \underset{H}{\text{significa la igualdad en la norma de } H$.

Trabajamos bajo la suposición

$$E\left[\varepsilon_n | X_n^1, \dots, X_n^p\right] = 0, \quad \forall n \in \mathbb{Z},$$
(4.4)

sobre el término de error $\varepsilon \equiv \{\varepsilon_n, n \in \mathbb{Z}\}$, interpretado como un proceso Hilbertvaluado con componentes débilmente correladas. En efecto, ε se supone que es un proceso Autorregresivo Hilbertiano de orden uno (proceso ARH(1)) de media cero, satisfaciendo la siguiente ecuación de estados:

$$\varepsilon_n = \rho(\varepsilon_{n-1}) + \epsilon_n, \ n \in \mathbb{Z},$$
(4.5)

donde ρ denota el operador de autocorrelación, que pertenece al espacio de operadores lineales acotados $\mathcal{L}(H)$ en H, satisfaciendo $\|\rho\|_{\mathcal{L}(H)}^k < 1$, para $k \geq k_0$, para cierto $k_0 \in \mathbb{N}$. Restringimos nuestra atención al caso gaussiano, con $\{\epsilon_n, n \in \mathbb{Z}\}$ siendo un ruido blanco gausiano H-valuado en sentido fuerte. Equivalentemente, $\{\epsilon_n, n \in \mathbb{Z}\}$ es una sucesión de variables aleatorias gaussianas, evaluadas en H, de media cero independientes e idénticamente distribuidas con un operador de autocovarianza en la clase traza. La estructura de covarianza de la superficie aleatoria dinámica subyacente en el tiempo que define ε es entonces caracterizado en términos de los operadores de la autocovarianza R_0 y covarianza cruzada R_1 , dados por:

$$R_0 = E[\varepsilon_0 \otimes \varepsilon_0] = E[\varepsilon_n \otimes \varepsilon_n], \quad \forall n \in \mathbb{Z}$$
$$R_1 = E[\varepsilon_0 \otimes \varepsilon_1] = E[\varepsilon_n \otimes \varepsilon_{n+1}], \quad \forall n \in \mathbb{Z}$$

Nótese que bajo el modelo de regresión introducido en el Capítulo 3 (ver Ruiz-Medina, Miranda y Espejo [130]):

$$E[Y_n|X_n^1,...,X_n^p] = \mu_Y + X_n^1(\beta_1) + \dots + X_n^p(\beta_p), \quad n = 1,...,N_n$$

A partir de (4.5)

$$E\left[\varepsilon_i \otimes \varepsilon_j\right] = \rho^{|j-i|} R_0, \quad i, j \in \mathbb{Z},$$
(4.6)

y (ver la ecuación (3.11) en Bosq [14])

$$\varepsilon_n = \sum_{j=0}^k \rho^j \epsilon_{n-j} + \rho^{k+1}(\varepsilon_{n-k-1}), \quad k \ge 1.$$

Consideremos la muestra funcional Y_1, \ldots, Y_N . Se consideran de nuevo los operadores matriciales introducidos en el Capítulo 3 que caracterizan la estructura de correlación lineal entre las componentes funcionales del término de error en la regresión infinito-dimensional (ver Ruiz-Medina, Miranda y Espejo [130]):

$$\mathbf{C} = E\left[\left(\varepsilon_{1}, \dots, \varepsilon_{N}\right)^{T} \otimes (\varepsilon_{1}, \dots, \varepsilon_{N})\right]$$

$$= \begin{bmatrix} R_{0} & \rho R_{0} & \rho^{2} R_{0} & \dots & \rho^{N-1} R_{0} \\ \rho R_{0} & R_{0} & \rho R_{0} & \dots & \rho^{N-2} R_{0} \\ \vdots & \dots & \ddots & \vdots \\ \rho^{N-1} R_{0} & \rho^{N-2} R_{0} & \dots & \dots & R_{0} \end{bmatrix} = \begin{bmatrix} I & \rho & \rho^{2} & \dots & \rho^{N-1} \\ \rho & I & \rho & \dots & \rho^{N-2} \\ \vdots & \dots & \dots & \vdots \\ \rho^{N-1} & \rho^{N-2} & \dots & \dots & I \end{bmatrix}$$

$$\times \begin{bmatrix} R_{0} & 0 & 0 & \dots & 0 \\ 0 & R_{0} & 0 & \dots & 0 \\ \vdots & \dots & \dots & \vdots \\ 0 & 0 & \dots & \dots & R_{0} \end{bmatrix} = \rho \mathbf{R}_{0}.$$
(4.7)

bajo las **Suposiciones A1 y A2** introducido en el Capítulo 3, el operador de correlación matricial y el inverso del operador del operador de covarianza matricial del término error funcional se definen como en el Capítulo 3 (ver ecuaciones 3.10, 3.11 y 3.20-3.22)

4.2.1. Predictor funcional Bayesiano

Como se indica en la ecuación (3.24) del Capítulo 3 (ver también ecuación (24) en Ruiz-Medina, Miranda y Espejo [130]), el estimador de mínimos cuadrados generalizados $\widehat{\boldsymbol{\beta}}_N$ del vector de parámetro $\boldsymbol{\beta} \in H^p$ puede ser calculado como sigue:

$$\widehat{\boldsymbol{\beta}}_{N} := \min_{\boldsymbol{\beta} \in H^{p}} L^{2}(\boldsymbol{\beta}) = \min_{\boldsymbol{\beta} \in H^{p}} \|\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})\|_{\mathcal{H}(\boldsymbol{\varepsilon})}^{2}$$

$$= \min_{\boldsymbol{\beta} \in H^{p}} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta}))^{T} \mathbf{C}^{-1} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta}))$$

$$= \min_{\boldsymbol{\beta} \in H^{p}} \sum_{k,l} [\boldsymbol{\Psi}_{l}^{\star} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})]^{T} \mathbf{H}_{l,k} \boldsymbol{\Psi}_{k}^{\star} (\mathbf{Y} - \mathbf{X}(\boldsymbol{\beta})). \qquad (4.8)$$

En este capítulo de la tesis proponemos una estimación Bayesiana de los autovalores del operador de autocorrelación ρ . En efecto, se considera la siguiente versión truncada

del operador de autocovarianza empírico:

$$\widehat{R}_{0}^{(k(N))} = \sum_{k=1}^{k(N)} \widehat{\lambda}_{k,N} \widehat{\phi}_{k,N} \otimes \widehat{\phi}_{k,N}, \qquad (4.9)$$

donde $\widehat{R}_{0}^{(k(N))}\widehat{\phi}_{k,N} = \widehat{\lambda}_{k,N}\widehat{\phi}_{k,N}$, para $k = 1, \ldots, k(N)$. Aquí, hemos considerado k(N) < N tal que $k(N)/N \to 0, N \to \infty$, con una cierta disminución de la velocidad que asegura buenas propiedades asintóticas. La consistencia fuerte (ver Bosq [14]). Usualmente, se selecciona el valor $k(N) = \ln(N)$ del parámetro k(N). Bajo la distribución gaussiana de los errores, las estimaciones de los valores propios $\lambda_k(\rho), k = 1, \ldots, k(N)$, se calculan maximizando la función de pérdida $\widetilde{L}_{k(N)} \left(\lambda_1(\rho), \ldots, \lambda_{k(N)}(\rho) / \Delta_{\rho}(\varepsilon) \right)$, dada por

$$\widetilde{L}_{k(N)} \left(\lambda_{1}(\rho), \dots, \lambda_{k(N)}(\rho) / \Delta_{\rho}(\varepsilon) \right)
\simeq L_{N} \left(\Delta_{\rho}(\varepsilon) / \lambda_{1}(\rho), \dots, \lambda_{k(N)}(\rho) \right) p_{k(N)} \left(\lambda_{1}(\rho), \dots, \lambda_{k(N)}(\rho) \right)
= \prod_{k=1}^{k(N)} \left[\frac{1}{\sigma_{k}^{N} (2\pi)^{N/2}} \exp\left(-\frac{1}{2\sigma_{k}^{2}} \sum_{t=1}^{N} [\epsilon_{t}(\psi_{k})]^{2} \right) \right.
\times \left[\lambda_{k}(\rho) \right]^{a_{k}-1} \left(1 - \lambda_{k}(\rho) \right)^{b_{k}-1} \frac{\mathbb{I}_{\{0 < \lambda_{k}(\rho) < 1\}}}{\mathbb{B}(a_{k}, b_{k})} \right].$$
(4.10)

En efecto, $\widetilde{L}_{k(N)}\left(\lambda_1(\rho),\ldots,\lambda_{k(N)}(\rho)/\Delta_{\rho}(\varepsilon)\right)$ define la densidad de probabilidad conjunta a-posteriori salvo la constante positiva \mathcal{K} ,

$$\mathcal{K} = \int_{\mathbf{\Lambda}} L_N(\boldsymbol{\varepsilon}/\boldsymbol{\lambda}(\rho)) p_{k(N)}(\boldsymbol{\lambda}(\rho)) \, d\boldsymbol{\lambda}(\rho),$$

donde

$$\Delta_{\rho}(\boldsymbol{\varepsilon}) := \left\{ \varepsilon_{2}(\psi_{k}) - \lambda_{k}(\rho)\varepsilon_{1}(\psi_{k}), \dots, \varepsilon_{N}(\psi_{k}) - \lambda_{k}(\rho)\varepsilon_{N-1}(\psi_{k}) \right\}_{k=1,\dots,k(N)},$$

con $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_N)$, y $\boldsymbol{\lambda}(\rho) = (\lambda_1(\rho), \dots, \lambda_{k(N)}(\rho))$. En (4.10), $\boldsymbol{\lambda}(\rho) = (\lambda_1(\rho), \dots, \lambda_{k(N)}(\rho))$ se supone que es un vector de k(N) variables aleatorias beta independientes, cuya densidad de probabilidad conjunta $p_{k(N)}$ factoriza en k(N) densidades de probabilidad beta con parámetros de forma respectivos a_k y b_k , $k = 1, \dots, k(N)$. Como usual, $\mathbb{I}_{0 < \cdot < 1}$ denota la función del indicador en el intervalo (0,1),y $\mathbb{B}(a_k,b_k)$ es la función beta,

$$\mathbb{B}(a_k, b_k) = \frac{\Gamma(a_k)\Gamma(b_k)}{\Gamma(a_k + b_k)}, \quad k = 1, \dots, k(N)$$

También hemos aplicado la independencia de los componentes del proceso de innovación gaussiano ϵ . Por lo tanto, para cada $k = 1, \ldots, k(N), \varepsilon_t(\psi_k) = \langle \varepsilon_t, \psi_k \rangle_H$, y $\sigma_k = \sqrt{E[\varepsilon_t(\psi_k)]^2}$, para $t = 1, \ldots, N$. Para $i, j = 1, \ldots, N$, se obtiene la siguiente aproximación $\hat{\widetilde{C}}_{i,j}$ de $\widetilde{C}_{i,j}$ basada en la versión empírica y truncada del operador de autocovarianza, y la estimación Bayesiana de los autovalores del operador de autocorrelación,

$$\begin{aligned} \widehat{\widetilde{C}}_{1,1}(f) &= \widehat{\widetilde{C}}_{N,N}(f) = [\widehat{R}_{0}^{(k(N))}]^{-1}(I - \widehat{\rho}_{k(N)}^{2})^{-1}(f) \\ &= \sum_{k,l=1}^{k(N)} \frac{1}{1 - \widehat{\lambda}_{k}^{2}(\rho)} \left[\widehat{R}_{0}^{(k(N))}\right]^{-1}(\psi_{k})(\psi_{l}) \langle \psi_{k}, f \rangle_{H} \psi_{l} \\ &= \sum_{k,l=1}^{k(N)} \widehat{a}_{l,k}^{(N)} \langle \psi_{k}, f \rangle_{H} \psi_{l} \\ \widehat{\widetilde{C}}_{i,i+1}(f) &= \widehat{\widetilde{C}}_{j,j-1}(f) = -[\widehat{R}_{0}^{(k(N))}]^{-1}(I - \widehat{\rho}_{k(N)}^{2})^{-1}\widehat{\rho}_{k(N)}(f) \\ &= -\sum_{k,l}^{k(N)} \frac{\widehat{\lambda}_{k}(\rho)}{1 - \widehat{\lambda}_{k}^{2}(\rho)} [\widehat{R}_{0}^{(k(N))}]^{-1}(\psi_{k})(\psi_{l}) \langle \psi_{k}, f \rangle_{H} \psi_{l} \\ &= \sum_{k,l}^{k(N)} \widehat{b}_{l,k}^{(N)} \langle \psi_{k}, f \rangle_{H} \psi_{l}, \quad i = 1, \dots, N - 1, \ j = 2, \dots, N \\ \widehat{\widetilde{C}}_{i,i}(f) &= [\widehat{R}_{0}^{(k(N))}]^{-1}(I - \widehat{\rho}_{k(N)}^{2})^{-1}(I + \widehat{\rho}_{k(N)}^{2})(f) \\ &= \sum_{k,l=1}^{k(N)} \frac{1 + \widehat{\lambda}_{k}^{2}(\rho)}{1 - \widehat{\lambda}_{k}^{2}(\rho)} [\widehat{R}_{0}^{(k(N))}]^{-1}(\psi_{k})(\psi_{l}) \langle \psi_{k}, f \rangle_{H} \psi_{l} \\ &= \sum_{k,l=1}^{k(N)} \widehat{c}_{l,k}^{(N)} \langle \psi_{k}, f \rangle_{H} \psi_{l}, \quad i = 2, \dots, N - 1, \end{aligned}$$

$$(4.11)$$

para cualquier $f \in H$, donde $\hat{\rho}_{k(N)} = \sum_{k=1}^{k(N)} \hat{\lambda}_k(\rho) \psi_k \otimes \psi_k$. Se obtiene entonces la siguiente aproximación Bayesiana del inverso del operador de covarianza matricial del término de error.

$$\widehat{\mathbf{C}}_{B,N}^{-1} = \sum_{k,l}^{k(N)} [\boldsymbol{\Psi}_l^{\star}(\mathbf{g})]^T \widehat{H}_{l,k}^{(N)} \boldsymbol{\Psi}_k^{\star}, \qquad (4.12)$$

donde, para k, l = 1, ..., k(N), $\widehat{H}_{l,k}^{(N)}$ tiene entradas $\widehat{a_{l,k}^{(N)}}, \widehat{b_{l,k}^{(N)}}$ y $\widehat{c_{l,k}^{(N)}}$ calculadas a partir de la ecuación (4.11).

Bajo las **Suposiciones A1–A4** del Capítulo 3 (ver también Ruiz-Medina, Miranda y Espejo [130]), obtenemos el estimador Bayesiano *plug-in*

$$\widehat{\boldsymbol{\beta}}_{B,N} = \left(\mathbf{X}^T \widehat{\mathbf{C}}_{B,N}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^T \widehat{\mathbf{C}}_{B,N}^{-1} (\mathbf{Y}_N) = \boldsymbol{\beta} + \left(\mathbf{X}^T \widehat{\mathbf{C}}_{B,N}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^T \widehat{\mathbf{C}}_{B,N}^{-1} (\boldsymbol{\varepsilon}_N).$$
(4.13)

A partir de (4.13), el correspondiente predictor de regresión funcional Bayesiana se calcula como

$$\widehat{\mathbf{Y}}_{B,N} = \mathbf{X}\widehat{\boldsymbol{\beta}}_{B,N}.$$
(4.14)

4.2.2. Algoritmo de estimación 1

Resumimos brevemente los principales pasos en la implementación de la metodología de estimación de la regresión funcional introducida anteriormente para calcular $\widehat{\mathbf{Y}}_{B,N}$ a partir de un conjunto de datos reales (ver la Sección 4.4.1 donde se analiza la incidencia de COVID-19 en las Comunidades españolas).

- Paso 1 Las curvas escalonadas de casos acumulados de COVID-19 en las provincias españolas están interpolados en el tiempo y suavizadas mediante proyección en bases de *spline* cúbicos. Luego se calculan sus derivadas y transformada logarítmica, y también se implementa su interpolación espacial para una cuadrícula regular.
- **Paso 2** Se calculan el operador empírico de autocovarianza y el estimador MAP de los autovalores del operador de autocorrelación residual de la regresión, después de aplicar mínimos cuadrados ordinarios. A partir de la ecuaciones (4.11)-(4.12), se estima entonces \mathbf{C}^{-1} .
- **Paso 3** El estimador por mínimos cuadrados generalizado $\widehat{\boldsymbol{\beta}}_{B,N} = \left(\widehat{\beta}_{B,N}^1, \dots, \widehat{\beta}_{B,N}^p\right)$ del vector del parámetros de la regresión $\boldsymbol{\beta}$ se calcula a partir del **Paso 2** aplicando la ecuación (4.13).

Paso 4 El predictor Bayesiano plug-in $\widehat{\mathbf{Y}}_{B,N}$ se obtiene de (4.14).

Paso 5 Se implementa un esquema sistemático de validación cruzada leave-one-out crossvalidation LOOCV, basado en el modelo de regresión de superficie (4.1) (ver, por ejemplo, Barbian y Assunção [11]; Nicolet et al. [113]). Para n = 1, ..., N p, en la n-ésima iteración de este procedimiento, la muestra objetivo se define por la (n + p)-ésima superficie, con la que comparamos la superficie predicha plug-in (4.14) obtenida en los **Pasos 3-4**. Específicamente, esta predicción se obtiene a partir de la estimación Bayesiana $\widehat{\mathbf{C}}_{B,N}^{-1}$ de \mathbf{C}^{-1} , basada en la muestra de entrenamiento, como se indica en los **Pasos 1-2**. Esta muestra de entrenamiento está constituida por las superficies restantes, después de eliminar la superficie objetivo y las superficies asociadas con los p tiempos iniciales. Nótese que la matriz de diseño \mathbf{X} en (4.1) se calcula a partir de las superficies en estos tiempos iniciales en las primeras ejecuciones.

4.3. Enfoque de regresión múltiple funcional espacial en el dominio espectral

Sea $X = \{X_{\mathbf{z}}, \mathbf{z} \in \mathbb{Z}^d\}$ una serie de tiempo funcional espacial con valores en el espacio espacio de Hilbert real separable $H = L^2([\mathcal{T}_1, \mathcal{T}_2], \mu(dt)), \mathcal{T}_i \in (-\infty, \infty),$ i = 1, 2. Aquí, $\mu(\cdot)$ es una medida positiva finita, cuyo soporte es el intervalo de tiempo $[\mathcal{T}_1, \mathcal{T}_2]$. Para cada $\mathbf{z} \in \mathbb{Z}^d, P[X_{\mathbf{z}} \in L^2([\mathcal{T}_1, \mathcal{T}_2], \mu(dt))] = 1$, es decir, $X_{\mathbf{z}}$ es un elemento aleatorio en $L^2([\mathcal{T}_1, \mathcal{T}_2], \mu(dt))$.

Suponga que X es estacionario en el espacio y tiene media cero. Los núcleos $\{\widetilde{r}_{\mathbf{z},\mathbf{y}}, \ \mathbf{z}, \mathbf{y} \in \mathbb{Z}^d\}$

$$\widetilde{r}_{\mathbf{z},\mathbf{y}}(\tau,\sigma) = E\left[X_{\mathbf{z}}(\tau)X_{\mathbf{y}}(\sigma)\right] = r_{\mathbf{z}-\mathbf{y}}(\tau,\sigma), \quad \tau,\sigma \in [\mathcal{T}_1,\mathcal{T}_2], \ \mathbf{z},\mathbf{y} \in \mathbb{Z}^d$$

definen respectivamente la familia de los operadores de covarianza espacial

 $\left\{ \widetilde{\mathcal{R}}_{\mathbf{z},\mathbf{y}}, \ \mathbf{z}, \mathbf{y} \in \mathbb{Z}^d \right\}$, dados por

$$\widetilde{\mathcal{R}}_{\mathbf{z},\mathbf{y}}(f)(g) = \mathcal{R}_{\mathbf{z}-\mathbf{y}}(f)(g) = E\left[X_{\mathbf{z}} \otimes X_{\mathbf{y}}\right](f)(g)
= E\left[\langle X_{\mathbf{z}}, g \rangle_{L^{2}([\mathcal{T}_{1},\mathcal{T}_{2}],\mu(dt))} \langle X_{\mathbf{y}}, f \rangle_{L^{2}([\mathcal{T}_{1},\mathcal{T}_{2}],\mu(dt))}\right]
\forall f, g \in L^{2}\left([\mathcal{T}_{1},\mathcal{T}_{2}],\mu(dt)\right),$$
(4.15)

para $\mathbf{y}, \mathbf{z} \in \mathbb{Z}^d$. El operador de autocovarianza espacial \mathcal{R}_0 se obtiene cuando $\mathbf{z} = \mathbf{y}$ en la ecuación (4.15), es decir,

$$\mathcal{R}_{\mathbf{0}} = E\left[X_{\mathbf{z}} \otimes X_{\mathbf{z}}\right] \in \mathcal{L}^{1}\left(L^{2}\left(\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right], \mu(dt)\right)\right), \quad \forall \mathbf{z} \in \mathbb{Z}^{d},$$

donde $\mathcal{L}^1(L^2([\mathcal{T}_1,\mathcal{T}_2],\mu(dt)))$ denota el espacio de los operadores traza sobre $L^2([\mathcal{T}_1,\mathcal{T}_2],\mu(dt))$.

Por lo tanto,

$$\|\mathcal{R}_{\mathbf{0}}\|_{\mathcal{L}^{1}(L^{2}([\mathcal{T}_{1},\mathcal{T}_{2}],\mu(dt)))} = \sum_{k\geq 1} \lambda_{k}\left(\mathcal{R}_{\mathbf{0}}\right) = E \|X_{\mathbf{z}}\|_{L^{2}([\mathcal{T}_{1},\mathcal{T}_{2}],\mu(dt))}^{2} = \sigma_{X}^{2} < \infty,$$

siendo $\mathcal{R}_{\mathbf{0}}\phi_k = \lambda_k(\mathcal{R}_{\mathbf{0}})\phi_k$, en $L^2([\mathcal{T}_1,\mathcal{T}_2],\mu(dt))$, para cada $k \geq 1$. Aquí, $\{\phi_k\}_{k\geq 1}$ y $\{\lambda_k(\mathcal{R}_{\mathbf{0}})\}_{k\geq 1}$ respectivamente denotan el sistema ortonormal de autovectores y el sistema asociado de autovalores del operador $\mathcal{R}_{\mathbf{0}}$.

La metodología de estimación propuesta se implementa en el dominio espectral funcional espacial. El espectro funcional espacial de X se define en términos de la familia de operadores de densidad espectral $\{\mathcal{F}_{\boldsymbol{\omega}}, \boldsymbol{\omega} \in [-\pi, \pi]^d\}$, caracterizando su estructura espacial de segundo orden. La familia de núcleos $\{f_{\boldsymbol{\omega}}(\tau, \sigma), \boldsymbol{\omega} \in [-\pi, \pi]^d\} \subset$ $L^2([\mathcal{T}_1, \mathcal{T}_2]^2, \mu \otimes \mu(dt, ds), \mathbb{C})$, que define la familia de operadores $\{\mathcal{F}_{\boldsymbol{\omega}}, \boldsymbol{\omega} \in [-\pi, \pi]^d\}$, vienen dados para cada $\boldsymbol{\omega} \in [-\pi, \pi]^d$, y $\tau, \sigma \in [\mathcal{T}_1, \mathcal{T}_2]$,

$$f_{\boldsymbol{\omega}}(\tau,\sigma) = \frac{1}{L^2([\mathcal{T}_1,\mathcal{T}_2]^2,\mu\otimes\mu(dt,ds),\mathbb{C})} \frac{1}{(2\pi)^d} \sum_{\mathbf{x}\in\mathbb{Z}^d} \exp\left(-i\langle\boldsymbol{\omega},\mathbf{x}\rangle\right) r_{\mathbf{x}}(\tau,\sigma), \quad (4.16)$$

donde = significa la identidad en la norma del espacio $L^2([\mathcal{T}_1,\mathcal{T}_2]^2,\mu\otimes\mu(dt,ds),\mathbb{C})$ $L^2([\mathcal{T}_1,\mathcal{T}_2]^2,\mu\otimes\mu(dt,ds),\mathbb{C})$. Para cada $\boldsymbol{\omega} \in [-\pi,\pi]^d$, el estimador no paramétrico del operador de densidad espectral $\mathcal{F}_{\boldsymbol{\omega}}$ que calcularemos más adelante está basado en la Transformada Discreta de Fourier funcional espacial (SfDFT), y en el operador periodograma, ambos se introducen ahora.

Definición 4.1 La SfDFT de $\{X_{\mathbf{z}}(\tau), \tau \in [\mathcal{T}_1, \mathcal{T}_2], \mathbf{z} \in [1, T]^d \cap \mathbb{Z}^d\}, T > 1$, se define mediante la siguiente identidad:

$$\widetilde{X}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\tau) = \left((2\pi)^d \mathbf{N}\right)^{-1/2} \sum_{\mathbf{z} \in [1,T]^d \cap \mathbb{Z}^d} X_{\mathbf{z}}(\tau) \exp\left(-i\left\langle \boldsymbol{\omega}, \mathbf{z} \right\rangle\right), \tag{4.17}$$

para todo $\tau \in [\mathcal{T}_1, \mathcal{T}_2], y \boldsymbol{\omega} \in \{2\pi \mathbf{z}/T, \mathbf{z} \in [1, T-1]^d\}$ donde $\mathbf{N} = T^d, y$ la serie (4.17) converge en la norma $L^2([\mathcal{T}_1, \mathcal{T}_2], \mu(dt), \mathbb{C}).$

El operador periodograma, denotado como $\mathcal{I}_{\boldsymbol{\omega}}^{(\mathbf{N})}$, se calcula a partir del SfDFT de la siguiente forma:

$$\mathcal{I}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\tau,\zeta) = \widetilde{X}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\tau)\overline{\widetilde{X}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\zeta)} = \frac{1}{((2\pi)^{d}\mathbf{N})}$$

$$\times \left[\sum_{\mathbf{z}\in[1,T]^{d}\cap\mathbb{Z}^{d}} X_{\mathbf{z}}(\tau)\exp\left(-i\left\langle\boldsymbol{\omega},\mathbf{z}\right\rangle\right)\right] \overline{\left[\sum_{\mathbf{z}\in[1,T]^{d}\cap\mathbb{Z}^{d}} X_{\mathbf{z}}(\zeta)\exp\left(-i\left\langle\boldsymbol{\omega},\mathbf{z}\right\rangle\right)\right]}$$

$$\forall (\tau,\zeta)\in[\mathcal{T}_{1},\mathcal{T}_{2}]^{2}, \ \boldsymbol{\omega}\in\left\{2\pi\mathbf{z}/T, \ \mathbf{z}\in[1,T-1]^{d}\right\}, \quad (4.18)$$

donde la convergencia de las series anteriores se da en la norma del espacio $L^2([\mathcal{T}_1, \mathcal{T}_2]^2, \mu \otimes \mu(dt, ds), \mathbb{C})$. donde se da dicha convergencia para funciones complejovaluadas

Consideramos el siguiente estimador no paramétrico del núcleo del operador de densidad espectral espacial:

$$\widehat{f}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\tau,\zeta) = \left[\frac{(2\pi)^d}{\mathbf{N}}\right] \sum_{\mathbf{z}\in[1,T-1]^d} W^{(\mathbf{N})}\left(\boldsymbol{\omega} - \frac{2\pi\mathbf{z}}{T}\right) \mathcal{I}_{2\pi\mathbf{z}/T}^{(\mathbf{N})}(\tau,\zeta)$$
$$\forall (\tau,\zeta) \in [\mathcal{T}_1,\mathcal{T}_2]^2, \tag{4.19}$$

donde la función peso $W^{(\mathbf{N})}$ viene dada por

$$W^{(\mathbf{N})}(\mathbf{z}) = \sum_{\mathbf{j} \in \mathbb{Z}^d} \frac{1}{B_{\mathbf{N}}} W\left(\frac{\mathbf{z} + 2\pi \mathbf{j}}{B_{\mathbf{N}}}\right), \quad \mathbf{z} \in \mathbb{R}^d,$$
(4.20)

con $B_{\mathbf{N}}$ siendo el parámetro de ancho de banda, y W satisface las siguientes cuatro condiciones:

- (1) W es positivo, uniforme y acotado en variación
- (2) $W(\mathbf{x}) = 0$, si $||\mathbf{x}|| \ge 1$;

(3)
$$\int_{\mathbb{R}^d} |W(\mathbf{x})|^2 d\mathbf{x} < \infty$$

(4) $\int_{\mathbb{R}^d} W(\mathbf{x}) d\mathbf{x} = 1.$

En particular, después de calcular el estimador no paramétrico (4.19) del operador de densidad espectral, las entradas funcionales del operador matricial de covarianza espacial **C** de las curvas aleatorias ubicadas en las localizaciones observables, que viene dado por,

$$\mathbf{C} = \left\{ \begin{bmatrix} r_{\mathbf{0}}(\tau, \sigma) & \dots & r_{0, \dots, T-1}(\tau, \sigma) \\ \vdots & \vdots & \vdots \\ r_{T-1, \dots, 0}(\tau, \sigma) & \dots & r_{T-1, \dots, T-1}(\tau, \sigma) \end{bmatrix}, \ (\tau, \sigma) \in [\mathcal{T}_{1}, \mathcal{T}_{2}]^{2} \right\}$$

se aproximan, aplicando la transformada SfDFT inversa, obteniendo

$$\widehat{r}_{\mathbf{x}}(\tau,\sigma) = \sum_{L^2([\mathcal{T}_1,\mathcal{T}_2]^2,\mu\otimes\mu(dt,ds))} \sum_{\boldsymbol{\omega}} \widehat{f}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\tau,\sigma) \exp\left(i\left\langle\boldsymbol{\omega},\mathbf{x}\right\rangle\right), \qquad (4.21)$$

para todo $\tau, \sigma \in [\mathcal{T}_1, \mathcal{T}_2]$, y para cada $\mathbf{x} \in [0, T-1]^d$. Así, obtenemos el estimador $\widehat{\mathbf{C}}_{S,\mathbf{N}}$ de \mathbf{C} , dado por

$$\widehat{\mathbf{C}}_{S,\mathbf{N}} = \left\{ \begin{bmatrix} \widehat{r}_{\mathbf{0}}(\tau,\sigma) & \dots & \widehat{r}_{0,\dots,T-1}(\tau,\sigma) \\ \vdots & \vdots & \vdots \\ \widehat{r}_{T-1,\dots,0}(\tau,\sigma) & \dots & \widehat{r}_{T-1,\dots,T-1}(\tau,\sigma) \end{bmatrix}, \ (\tau,\sigma) \in [\mathcal{T}_{1},\mathcal{T}_{2}]^{2} \right\}.$$

El estimador de mínimos cuadrados generalizado *plug-in* $\hat{\boldsymbol{\beta}}_{S,N}$ de $\boldsymbol{\beta}$, y el correspondiente predictor de la regresión funcional $\hat{\mathbf{Y}}_{S,N}$ se obtienen a partir de las siguientes identidades:

$$\widehat{\boldsymbol{\beta}}_{S,N} = \left(\mathbf{X}^T \widehat{\mathbf{C}}_{S,N}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^T \widehat{\mathbf{C}}_{S,N}^{-1} (\mathbf{Y}_N)$$

$$\widehat{\mathbf{Y}}_{S,N} = \mathbf{X} \widehat{\boldsymbol{\beta}}_{S,N}$$

$$= \mathbf{X} \left(\left(\mathbf{X}^T \widehat{\mathbf{C}}_{S,N}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^T \widehat{\mathbf{C}}_{S,N}^{-1} (\mathbf{Y}_N) \right)$$

La ecuación (4.22) se calcula a partir de la siguiente formulación espacial de (4.1):

$$Y_{\mathbf{z}} = \boldsymbol{\mu}_{Y} + \sum_{i=1}^{p} \sum_{j=1}^{p} X_{\mathbf{z}}^{ij}(\beta_{i,j}) + \varepsilon_{\mathbf{z}}, \quad \mathbf{z} \in \mathbb{Z}^{d},$$
(4.22)

donde, como antes, $\boldsymbol{\mu}_Y \in H$ es la curva intercepto, y $(\beta_{i,j}, i, j = 1, \dots, p) \in H^{p \times p}$ es el vector funcional de parámetros de regresión. Los operadores regresores $X_{\mathbf{z}}^{ij} \in \mathcal{S}(H)$, $i = 1, \dots, p, j = 1, \dots, p$, definen la matriz de diseño para cada $\mathbf{z} \in \mathbb{Z}^d$. La respuesta $Y_{\mathbf{z}}$ y el error de la regresión $\varepsilon_{\mathbf{z}}$ se encuentra en H, para cada $\mathbf{z} \in \mathbb{Z}^d$. Específicamente, \mathbf{X} se define a partir de los regresores tipo núcleo

$$X_{\mathbf{z}}^{ij} = E[(Y_{\mathbf{z}-\mathbf{h}_i} - \boldsymbol{\mu}_Y) \otimes (Y_{\mathbf{z}-\mathbf{h}_j} - \boldsymbol{\mu}_Y)], \qquad (4.23)$$

para $\mathbf{h}_i, \mathbf{h}_j, i, j = 1, \dots, p$, vectores no negativos de retardos espaciales, en el modelo espacial direccional adoptado. De hecho, estos retardos espaciales configuran el entorno de vecinos de la respuesta funcional en la localización espacial \mathbf{z} , de acuerdo a las interacciones espaciales más significativas observadas entre las curvas próximas. Los parámetros de la regresión $\beta_{i,j}, i = 1, \dots, p$, satisfacen la ecuación

$$\beta_{i,j}(t) = w_i \mathcal{R}_{\mathbf{h}_j}^{-1}(Y_{\mathbf{z}-\mathbf{h}_j})(t), \quad t \in [\mathcal{T}_1, \mathcal{T}_2]$$
$$\mathcal{R}_{\mathbf{h}_j} = E[(Y_{\mathbf{z}-\mathbf{h}_j} - \boldsymbol{\mu}_Y) \otimes (Y_{\mathbf{z}-\mathbf{h}_j} - \boldsymbol{\mu}_Y)], \quad i, j = 1, \dots, p,$$

para cierto vector desconocido $(w_1, \ldots, w_p) \in \mathbb{R}^p$. Como siempre, $h \otimes g$ denota el producto tensorial de funciones $f \neq g$. Es bien conocido que para $h, g \in H, h \otimes g \in \mathcal{S}(H)$.

4.3.1. Algoritmo de estimación 2

Consideremos ahora los principales pasos involucrados en la implementación del algoritmo de estimación dos.

- **Paso 1** Tras la interpolación temporal y suavizado cúbico B-*spline* de las curvas escalonadas de casos acumulados localizadas en cada una de las provincias españolas analizadas, se calculan sus derivadas y transformada logarítmica. De nuevo, se realiza la interpolación espacial a una cuadrícula regular $N \times N$.
- Paso 2 El operador de covarianza espacial empírico de largo rango se obtiene a partir de los datos tapered.
- Paso 3 La descomposición en valores singulares del operador de covarianza espacial empírico de largo rango proporciona bases adecuadas para la proyección.
- **Paso 4** Después del truncamiento, se realiza la proyección sobre los autovectores empíricos derechos del operador de covarianza espacial de largo rango. La transformada SfDFT se aplica luego a las curvas espaciales de log-riesgo, convenientemente ponderadas (*'tapering'*). (En la Sección 4.4.2, se hace la elección M = 5 para el parámetro de truncamiento, explicando un 99 % de la variabilidad empírica).
- Paso 5 Cálculo del operador periodograma espacial proyectado.
- Paso 6 El estimador no paramétrico del operador de densidad espectral espacial se calcula mediante una elección adecuada de W. (En la Sección 4.4.2, W se define a partir de la ventana modificada de Bartlett-Hann).
- Paso 7 La ecuación (4.22) se implementa en el dominio espectral funcional espacial proyectado.
- **Paso 8** La transformada inversa SfDFT aplicada a la salida del **Paso 7** conduce al predictor de regresión espacial curva $\widehat{\mathbf{Y}}_{S,N}$ en la ecuación (4.22).
- Paso 9 Se implementa un esquema sistemática de validación cruzada leave-one-rowcolumn-out cross-validation, basado en el entorno de vecinos curva más próximo

que interaccionan con la respuesta en la localización \mathbf{z} (ver, por ejemplo, Barbian y Assunção [11]; Nicolet*et al.* [113]). Para $n = 1, \ldots, N - p$, en la *n*-ésima iteración de este procedimiento, las curvas en los nodos de la (n + p)-ésima fila y de la (n + p)-ésima columna definen la muestra objetivo. Las curvas restantes, excepto las curvas ubicadas en p primeras filas y columnas, define la muestra de entrenamiento. Las p primeras filas y columnas están involucradas en el cálculo de la matriz funcional \mathbf{X} en las primeras ejecuciones. (En la Sección 4.4.2, se considera p = 1, dada la estructura de dependencia débil observada a partir del conjunto de datos curva analizados).

4.4. Análisis de incidencia de COVID-19 español

Los datos se obtienen de la declaración de casos de COVID-19 por la Red Nacional de Vigilancia Epidemiológica (RENAVE), a través de la plataforma informática por la Web SiViES (Sistema de Vigilancia Español), gestionada por el Centro Nacional de Epidemiología (CNE). Esta información proviene de la encuesta de casos epidemiológicos que cada comunidad autónoma completa sobre la identificación de casos de COVID-19. Las provincias y comunidades autónomas están indicadas por el código ISO 3166-2 publicado por la Organización Internacional de Normalización (ISO).

4.4.1. Algoritmo de estimación uno

En las Figuras 1-9 del apéndice, se pueden observar los patrones espaciales dentro de algunas de las comunidades autónomas analizadas, así como las predicciones obtenidas tras implementar el algoritmo de estimación uno. El procedimiento de preprocesamiento de datos reflejado en el **Paso 1** del algoritmo de estimación uno conduce a una serie de 1061 superficies de riesgo de incidencia de COVID-19, asumiendo un modelo de Cox, en el marco introducido en Torres-Signes, Frías y Ruiz-Medina [135]. Los efectos borde temporal se eliminan considerando una muestra de superficies de tamaño N = 1000.

Además, los mapas presentados en la Figura 4.1 muestran los valores empíricos de μ_Y , obtenidos promediando en el tiempo las superficies de log-riesgo de incidencia COVID-19, proporcionando una primera vista de los patrones espaciales de log-

riesgo de COVID-19 entre comunidades. Específicamente, se muestra, en el gráfico de la izquierda de la Figura 4.1, los valores empíricos e interpolados espacialmente del parámetro μ_Y para las provincias de las comunidades de Extremadura, Castilla La Mancha, Murcia y Andalucía, donde se observan valores elevados de log-riesgo en las provincias de Granada, Sevilla, Málaga y Murcia, que inducen las manchas marrones en este gráfico. Las dos manchas marrones centrales en el gráfico central de la Figura 4.1 reflejan un elevado riesgo en las provincias de Madrid y Barcelona, que se extrapola a las zonas circundantes, interpoladas espacialmente. La Rioja, Asturias y León inducen las manchas verdes en el norte del mapa que se muestra en la parte derecha de la Figura 4.1. Los regresores tipo núcleo se aproximan mediante un ajuste polinomial 2-D por mínimos cuadrados a partir de su versión empírica. Específicamente, la función *fit* de MatLab se implementa con el argumento polinomial óptimo correspondiente a la mejor bondad de ajuste de acuerdo a la salida *gof* de la función *fit*. Los regresores tipo núcleo se muestran en la Figura 4.4. El operador de autocorrelación empírica residual, se calcula para la implementación del Paso 2, y se muestra en la Figura 4.3.

Como se indica en la Sección 4 en Ruiz-Medina, Miranda y Espejo [130], bajo la elección $k(N) = \ln(N) \simeq 7$, en una primera etapa, los residuos se obtienen aplicando el ajuste del modelo de mínimos cuadrados ordinarios en términos de la matriz de diseño funcional calculada. Bajo el ajuste polinomial por mínimos cuadrados de los regresores tipo núcleo, se cumplen las condiciones de la Proposición 1 en Ruiz-Medina, Miranda y Espejo [130]. Para la implementación de la ecuación (4.10), se realiza el ajuste mediante muestreo bootstrap de los parámetros de forma de las distribuciones beta que definen la a-priori. Es decir, se implementa una metodología de estimación Bayesiana empírica (ver el Paso 8 del algoritmo de estimación propuesto en Torres-Signes, Frías y Ruiz-Medina [135] para el análisis estadístico de la mortalidad por COVID-19). Para calcular la ecuación (4.11), la ecuación (4.10) se maximiza siguiendo un procedimiento similar al Paso 9 en Torres-Signes, Frías y Ruiz-Medina [135], a partir de la función MatLab gaoptimset (seleccionando la opción HybridFcn). La opción seleccionada de la función qaoptimset ejecuta un algoritmo genético híbrido, involucrando la metodología cuasi-Newton en el procedimiento de optimización aplicado una vez finalizado el algoritmo genético. Las salidas correspondientes nos permiten implementar **Paso 3**, donde se proporciona una aproximación Bayesiana (4.13) a la ecuación (4.8), en términos de $\widehat{\mathbf{C}}_{B,N}^{-1}$, calculado a partir de las ecuaciones (4.11)-(4.12) en el **Paso 2**. El **Paso 4** se sigue de los **Pasos 1-3** y la ecuación (4.14) (ver también las Figuras 4.16-4.18 en el Apéndice).

Finalmente, el esquema de validación cruzada sistemática 'leave-one-out crossvalidation' se implementa posteriormente en el **Paso 5**, considerando N = 1000, y p = 7. La Tabla 4.1 muestra los resultados de la validación cruzada para las 47 provincias españolas analizadas. El gráfico de contorno en el lado izquierdo de la Figura 4.2 muestra los resultados de la validación cruzada para los valores de los parámetros de truncamiento k(N) = 1, 2, 3, 4, 5, y para las 47 provincias españolas. En el lado derecho de la Figura 4.2, los valores del error de la validación cruzada para las 47 provincias, y para el valor del parámetro de truncamiento k(N) = 6 también se representa gráficamente. Se puede observar a partir del análisis de sensibilidad del error de la validación cruzada en relación con los valores del parámetro k(N), que el valor umbral se ubica en k(N) = 5 para asegurar unos buenos resultados bajo este enfoque Bayesiano empírico.

Figura 4.1: Mapa μ_Y empírico de log-riesgo de COVID-19, para Extremadura, Castilla La Mancha, Murcia y Andalucía (Lado izquierdo), Cataluña, Aragón, Madrid, Castilla-León Sur y Comunidad Valenciana (Centro), y Galicia, Asturias, Cantabria, País Vasco, Navarra y Castilla-León Norte (Lado derecho).

Region	P1	P2	P3	P4	P5	P6	P7	P8	P9
AN	AL	CA	CO	GR	Н	J	MA	SE	
	0.0321	0.0694	0.0836	0.1275	0.0217	0.0775	0.1475	0.2082	
\mathbf{AR}	ΗU	TE	\mathbf{Z}						
	0.0197	0.0201	0.1268						
$_{\rm CL}$	AV	BU	LE	Р	SA	\mathbf{SG}	SO	VA	ZA
	0.0342	0.0750	0.0972	0.0370	0.0894	0.0449	0.0178	0.1505	0.0313
CM	AB	\mathbf{CR}	CU	GU	TO				
	0.0511	0.1494	0.0452	0.0648	0.1939				
CMU	MU								
	0.0939								
CMA	MD								
	0.9810								
$_{\rm LR}$	LG								
	0.0180								
AS	OV								
	0.0859								
CB	ST								
	0.0230								
CT	В	$_{\rm GI}$	\mathbf{L}	Т					
	0.9516	0.0843	0.0630	0.0715					
$\mathbf{E}\mathbf{X}$	BA	CC							
	0.0831	0.0746							
GA	\mathbf{C}	LU	OR	PO					
	0.0863	0.0180	0.0596	0.0617					
PV	$_{\rm BI}$	\mathbf{SS}	VI						
	0.1938	0.1002	0.0839						
VC	А	\mathbf{CS}	V						
	0.1383	0.0330	0.2003						
$_{\rm CN}$	\mathbf{PA}								
	0.0748								

Tabla 4.1: Errores LOOCV. Códigos de comunidades y provincias (entre paréntesis): Andalucía (AN) (Almería (AL), Cádiz (CA), Córdoba (CO), Granada (GR), Huelva (H), Jaén (J), Málaga (MA), Sevilla (SE)); Extremadura (EX) (Badajoz (BA), Cáceres (CC)); Castilla La Mancha (CM) (Albacete (AB), Ciudad Real (CR), Cuenca (CU), Guadalajara (GU), Toledo (TO)); Comunidad de Murcia (CMU) (Murcia (MU)); Comunidad Valenciana(VC) (Alicante (A), Castellón (CS), Valencia (V)); Castilla y León (CL) (Ávila, (AV), Burgos (BU), León (LE), Palencia (P), Salamanca (SA), Segovia (SG), Soria (SO), Valladolid (VA), Zamora (ZA)); Comunidad de Madrid (CMA) (Madrid (MD)); La Rioja (LR) (Logroño (LG)); Galicia (GA) (A Coruña (C), Lugo (LU), Ourense (OR), Pontevedra (PO)); Asturias (AS) (Oviedo (OV)); Cantabria (CB) (Santander (ST)); País Vasco (PV) (Vizcaya (BI), Guipúzcoa (SS), Álava (VI); Comunidad de Navarra (CN) (Pamplona (PA)); Aragón (AR), (Huesca (HU), Teruel (TE), Zaragoza (Z)); Cataluña (CT) (Barcelona (B), Girona (GI), Lleida (L), Tarragona (T)).

Figura 4.2: Gráfico de contorno del lado izquierdo, error sistemático de validación cruzada para los valores de los parámetros de truncamiento k(N) = 1, 2, 3, 4, 5 (eje y), y para las 47 provincias españolas analizadas (eje x). En el lado derecho, el error sistemático de validación cruzada para el valor del parámetro de truncamiento k(N) = 6. La numeración de provincias utilizada aquí es: Almería (1), Cádiz (2), Córdoba (3), Granada (4), Huelva (5), Jaén (6), Málaga (7), Sevilla (8), Cáceres (9), Badajoz (10), Guadalajara (11), Cuenca (12), Toledo (13), Ciudad Real (14), Albacete (15), Murcia (16), Alicante (17), Valencia (18), Castellón (19), Tarragona (20), Barcelona (21), Gerona (22), Lérida (23), Huesca (24), Zaragoza (25), Teruel (26), Soria (27), Segovia (28), Madrid (29), Ávila (30), Salamanca (31), Zamora (32), Valladolid (33), Palencia (34), Burgos (35), León (36), Logroño (37), Pamplona (38), Vizcaya (39), Álava (40), San Sebastián (41), Santander (42), Oviedo (43), Coruña (44), Lugo (45), Pontevedra (46), Orense (47).

Figura 4.3: Operador de autocorrelación empírica de residuos. Estimación empírica basada en el método de los momentos en el lado izquierdo y estimación basada en el método de los momentos, tras el tapering en el lado derecho.

Figura 4.4: Regresores tipo núcleo para el valor del parámetro p = 7. Dada la interpolación espacial calculada para una cuadrícula espacial regular 10×10 , los gráficos de contorno reflejan el ajuste polinomial 2–D por mínimos cuadrados para aproximar los regresores de tipo núcleo sobre la cuadrícula regular resultante de 100×100 después de aplicar la función vec.

4.4.2. Algoritmo de estimación dos

Como se comentó en la Sección 4.4.1, el procedimiento de preprocesamiento de datos aplicado en el **Paso 1** del algoritmo de estimación 2 es casi el mismo que el aplicado en el algoritmo 1, considerando, además, el *tapering* de los datos, que mejora los cálculos de los estimadores espectrales espaciales funcionales. El **Paso 2** es imple-

mentado después de eliminar la tendencia de los datos. Específicamente, denotando por X los datos sin tendencia, el operador de covarianza espacial empírico de largo rango $\widehat{\mathcal{R}}_{(\mathbf{N})}^X = \sum_{\mathbf{z} \in [0,T-1]^d} \widehat{\mathcal{R}}_{\mathbf{z}}$ se calcula para d = 2, a partir de los operadores de covarianza espacial empíricos (ver también la Figura 4.19 en el Apéndice):

$$\widehat{\mathcal{R}}_{\mathbf{z}} = \frac{1}{\prod_{i=1}^{d} T_i - z_i} \sum_{y_i \ge z_i, i=1, \dots, d} X_{\mathbf{y}} \otimes X_{\mathbf{y}-\mathbf{z}}, \quad \mathbf{z} \in [0, T-1]^d.$$
(4.24)

Como resultado del **Paso 3**, la descomposición en valores singulares de $\widehat{\mathcal{R}}_{(\mathbf{N})}^X$ se obtiene calculando los autovectores empíricos derechos $\{\psi_k^{(\mathbf{N})}\}_{k\geq 1}$, e izquierdos $\{\varphi_k^{(\mathbf{N})}\}_{k\geq 1}$ y los correspondientes valores singulares $\{\lambda_k(\widehat{\mathcal{R}}_{(\mathbf{N})}^X)\}_{k\geq 1}$ que satisfacen

$$\widehat{\mathcal{R}}_{(\mathbf{N})}^{X}\psi_{k}^{(\mathbf{N})} = \lambda_{k}(\widehat{\mathcal{R}}_{(\mathbf{N})}^{X})\varphi_{k}^{(\mathbf{N})}, \quad k \ge 1.$$

Para k = 1, ..., M, después de la proyección sobre $\psi_k^{(\mathbf{N})}$, se implementa el **Paso 4** a partir de

$$\widetilde{X}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\psi_k^{(\mathbf{N})}) = ((2\pi)^d \mathbf{N})^{-1/2} \sum_{\mathbf{z} \in [1,T]^d \cap \mathbb{Z}^d} X_{\mathbf{z}}(\psi_k^{(\mathbf{N})}) \exp\left(-i \langle \boldsymbol{\omega}, \mathbf{z} \rangle\right),$$
$$\boldsymbol{\omega} \in \left\{2\pi \mathbf{z}/T, \ \mathbf{z} \in [1,T-1]^d\right\}$$
(4.25)

donde el valor del parámetro de truncamiento M = 5 ha sido seleccionado correspondente a un 99 % de la variabilidad empírica $\sum_{k=1}^{\mathbf{N}} \lambda_k(\widehat{\mathcal{R}}_{(\mathbf{N})}^X)$. En el **Paso 5**, obtenemos el correspondiente operador periodograma proyectado

$$\mathcal{I}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\psi_{k}^{(\mathbf{N})})(\psi_{l}^{(\mathbf{N})}) = \widetilde{X}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\psi_{k}^{(\mathbf{N})})\overline{\widetilde{X}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\psi_{l}^{(\mathbf{N})})}, \quad k, l \in \{1, \dots, M\},$$

$$(4.26)$$

para $\boldsymbol{\omega} \in \{2\pi \mathbf{z}/T, \mathbf{z} \in [1, T-1]^d\}$. En el **Paso 6**, el estimador no paramétrico del operador de densidad espectral se calcula a partir de la ecuación (4.19), considerando una versión espacial separable de la ventana modificada de Bartlett-Hann, correspondiente a ejecutar *blackmanharris* en el primer argumento en la función de MatLab de *window*(\cdot, \cdot) (ver la columna de la izquierda en la Figura 4.5, donde se muestran

dos proyecciones diagonales del estimador del operador de densidad espectral no paramétrico, y ver también en la Figura 4.20 en el Apéndice). El **Paso 7** proporciona el cálculo de la ecuación (4.22) en el dominio espectral funcional espacial proyectado. El **Paso 8** aplica la función MatLab $ifft2(\cdot, \cdot)$ al resultado en el **Paso 7** para obtener $\widehat{Y}_{S,\mathbf{N}}$ (ver Figura 4.6). Ver también la columna derecha en la Figura 4.5. Finalmente, el **Paso 9** se calcula con p = 1. Por lo tanto, el error absoluto de la validación cruzada se obtiene después de ejecutar 9 iteraciones (ver Figuras 4.21-4.22, y las Tablas 4.3-4.6 en el Apéndice). Finalmente, se muestra, el promedio sobre los 1061 nodos temporales de los valores puntuales de los errores absolutos de validación cruzada en la Tabla 4.2.

Figura 4.5: El estimador no paramétrico proyectado del operador de densidad espectral $\widehat{f}_{\boldsymbol{\omega}}^{(\mathbf{N})}(\psi_k)(\psi_l)$, for k = l = 1 (parte superior izquierda) y para k = l = 2 (parte inferior izquierda). Se muestran las estimaciones correspondientes del operador de covarianza espacial proyectada, para k = l = 1 (parte superior derecha) y para k = l = 2 (parte inferior derecha).

Figura 4.6: El valor de la curva original (línea roja), y su estimación espectral funcional espacial (línea azul discontinua) se muestran en los nodos espaciales (2,3), (2,4), (2,5), (2,6), (8,9), (8,10), (9,9) y (9,10).

TIME	C1	C2	C 3	C4	C5	C 6	C7	C8	С9
R1	5.7030092e-04	6.8348935e-04	7.3573629e-04	1.2111422e-03	1.5253610e-03	1.1582524e-03	6.4996599e-04	4.4853841e-04	4.8335842e-04
R2	6.8117054e-04	1.0439449e-03	2.3038393e-03	4.3216034e-03	5.6747546e-03	4.0800204e-03	1.9086671e-03	9.3589234e-04	6.3663570e-04
R3	1.1343173e-03	4.9980942e-03	1.0964759e-02	2.1721765e-02	1.3553450e-02	1.2758592e-02	7.1904923e-03	2.7851634e-03	1.1143095e-03
R4	1.9814737e-03	$7.4492915\mathrm{e}{-03}$	1.8550020e-02	5.9885317e-02	1.7065638e-01	4.3752536e-02	1.2645345e-02	5.5759098e-03	1.3117121e-03
R5	1.6909117e-03	9.1699655e-03	2.1533640e-02	3.8610072e-02	7.9602583e-02	1.4071528e-01	2.3334549e-02	7.4936816e-03	1.9115134e-03
R6	1.7947759e-03	8.3489455e-03	2.4934251e-02	3.4649351e-02	1.8313565e-02	2.7779579e-02	1.8405330e-02	6.5693512e-03	2.0597864e-03
R7	1.2888168e-03	5.1579564e-03	1.5046107e-02	2.1652733e-02	1.7133585e-02	8.0797335e-03	7.9961038e-03	3.1094061e-03	1.1663059e-03
R8	6.9762041e-04	1.7261479e-03	4.6013923e-03	9.2542787e-03	1.1597638e-02	7.8890004e-03	5.9333870e-03	2.0044843e-03	8.3627742e-04
R9	5.7529370e-04	6.4731393e-04	1.4868305e-03	3.0378125e-03	4.5606010e-03	4.1239116e-03	1.1999598e-03	6.9900174e-04	4.2810584e-04

Tabla 4.2: Promedio sobre los 1061 nodos temporales de los errores absolutos de validación cruzada en una cuadrícula de 9×9

4.5. Comentarios finales

Este Capítulo propone dos metodologías de estimación en el contexto de la regresión funcional. La primera metodología proporciona una estimación Bayesiana de la estructura de correlación funcional, que caracteriza el error de regresión. Esta metodología proporciona un predictor Bayesiano *pluq-in* de regresión de los mapas de log-riesgo de incidencia de COVID-19, en las comunidades españolas analizadas. En segundo lugar, adoptamos un modelo espacial de regresión curva para la predicción del riesgo de casos por COVID-19. En esta segunda metodología se estima la estructura de correlación espacial del ruido de regresión, en el dominio espacial espectral funcional. Para reducir el problema de dimensionalidad en el tiempo, se considera la proyección sobre los autovectores del operador de covarianza espacial empírico de largo rango. Se puede observar que las correlaciones espaciales más significativas a lo largo del tiempo se mantienen en las proyecciones correspondientes a los autovectores empíricos asociados a los mayores valores singulares, explicando un 99% de la variabilidad empírica. En efecto, la transformada de Fourier funcional espacial inversa del estimador no paramétrico del operador de densidad espectral presenta los valores de correlación más significativos en las proyecciones diagonales. Esta estructura de correlación proyectada decae para las proyecciones cruzadas y llega a cero relativamente rápido, cuando consideramos las proyecciones que involucran los autovectores empíricos asociados con los valores singulares empíricos más pequeños.

La capacidad predictiva de los dos enfoques de regresión funcional se mide mediante la validación cruzada. En la regresión dinámica de superficies, se implementa la validación cruzada 'leave-one-out cross-validation', para N = 1000, y p = 7. Para el ajuste del modelo de regresión espacial curva, se implementa 'leave-one-row-column-out cross-validation', para N = 100, y p = 1. Los dos enfoques de regresión paramétrica involucran diferencias importantes en el soporte de los parámetros de regresión, en los conjuntos de ajuste, etc.

La alta dimensionalidad del espacio de parámetros induce un elevado coste computacional en la estimación Bayesiana MAP. Creemos que las diferencias observadas en el ajuste del modelo se deben principalmente a este problema de alta dimensionalidad y al mayor rango de dependencia en el tiempo que en el espacio. Particularmente, la regresión de superficies Bayesiana podría mejorarse considerando valores más grandes del parámetro p, es decir, incorporando más memoria en el modelo (4.1). Los valores pequeños del parámetro de truncamiento k(N) también alivian el costo computacional de la función de pérdida asociada al MAP. Bajo este compromiso entre el parámetro de rango de memoria p, y el nivel de resolución en el espacio limitado por el parámetro k(N), el cálculo de regiones de credibilidad también podría mejorar los resultados de estimación en investigaciones futuras. Además, algunas alternativas en la selección de modelos a-priori, como el de Jeffreys, así como un análisis basado en el factor de Bayes, podrían ser implementables bajo valores pequeños del parámetro de truncamiento k(N)(ver, por ejemplo, Moreno y Martínez [109] sobre el criterio de selección para modelos que son a priori igualmente probables, y sobre la comparación de pruebas estadísticas Bayesianas y frecuentistas unilaterales).

De los resultados mostrados en este capítulo, está claro que el segundo enfoque, más novedoso, basado en la aplicación de análisis espectral funcional espacial, no solo supone una contribución al área emergente de la Estadística Funcional Espacial, también proporciona una herramienta útil en el análisis de problemas de datos reales. Este hecho se ilustra en nuestro análisis de riesgo de COVID-19. De hecho, los resultados de la validación cruzada muestran que el valor del parámetro p = 1 se ajusta bien al nivel de interacción espacial observado entre curvas. En la reducción de la dimensionalidad inherente, los beneficios de considerar la proyección de los datos curva en los autovectores empíricos del operador de covarianza espacial de largo rango son mayores que los que se obtienen mediante la proyección en los autovectores empíricos del operador de autocorrelación en la regresión de superficies. El impacto del enfoque de regresión espacial curva también se puede observar en su velocidad de cálculo más rápida en el dominio espectral.

4.6. Apéndice

En esta sección, se visualizan las salidas adicionales de los algoritmos de estimación 1 y 2. Específicamente, se visualizan los valores originales y estimados sobre los mapas mensuales de casos de COVID-19 en parte de las comunidades analizadas. Las curvas de riesgo de COVID-19 originales y estimadas mediante el algoritmo uno están graficados para algunas comunidades españolas. Con respecto al algoritmo de estimación dos, se representan algunos elementos de la familia de operadores de covarianza espacial empírica. En particular, se muestra el operador de covarianza espacial empírico de largo rango y se grafican los autovectores empíricos derechos seleccionados. También se proporcionan las proyecciones cruzadas del estimador no paramétrico del operador de densidad espectral y sus transformadas de Fourier espaciales inversas. Se proporciona información adicional sobre los errores de validación cruzada, como gráficos de contorno y tablas que muestran sus valores en diferentes tiempos.

4.6.1. Mapas de incidencia del algoritmo de estimación uno

Los mapas de datos originales de las incidencia de COVID-19 promediados mensualmente y sus estimaciones de regresión funcional Bayesiana, obtenidas mediante la aplicación de los **Pasos 1-4** del algoritmo de estimación uno, se muestran en las Figuras 4.7-4.15. Nótese que, en cada uno de los siguientes gráficos, los mapas representados en cada fila muestran la información de la muestra, y la estimación mediante de la regresión funcional Bayesiana correspondientes a dos meses para cada una de las Comunidades Autónomas españolas analizadas.

Figura 4.7: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Andalucía (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas), a dos meses por fila.

Figura 4.8: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Aragón (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.9: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Castilla y León (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.10: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Castilla-La Mancha (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.11: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Cataluña (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.12: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Extremadura (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.13: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de Galicia (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.14: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad de País Vasco (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Figura 4.15: Mapas de datos originales de casos por COVID-19 promediados mensualmente en la Comunidad Valenciana (primera y tercera columnas), y sus estimaciones mediante regresión funcional Bayesiana (segunda y cuarta columnas).

Predicciones de riesgo de COVID-19

Esta sección completa la Sección 4.4.1 con respecto a la visualización de datos y los resultados del **Paso 1-4** del algoritmo de estimación uno (ver las Figuras 4.16-4.17 a continuación).

Figura 4.16: Curvas de riesgo de COVID-19 interpoladas y suavizadas temporales (lado izquierdo) y sus estimaciones de regresión funcional Bayesiana (lado derecho).

Figura 4.17: Curvas de riesgo de COVID-19 interpoladas y suavizadas temporales (lado izquierdo) y sus estimaciones de regresión funcional Bayesiana (lado derecho).

Figura 4.18: Casos Extremos en las gráficas anteriores. Datos originales (lado izquierdo), y predicciones de regresión Bayesiana (lado derecho) en Galicia (arriba) y Cataluña (abajo) (Madrid se ha excluido en estos gráficos)

4.6.2. Algoritmo de estimación 2

Ahora consideremos algunos resultados adicionales de la implementación del algoritmo de estimación 2 descrito en la Sección 4.3.1. Específicamente, en la Figura 4.19, se muestran los operadores de covarianza espacial empíricos $\widehat{\mathcal{R}}_{(0,1)}$, $\widehat{\mathcal{R}}_{(1,1)}$, y el operador de covarianza espacial empírico de largo rango $\widehat{\mathcal{R}}_{(100)}^X$. Los cinco autovectores empíricos derechos seleccionados para la proyección son graficados también. Finalmente, la Figura 4.20 muestra las proyecciones cruzadas del estimador no paramétrico del operador densidad espectral y de su transformada de Fourier espacial inversa, que involucran los autovectores empíricos derecho ψ_m , m = 1, 2, 3, asociados con los tres valores singulares empíricos más grandes del operador de covarianza espacial empírico de largo rango.

Figura 4.19: Operador de covarianza espacial empírico $\widehat{\mathcal{R}}_{\mathbf{z}}$, para $\mathbf{z} = (0,1)$ (arriba a la izquierda) y para $\mathbf{z} = (1,1)$ (arriba a la derecha). Operador de covarianza espacial empírico de largo rango $\widehat{\mathcal{R}}_{(\mathbf{N})}$, $\mathbf{N} = 100$, en la parte inferior izquierda, y los cinco autovectores empíricos derechos seleccionados, asociados con los valores empíricos singulares más grandes en la parte inferior derecha

Figura 4.20: El estimador no paramétrico proyectado del operador de densidad espectral, $\widehat{f}^{(\mathbf{N})}_{\boldsymbol{\omega}}(\psi_k)(\psi_l)$, para k = 2 y l = 1 (lado superior izquierda), para k = 1 and l = 2(lado centro izquierdo), y para k = 1 y l = 3 (lado inferior izquierdo). Las correspondientes estimaciones del operador de covarianza espacial proyectada se muestran respectivamente en el lado derecho

4.6.3. Errores de validación cruzada

Los errores absolutos de validación cruzada en una cuadrícula de 9×9 se muestran para los tiempos T = 100, 300, 500, 700, 400, 600, 800, y 1000, en la Figura 4.21. LasTablas 4.3-4.6 proporcionan los valores numéricos de los errores absolutos de validacióncruzada del algoritmo de estimación dos para los tiempos <math>T = 100, 400, 750, 1000. El promedio en el tiempo de los errores absolutos de validación cruzada son también graficado en la Figura 4.22.

Figura 4.21: Gráficos de contorno de los errores absolutos de validación cruzada en los tiempos T = 100, 300, 500, 700, 400, 600, 800, 1000

T-No de = 100	C1	C2	C3	C4	C5	C6	C7	C8	C 9
R1	6.1204173e-05	8.3996806e-05	1.0867887e-04	1.7432352e-04	1.6870079e-04	1.2576312e-04	5.5700200e-05	4.6411740e-05	5.5447056e-05
R2	1.0380220e-04	1.7192350e-04	3.8619790e-04	5.9586379e-04	5.4629122e-04	3.4612041e-04	2.0198347e-04	1.0761950e-04	9.3149726e-05
R3	1.8943254e-04	1.1122786e-03	2.1298044e-03	2.8909338e-03	4.5387182e-04	6.8753601e-04	6.1782875e-04	3.2858314e-04	1.4693153e-04
R4	3.8386324e-04	1.3959642e-03	2.9016102e-03	9.2545281e-03	2.9002651e-02	5.9688375e-03	8.6134456e-04	5.6339902e-04	1.8974401e-04
R5	3.2864046e-04	1.6604634e-03	3.0116751e-03	3.7715075e-03	1.3097672e-02	2.4117136e-02	2.8491675e-03	8.9407411e-04	2.8354084e-04
R6	3.3355352e-04	1.8559396e-03	4.8096533e-03	3.8200671e-03	2.6273534e-03	2.6002380e-03	1.2721569e-03	1.0251994e-03	3.0171874e-04
R7	2.3272290e-04	1.0420691e-03	2.8875618e-03	3.1440138e-03	2.0351141e-03	7.1639707e-04	3.6785949e-04	2.1802414e-04	1.2342755e-04
R8	1.2294469e-04	3.4873820e-04	8.0018507e-04	1.2597105e-03	1.3761920e-03	9.7761548e-04	6.2846099e-04	2.0144703e-04	9.3184777e-05
R9	7.1249040e-05	9.8225491e-05	2.1060637e-04	3.5903159e-04	5.1083539e-04	4.3023373e-04	1.4483591e-04	7.5364360e-05	4.7760071e-05

Tabla 4.3: Errores absolutos de validación cruzada en una cuadrícula de 9×9 en el tiempoT=100

$\mathrm{T-No}\mathrm{de}=400$	C1	C2	C3	C4	C5	C6	C7	C8	С9
R1	2.3611921e-04	2.8707690e-04	3.5810073e-04	4.8221046e-04	5.2052388e-04	5.7927601e-04	3.3505325e-04	1.9848276e-04	2.4228040e-04
R2	3.8872400e-04	5.1079429e-04	7.9083920e-04	1.0439665e-03	6.7334310e-04	1.0382651e-03	6.9555559e-04	4.1367715e-04	3.8076543e-04
R3	8.4715118e-04	3.6808796e-03	6.7501901e-03	6.1606608e-03	3.5087354e-03	2.2137227e-03	1.4201297e-03	6.7177484e-04	5.6835768e-04
R4	2.0497520e-03	5.9859503e-03	1.0036807e-02	2.4267252e-02	5.4081456e-02	1.2803864e-02	4.0232175e-03	2.8885013e-03	8.0495636e-04
R5	2.1697110e-03	8.1425582e-03	1.2325056e-02	1.4540464e-02	3.1643913e-02	4.4307021e-02	8.6382740e-03	7.4090502e-03	2.1487235e-03
R6	1.9260433e-03	9.3628481e-03	2.4121110e-02	3.1266597e-02	1.7564873e-02	5.2523880e-02	3.6038306e-02	8.3019823e-03	1.8379311e-03
R7	1.2523898e-03	5.6733114e-03	1.6535257e-02	2.5539487e-02	2.2747852e-02	1.5047623e-02	1.7183644e-02	6.2786643e-03	1.1091889e-03
R8	4.8984746e-04	2.0815931e-03	5.6042097e-03	1.0690818e-02	1.2757140e-02	8.8660524e-03	6.2826998e-03	2.1212041e-03	4.7766286e-04
R9	3.1309085e-04	5.0796998e-04	1.4817959e-03	2.8145421e-03	4.2149766e-03	3.8125912e-03	8.8335667e-04	4.3887270e-04	3.1185484e-04

Tabla 4.4: Errores absolutos de validación cruzada en una cuadrícula de 9×9 en el tiempoT=400

T-Node = 750	C1	C2	C3	C4	C5	C6	C7	C8	С9
R1	6.0771499e-04	7.7855689e-04	1.4690898e-03	2.3063089e-03	2.1258865e-03	1.2032700e-03	8.9585923e-04	5.8055082e-04	4.6037638e-04
R2	9.2589501e-04	1.5570139e-03	4.3455005e-03	7.3664977e-03	7.7044592e-03	5.4668415e-03	2.7079514e-03	8.9468152e-04	6.5390237e-04
R3	1.3104277e-03	7.7190386e-03	1.4973417e-02	1.4941124e-02	1.3919536e-02	1.2356364e-02	8.5651539e-03	4.3906483e-03	1.6604252e-03
R4	1.8146349e-03	8.3350409e-03	1.8701156e-02	2.2437657e-02	3.9153547e-02	1.2808229e-02	1.1479391e-02	4.9292102e-03	1.8851898e-03
R5	1.7484021e-03	9.1343729e-03	1.9994476e-02	2.2087173e-02	1.9489421e-02	3.5877588e-02	4.3542822e-03	2.1163578e-03	1.1510853e-03
R6	1.1482671e-03	4.9730978e-03	1.2837846e-02	1.0877600e-02	1.1814041e-02	3.4578282e-02	2.1675248e-02	1.7218246e-03	1.6243956e-03
R7	8.3757641e-04	2.5040917e-03	5.5503463e-03	3.8307233e-03	4.8315029e-03	1.0393975e-02	1.1763741e-02	4.7016887e-03	9.9822854e-04
R8	7.1581640e-04	9.1580902e-04	8.0952887e-04	1.7285564e-03	2.7890606e-03	6.8084062e-04	3.0420951e-03	1.4077201e-03	6.0285756e-04
R9	5.5447357e-04	4.7873765e-04	3.4547303e-04	6.7957170e-04	1.1501336e-03	1.0156499e-03	1.2052462e-03	5.9237623e-04	4.0526255e-04

Tabla 4.5: Errores absolutos de validación cruzada en una cuadrícula de 9×9 en el tiempoT=750

$\mathrm{T-No}\mathrm{de}=1000$	C1	C2	C3	C4	C5	C6	C7	C8	С9
R1	8.9320653e-05	1.3057952e-04	2.0562577e-04	3.3246047e-04	3.3847914e-04	2.2589010e-04	1.3258015e-04	8.0177113e-05	6.4652629e-05
R2	1.3168664e-04	2.7755229e-04	6.3509366e-04	9.3173765e-04	1.1584988e-03	1.0094586e-03	5.8304444e-04	1.8556372e-04	8.7962001e-05
R3	1.8123463e-04	1.8250503e-03	3.3117479e-03	3.4761256e-03	2.1527281e-03	2.6522044e-03	1.8209331e-03	1.1358810e-03	3.3056798e-04
R4	3.8829995e-04	2.0391994e-03	3.8055030e-03	8.7219830e-03	1.7884231e-02	5.7473928e-03	2.7548699e-03	1.3011254e-03	3.4268820e-04
R5	3.8213200e-04	2.5523551e-03	5.7751226e-03	6.2938450e-03	1.2281812e-02	1.4770791e-02	3.0529617e-03	9.4913057e-04	2.3950519e-04
R6	2.8419284e-04	1.3758691e-03	4.5788117e-03	4.6560094e-03	3.9609530e-03	2.4845029e-03	9.7202471e-04	1.5444637e-03	4.7500977e-04
R7	2.2287644e-04	9.5505617e-04	2.5387961e-03	2.6727272e-03	1.9021202e-03	1.2209890e-03	4.1005005e-04	4.2518503e-04	2.2589630e-04
R8	1.5594982e-04	3.4195147e-04	7.2603578e-04	1.2778177e-03	1.7242038e-03	1.4235480e-03	9.5020006e-04	3.6150208e-04	1.5731405e-04
R9	9.4844520e-05	1.2448871e-04	$2.9470457\mathrm{e}{\text{-}}04$	5.5614846e-04	7.4955988e-04	6.5252436e-04	3.0157063e-04	1.3730418e-04	7.0757635e-05

Tabla 4.6: Errores absolutos de validación cruzada en una cuadrícula de 9×9 en el tiempoT=1000

TEMPORAL AVERAGED CROSS-VALIDATION ERRORS

Figura 4.22: Promedio en el tiempo de errores absolutos de validación cruzada

Capítulo 5

Líneas abiertas

En el capítulo 5, presentamos las líneas abiertas que se desarrollarán en nuestra investigación futura. Más concretamente, detallaremos por bloques temáticos los principales problemas abiertos que abordaremos en el futuro cercano, en relación con las líneas de investigación planteadas en esta tesis.

- En la revisión bibliográfica realizada en el Capítulo1 de esta tesis, se observa que son muchas las aportaciones y contribuciones sobre la estimación y predicción en el contexto de los modelos de regresión lineales funcionales, con especial atención a los modelos planteados en el contexto de variables aleatorias, evaluadas en un espacio de Hilbert. Esta tesis en su Capítulo 3, presenta una extensión de dichos modelos al contexto de la regresión múltiple funcional lineal con errores correlados, en el contexto paramétrico. También se realiza el correspondiente análisis sobre las propiedades asintóticas de los estimadores y predictores formulados. Sin embargo, el contexto no lineal no se ha abordado aún desde una perspectiva semi-paramétrica y no paramétrica, cuando se consideran una mayor complejidad estructural en el modelo que define los errores correlados, en los regresores, así como en los espacios de estados de la respuesta, que se puede encontrar restringido. Estas extensiones se abordarán desde un punto de vista formal y númerico en nuestra investigación futura, prestando especial atención a las aplicaciones con datos reales.
- Un tema de vital importancia en el ajuste de las familias de modelos, analizadas

en esta tesis, a datos de elevada dimensión es la resolución de los problemas de selección de modelos asociados a los parámetros de truncamiento y suavizamiento involucrados, así como la selección de bases apropiadas, adecuadas a la naturaleza de los datos, a la dimensionalidad del problema y a las caracteríticas de interés que estamos interesados en predecir (a macro y micro escala), de acuerdo a los objetivos de nuestro estudio. Por todo ello, intentaremos desarrollar estudios de simulación amplios para analizar la sensibilidad de estos modelos a dichos parámetros, y a las características mencionadas, en los problemas abordados sobre predicción y estimación.

- El análisis espectral funcional introducido en el Capítulo 4 para la familia de modelos propuesta en el Capítulo 3 ha resultado ser una herramienta bastante potente en las aplicaciones con datos reales desarrolladas. Por otra parte el enfoque Bayesiano, basado en el espectro puntual, ofrece una alternativa con interesantes vías de investigación por abordar. Debemos destacar asimismo la importancia de la línea que se desarrolla en el Capítulo 4, en relación con el análisis estadístico de datos de elevada dimensión desde una perspectiva de modelos no lineales de series espaciales funcionales. Por otra parte, nos plantearemos la formulación de intervalos de confianza basadas en los estimadores espectrales funcionales formulados, así como, se realizará una comparativa con las regiones de credibilidad derivadas bajo un enfoque bayesiano espectral puntual. Asimismo, como se anuncia en el Capítulo 4, se extenderán los estimadores bayesianos formulados, mediante consideración de a-priori alternativas y se planteará una comparativa en el seno de pruebas estadíticas bajo el enfoque bayesiano y espectral espacial funcional analizados.
- Finalmente, se contemplará la extensión de los resultados formulados en esta tesis al contexto de la Estadística Direccional Funcional, donde se abordará el análisis de datos funcionales correlados espacialmente, evaluados en una variedad de Riemann, desde una perspectiva intrínsica y extrínsica. La formulación de técnicas de predicción funcional en este contexto tendrá un elevado impacto en diversas áreas aplicadas tales como astrofísica y biomedicina.

Bibliografía

- Abramovich, F., Antoniadis A., Sapatinas T., and Vidakovic B. (2004). Optimal testing in a fixed-effects functional analysis of variance model. *International Jour*nal of Wavelets, Multiresolution and Information Processing. 2(4), 323-349. DOI: 10.1142/S0219691304000639
- [2] Abramovich, F., and Angelini, C. (2006). Testing in mixed-effects FANOVA models. Journal of Statistical Planning and Inference. 136(12), 4326-4348. DOI: 10.1016/j.jspi.2005.06.002
- [3] Ahmedou, A., Marion, J. M., and Pumo, B. (2016). Generalized linear model with functional predictors and their derivatives. *Journal of Multivariate Analysis*. 146, 313-324. DOI: 10.1016/j.jmva.2015.10.009
- [4] Álvarez-Liébana, J., and Ruiz-Medina, M. D. (2018). The effect of the spatial domain in FANOVA models with ARH(1) error term. Statistics and Its Interface. 10(4), 607-628. DOI: 10.4310/SII.2017.v10.n4.a7
- [5] Aneiros-Pérez, G., Cao, R., and Vilar-Fernández, J.M. (2011). Functional methods for time series prediction: a nonparametric approach. *Journal of Forecasting* 30(4), 377-392. DOI: 10.1002/for.1169
- [6] Aneiros-Pérez, G., and Vieu, P. (2006). Semi-functional partial linear regression. Statistics & Probability Letters 76(11), 1102-1110. DOI: 10.1016/j.spl.2005. 12.007
- [7] Aneiros-Pérez, G., and Vieu, P. (2008). Nonparametric time series prediction: A semi-functional partial linear modeling. *Journal of Multivariate Analysis*. 99(5), 834-857. DOI: 10.1016/j.jmva.2007.04.010

- [8] Aue, A., Norinho, D. D., and Hörmann, S. (2015). On the Prediction of Stationary Functional Time Series. Journal of the American Statistical Association. 110(509), 378-392. DOI: 10.1080/01621459.2014.909317
- [9] Aue, A., Horváth, L., and F. Pellatt, D. (2017). Functional generalized autoregressive conditional heteroskedasticity. *Journal of Time Series Analysis*. 38(1), 3–21. DOI: 10.1111/jtsa.12192
- [10] Aue, A., and Klepsch, J. (2017). Estimating functional time series by moving average model fitting. arXiv:1701.00770. URL: https://arxiv.org/pdf/1701. 00770.pdf
- [11] Barbian, M.H. and Assunção, R.N. (2017). Spatial subsemble estimator for large geostatistical data. Spatial Statistics 22:68-88. DOI: 10.1016/J.SPASTA.2017.
 08.004
- Benhenni K, Hedli-Griche S., and Rachdi M. (2017). Regression models with correlated errors based on functional random design. *TEST*, 26(1), 1–21. DOI: 10.1007/s11749-016-0495-1
- [13] Berrendero, J. R., Bueno-Larraz, B., and Cuevas, A. (2019). A RKHS model for variable selection in functional linear regression. *Journal of Multivariate Analysis*. 170, 25-45. DOI: 10.1016/j.jmva.2018.04.008
- [14] Bosq, D. (2000). Linear Processes in Function Spaces. Springer-Verlag, New York. ISBN 978-1-4612-1154-9. URL link.springer.com/book/10.1007%
 2F978-1-4612-1154-9
- Bosq, D., and Blanke, D. (2007). Inference and predictions in large dimensions.
 John Wiley & Sons. ISBN 9780470017616. DOI: 10.1002/9780470724033
- Bosq, D., and Ruiz-Medina, M. D. (2014). Bayesian estimation in a high dimensional parameter framework. *Electronic Journal of Statistics*. 8, 1604–1640. DOI: 10.1214/14-EJS935

- [17] Bücher, A., Dette, H., and Wieczorek, G. (2011). Testing model assumptions in functional regression models. *Journal of Multivariate Analysis*. 102(10), 1472– 1488. DOI: 10.1016/j.jmva.2011.05.014
- [18] Cáceres, M. D., and Legendre, P. (2008). Beals smoothing revisited. Oecologia.
 156, 657-669. DOI: 10.1007/s00442-008-1017-y
- [19] Cai, T., and Hall, P. (2006). Prediction in functional linear regression. *The Annals of Statistics*. 34(5), 2159–2179. DOI: 10.1214/00905360600000830
- [20] Canale, A., and Ruggiero, M. (2016). Bayesian nonparametric forecasting of monotonic functional time series. *Electronic Journal of Statistics* 10(2), 3265-3286.
 ISSN: 1935-7524. DOI: 10.1214/16-EJS1190
- [21] Cardot, H. (1998). Convergence du lissage spline de la prévision des processus autorégressifs fonctionnels. C. R. Acad. Sci. Paris, Série I Math. 326, 755-758. ISSN 0764-4442. DOI: 10.1016/S0764-4442(98)80044-X
- [22] Cardot, H., Ferraty, F., Mas, A., and Sarda, P. (2003). Testing hypotheses in the functional linear model. Scandinavian Journal of Statistics. 30(1), 241-255. DOI: 10.1111/1467-9469.00329
- [23] Cardot, H., and Sarda, P. (2005). Estimation in generalized linear models for functional data via penalized likelihood. *Journal of Multivariate Analysis*. 92(1), 24-41. DOI:10.1016/j.jmva.2003.08.008
- [24] Cardot, H., Crambes, C., Kneip, A., and Sarda, P. (2007). Smoothing splines estimators in functional linear regression with errors-in-variables. *Computational Statistics & Data Analysis.* 51(10), 4832-4848. DOI: 10.1016/j.csda.2006.07.
 029
- [25] Cardot, H., and Johannes, J. (2010). Thresholding projection estimators in functional linear models. *Journal of Multivariate Analysis*. 101(2), 395-408. DOI: 10.1016/j.jmva.2009.03.001

- [26] Cardot, H., and Sarda, P. (2011). Functional Linear Regression. In: Ferraty, F. and Romain, Y. (Eds.) The Handbook of Functional Data Analysis. Oxford University Press. 21-46. DOI: 10.1093/oxfordhb/9780199568444.013.2
- [27] Chaouch, M., Laib, N., Louani, D. (2017). Rate of uniform consistency for a class of mode regression on functional stationary ergodic data. *Statistical Methods & Applications*. 26(1):19–47. DOI: 10.1007/s10260-016-0356-9
- [28] Chiou, J.M., Müller, H.G. and Wang, J.L. (2004). Functional response models. Statistica Sinica. 14, 675-693. URL: www.jstor.org/stable/24307411
- [29] Chiou, J. M., and Müller, H. G. (2007). Diagnostics for functional regression via residual processes. *Computational Statistics & Data Analysis*. 51(19), 4849–4863.
 DOI: 10.1016/j.csda.2006.07.042
- [30] Chiou, J. M., Yang, Y. F., and Chen, Y.T. (2016). Multivariate functional linear regression and prediction. *Journal of Multivariate Analysis*. 146, 301-312. DOI: 10.1016/j.jmva.2015.10.003
- [31] Collazos, J. A. A., Dias, R., and Zambom, A. Z. (2016). Consistent variable selection for functional regression models. *Journal of Multivariate Analysis*. 146, 63-71.
 DOI: 10.1016/j.jmva.2015.06.007
- [32] Crambes, C., Kneip, A., and Sarda, P. (2009). Smoothing splines estimators for functional linear regression. *The Annals of Statistics*. 37(1), 35-72.
 DOI: doi.org/10.1214/07-A0S563
- [33] Crambes, C., and Mas, A. (2013). Asymptotics of prediction in functional linear regression with functional outputs. *Bernoulli*. 19(5B), 2627–2651. DOI: 10.3150/ 12-BEJ469
- [34] Cuesta-Albertos, J. A., García-Portugués, E., Febrero-Bande, M., and González-Manteiga, W. (2019). Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. *The Annals of Statistics*. 47(1), 439-467. DOI: 10.1214/18-A0S1693

- [35] Cuevas, A., Febrero, M., and Fraiman, R. (2002). Linear functional regression: the case of fixed design and functional response. *The Canadian Journal of Statistics*. 30(2), 285–300. DOI: 10.2307/3315952
- [36] Cuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference. 147, 1-23. DOI: 10.1016/j.jspi.2013.04.002
- [37] Cugliari, J. (2013). Conditional autoregressive Hilbertian processes. journal ar-Xiv:1302.3488. URL: arxiv.org/abs/1302.3488
- [38] Damon, J., and Guillas, S. (2002) The inclusion of exogenous variables in functional autoregressive ozone forecasting. *Envirometrics*. 13(7), 759-774. DOI: 10.1002/env.527
- [39] Damon, J., and Guillas, S. (2005). Estimation and Simulation of Autoregressive Hilbertian Processes with Exogenous Variables. *Statistical Inference for Stochastic Processes.* 8(2), 185–204. DOI: 10.1007/s11203-004-1031-6
- [40] Dautray R. and Lions, J.L. (1985). Mathematical Analysis and Numerical Methods for Science and Technology, Volume 3. Spectral Theory and Applications. Springer, New York.
- [41] Da Prato G., and Zabczyk J. (2002). Second Order Partial Differential Equations in Hilbert Spaces. London Mathematical Society Lecture Note Series, 293. Cambridge University Press, Cambridge. DOI: 10.1017/CB09780511543210
- [42] Didericksen, D., Kokoszka, P., and Zhang, X. (2012). Empirical properties of forecasts with the functional autoregressive model. *Computational statistics*. 27(2), 285-298. DOI: 10.1007/s00180-011-0256-2
- [43] El Hajj, L. (2011). Limit theorems for D[0, 1]-valued autoregressive processes. C.
 R. Acad. Sci. Paris Sér. I Math. 349:821-825. DOI: 10.1016/j.crma.2011.06.
 009

- [44] Espejo, R. M., Fernández-Pascual, R. y Ruiz-Medina, M. D. (2017). Spatial-depth functional estimation of ocean temperature from non-separable covariance models. Stochastic Environmental Research and Risk Assessment. 31, 39-51. DOI: 10. 1007/s00477-016-1259-x
- [45] Ezzahrioui, M., and Ould-Saïd, E. (2010). Some asymptotic results of a nonparametric conditional mode estimator for functional time-series data. *Statist. Neerlandica* 64(2), 171–201. DOI: 10.1111/j.1467-9574.2010.00449.x
- [46] Fan, Y. Y., Foutz, N., James, G. M., and Jank, W. (2014). Functional response additive model estimation with online virtual stock markets. *The Annals of Applied Statistics.* 8(4), 2435-2460. DOI: 10.1214/14-A0AS781
- [47] Febrero-Bande, M., Galeano, P., and González-Manteiga, W. (2010). Measures of influence for the functional linear model with scalar response. *Journal of Multivariate Analysis*, 101(2), 327–339. DOI: 10.1016/j.jmva.2008.12.011
- [48] Febrero-Bande, M., Galeano, P., and González-Manteiga, W. (2017). Functional principal component regression and functional partial least-squares regression: an overview and a comparative study. *International Statistical Review*. 85(1), 61–83. DOI: 10.1111/insr.12116
- [49] Ferraty, F., Goia, A., and Vieu, P. (2002). Functional nonparametric model for time series: a fractal approach for dimension reduction. *Test* 11, 317-344. URL: link.springer.com/content/pdf/10.1007/BF02595710.pdf
- [50] Ferraty, F., and Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer, New York. ISBN:978-0387-30369-7.
- [51] Ferraty, F., and Vieu, P. (2011). Kernel regression estimation for functional data. In: Ferraty F, Romain Y (eds) The Oxford Handbook of Functional Data Analysis. Oxford University Press, Oxford, pp. 72–129. DOI: 10.1093/oxfordhb/ 9780199568444.013.4

- [52] Ferraty, F., Van Keilegom, I., and Vieu, P. (2012). Regression when both response and predictor are functions. *Journal of Multivariate Analysis*. 109, 10-28. DOI: 10.1016/j.jmva.2012.02.008
- [53] Ferraty, F., Goia, A., Salinelli, E., and Vieu, P. (2013). Functional projection pursuit regression. *TEST*. 22(2), 293–320. DOI: 10.1007/s11749-012-0306-2
- [54] Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2004). Applied Longitudinal Analysis. Wiley Series in Probability and Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ. ISBN: 0-471-21487-6. DOI: 10.1002/sim.2924
- [55] Frías, M.P., Torres-Signes, A., Ruiz-Medina, M.D. and Mateu, J. (2021). Spatial Cox processes in an infinite-dimensional framework. *TEST*. DOI: 10.1007/ s11749-021-00773-z
- [56] Gao Y., Shang H. L., and Yang Y. (2019). High-dimensional functional time series forecasting: An application to age-specific mortality rates. *Journal of Multivariate Analysis.* 170, 232-243. DOI: 10.1016/j.jmva.2018.10.003
- [57] García-Portugués, E., González-Manteiga, W., and Febrero-Bande, M. (2014). A goodness-of-fit test for the functional linear model with scalar response. Journal of Computational and Graphical Statistics. 23(3),761-778. DOI: 10.1080/10618600.
 2013.812519
- [58] Geenens, G. (2011). Curse of dimensionality and related issues in nonparametric functional regression. *Statistics Surveys* 5, 30–43. DOI: 10.1214/09-SS049
- [59] Goia, A., and Vieu, P. (2015). A partitioned Single Functional Index Model. *Computational Statistics*. 30(3), 673-692. Doi 10.1007/s00180-014-0530-1
- [60] Goia, A., and Vieu, P. (2016). An introduction to recent advances in high/infinite dimensional statistics. *Journal of Multivariate Analysis*. 146, 1–6, ISSN 0047-259X. DOI: 10.1016/j.jmva.2015.12.001
- [61] González-Manteiga, W., and Martínez-Calvo, A. (2011). Bootstrap in functional linear regression. Journal of Statistical Planning and Inference. 141(1), 453-461.
 DOI: 10.1016/j.jspi.2010.06.027

- [62] Górecki, T., Hörmann, S., Horváth, L., and Kokoszka, P. (2018). Testing normality of functional time series. Journal of time series analysis. 39(4), 471-487. DOI: 10.1111/jtsa.12281
- [63] Guillas, S. (2001). Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes. *Statistics & Probability Letters*. 55(3), 281–291. DOI: 10.1016/S0167-7152(01)00151-1
- [64] Guillas, S. (2002). Doubly stochastic Hilbertian processes. Journal of applied probability 39(3), 566-580. DOI: 10.1239/jap/1034082128
- [65] Hall, P., and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear regression. The Annals of Statistics 35(1), 70-91. DOI: 10.1214/00905360600000957
- [66] He, G., Müller, H. G., Wang, J. L., and Yang, W. (2010). Functional linear regression via canonical analysis. *Bernoulli*. 16(3), 705–729. DOI: 10.3150/09-BEJ228
- [67] Hörmann, S., and Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics. 38(3), 1845–1884. DOI: 10.1214/09-AOS768
- [68] Hörmann, S., and Kokoszka, P. (2012). Functional Time Series in Time Series Analysis: Methods and Applications 30, 157–186.
- [69] Hörmann, S., Horváth, L., and Reeder, R. (2013). A functional version of the ARCH model. *Econometric Theory*. 29(2), 267–288. DOI: 10.1017/ S0266466612000345
- [70] Hörmann, S., Kokoszka, P., and Nisol, G. (2018). Testing for periodicity in functional time series. Annals of statistics. 46(6A), 2960-2984. DOI: 10.1214/ 17-AOS1645
- [71] Horváth, L., and Kokoszka, P. (2012). Inference for functional data with applications. Springer, New York. DOI: 10.1007/978-1-4614-3655-3

- [72] Horváth, L., Hušková, M. and Rice, G. (2013). Test of independence for functional data. Journal of Multivariate Anal. 117, 100-119. ISSN 0047-259X. DOI: 10.1016/j.jmva.2013.02.005
- [73] Horváth, L., Hušková, M. and Kokoszka, P. (2010). Testing the stability of the functional autoregressive process. Journal of Multivariate Analysis 101(2), 352–367. DOI: 10.1016/j.jmva.2008.12.008
- [74] Horváth, L., Kokoszka, P., and Rice, G. (2014). Testing Stationarity of Functional Time Series. Journal of Econometrics 179(1), 66-82. ISSN 0304-4076. DOI: 10. 1016/j.jeconom.2013.11.002
- [75] Hsing, T., and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators. In: Wiley Series in Probability and Statistics, John Wiley & Sons. Chichester. DOI: 10.1002/9781118762547
- [76] Imaizumi, M., and Kato, K. (2018). Pca-based estimation for functional linear regression with functional responses. *Journal of Multivariate Analysis*. 163, 15-36. DOI: 10.1016/j.jmva.2017.10.001
- [77] Jadhav, S., Koul, H. L., and Lu, Q. (2017). Dependent generalized functional linear models. *Biometrika*, 104(4), 987-994. DOI: 10.1093/biomet/asx044
- [78] Kara-Terki, N., and Mourid, T. (2016). Local asymptotic normality of Hilbertian autoregressive processes. C. R. Acad. Sci. Paris Sér. I 354(6), 634-638. DOI: 10.1016/j.crma.2016.03.006
- [79] Kara, L. Z., Laksaci, A., Rachdi, M., and Vieu, P. (2017a). Uniform in bandwidth consistency for various kernel estimators involving functional data. *Journal of Nonparametric Statistics*. 29(1),85–107. DOI: 10.1080/10485252.2016.1254780
- [80] Kara, L. Z., Laksaci, A., Rachdi, M., and Vieu, P. (2017b). Data-driven kNN estimation in nonparametric functional data analysis. *Journal of Multivariate Analy*sis. 153, 176–188. DOI: 10.1016/j.jmva.2016.09.016

- [81] Kargin, V., and Onatski, A. (2008). Curve forecasting by functional autoregression. Journal of Multivariate Analysis 99(10), 2508-2526. DOI: 10.1016/j.jmva.2008. 03.001
- [82] Khademnoe, O., Mohammad, S., and Hosseini-Nasab, E. (2016). On properties of percentile bootstrap confidence intervals for prediction in functional linear regression. Journal of Statistical Planning and Inference. 170, 129–143. DOI: 10.1016/j.jspi.2015.10.001
- [83] Klepsch, J., Klüppelberg, C. and Wei T. (2017). Prediction of functional ARMA processes with an application to traffic data. *Econometrics and Statistics*. 1, 128–149. DOI: 10.1016/j.ecosta.2016.10.009
- [84] Kokoszka, P., Maslova, I., Sojka, J., and Zhu, L. (2008). Testing for lack of dependence in the functional linear model. *Canadian Journal of Statistics*. 36(2), 207-222. DOI: 10.1002/cjs.5550360203
- [85] Kokoszka, P., and Reimherr, M. (2013a). Asymptotic normality of the principal components of functional time series. *Stochastic Processes and their Applications* 123(5), 1546–1562. DOI: 10.1016/j.spa.2012.12.011
- [86] Kokoszka, P., and Reimherr, M. (2013b). Determining the order of the functional autoregressive model. Journal of Time Series Analysis. 34(1), 116-129. DOI: 10. 1111/j.1467-9892.2012.00816.x
- [87] Kowal, D. R., Matteson, D. S., and Ruppert, D. (2019). Functional autoregression for sparsely sampled data. *Journal of Business & Economic Statistics*. 37(1), 97-109. DOI: 10.1080/07350015.2017.1279058
- [88] Labbas, A., and Mourid, T. (2002). Estimation et prévision d'un processus autorégressif Banach. C. R. Acad. Sci. Paris Sér. I 335, 767-772. DOI: 10.1016/ S1631-073X(02)02544-X
- [89] Laloë, T. (2008). A k-nearest neighbor approach for functional regression. Statistics & Probability Letters. 78(10), 1189–1193. DOI: 10.1016/j.spl.2007.11.014

- [90] Laukaitis, A. (2008). Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes. European Journal of Operational Research 185(3), 1607-1614. DOI: 10.1016/j.ejor.2006.08.030
- [91] Lian, H. (2015). Minimax prediction for functional linear regression with functional responses in reproducing kernel hilbert spaces. Journal of Multivariate Analysis. 140, 395–402. DOI: 10.1016/j.jmva.2015.06.005
- [92] Li, Y., and Hsing, T. (2007). On rates of convergence in functional linear regression. Journal of Multivariate Analysis. 98(9), 1782-1804. DOI: 10.1016/j.jmva.2006. 10.004
- [93] Li, Y., Wang, N., and Carroll, R. J. (2010). Generalized functional linear models with semiparametric single-index interactions. Journal of the American Statistical Association. 105(490), 621–633. DOI: 10.1198/jasa.2010.tm09313
- [94] Li, D., Robinson, P. M., and Shang, H. L. (2020). Long-range dependent curve time series. Journal of the American Statistical Association. 115(530), 957-971. ISSN 0162-1459. DOI: 10.1080/01621459.2019.1604362
- [95] Ling, N., Liu, Y., and Vieu, P. (2017). On asymptotic properties of functional conditional mode estimation with both stationary ergodic and responses MAR. In Functional Statistics and Related Fields, pp 173-178, Springer, Switzerland. URL: link.springer.com/chapter/10.1007/978-3-319-55846-2_23
- [96] Liu, X. Xiao, H., and Chen, R. (2016). Convolutional autoregressive models for functional time series. Journal of Econometrics. 194(2), 263-282. DOI: 10.1016/ j.jeconom.2016.05.0
- [97] Long, Q. (2012). A note on generalized functional linear model and its application. Journal of Statistical Planning and Inference. 142(9), 2599-2606. DOI: 10.1016/ j.jspi.2012.02.027
- [98] Marion, J. M., and Pumo, B. (2004). Comparison of ARH(1) and ARHD(1) models on physiological data. Ann. I.S.U.P. 48(3), 29–38. ISSN 1626-1607.

- [99] Maronna, R. A., and Yohai, V. J. (2013). Robust functional linear regression based on splines. *Computational Statistics and Data Analysis*. 65, 46–55. DOI: 10.1016/j.csda.2011.11.014
- [100] Marx, B. D., and Eilers, P. H. C. (1999). Generalized linear regression on sampled signals and curves: A P-spline approach. *Technometrics*, 41(1), 1–13. DOI: 10. 2307/1270990
- [101] Mas, A. (1999). Normalité asymptotique de l'estimateur empirique de l'opérateur d'autocorrélation d'un processus ARH(1). C. R. Acad. Sci. Paris Sér. I Math. 329(10), 899–902. DOI: 10.1016/S0764-4442(00)87496-0
- [102] Mas, A. (2000). Estimation d'opérateurs de corrélation de processus fonctionnels: lois limites, tests, déviations modérées. Université de Paris 6. Paris.
- [103] Mas, A. (2002). Weak convergence for the covariance operators of a Hilbertian linear process. Stochastic Process. Appl. 99(1), 117-135. DOI: 10.1016/ S0304-4149(02)00087-X
- [104] Mas, A. (2004). Consistance du prédicteur dans le modèle ARH(1): le cas compact. Ann. I.S.U.P., 48, 39-48. URL imag.umontpellier.fr/~mas/JIsup2.pdf
- [105] Mas, A. (2007). Weak-convergence in the functional autoregressive model. Journal of Multivariate Analysis. 98(6), 1231-1261. DOI: 10.1016/j.jmva.2006.05.
 010
- [106] Mas, A., and Menneteau, L. (2003). Large and moderate deviations for infinite dimensional autoregressive processes. *Journal of Multivariate Analysis* 87(2), 241–260. DOI: 10.1016/S0047-259X(03)00053-8
- [107] Mas, A., and Pumo, B. (2007). The ARHD model. Journal of statistical planning and inference 137(2), 538-553. DOI: 10.1016/j.jspi.2005.12.006
- [108] Matsui, H., and Konishi, S. (2011). Variable selection for functional regression models via the L1 regularization. *Computational Statistics and Data Analysis*. 55(12), 3304–3310. DOI: 10.1016/j.csda.2011.06.016

- [109] Moreno, E. and Martínez, C. (2021). Bayesian and frequentist evidence in onesided hypothesis testing. TEST. DOI: 10.1007/s11749-021-00778-8
- [110] Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application, 2(1), 321-359. DOI: 10.1146/annurev-statistics-010814-020413
- [111] Müller, H. G., and Stadtmüller, U. (2005). Generalized functional linear models. The Annals of Statistics. 33(2), 774–805. DOI: 10.1214/009053604000001156
- [112] Müller, H. G., and Yao, F. (2008). Functional additive model. Journal of the American Statistical Association. 103(484), 1534-1544. DOI: 10.1198/ 016214508000000751
- [113] Nicolet, G., Eckert, N., Morin, S. and Blanchet, J. (2017). A multi-criteria leavetwo-out cross-validation procedure for Max-Stable process selection. *Spatial Statistics, Elsevier.* 22:107–128. DOI: 10.1016/j.spasta.2017.09.004
- [114] Panaretos, V. M., and Tavakoli, S. (2013a). Fourier analysis of stationary time series in function space. The Annals of Statistics. 41(2), 568-603. DOI: 10.1214/13-A0S1086
- [115] Panaretos, V. M., and Tavakoli, S. (2013b), Cramér-Karhunen-Loève Representation and Harmonic Principal Component Analysis of Functional Time Series. Stochastic Process and their Applications. 123(7), 2779--2807. ISSN 0304-4149.
 DOI: 10.1016/j.spa.2013.03.015
- [116] Patilea, V., Sánchez-Sellero, C., and Saumard, M. (2018). Projection-based nonparametric testing for functional covariate effect. *Mathematics, Statistics Theory,* arXiv:1205.5578. URL arxiv.org/abs/1205.5578
- [117] Petris, G. A. (2013). A Bayesian framework for functional time series analysis. arXiv preprint arXiv:1311.0098. URL: arxiv.org/pdf/1311.0098.pdf
- [118] Pham T., and Panaretos V.M. (2018). Methodology and convergence rates for functional time series regression. *Statistica Sinica*. 28(4), 2521—2539. (Special Issue in Memory of Peter Hall). DOI: 10.5705/ss.202016.0536

- [119] Radchenko, P., Qiao, X., and James, G.M. (2015). Index models for sparsely sampled functional data. Journal of the American Statistical Association. 110(510), 824-836. DOI: 10.1080/01621459.2014.931859
- [120] Rady, E. A., Kilany, N. M., and Eliwa, S. A. (2015). Estimation in mixed-effects functional ANOVA models. *Journal of Multivariate Analysis*. 133, 346-355. DOI: 10.1016/j.jmva.2014.09.020
- [121] Ramsay, J. O., and Silverman, B. W. (2005). Functional data analysis, Second Ed. Springer Series in Statistics. Springer, New York. ISBN: 978-0387-40080-8.
 URL link.springer.com/content/pdf/10.1007%2Fb98888.pdf
- [122] Reiss, P. T., and Ogden, T. (2007). Functional principal component regression and functional partial least-squares. Journal of the American Statistical Association. 102(479), 984–996. DOI: 10.1198/016214507000000527
- [123] Rubín, T., and Panaretos, V. M. (2020a), Functional lagged regression with sparse noisy observations. Journal of Time Series Analysis. 41(6), 858-882. DOI: 10. 1111/jtsa.12551
- [124] Rubín, T., and Panaretos, V. M. (2020b). Spectral Simulation of Functional Time Series. arXiv preprint arXiv:2007.08458. URL: arxiv.org/abs/2007.08458
- [125] Ruiz-Medina, M. D. (2011). Spatial autoregressive and moving average Hilbertian processes. Journal of Multivariate Analysis. 102(2), 292-305. DOI: 10.1016/j. jmva.2010.09.005
- [126] Ruiz-Medina, M. D. (2012a). New challenges in spatial and spatiotemporal functional statistics for high-dimensional data. *Spatial Statistics* 1, 82-91. Doi: 10.1016/j.spasta.2012.02.006
- [127] Ruiz-Medina, M. D. (2012b). Spatial functional prediction from spatial autoregressive Hilbertian processes. *Environmetrics*. 23, 119–128. DOI: 10.1002/env. 1143

- [128] Ruiz-Medina, M. D. (2016). Functional analysis of variance for Hilbert-valued multivariate fixed effect models. *Statistics*. 50(3), 689-715. DOI: 10.1080/ 02331888.2015.1094069
- [129] Ruiz-Medina, M. D. (2019). Spectral analysis and parameter estimation of SRD and LRD functional time series. arXiv preprint arXiv:1912.07086. URL: arxiv. org/pdf/1912.07086.pdf
- [130] Ruiz-Medina, M. D., Miranda, D., and Espejo, R. M. (2019). Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors. TEST. 28(3), 943–968. DOI: 10.1007/s11749-018-0614-2.
- [131] Ruiz-Medina, M. D. and Miranda, D. (2022). Bayesian surface regression versus spatial spectral nonparametric curve regression. *Spatial Statistics*. DOI: 10.1016/ j.spasta.2022.100604
- [132] Shin, H., and Hsing, T. (2012). Linear prediction in functional data analysis. Stochastic Processes and their Applications. 122(11), 3680-3700. DOI: 10.1016/ j.spa.2012.06.014
- [133] Tavakoli, S. (2014). Fourier Analysis of Functional Time Series, With Applications to DNA Dynamics, Ph.D. dissertation, EPFL. Available at DOI: 10.5075/ epfl-thesis-6320.
- [134] Tavakoli, S., and Panaretos, V. M. (2016). Detecting and localizing differences in functional time series dynamics: a case study in molecular biophysics. *Journal* of the American Statistical Association. 111(515), 1020–1035. ISSN: 0162-1459 (Print) 1537-274X. DOI: 10.1080/01621459.2016.1147355
- [135] Torres--Signes, A, Frías, M. P., and Ruiz-Medina, M. D. (2021). COVID-19 mortality analysis from soft-data multivariate curve regression and machine learning. Stochastic Environmental Research and Risk Assessment. 1-20. DOI: 10.1007/s00477-021-02021-0

- [136] Wang, G., Lin, N., and Zhang, B. (2012). Functional linear regression after spline transformation. Computational Statistics and Data Analysis. 56(3), 587-601. DOI: 10.1016/j.csda.2011.09.005
- [137] Wang, J. L., Chiou, J. M., and Müller, H. G. (2016). Functional data analysis. Annual Review of Statistics and Its Application. 3, 257-295. DOI: 10.1146/ annurev-statistics-041715-033624
- [138] Yao, F., Müller, H. G., and Wang, J. L. (2005). Functional linear regression analysis for longitudinal data. *The Annals of Statistics*. 33(6), 2873-2903. DOI: 10.1214/00905360500000660
- [139] Zoglat, A. (2008). Functional Analysis of Variance. Applied Mathematical Sciences. 2(23), 1115-1129. URL: www.m-hikari.com/ams/ams-password-2008/ ams-password21-24-2008/zoglatAMS21-24-2008.pdf