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Abstract: β-hydroxy β-methylbutyrate (HMB), a metabolite of the essential amino acid leucine, has
been shown to preserve muscle mass and strength during aging. The signaling mechanism by which
HMB elicits its favorable effects on protein metabolism in skeletal muscle is also preserved in the
brain. However, there are only a few studies, all at relatively high doses, addressing the effect of HMB
supplementation on cognition. This study evaluated the effects of different doses of HMB on the
potentiation of hippocampal synapses following the experimental induction of long-term potentiation
(LTP) in the hippocampus of behaving rats, as well as on working memory test (delayed matching-to-
position, DMTP) in mice. HMB doses in rats were 225 (low), 450 (medium), and 900 (high) mg/kg
body weight/day and were double in mice. Rats who received medium or high HMB doses improved
LTP, suggesting that HMB administration enhances mechanisms related to neuronal plasticity. In
the DMTP test, mice that received any of the tested doses of HMB performed better than the control
group in the overall test with particularities depending on the dose and the task phase.

Keywords: aging; nutrition; β-hydroxy β-methylbutyrate; delayed matching-to-position; long-term
potentiation; cognition; IntelliCages®

1. Introduction

Cognitive decline is a normal process of aging, with some cognitive abilities, such
as conceptual reasoning, processing speed, and memory, being more susceptible to this
gradual decline [1–3]. Although non-modifiable factors, like age, race and ethnicity, gender,
and genetics are involved in this cognitive decline, several life-style interventions, including
physical activities, cognitive training, and nutritional interventions, have been shown to
have a positive impact [4,5]. In fact, several studies have shown that maintaining a healthy
diet could be associated with slower cognitive decline and reduced risk of Alzheimer’s
disease [6].

HMB supplementation preserves muscle mass and strength during aging by affecting
the balance between protein synthesis and degradation [7–10]. The mechanism by which
HMB elicits its effects on protein synthesis in skeletal muscle is related to the activation of
signaling pathways involving phosphoinositide-3-kinase (PI3K), mitogen-activated protein
kinases (MAPK), extracellular signal-regulated kinases (ERK1), and mTOR (mechanistic
target of rapamycin) [11–13]. These mechanisms of action are present in the brain and are
involved in brain physiology and pathology [14].

Despite the hydrophilic properties of HMB, it seems to be able to cross the blood brain
barrier because it was detected in brain microdialysates after an acute oral administration
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in rats [15]. To add to this, a recent publication showed that HMB is transported through
brain endothelial cells by a proton-coupled transport system [16]. Moreover, its efficacy
has been shown in experimental models as follows: (1) it promoted the differentiation
and neurite outgrowth of Neuro2a cells [17], (2) it prevented the age-related regression of
dendritic trees in pyramidal neurons of rats [18], and also (3) it ameliorated age-related
decline in cognitive performance in rats [19,20].

However, these studies used either in vitro doses, which have to be extrapolated to
in vivo oral doses, or a relatively high nominal dose of calcium (HMB ~900 mg/kg BW of
CaHMB or ~770 mg/kg BW of HMB in experimental models). The most studied doses
of HMB in humans with regards to body composition and muscle strength have been
1.5 to 3 g per day in the form of calcium salt [21]. The doses in experimental animal models
that showed a benefit of HMB on body composition ranged from 100 to 500 mg/kg BW
of CaHMB [22]. Therefore, it is not known if these lower doses will be able to influence
brain functionality.

The aims of this study were: (1) to reproduce the effect of HMB on brain functionality
using an automated system designed for behavioral studies in rodents (IntelliCage®, New-
Behavior AG, Zurich, Switzerland) [23] using a behavioral task to assess the spatial working
memory in animals (DMTP task) [24] (2) to test if HMB was able to affect LTP, an electro-
physiological mechanism underlying synaptic plasticity and memory storage [25], and
(3) to study the effective dose of HMB on brain function in adult and middle-aged rodents.

The doses were selected based on the literature and body weight and body surface
of animals, and its relationship with human equivalent dose (HED) [26]. Because the
conversion factor for mice was twice that of rats (12.3 vs. 6.2), the doses used in both
experiments were similar when calculated as HED, and were approximately between 2 and
9 g of HMB per day for an average 60 kg body weight in humans.

2. Materials and Methods
2.1. Animals

Male C57/BL6 mice (n = 48; 48 week-old) and male Long-Evans rats (n = 60; 32 week-
old) were purchased from Janvier (Janvier, Saint-Berthevin Cedex, France) and kept under
controlled environmental conditions of temperature (22 ◦C ± 2), humidity (55% ± 10), and
lighting (12 h light/dark cycles).

The experiments were conducted in mice and rats for DMTP and LTP, respectively,
because the equipment and experimental techniques were adapted to these species: Intel-
liCages are optimized for mice and the implantation of electrodes for LTP is easier in rats
than in mice due to the size of the skull.

Animals were fed a standard diet ad libitum. Animal experimental protocols were
approved by the Ethics Committee of the Estación Experimental del Zaidín-CSIC (Granada,
Spain. Approval number: CBA EEZ-2011/20), and the experiment was performed in
accordance with the Spanish and European regulations for the care and use of experimental
animals for research.

2.2. Experimental Designs
2.2.1. Long-Term Potentiation Study in Rats

The rats were housed individually in standard cages with free access to food and
water until they were 52 weeks old. Animals were divided in four study groups; each
group received a specific HMB dose (D): D1 = 225, D2 = 450 and D3 = 900 mg/kg·BW/day
(n = 15/group). Calcium HMB was dissolved in gelatin to facilitate the intake. The gelatins
were offered twice a day for 2 months. Rats in the control group (C) were given equiv-
alent doses of Ca as Ca-Lactate. The LTP measurements were done when the rats were
62–68 weeks old (15.5–17 months old). The administration of CaHMB continued during
the procedure; in total the rats received the supplement for 4 months.

Animals were anesthetized with 4% chloral hydrate at a dose of 1 mL/100 g. Once
anesthetized, animals were implanted with stimulating and recording electrodes in the hip-
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pocampus. Stereotaxic coordinates [27] were followed to implant animals with stimulating
electrodes aimed at the Schaffer collateral-commissural pathway of the dorsal hippocampus
(3.5 mm lateral, 3.2 mm posterior, and 3.0 below to Bregma). These electrodes were made of
50 µm, Teflon-coated tungsten wires (Advent Research Materials Ltd., Oakfield Industrial
State Eynsham, Oxford, England). In addition, animals were implanted with recording
electrodes aimed at the ipsilateral stratum radiatum underneath the CA1 area (2.5 mm
lateral, 3.6 mm posterior, and 2.3 below to Bregma). Recording electrodes were also made
of 50 µm Teflon-coated tungsten wires (Advent Research Materials Ltd., Oakfield Industrial
State Eynsham, England). Electrodes were surgically implanted in the CA1 area using as
a guide the field potential depth profile evoked by paired (20–50 ms of interval) pulses
presented to the ipsilateral Schaffer collateral pathway. Recording electrodes were fixed at
the site where a reliable monosynaptic field excitatory post-synaptic potential (fEPSP) was
recorded. A 0.1 mm bare silver wire was affixed to the skull as a ground. All wires were
connected to two separate sockets (RS-Amidata, Madrid, Spain). The ground wire was also
connected to the recording system with a single wire. Sockets were fixed to the skull with
the help of two small screws and dental cement [28–30].

Recordings were carried out using Grass P511 differential amplifiers within a band-
width of 0.1 Hz–10 kHz (Grass-Telefactor, West Warwick, RI, USA). Synaptic field potentials
in the CA1 area were evoked by single 100 µs, square, biphasic (negative-positive) pulses
applied to ipsilateral Schaffer collaterals. Stimulus intensities ranged from 50 to 350 µA.
For each animal, the stimulus intensity was set well below the threshold for evoking a pop-
ulation spike, usually 30–40% of the intensity necessary for evoking a maximum fEPSP. An
additional criterion for selecting stimulus intensity was that a second stimulus, presenting
20–50 ms after a conditioning pulse, evoked a larger (>20%) synaptic field potential [28,29].

For evoking LTP in alert behaving rats, we used the following HFS protocol: each
animal was presented with five 200 Hz, 100 ms trains of pulses at a rate of 1/s. These
trains were presented six times in total, at intervals of 1 min. The 100 µs, square, biphasic
pulses used to evoke LTP were applied at the same intensity used for evoking baseline
records [29,31]. Before the HFS protocol, baseline records were collected for 15 min with the
paired stimuli presented every 20 s. After the HFS protocol, fEPSPs were recorded again
for 60 min. Additional recordings were carried out for 30 min during the 3 following days.

For LTP, collected data were represented in Excel sheets for further analysis. Only
those rats that completed the electrophysiological study and electrodes located in the
selected stimulating (CA3 area) and recording (CA1 area) were considered for the quanti-
tative analysis of fEPSP evoked during the LTP study. Unless otherwise indicated, data
are presented as the mean value collected from each experimental group followed by
the S.E.M. Graphic displays were constructed with the help of the SPSS package (SPSS
Inc, Chicago, IL, USA). Statistical differences between experimental groups and their
corresponding control were determined with the help of the same statistical package. Data
were analyzed using a Two-Way Repeated Measures ANOVA test, with time as repeated
measure, followed by All Pairwise Multiple Comparison Procedures (Fisher LSD Method).
Statistical procedures and other analytical details have been described elsewhere [28,32].

2.2.2. Delayed Matching-to-Position Task in Mice

Mice were maintained at the animal house for four weeks and then, divided into
four groups (n = 12 per group) matched by body weight. They were adapted to the
IntelliCages© system and trained to drink water twice daily for two weeks. Calcium HMB
was dissolved in water and administered in the drinking bottles. Three doses of HMB were
used: Dose 1 = 450, Dose 2 = 900, and Dose 3 = 1800 mg/kg·BW/ day. Mice in the control
group were given water with equivalent doses of calcium as Ca-Lactate. This procedure
allowed us to provide HMB twice a day and to control the dose. After one month, spatial
working memory was evaluated. The procedure lasted for 6 weeks and during the cognitive
evaluation mice also received the supplementation; in total, they received the supplement
for 10 weeks. The mice were 59–65 weeks of age (15–16 months) at the time of evaluation.
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The IntelliCage© (NewBehavior AG, Zurich, Switzerland) is a computer-based, fully-
automated testing apparatus used to analyze the spontaneous and learning behavior of
rodents. This system consists of a cage that presents four operant conditioning corners,
which can locate one mouse at a time. Each corner is equipped with two motorized
doors, which block or allow access to water bottles placed on both sides of the corner [33].
When a mouse tries to access through whichever of the two doors (nose poke action),
the interruption of a light-beam sensor at either door triggers one or the other doors to
open and allow access to a water bottle. Three mice were allocated per corner to reduce
competence for water intake. This way the variability of water intake and HMB dose was
minimized. Radio frequency identification (RFID) transponders are implanted under the
mouse skin, allowing for individual recognition; thus, mouse entries into the corners are
detected through RFID antennas located there [34].

A RFID-transponder was injected subcutaneously in the interscapular area of each
mouse. After transponder implantation, the mice were placed into the IntelliCages© at
the beginning of the dark phase and maintained there during two weeks for habituation.
The habituation process consisted of different stages: one day of free exploration with all
doors opened; five days in which doors were opened only upon a visit to the corner; in
the following two days, doors opened after a nose poke in the right place; in the last four
days, one nose poke opened any door only during two drinking sessions of 90 min per
night, while the doors remained closed during the rest of the night and day (adaptation to
IntelliCage is showed in Figure 1).
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of a trial constituted the sample phase; the illumination of both doors occurred 3 s after 

Figure 1. Mice adaptation to IntelliCages Timeline: Free exploration: all doors of the IntelliCage were
opened; Door adaptation: doors were opened after a corner visit; Door adaptation + NP: the respective
doors were opened after a NP response during a corner visit; Door adaptation + NP + Sessions: one
NP opened the respective door, once during a visit and during two drinking sessions per night when
water was available. The doors remained closed during the rest of the time.

Mice were evaluated with the DMTP test for assessing spatial working memory. The
protocol consisted of two phases. First, pre-training: mice acquired the matching rule. Mice
were trained to NP (nose-poke) either the left or the right door on successive trials. Each
NP was rewarded with access to water bottle for 4 s.

The illumination of the single door with the first NP (matching door) at the beginning
of a trial constituted the sample phase; the illumination of both doors occurred 3 s after
lighting the first door and constituted the choice phase. The choice was presented imme-
diately after the NP without retention delay (0 s). Mice were rewarded for choosing the
first door that was nose-poked during the sample phase. Any incorrect (error) response
resulted in the end of the test, in which the lights were extinguished (Figure 2a).

The second phase: DMTP training was identical to the choice phase except that a
selected retention delay interval was interposed between the sample and choice phases of
the task. The first NP at the matching door after the delay interval results in the opening of
the door. The delay time was chosen to be 0, 1, 2, 4, and 8 s (Figure 2b). A subject received up
to 50 trials with reward over the course of each session. Typically, there is a learning-curve
over time for each experimental stage of DMTP starting with low success-proportions,
increased performance over time, and stabilization phase or plateau. The plateau indicates
that learning at this level is finished. The pass to the next level was decided by fitting linear
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mixed models to the percentages of correct results every day and the last five days before.
If the slope of the line for the four groups was not significantly different from 0 at p < 0.05,
then the stability of the learning curve within the delay was reached and the delay was
changed to the next step.
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Figure 2. DMTP procedure: (A) pre-training, (B) training.

To address the question about differences in the DMTP learning process among
groups, a generalized additive mixed model (GAMM) with binomial distribution to the
(raw observations) success-data of the mice using the logit link function was applied.
Note that mixed models allow incorporating repeated measures from individual mice by
accounting for the within-subject correlation. GAMMs allow fitting a smooth curve over
time by group of treatment to compare the progression of the learning process. GAMMs are
applied to data from each delay over days. The model accounts for all data from all days
of that delay with two main effects group and the smooth curve of response over days by
groups. For each delay, a final group comparison based on the last day of each experimental
delay period was performed using GLMM (Generalized Linear Mixed Model) for binomial
data with the logit link function, as we assume here that learning has reached the final
stage. Group differences were tested by fitting the GLMMs for each delay. Furthermore, to
test for differences between delays depending on the group, an accomplished complete
model taking observed behavioral data for all mice each time on the final day of delay
(T = 0, 1, 2, 4, and 8 s) was fitted with delay, group, and interaction effect.

After the last training period (8 s), a retraining with delay T = 1 s was performed to
compare training and retraining success proportions as well as to compare the different
groups at the retraining stage. A GAMM with logit-link function was employed. The
main effects of group and stage (retraining and training), as well as the interaction, were
considered. All tests were performed at a 5% significance level. The R-software was used
to perform the statistical analysis.
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3. Results
3.1. HMB Effects on Hippocampal LTP Evoked in Alert Behaving Rats

The results collected from the LTP study are illustrated in Figure 3. The four groups
presented a significant LTP during the first recording session after the HFS protocol in
comparison with baseline values (Day 1). Both medium (D2 = 450 mg/kg. BW) and high
dose groups (D3 = 900 mg/kg. BW) presented a larger and longer lasting LTP than the
other two groups (C = Control, and low dose (D1 = 225 mg/kg.bw). Although the D2 group
reached larger LTP values than the D3 group, mainly during the first recording session
after the HFS protocol, no significant differences could be observed between them.
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Figure 3. Results of LTP evoked in the four (Control, D1, D2, D3) rat groups. Animals were stimulated
with the high-frequency stimulation (HFS) protocol described in the Methods section. Recordings
were carried out for 15 min before to 60 min after the HFS protocol (Day 1). Additional recordings
were carried out for 30 min during 3 additional days (Days 2–4). Data were collected from n = 16
electrodes/group implanted in n ≥ 5 animals/group. The statistical analysis (Two-way Repeated
Measures ANOVA, F(96, 1920) = 2.818; p < 0.001) indicated that the four groups reached significant
LTP with respect to baseline values for days 1 to 3 (D2 and D3; p ≤ 0.05) and days 1 and 2 (Control
and D1 groups; p ≤ 0.05). In addition, the All Pairwise Multiple Comparison Procedure (Fisher LSD
Method) confirmed that the D2 (green line) group presented significantly larger LTP values than
the Control (violet line; *, p ≤ 0.05) and the D1 (orange line; N, p ≤ 0.05) groups on days 1 and 2. In
addition, the D3 group (blue line) also presented significantly larger LTP values than the Control
(•, p ≤ 0.05) and the D1 (�, p ≤ 0.05) groups at the indicated times on days 1 to 3. No significant
differences were observed between C and D1 groups (p ≥ 0.671) or between the D2 and the D3 groups
(p ≥ 0.198). C = Control, D1 = 225 mg/kg. BW, D2 = 450 mg/kg. BW and D3 = 900 mg/kg. BW HMB.

3.2. HMB Effects on Delayed Matching to Position Task in Mice
3.2.1. Acquisition of the Delayed Spatial Matching-to-Position Task

Figure 4 shows the adjusted curve of probabilities of correct results by treatment group
(left graph), for delay T = 0. There were no differences between groups on the day when the
stability of learning curve was reached. However, Dose 1 and 3 groups learnt faster than
the other two groups during the exponential learning phase (on days 2 to 6, D1 and D3 > C,
significant differences are shown in Figure 4, right panel). Dose 2 performed similar to
controls during the first four days but surpassed control group after day 5, reaching a closer
performance to the other doses.
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3.2.2. Intervals Test of the Delayed Spatial Matching-to-Position Task

Figure 5 shows the observed percentage of success for the different groups and delays.
The vertical dash lines represent the change of delay (delay intervals of 1, 2, 4, or 8 s). It was
observed that the percentage of correct visits in the stability phase of learning decreased
with delays in all groups due to the increased difficulty of the task.
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Dose 2 appeared to be superior compared with the other three groups, except for the
last 2 days of delay T = 8. The control group had the lowest percentage of correct visits.

To confirm this difference, a GAMM was fitted to the data. Figure 6 shows the overall
fit and the statistic test for comparing the adjusted average probability of success over days
at 5% significant level. The mice that received any dose of HMB performed better than the
control group (p < 0.05). Moreover, the animals that received Dose 2 significantly improved
their success rate compared with the others HMB groups.
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3.2.3. Retraining Effects in the Delayed Spatial Matching-to-Position Task

After completing delay T = 8, a retraining phase with a delay T = 1 was carried out to
analyze if retraining has some effect on learning. A GAMM was fitted to all days of the
train and retrain process adjusted by group, stage (train/retrain), and interaction between
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them, as well as a smooth curve over days by group/stage. The comparison based on
estimated success-probabilities with corresponding 95%-confidence intervals is shown in
Figure 7 organized by groups (a) and by training-stage (b). As it can be seen in the left
panel, a significant improvement of retraining over training was achieved by all groups.
During the first training, only the Dose 2 group was significantly different from the control,
while during retraining all the treatment groups had significantly higher probabilities of
success than the control group.
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4. Discussion

In the current study, the effect of HMB supplementation at different doses on cognitive
skills and electrophysiology measurements in middle-aging rodents was evaluated. We
assessed cognitive functions by an adaptation of the classic DMTP in mice to the Intel-
licages© system. The cognitive assessments were complemented by electrophysiological
measurements during the experimental induction of LTP at the hippocampal CA3-CA1
synapse in rats. The results presented in this study corroborate that oral supplementation
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with HMB improves cognitive functions and provide insights about the effective dose of
HMB on brain functionality.

The present work uses a totally automated system (IntelliCage©, NewBehavior AG,
Zurich, Switzerland) for the behavioral study. The IntelliCage® is designed for behavioral
studies that allows the assessment of animals in group, but with an individual profil-
ing [23]. Most of the home-cage systems currently available for behavioral monitoring
require to house mice in isolation [35]. However, it is showed that social isolation induced
depression-like behavior in mice [36]. In addition, the handling and/or placement of mice
in novel arenas and mazes for testing causes stress and changes in behavior. Therefore, the
monitoring of mice in a home-cage environment and the absence of human interference
during behavioral assessment could allow a greater degree of standardization of cognitive
tests in mice between laboratories [37]. DMTP is one of the most frequently employed
behavioral tasks for assessing spatial working memory in animals [38]. As far as we know,
this is the first time that the DMTP test in mice has been adapted to the IntelliCage® system,
and the protocol described here could be used in future research using this system.

Animal cognitive assessments were complemented by electrophysiological data based
on LTP measurements carried out in alert behaving rats. LTP is an experimentally evoked
process, whereby synaptic strength is rapidly increased, and the modification of synaptic
strength produced by LTP is widely thought to underlie memory storage [25].

Larger and longer lasting LTP were observed in rats supplemented with the medium
and high dose of HMB than in rats of the control group. However, the performance of
animals supplemented with the low dose was not different from control group. These data
suggest that a certain HMB concentration threshold should most likely be exceeded to
observe changes of LTP.

In the DMTP task, all the doses of HMB were somehow effective depending on
the task. In the acquisition phase (no delay, T = 0), mice learnt to associate a NP with
water reward. The task was quite difficult for the animals because mice needed 8 days to
reach the maximum learning level. In fact, during the first days the percentage of correct
results was very low for all mice, and it only started to improve after four or five days.
This result contrasts with other studies, where the mice learned within the first two days
of training [24,39]. This different performance could be due to the differences between
Intellicage© design and the Skinner boxes usually used for the classical version of the
test [40].

Mice supplemented with a low and medium dose of HMB learned the task better
than the control the first day. This result suggests that HMB was able to give a cognitive
advantage when the mice faced a complicated task for the first time. A very interesting
effect on learning speed was also detected. Mice supplemented with high and low doses of
HMB were the fastest learners. These results suggest that the cognitive effect of HMB may
follow a U-shaped dose-response curve for some cognitive abilities. However, when the
task was analyzed as a whole (Figure 6), all the doses of HMB improved the probability of
success in comparison to controls, indicating that HMB was effective at all the doses given.

During aging, some cognitive tasks that require speed of processing, executive func-
tion and working memory could be altered [1,2]. Retraining and practice may help the
adjustment and improve performance [41]. Moreover, some cognitive interventions for
dementia [42] or early rehabilitation [43] included cognitive retraining to enhance cognitive
performance. Cognitive retraining in research animals has not been widely studied. In our
opinion, it is a very interesting phenomenon to explore for nutritional interventions, given
the potential in the care of cognitive health. The present study showed that a previous cog-
nitive training in DMTP task facilitated the retraining performance. All groups, including
the control, performed better after a retraining process. However, unlike the training stage,
where animals supplemented with medium dose of HMB learned significantly better than
the rest of the groups, in the case of retraining all the supplemented groups performed better
than the control animals. Moreover, supplemented animals with the highest dose of HMB
learned better than the other groups (low and medium). This result suggests that HMB
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could also be involved in the long-term memory process. Moreover, this process seems to
be more optimal at a high HMB dose or could need a longer supplementation period.

Our results contrasts with a previous study by Munroe et al. [44] but agree with those
of Kougias, et al. [19] and Hankosky et al. [20]. Munroe et al. did not find differences
in cognitive performance between mice supplemented with HMB at 450 mg/kg BW and
controls. This discrepancy could be due to a longer time of supplementation in our study
(10 vs. 5.5 weeks) or to the type of learning analyzed. They analyzed fear-conditioned
learning (passive avoidance) and recognition-based learning (novel object recognition).
We analyzed spatial working memory in DMTP task. It was reported that DMTP test is a
sensitive assay of hippocampal function [45]. In fact, most of the studies in experimental
animals showed that damage to the hippocampus results in delay-dependent impairments
on this task, indicating an impairment in working memory [46]. Our results on hippocampal
LTP in rats supported that the positive cognitive effects of HMB could be mediated by
an increase of synaptic strengths, or complexity to the synapse diversity, evidenced by
an increased LTP [47]. With regards to Kougias, et al. [19] and Hankosky, et al. [20], we
showed that HMB affected cognitive performance at lower doses than the one used in these
two studies, and within the range of the studies showing efficacy on body composition and
muscle performance.

There is only one study in humans that has evaluated a supplement containing HMB
on cognitive performance with or without exercise in active-duty air force men. The
supplement was designed to support both muscle and cognitive performance and con-
tained not only HMB (3 g/day CaHMB) but also other nutrients able to affect cognitive
performance such as B vitamins, lutein, and DHA. The nutritional intervention improved
working memory, fluid intelligence reaction time, and processing efficiency [48]. Although
it was a multi-nutrient intervention, taking into consideration our results, HMB may be
well considered a contributor to these positive cognitive results, beyond its efficacy on
muscle health.

5. Conclusions

Overall, our findings establish the beneficial effects of oral HMB supplementation
on cognitive function and electrophysiological measurements in adult and middle aged
rodents. The results from this study suggest that some of the effects may be dose-dependent
but overall, all the doses were efficacious in one task or more. Nevertheless, this study
showed that HMB at the dose typically used for body composition and muscle performance
improved brain functionality, namely working memory, which is an important function
to be preserved during aging. However, more studies in humans are needed to translate
these results into the clinical setting. The inclusion of cognitive evaluation in future clinical
studies using HMB supplementation is encouraged.
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