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Abstract
Our practical motivation is the analysis of potential correlations between spectral noise current and threshold voltage from 
common on-wafer MOSFETs. The usual strategy leads to the use of standard techniques based on Normal linear regression 
easily accessible in all statistical software (both free or commercial). However, these statistical methods are not appropriate 
because the assumptions they lie on are not met. More sophisticated methods are required. A new strategy based on the most 
novel nonparametric techniques which are data-driven and thus free from questionable parametric assumptions is proposed. 
A backfitting algorithm accounting for random effects and nonparametric regression is designed and implemented. The 
nature of the correlation between threshold voltage and noise is examined by conducting a statistical test, which is based on 
a novel technique that summarizes in a color map all the relevant information of the data. The way the results are presented 
in the plot makes it easy for a non-expert in data analysis to understand what is underlying. The good performance of the 
method is proven through simulations and it is applied to a data case in a field where these modern statistical techniques are 
novel and result very efficient.

Keywords 1/f Noise · Backfitting algorithm · Bootstrap · MOSFET · SiZer Map · Statistical modeling

1 Introduction

In the last 50 years, the Semiconductor Industry has 
decreased the dimensions of transistors significantly to 
almost atomic dimensions with the aim of increasing the pro-
duction of transistors with time. This down-scaling strategy is 
leading to serious consequences. On the one hand, transistors 

become cheaper to manufacture, are able to work at faster 
switching rates, and consume less power. On the other hand, 
due to, among other causes, production defects, variability 
is being induced thus producing signal fluctuations, see [1] 
and [2]. These phenomena are not avoidable at all and are 
becoming more and more important for the Semiconductor 
Industry. One of the most important consequences is that the 
scaling of MOS transistors has decreased the current sig-
nals down to the level where they are not significantly higher 
than the fluctuations induced by carrier trapping phenomena, 
[3]. Therefore, a lot of effort has been made to improve the 
quality and to decrease noise inside the devices. Noise is a 
stochastic signal and unpredictable, therefore it is necessary 
to use statistical methods to analyze its behavior. Any tenta-
tive to understand the random behavior of the underlying 
phenomenon can allow to undertake further improvements, 
see [4, 5] and [6], among others. One interesting investigation 
line is to analyze the problem from a statistical perspective 
and in this sense the study of potential correlations between 
the switching threshold voltage and noise characteristics is of 
great importance, as considered in [7], and yet it has received 
little attention in the current literature.

The main concern of this paper is to explore possible 
correlations between spectral noise current and threshold 
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voltage measured on common on-wafer MOSFETs (Metal 
Oxide Semiconductor Field Effect Transistor) and to explain 
its nature. The response variable is noise power level, which 
is dominated by the flicker noise that appears in a certain 1/f 
slope in the frequency domain. The goal is to build a model 
able of quantifying the effect of the threshold voltage on 
this noise signal.

Although the literature on stochastic models for explain-
ing the random behavior of low frequency noise is not short 
(see [4, 6, 8, 9]), however there are not many studies spe-
cifically focused on the relationship noise-voltage from 
a statistical learning point of view, that is, based on data. 
This is where the statistician can get into the game with the 
aim of adapting powerful machine learning techniques that 
have been far demonstrated their efficacy both theoretic and 
practically and bringing them to this particular application 
field of Physics. The study for this paper has been developed 
based on a sample obtained as follows. For each transistor 
on the wafer, a unique measurement of threshold voltage 
is determined. However the noise is measured at different 
frequency values for each transistor. As a result, we obtain 
for each transistor various noise measurements, one for each 
fixed frequency level.

As explained in [1] to characterize a MOSFET it is very 
useful to observe the point at which the channel is filled 
with enough carriers to let an “appreciable” drain current 
flow. The characteristic switching point or gate voltage is 
called the threshold voltage ( Vth ). For the extraction of the 
threshold voltage of a transistor several methods can be 
used in practice. The data analyzed in this paper have been 
obtained by the second derivative method or trans-conduct-
ance method.

Each transistor, on a silicon wafer, has a specific threshold 
voltage which usually has a small variability. In the process-
ing of MOS Device Characterization, it is one of the most 
important and commonly used factors to characterize semi-
conductor devices, [1, 7]. The levels can vary from transistor 
to transistor. Even on the same wafer, there exist various 
threshold voltages for the transistors.

Noise is normally understood as a spontaneous fluctua-
tion in current or in voltage. Different types of noise have 
been observed in any electronic solid state device, includ-
ing semiconductors devices like MOSFETs. The flicker 
noise or 1/f noise appears mostly in the low frequency 
range, where it dominates the power density spectrum. 
This kind of noise is associated with the imperfection 
in the process of fabrication and with material defects. 
It is observed under bias conditions in all semiconductor 
devices and usually the power density spectrum has a char-
acteristic 1decade/1decade slope in the frequency domain. 
The physical origins of flicker noise are not definitively 
proven. However there exists strong evidence that 1/f noise 
is caused by the number of fluctuations of the carriers and 

not, as claimed in the past, by the mobility fluctuations of 
the carriers. The 1/f noise is then related to the random 
trapping and detrapping events of charged traps near to 
the silicon oxide surface SiO2 (see [10]).

Noise measurement of MOSFETs can be performed at 
fixed bias points, that is, applying fixed voltage or current 
signals at the gate and drain of the transistor. The meas-
urements are registered during a certain period of time, 
transformed using the Fast Fourier Transformation into 
the frequency domain, and afterward converted into the 
power density spectrum (PSD), [7]. These measurements 
require high accuracy and high resolution to determine 
the differences between the observations. Depending on 
the device, the resolution unit can be in the nano ampere 
range. The experiment providing the data analyzed here 
has been performed in the Laboratory of Nanoelectron-
ics in the Research Centre for Information and Communi-
cations Technologies (CITIC-UGR) at the University of 
Granada (Spain). Specific equipment with high require-
ments concerning the accuracy, resolution and general 
connection has been used. Afterward, original scripts in 
the programming environment R have been developed to 
implement the statistical methods proposed in this paper 
to process the data. In this paper we use modern statisti-
cal tools that work under very weak assumptions, mainly 
smoothing techniques, the backfitting algorithm and the 
bootstrap. Kernel smoothing is one of the most popular 
statistical tools for nonparametric regression. Basically 
the method predicts the output to be the weighted aver-
age of the inputs of all training subjects. The backfitting 
algorithm is widely used to approximate the additive com-
ponents in multiple regression problems such as the one 
formulated in this paper. It has long proven very good per-
formance in practical applications and despite its iterative 
nature, which makes it more difficult to derive theoretical 
results, consistency and asymptotic properties have been 
obtained under weak conditions (see for example [11]). We 
use this algorithm as an efficient tool to solve our regres-
sion problem. In this sense, our method can be considered 
a supervised learning algorithm in the usual classification 
of methods in Machine Learning, according to which a 
supervised algorithm, broadly speaking, involves building 
a statistical model for predicting, or estimating, an output 
based on one or more inputs (see [12]). The bootstrap is a 
widely applicable and extremely powerful statistical tool 
that can be used to quantify the uncertainty associated 
with a given estimator or statistical learning method. As a 
simple example, the bootstrap can be used to estimate the 
standard errors of the coefficients from a linear regression 
fit. The power of the bootstrap lies in the fact that it can be 
easily applied to a wide range of statistical learning meth-
ods, including some for which a measure of variability is 
otherwise difficult to obtain as it results in our case.
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This paper is organized as follows. Section 2 describes 
the dataset and a first approach based on classical statistics. 
In Sect. 3 our proposal to analyze the data is presented. Sec-
tion 4 gives numerical results. A useful graphic test is shown 
in Sect. 5 and finally the conclusions are in Sect. 6.

2  First approach based on the classical 
linear model

In the context of integrated circuits, a DIE is a rectangu-
lar pattern (a small block of semiconducting material) on a 
wafer that contains circuitry to perform a specific function. 
The dataset analyzed in this paper has been provided by an 
experimental study of  Wafer PH1WY107MXA4 Alias  
1D − 11 on Nanoelectronics Laboratory probe-station #2 
(SUSS PA300PSMA).

The sample units are DIEs which are physically located 
on a wafer that is cut (diced) into many pieces (cells) each 
containing one copy of the circuit. So the wafer is seen as 
a square grid where each unit occupies a cell localized in 
terms of its spatial coordinates. Figure 1 (left panel) pre-
sents the spatial arrangement of the units sampled in the grid 
(wafer). On the right panel a pictogram of the values of Vth 
measured for each DIE. Empty cells represent missing data. 
It is suspected that measures associated to adjacent cells are 
correlated and that the correlations decreases as the distance 
between cells increases. Therefore spatial autocorrelation 

could be taken into account and therefore certain geo-statis-
tical techniques are welcome. This aspect is out of the scope 
of this work and will be considered in a future research.

In this section, a first approach to the data based on clas-
sic models which rely on strong assumptions, such as nor-
mality and independence of the measurements is carried out. 
We will see that these assumptions are not met by the data 
and can lead us to wrong conclusions. In any case, we will 
have into account the results as a start point for further and 
more sophisticated analysis developed in later sections of 
this paper.

2.1  Some descriptive plots

A sample of N = 1068 observations is available. On the one 
hand, there are Noise measurements taken on-wafer at a total 
of n = 89 locations, each one containing one DIE. In the 
sequel sampled units are referred as DIEs. The Noise infor-
mation is provided in the frequency domain at three different 
levels. Specifically, it is considered Freq= 100Hz, 1000Hz, 
10000Hz. The bias conditions are fixed at four levels deter-
mined by all combinations of two values of drain and gate 
voltage, which are: Vd=0.5v, 1v, and Vg=0.5v, 1v. Therefore, 
we have in total 12 observations related to Noise for each 
item or DIE. Besides, the value of the threshold voltage Vth 
is registered for each DIE. Unlike the variable Noise, the 
variable Vth is an intrinsic feature of the item and, as such, 
there is one unique record per DIE.

Fig. 1  Left panel: Spatial location of DIEs within the wafer. Blue cells are missing data. Right panel: Pictogram of the threshold voltage Vth at 
each location in the wafer
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With respect to the Noise variable, we have, from the sta-
tistical point of view, a three-factorial design with correlated 
data (this aspect will be discussed later), as each subject is 
tested for all combinations of the levels of the three factors: 
Freq, Vd and Vg. In other words, we have a factorial repeated 
measures design, [13].

Firstly we notice that the measures of Noise are strongly 
skewed to the right, so we recommend to consider this vari-
able in the logarithmic scale. Figure 2 presents a bivariate 
trellis diagram for logNoise versus Freq and for all combi-
nations of levels of Vd and Vg. The variation in Vd does not 
seem to affect the behavior of Noise along the observations, 
or it has a small influence, which leads to think that this 
factor does not have a significant effect on the response 
Noise.

We notice a remarkable decreasing trend of Noise as 
Freq increases. In the same way, smaller values of Noise 
are related to the highest level of Vg . That is, we detect 
an inverse relationship between these two factors and the 
response, in other words, a decreasing relationship between 
Freq − Noise as well as Vg − Noise seems to be detected.

According to the graph, between-DIE variation is appar-
ent in the four combinations of factors Vd and Vg , being the 
greatest variation for the combination Vd = 1v and Vg = 1v . 
To capture the between-subject variation in all levels of fac-
tors, we include in the following section a random variable 
that represents the random effect associated to the DIEs. 
Moreover a significant difference of variation between sub-
jects can be appreciated when comparing panels displayed 
on the left side of the figure 2. The same idea is suggested 
by the two plots on the right panels. This fact indicates that 

a random effect associated with each subject modifies the 
behavior of the relationship Freq − Noise . Moreover, the 
between-subjects variation increases when the Vd (or Vg ) 
level increases from 0.5v to 1v, and also differences in the 
slopes are seen from subject to subject in all panels, thus 
confirming the existence of random effect associated to each 
individual in the sample.

2.2  Linear regression models to predict 1/f Noise

The simplest approach for predicting the value of Noise 
given a set experimental conditions is to formulate a linear 
model with fixed effects for each DIE. Specifically, the value 
of Noisei (in logarithmic scale) for the i-th sample unit, for 
i = 1, 2,… , 1068 , is expressed as

where the intercept, �0 , is the estimated logNoise for a DIE 
measured at the baseline level of factors, that is Freq=100 
Hz, Vd = Vg = 0.5 v. The rest of �-coefficients measure the 
relative change in logNoise scale when the corresponding 
covariate is considered at the levels indicated in the above 
expression. For example, the coefficient �F1000 quantifies the 
change in the response caused by changing the conditions 
from Freq = 100 Hz to Freq = 1000Hz, controlling for the 
other factors, Vd and Vg . The rest of coefficients in the model 
can be interpreted similarly. The residual term �i represents 
the random error and it is assumed to be an independent 
realization of a random Normal variable with mean 0 and 
standard deviation � (the same for all observations).

(1)logNoisei = �0 + �F1000 + �F10000 + �Vd1 + �Vg1 + �i

Fig. 2  Exploratory analysis: 
Trellis diagram
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According to the above linear model, the change in 
logNoise caused by for example an increment of Freq from 
100 to 1000 is the same for all locations in the wafer. How-
ever we have seen in the previous inspection of the data, 
that we have reasons to believe that there are differences 
between − subjects with respect to the effect that the covari-
ates have on the variable Noise. In other words, the variation 
of the value of Noise when the level of Freq is changed from 
100 to 1000 is not constant along the different DIEs. On the 
contrary, there are random effects associated with the sub-
jects (DIEs) that can modify the relationship factor-response 
from one location to another in the wafer. Therefore, the cor-
responding effect can take a specific value for each DIE, and 
the same conclusion is valid for the other factors Vd and Vg.

To confirm these insights, we fit a linear model to each 
DIE-dataset. Specifically we fit a different linear model to 
explain the effect of each factor (Freq, Vd and Vg ) on the 
logNoise variation for each individual location on the wafer. 
One model is built based on each DIE-dataset. This approach 
implies 89 × 5 = 445 parameters to be estimated.

The joint box-plot presented in Fig. 3 represents the value 
of the coefficient estimated from Eq. (1). The graphic corrobo-
rates some of the evidences suggested by Fig. 2. The Intercept 
( �0 ) represents the logNoise for the baseline level of covariates 

( Freq = 100Hz, Vd = 0.5 v, Vg = 0.5v). The remarkable vari-
ation exhibited by the values of some of the coefficients (in 
particular the intercept) suggests the existence of a random 
component associated to the subjects (DIE) that modifies the 
corresponding fixed effect. All the boxes (except the one for 
the factor Vd ) lay on negative values, this means that in gen-
eral, the Noise is decreasing as the corresponding factor takes 
higher values. It is noticeable that the coefficients correspond-
ing to Vd and Vg are near 0, which may be suggesting that these 
factors has smaller influence on the Noise variable, in other 
words, changes in Vd or Vg will have little impact in Noise.

2.3  The repeated measures ANOVA model

From a statistical point of view, a model with 445 param-
eters is too complex to be useful and on the other hand, one 
important feature of the dataset is the underlying dependence 

Fig. 3  Box-plot for coefficients 
of linear models along subjects
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Table 1  Mauchly’s test of 
sphericity

W p-value

Freq 0.719 < 0.001
Freq × Vd 0.852 < 0.001
Freq × Vg 0.852 < 0.001
Freq × Vd × Vg 0.909 0.016
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structure due to repeated measurements on each individual 
item. Then we can think of a repeated measures ANOVA 
model to fit the data. For the inference to be meaningful, 
the model must satisfy the assumption of normality of the 
residuals, and sphericity (i.e. the variance is constant for all 
differences between pairs of within-subjects measurements, 
see [13]). When violations of the sphericity assumption 
occur in designs containing repeated measures, particularly 
when compounded by non-normality, as we will see it is the 
case in this study, the classical strategy for analysis is not 
entirely clear. As the sphericity assumption becomes more 
severely violated, the traditional unadjusted within-subjects 
F test is known to perform quite poorly, with its Type I error 
rate becoming extremely inflated (see [13]).

To assess if the assumption of sphericity is met, we use 
the Mauchly’s test of sphericity, together with the estimates 
of � , [13]. From the results given in Table 1 we observe 

that all factors with more than two levels but the interaction 
between Freq and Vd show departures from sphericity. We 
confirm this by looking at the estimates of � in Table 2.

Turning to the assumption of normality of the residuals, 
we deduce the quantile-quatile plot given in Fig. 4 that the 
residuals are non-normal, so the hypothesis of the model 
are not admissible. Having the above considerations into 
account, a repeated measures ANOVA model with Gaussian 
residuals is not appropriate to fit our data.

2.4  The relationship 1/f noise vs. threshold voltage, Vth

The experimental study is mainly interested in evaluating 
the impact that the so called threshold voltage Vth has on the 
1/f noise. The threshold voltage is defined as the minimum 
gate-to-source voltage that is needed to create a conducting 
path between the source and drain terminals.

As mentioned above, the threshold voltage values are 
extracted as explained in reference [7]. It is expected that 
the values fit reasonably well a Gaussian distribution (see [7] 
and [1]). However as we show in this section, the data do not 
support this usual assumption as can be deduced from the 
results provided by the tests of normality performed using 
the corresponding functions included in the software R, [14]. 
Table 3 shows the results obtained when checking normality 
of noise measurements under all bias conditions.

Table 2  Estimates of �

𝜖 p-value 𝜖 p-value

Freq 0.781 < 0.001 0.792 < 0.001
Freq × Vd 0.871 < 0.001 0.887 < 0.001
Freq × Vg 0.871 < 0.001 0.887 < 0.001
Freq × Vd × Vg 0.917 < 0.001 0.935 < 0.001

Fig. 4  Quantile-quantile plot of 
residuals
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Besides, the same tests have been run with the Vth obser-
vations and again the conclusion is that normality is not 
accepted based on this dataset, the corresponding p-values 
reported are 0.0022 for the Shapiro-Wilk test, and, 0.013, for 
the Pearson chi-square test.

Wrong conclusions can be drawn if we base on this hypoth-
esis without corroborating it by means of the adequate statistic 
testing mechanisms. For example, a parametric least-squares fit 
with normally distributed residuals would lead to the conclu-
sion of absence of relation between Vth and 1/f noise at all bias 
conditions considered here. However, a smoothed scatterplot 
obtained by means of locally-weighted polynomial regression, 
with no parametric restrictions for the variables involved, would 
lead to the plots presented in Fig. 5. We have represented a 
separate scatterplot for each combination of bias conditions and 
frequency. In total we have 12 fits. In absence of relationship, 
no tendency should be reflected by the fitted line to each scat-
terplot, which is not the situation for all cases. So we can not 
discard the existence of a relationship between Vth and Noise of 
some nature and then we need to explore this issue from a dif-
ferent perspective, where we build a model that also quantifies 
the effect of the different levels of the factor Freq that have been 
considered in the design. Our proposal is presented in Sect. 3.

3  The supervised learning algorithm 
proposed

The data at hand come from a repeated measures design in 
which each experimental unit (e.g. DIE) is tested in more 
than one experimental condition, [13]. In general, whereas 
observations on different units are assumed independent, 
the observations on the same subject are not.

In this section we first discuss the proposed model and 
then we explain the algorithm to fit the data. Our method 

does not rely on strong parametric restrictions, on the con-
trary our method is data-driven.

3.1  The model

We describe our proposal in a generic scenario although 
the main interest is the practical implementation focused 
on the DIE dataset described in Sect. 2.

Let us consider

where

• yij are the observed responses that are related to a one-
dimensional numeric covariate X and a factor Z with levels 
Zj , j = 1, 2,… , J . For a specific subject i the value X = xi 
is observed, and the response is measured for all subjects 
at all levels of factor Z, then, yij is the response of subject 
i when tested at level Zj , i = 1, 2,… , n ; j = 1, 2,… , J;

• m(⋅) represents the fixed effect or population function. 
It quantifies the relationship between the response and 
the covariate, and it is assumed not to change across 
the levels of Z. No specific functional form for m is 
considered, the only assumption is that it is a smooth 
function in the sense of derivability.

• bj is the fixed effect coefficient of level Zj , j = 1,… , J . 
The restriction 

∑J

j=1
bj = 0 , must be met for identifi-

ability of the model.
• �i is the random effect associated to the i-th subject. 

For two different subjects, i ≠ i′ , �i y �i′ are random 
variables with mean 0 and variance �2

�
 . We assume this 

variable is specific to the subject i and it is not related 
to the particular combination of levels of the factors the 
subject is tested at.

• �ij is the component of random error or residual. It is 
associated to the subject i and also to the level Zj . They 
are assumed to be independent random variables identi-
cally distributed with mean 0. Moreover, for all i and 
j ≠ j′ , it is assumed that Cov(�ij, �ij� ) ≠ 0.

We assume that m is two times continuously differenti-
able. Then for any fixed x in a generic domain X  , m can be 
approximated by a linear function within a neighborhood of 
x by a Taylor expansion, i.e.

where we denote �0 = m(x) and �1 = m�(x) . Setting 
�i =

(
1, xi − x

)t model (2) can be approximated by the local 
linear mixed effects model

(2)yij = m(xi) + bj + �i + �ij;

m(xi) ≈ �0 + �1(xi − x)

(3)yij = �i� + bj + �i + �ij

Table 3  Normality test results for noise measurements

Factors Normality test (p-value)

Freq Vg Vd Pearson Shapiro −Wilk

100 0.5 0.5 0.0158 0.0000
1.0 0.0001 0.0000

1.0 0.5 0.0000 0.0000
1.0 0.0000 0.0000

1000 0.5 0.5 0.0058 0.0000
1.0 0.0000 0.0000

1.0 0.5 0.0000 0.0000
1.0 0.0000 0.0000

10000 0.5 0.5 0.8550 0.0019
1.0 0.8765 0.3678

1.0 0.5 0.0257 0.0000
1.0 0.0174 0.0000
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for all xi sufficiently near x, that is |xi − x| < h , for h small 
enough. The parameter h that controls the size of the interval 
around x where the linear approximation is valid is called the 
bandwidth parameter.

In this paper we propose a backfitting algorithm to 
estimate the model formulated in Eq. (3). The classical 
backfitting technique was introduced by [15] and later 
in [16] to estimate additive models. It has proven good 
performance through simulations as well as applications 
to real data problems and a complete theory for the two-
dimensional model can be found in [17] and [18] extended 
to high dimensional problems. [19] proposed a backfitting 
algorithm to fit a random-varying coefficient model based 
on longitudinal data. They used similar ideas to mixed-
effect model to account for time-varying effects as well 
as intra-subject dependence structure. The real dataset we 
are analyzing can be seen as a longitudinal study with 
the frequency-domain playing the role of time-domain 
of a typical longitudinal study. Our model is close to the 
model proposed in [19], with important discrepancies. In 
our case the covariate ( Vth ) is not a longitudinal variable, 
so that the effect of the covariate on the response do not 
vary with frequency. On the other hand, unlike the work 
of [19], the covariate is introduced in the model fully 

non-parametrically. We sketch in the following the steps 
of our algorithm.

3.2  Backfitting algorithm

Let us denote ȳ
⋅j = n−1

∑n

i=1
yij , for all j = 1, 2,… , J  ; 

ȳi⋅ = J−1
∑J

j=1
yij  ,  f o r  a l l  i = 1, 2,… , n  ;  a n d , 

ȳ
⋅⋅
= (nJ)−1

∑n

i=1

∑J

j=1
yij.

Algorithm 1 Step 1.  Initialization. Set r = 0 and define 

Step 2.  Smoothing. Put r = r + 1 , and define y(r)
ij

= yij − b
(r−1)

j

−�
(r−1)

i
 , for all i = 1,… , n and j = 1, 2, 3 . Then, esti-

mate m(x) locally by kernel smoothing. That is, for 
fixed x0 ∈ X  , find �(r)

0
= m(r)(x0) ; and, �(r)

1
=m�(r)(x

0
) 

as the minimizers of the following expression 

b
(r)

j
= ȳ

⋅j − ȳ
⋅⋅
;

𝛾
(r)

i
= ȳi⋅ − ȳ

⋅⋅
; and,

m(r)(xi) = 0.

Fig. 5  Smoothed scatterplot of 
logNoise vs. Vth for different 
bias conditions and frequency 
levels
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where Kh(⋅) = K(⋅∕h)∕h , with K(⋅) a kernel function.

Step 3.  Mixed-effects model fitting. Put r = r + 1 , and define 
y
(r)

ij
= y

ij
−m(r−1)(x

i
) , for all i = 1,… , n and j = 1, 2, 3 . 

Then fit the following mixed-effects model: 

or, in matrix notation, 

n∑
i=1

J∑
j=1

{
y
(r)

ij
− �0 − �1(xi − x0)

}2

Kh

(
xi − x0

)

y
(r)

ij
= bj + �i + �ij, i = 1,… , n; j = 1, 2, 3;

�
(r)

i
= � + �i + �i

where � = (b1, b2, b3)
t , is a vector of fixed effects, and �i 

is a random effect such that �i ∼ (0, �� ) , and the residuals 
�i ∼ (0,�i) , with �i a covariance matrix of dimension J × J . 
Then, suitable estimations can be obtained by minimizing 
the following objective function (see [20]) 

Since �� and �i are unknown, to solve the minimization prob-
lem we use linear mixed model software such as function 
lme() , see [21]. We extract the best linear unbiased predic-
tions (BLUPs) of the random effects from the fitted model, 
which are denoted � (r)

i
 for i = 1, 2,… , n , as well as the esti-

mations of the fixed effects, denoted as b(r)
j

 , j = 1, 2,… , J.

n∑
i=1

{
(�i − � − �i)�

−1
i
(�i − � − �i) + �2

i
∕�2

�

}
.

Fig. 6  Flowchart of the step-
by-step procedure given in 
Algorithm 1



 The International Journal of Advanced Manufacturing Technology

1 3

Step 4.  Convergence. Repeat Steps 2-3 until convergence, 
that is, until the difference between two consecutive 
estimations is small enough. More specifically, stop 
at the r-th iteration when 

A flowchart displaying the steps of Algorithm 1 detailed 
above is presented in Fig. 6.

3.3  Some theory

3.3.1  Asymptotic properties of the nonparametric 
estimator, m̂

Given the specifications of our model, the solution of the local-
linear smoothing problem settled in the Step 2 (smoothing) of the 
algorithm is the same as the solution of the following problem. 
Find �̂0 ; and, �̂1 as the minimizers of the following expression

where, as defined above ȳi⋅ = J−1
∑J

j=1
yij.

Now we can appeal to the theory on nonparametric esti-
mation given in [22] to establish the asymptotic properties 
of the estimator obtained. In particular, we can obtain a limit 
(asymptotic) expression of the mean squared error, that is, 
MSE(x) = E

[
m̂h(x) − m(x)

]
 , as follows.

Let f(x) denote the density function of the covariate X; m��(x) 
is the second derivative of the function m. Associated to the ker-
nel function K, let us define the following: R(K) = ∫ K2(u)du ; 
and, �2 = ∫ u2K(u)du . And finally, denote � the column vector 
of dimension J with all its components equal to 1. Then, when 
n → +∞ , the asymptotic MSE is given by

n∑
i=1

(
�m(r)(xi) − �m(r−1)(xi)

)2

n∑
i=1

�m(r−1)(xi)
2 + 10−4

< 10−4

n∑
i=1

{
ȳi⋅ − 𝛽0 − 𝛽1(xi − x0)

}2
Kh

(
xi − x0

)
,

AMSE(m̂h(x)) =
h4

4
m��(x)2�2

2
(K) +

1

nh

�tΣ�

f (x)
R(K) + o(h4 + (nh)−1)

where o(⋅) is function with the property o(t)∕t → 0 , when 
t → 0 . From this expression we can deduce the consistency 
of the estimator, which means that the estimator is closer to 
the true function as n → +∞ . The first term of the sum gives 
the asymptotic bias of the estimator, while the second one 
gives the asymptotic variance. As can be seen the choice of 
the bandwidth parameter is important to keep the balance 
between the two terms. A bandwidth h ≈ n−1∕5 will lead to 
asymptotic bias and variance of the same order, and then the 
asymptotic error of the estimator is of order o(n−4∕5).

3.3.2  The bandwidth parameter, h

One problem inherent to kernel smoothing is the appropri-
ate choice of the bandwidth or smoothing parameter h. The 
literature on the subject is very extensive and various meth-
ods compete when choosing the value of the parameter that 
provides the resulting estimator with the optimal properties 
(see for example [22] for details). The selection of the band-
width in our context will not be treated in this paper. For 
the examples that will be seen below, different options have 
been tested leading to similar results. Finally to estimate the 
curves presented in the Figs. 8 and 9 corresponding to the 
real application, as well as for estimated curves of Fig. 7 
in the simulations, plug-in bandwidth selection has been 
considered.

To avoid potential, and not desirable, influence of the 
bandwidth, in Sect. 5 we use a multiscale methodology to 
solve the contrast problem formulated there. This methodol-
ogy allows solving the problem without being conditioned 
by any concrete bandwidth.

4  Numerical results

4.1  Simulations

To prove the good performance of the algorithm we present 
next the results of a simulation study. We consider the fol-
lowing regression model:

Table 4  Simulation results Model b
1

b
2

b
3

�� Iterations

1 Average 2.230 -0.319 -1.909 0.057 19.31
SD 1.01e-2 0.96e-2 1.04e-2 0.3e-2 (12,85)
Bias 3.4e-4 1.6e-4 5.4e-4 6.8e-3

2 Average 2.248 -0.302 -1.892 0.057 115.41
SD 7.5e-3 7.1e-3 8.5e-3 3.2e-3 (84,160)
Bias 1.8e-2 1.7e-2 1.7e-2 6.7e-3
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To imitate the conditions of the real example we are con-
sidering all along this paper we simulate data under the fol-
lowing specifications. 

(4)
⎛
⎜⎜⎝

Y1
Y2
Y3

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

b1
b2
b3

⎞
⎟⎟⎠
+ m(X) + � +

⎛
⎜⎜⎝

�1
�2
�3

⎞
⎟⎟⎠

Fig. 7  Nonparametric compo-
nent of the regression model, 
m

1
(x) for Model 1 (left panel) 

and m
2
(x) Model 2 (right 

panel). For all cases, the black 
line is the true curve and the red 
line is the averaged estimated 
curve along the R = 500 simu-
lated samples
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Table 5  Semi-parametric mixed-effects model for 1/f noise dataset

Bias conditions b
100Hz b

1000Hz
b
10000Hz ��

Vd = Vg = 0.5v 1.854 -0.667 -1.781 0.295
Vd = 1 v; Vg = 0.5v 1.019 -1.218 -2.305 0.553
Vd = 0.5 v; Vg = 1v 2.282 -0.464 -1.384 0.376
Vd = Vg = 1v 1.643 -0.925 -2.5194 0.437

Fig. 8  Estimation of the 
nonparametric component 
m(x) of the mixed-effects 
model (2), using the backfitting 
algorithm for data of 1/f noise 
measurements obtained under 
bias conditions Vd = 0.5 v and 
Vg = 0.5 v, and for all Freq lev-
els. In panels from left to right: 
100Hz, 1000Hz and 10000Hz, 
respectively
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1. Fixed-effect coefficients: As true values for the param-
eters of the model we try to mimic the real application 
considered across the paper, so we take values close to 
the estimated from the dataset. That is: 

2. Random-effect coefficient: 

where the standard deviation has also been calculated 
from the data.

3. Nonparametric component:

Model 1: m1(X) = (cos(X + 3�) + 1)∕10,
Model 2: m2(X) = 6X (1 − X)

   The values of the covariate X, are generated from a 
Uniform distribution in the interval (0, 1).

4. Random noise: 
(
�1, �2, �3

)�
→ N(�,��) , with covariance 

matrix 

b1 = 2.23; b2 = −0.32; and, b3 = −1.91;

� → N(0, �� ) with �� = 0.05;

We have considered a sample of n = 100 subjects, each 
one being tested at J = 3 different experimental conditions. 
The experiment has been repeated a total of R = 500 times 
and the results are summarized in Table 4, from where it can 
be assessed the good performance of the method, in particular 
for the estimation of the parametric component of the model, 
as it is deduced for the low estimated values of bias (5) and 
standard deviation (6), which have been obtained, respectively 
as follows:

�� =

⎛
⎜⎜⎝

0.05 0.025 0.0025

0.025 0.05 0.025

0.0025 0.025 0.05

⎞
⎟⎟⎠
.

(5)Bias(b̂j) =b̂
Avg

j
− bj;

(6)SD(b̂j) =

√√√√ 1

R

R∑
r=1

(
b̂
(r)

j
− b̂

Avg

j

)2

Fig. 9  Estimation of the nonpar-
ametric component m(x) of the 
mixed-effects model (2), using 
the backfitting algorithm for 
data of 1/f noise measurements 
obtained under bias conditions 
Vd = 1 v and Vg = 0.5 v, and for 
all Freq levels. In panels from 
left to right: 100Hz, 1000Hz 
and 10000Hz, respectively

0.35 0.40 0.45 0.50

−2
6

−2
4

−2
2

−2
0

0.35 0.40 0.45 0.50

−2
6

−2
4

−2
2

−2
0

0.35 0.40 0.45 0.50

−2
6

−2
4

−2
2

−2
0



The International Journal of Advanced Manufacturing Technology 

1 3

where b̂Avg
j

=
1

R

∑R

r=1
b̂
(r)

j

To assess the accuracy of the estimation of the nonpara-
metric component of the model, that is m1 for model 1 and 
m2 for model 2, we have considered for x point the average 
value of the estimated curve along the R samples, that is,  
we calculate

where m̂(r)

k
(x) is the estimate based on the r-th sample, for 

x ∈ (0, 1) , and k = 1, 2 . The reported estimated errors for the 
two models considered have been 5.8e-4 for Model 1; and 
1.6e-4 for Model 2.

Figure 7 shows the accuracy of the estimate with respect 
to the true curves. For each graph in the figure, the black 
solid line represents the corresponding true curve consid-
ered in the model (left panel for Model 1 and right panel 
for Model 2), and the black dotted line is the corresponding 
averaged estimated curve.

m̂
Avg

k
(x) =

1

R

R∑
r=1

m̂
(r)

k
(x),

4.2  Real dataset

In this section we apply the backfitting algorithm defined 
in Sect. 3.2 to the dataset consisting of noise measurements 
observed on a wafer as described in Sect. 2. As explained 
previously, the wafer is divided in n = 89 DIEs and each one 
has been tested four combinations of gate voltage and drain 
voltage, and three different levels of frequency. The variable 
response is the noise measured on the DIE in logarithmic 
scale, Y. We have considered the data for each combina-
tion of drain voltage ( Vd ) and gate voltage ( Vg ), so we have 
4 different sub-samples of size 267 each. We have run the 
algorithm separately for each sub-sample and the results 
obtained for all cases have been compared. It is supposed 
that the response Y depends on one covariate X = Vth , and 
one factor Z = Frequency . Besides, we consider a random 
term in the model specified by each particular subject or 
DIE.

The semi-parametric mixed-effects model of Eq. 
(2) has been fitted to the data separately for the four 

Fig. 10  Estimation of the 
nonparametric component 
m(x) of the mixed-effects 
model (2), using the backfitting 
algorithm for data of 1/f noise 
measurements obtained under 
bias conditions Vd = 0.5 v and 
Vg = 1 v, and for all Freq levels. 
In panels from left to right: 
100Hz, 1000Hz and 10000Hz, 
respectively
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sub-samples that are determined by the different bias con-
ditions: Vd = Vg = 0.5 v (Fig. 8), Vd = 1 , Vg = 0.5 v (Fig. 9), 
Vd = 0.5 v, Vg = 1 v (Fig. 10), Vd = 1 v, Vg = 1 v (Fig. 11). The  
estimations of the parameters involved in the model are 
given in Table 5. In concrete, columns 1-3 give the estimated  
components of the fixed-effect parameter vector due to the 
different levels of the factor Z; and, column 4 gives the esti-
mation of the standard deviation of the random-effect term 
induced by the different DIEs, that is ��.

The results regarding the nonparametric component of 
the mixed model are displayed in Figs. 8-11, where it is 
represented the final estimation of the function m(x) for 
all the four samples obtained at different bias conditions. 
Figure 8, displays the fixed effect function m fitted plus the 
corresponding fixed effect due to each level of the factor 
Z = Frequency , i.e. � . From left to right, it is represented, 
for each value of the covariate Vth , the estimated value of the 
nonparametric component plus the corresponding estima-
tion of the bj coefficient, for j = 1, 2, 3 . The left panel repre-
sents, in all Figs. 8-11, the obtained estimation for Z = 100

Hz; the middle panel gives the result for Z = 1000Hz; and, 
the right panel gives the result for Z = 10000Hz. As can be 
appreciated from the estimations in Table 5, and the cor-
responding figures when the DIEs are working under gate 
voltage Vg = 1 v, the measured noise values increase as well 
as the variability. Also the estimated nonparametric com-
ponent, which controls the effect of the threshold voltage 
on the noise reported presents certain curvature indicating 
a change of trend. In particular, in Fig.  11 that displays the 
results for the DIEs working at a drain voltage Vd = 1 v, the 
curve seems to describe an increasing tendency, meaning 
that the higher the switching threshold voltage the higher 
noise power level produced by the signal. It is important 
to remember that these graphs are made using a unique 
estimation of the curve (that is only one h value), because 
of that the result it is not determinant. In Sect. 5 below we 
discuss this question more in depth, using the graphical 
sizer map tool. This tool makes inference to detect what 
characteristics the function actually has. If there is a statisti-
cally significant increase or decrease.

Fig. 11  Estimation of the 
nonparametric component 
m(x) of the mixed-effects 
model (2), using the backfitting 
algorithm for data of 1/f noise 
measurements obtained under 
bias conditions Vd = 1 v and 
Vg = 1 v, and for all Freq levels. 
In panels from left to right: 
100Hz, 1000Hz and 10000Hz, 
respectively
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5  Model evaluation based on bootstrap 
methods and the SiZer tool

We are interested in solving hypothesis testing in order to 
assess the significance of the main effects. Since our main 
interest is in evaluating the relationship 1/f noise versus thresh-
old voltage, Vth

 , then we are mainly interested in solving the 
following testing problem whose null hypothesis is settled as

where we denote x any value of Vth whose support is X  . 
The null hypothesis of Eq. (7) asserts that voltage has no 
effect on noise power level against the alternative that there 
are regions of non null slope, thus implying a significant 
effect. To solve this testing problem we propose the use of 
the graphic tool SiZer Map, see for example [23] to have a 
detailed description of the SiZer methodology.

SiZer stands for significant zero crossings of the deriva-
tives and was introduced by [24] as a powerful exploratory 
graphical tool for density and regression functions. This tool 
uses kernel smoothing to estimate the structure that under-
lies the data and plays with the smoothing parameter as a 

(7)H0 ∶ m�(x) = 0,∀x ∈ X;

scale parameter to visualize the underlying characteristics 
in the function under study. The characteristics that are not 
explained by the sample variability, are revealed through the 
construction of confidence intervals for the first derivative of 
the function. The main idea of SiZer is to consider the full 
family of smooths because the estimated curves under dif-
ferent smoothing scales might provide different information 
on the variation of the curve.

SiZer methodology relies mainly in a plot that is called 
the gradient SiZer map. First a family of smooth estimators 
of the target function indexed by the bandwidth parameter is 
obtained. Second, for gradient SiZer map that displays infer-
ence about the first derivative of the curve is developed as 
follows: for each bandwidth and each value in the support of 
the curve, a confidence interval for the first derivative is cal-
culated and the sign of the interval is represented on the map 
using a color code. Considering nh different bandwidths and 
nx estimation points, each pixel in the ( nx × nh)-map is coded 
as red if the confidence interval at that estimation point is 
negative, indicating significant decrease; blue if the con-
fidence interval is positive, indicating significant increase; 
purple if zero is within the confidence limits (no significant 

Fig. 12  SiZer map based on the 
sample of DIEs at bias condi-
tions Vd = Vg = 0.5v
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increase or decrease); and gray indicating regions where the 
data are too sparse to infer significance. When a change from 
blue (red) to red (blue) is detected in the map it means that 
the underlying curve presents a significant peak (valley) and 
then the function has a local maximum (minimum).

5.1  The SiZer Map Algorithm

In this section we propose to graphically test whether there 
is a significant effect of switching voltage on the noise 
observed in a transistor. The graphical test is based on scale 
and space inference and is outlined in the following (see 
[24] and [23] for details). For a given h bandwidth and a 
given value x we construct the estimator detailed in Sect. 3, 
then we obtain an estimation of the derivative m̂�(x) . To 
develop the SiZer methodology we need to construct con-
fidence intervals around m�(x) , and then we need an esti-
mation of the variability of the estimator of the slope. We 
propose a bootstrap procedure for estimating the variance 
of m̂�(x).

Fix a value � ∈ (0, 1) and let z�∕2 the quantile of order 
1 − �∕2 of the Normal(0,1) distribution. For a given band-
width h and a given value x, construct the local-linear 
estimate of the slope at point x, m�(x) , that is, obtain the 
corresponding �̂1,h(x) = m̂�

h
(x) , as explained in Sect. 3.2. 

Then construct the confidence interval (CI) for the slope 
at point x with a confidence level of 1 − � following the 
algorithm below.

Algorithm 2 Step 1.  Run Algorithm 1 to obtain the local-
linear estimation m̂h(xi) at each 
observation point xi , and compute the 
residuals �ij = yij − m̂(xi) − b̂j − �̂i , 
for i = 1,… , n ; and, j = 1, 2, 3;

Step 2.  Randomly draw residuals following [25], and obtain 
�∗
ij
 (bootstrap residuals);

Step 3.  Use the re-sampled residuals to generate new 
response vectors from the predicted values of the  
fitted model. That is, define: y∗

ij
= yij + �∗

ij
 , for 

i = 1, 2,… , n and j = 1, 2,… , J;
Step 4.  For each bootstrap sample {y∗ij} , fit a regression 

model as in Sect. 3.2, and also obtain the estimation 
of the slope at point x, that is m̂�

h
(x)(1);

Step 5.  Repeat steps 1-4, a total of R times. As a result, 
obtain a sample m̂�

h
(x)(1), m̂�

h
(x)(2),… , m̂�

h
(x)(R) , for the 

fixed values x, and h;
Step 6.  Define the bootstrap standard deviation of the esti-

mator of the slope at x as �boot,h(x) calculated as the 
empirical standard deviation of bootstrap sample of 

Fig. 13  SiZer map based on the 
sample of DIEs at bias condi-
tions Vd = 1 v, Vg = 0.5v

0.36 0.38 0.40 0.42 0.44 0.46 0.48

−3
.0

−2
.5

−2
.0

−1
.5



The International Journal of Advanced Manufacturing Technology 

1 3

slope values, and define the bootstrap CI at level of 
confidence of 1 − � as: 

 for x and h fixed.

Define a grid with a total of nx locations, that is values  
of x, and a grid of bandwidths h of size nh and construct the 
SiZer Map following the color code explained above.

Figures 12-15 show the sizer map graphs corresponding to 
the results obtained for the data on noise 1/f, in Figs. 8-11. On 
the y-axis, h is represented on a logarithmic scale. Figure 12 
displays a clear region of red pixels which means a decreas-
ing trend of the noise power level with the value of voltage 
at least for the intermediate values. In this case, we cannot 
keep the assertion in H0

 given in Eq. (7) which is rejected, in 
consequence, we conclude that, at this bias condition, there 
is a positive correlation between threshold voltage and noise 
power level. This graph clearly corresponds with the charac-
teristics we can notice in Figure 8.

Figure 13 shows a map completely purple, which means 
that no regions in the support of Vth

 have been found where 
the slope can be rejected to be 0, that is, no features are 

(
m̂�

h
(x) − z�∕2�boot,h(x), m̂

�
h
(x) + z�∕2�boot,h(x)

)
,

detected at any location (x) or scale (h). The null hypoth-
esis in Eq. (7) cannot be rejected with the data at hand. 
The conclusion is that at these bias conditions, i.e. Vd = 1 v, 
Vg = 0.5 v, the threshold voltage does not have any influence 
in the noise registered. Again, this case is in well concord-
ance with the plot seen in Fig. 9.

However, the results displayed in Figs. 14 and 15 seems to 
contradict the ones observed in Figs. 10 and 11. The two SiZer 
maps suggest that the relationship voltage-noise is first increas-
ing and later decreasing, since we appreciate a clear change from 
blue to red in both figures. This change of trend is also appreci-
ated in Figs. 10 and 11, but there we can also see that the curve 
in both cases tends to increase on the right edge of the plot, 
suggesting that the noise power level is increasing for the high-
est threshold voltages. After a deeper examination of the plots 
in Figs. 10 and 11, we see that this increasing tendency in both 
curves is only supported by two data points in each case, we can 
justify the increase by a mere boundary effect and not by a true 
characteristic of the curve. This reasoning is confirmed looking 
at the corresponding SiZer maps in Figs. 14 and 15 where we 
see that a gray region is plotted on the right edge of the map, 
revealing that the sparse of data on that region does not allow 
us to get any clear conclusion about the behavior of the curve 
there. So, in these two cases, the only change of tendency of 

Fig. 14  SiZer map based on the 
sample of DIEs at bias condi-
tions Vd = 0.5 v, Vg = 1v
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the relationship voltage-noise is the change from increasing to 
decreasing which is clearly reflected in the corresponding SiZer 
maps as well as in Figs. 10 and 11, where a unique estimation of 
the curve (that is only one h value) is considered.

6  Conclusion

Our motivation for this paper is the analysis of potential 
correlations between spectral noise current and threshold 
voltage measured on common on-wafer MOSFETs. A deep 
exploratory analysis of the data reveals that it is inappropri-
ate to assume the assumptions that hold the classical Normal 
linear model nor the ANOVA version that allows accounting 
for dependency structures resulting from a repeated meas-
ures design. More sophisticated methods have been required 
to properly analyze the data and reach reliable conclusions. 
We have designed and run an algorithm based on modern 
nonparametric statistics and graphical tools that help in the 
interpretation and understanding of the nature of the data. 
In particular we have built a mixed-effect model with a non-
parametric component to explain the main relationship of the 
model that is the effect of threshold voltage Vth on spectral 
noise current, Noise which is considered in the frequency 
domain. Our method is an adaptation of the backfitting 

algorithm to our particular requirements. Afterwords, we 
have proposed graphical test developed through scale and 
space inference about the slope of the nonparametric com-
ponent of the model. Punctual confidence intervals have 
been constructed around the curve and for different levels 
of smoothing (bandwidths). The graphical representation 
allows one to detect and confirm regions where the relation 
between the two magnitudes, Vth

 and Noise, is increasing, 
decreasing or nonexistent. For the four datasets considered 
the results obtained reflect different behaviors of the vari-
able Noise with respect to the variable Vth depending on the 
particular combination of the bias condition considered. The 
noise data analyzed in the manuscript correspond to MOS-
FET transistors at low frequencies. For these devices and in 
this frequency range, the main noise source is flicker noise 
or 1/f noise. For higher frequencies, thermal noise could 
also be important [1]. On the contrary, transit time noise and 
partition noise are usually noise sources more important for 
other types of devices and at higher frequencies. We expect 
that the contribution of transit time noise or partition noise 
to the data used in the present study is totally negligible [26].

Although there are important contributions in the recent 
literature for explaining the random behavior of low frequency 
noise, to our knowledge there are not many studies specifically 
focused on the relationship noise-voltage from a statistical 

Fig. 15  SiZer map based on the 
sample of DIEs at bias condi-
tions Vd = Vg = 1v
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learning point of view, that is, based on data [7]. This is where 
the statistician can be of great help in order to customize pow-
erful machine learning techniques making them useful to solve 
problems in particular in this area of Electronic Engineering.
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