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Simple Summary: The rapid increase in consumer demand for foods rich in beneficial health effects
pushes the manufacturing industries to identify molecules that can contribute to food quality in
terms of nutritional values, stability, safety, and health benefits. Longevity is associated with healthy
food intake, and consumers want to be aware of the nature of the molecules present in their food or,
even better, of the molecules contributing to the enrichment of their food. Furthermore, the use of
industrial food processes that tend to protect the environment are a further factor that contributes to
the consumer’s interest.

Abstract: The aim of the present work is the characterization of biscuit doughs enriched with
pomegranate peel powder (PPP) at 3 (PPP3) and 5 (PPP5) wt% in the prospect of developing a
fortified aliment as a support of the therapy of chronic inflammatory diseases of the intestinal tract.
The total phenolic content of the powder was preliminarily evaluated. Then, the main compounds
present in the PPP were identified by HPLC-ESI-TOF-MS analysis, being mainly hydrolysable tannins.
The PPP was then treated at 180 ◦C for 20 min to mimic the baking treatment, and its water-soluble
fraction (PPPwsf) was then added in the Caco-2 cell culture as a model of the intestinal epithelial
barrier to verify its dose-dependent toxicity, ability in counteracting the oxidative stress, and anti-
inflammatory action. Rheological experiments were performed to predict the macroscopic behavior
of the PPP-added doughs during lamination and biscuit baking. SEM investigations gave their
contribution to the microscopic comprehension of the dough structure. Finally, a consumer panel
composed by thirty volunteers was enrolled to express its opinion on the sensory agreeableness of
the biscuits prepared with two different concentrations of PPP compared with the reference dough.
The discussion is focused on the biological effects of the main components found in the PPP.
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1. Introduction

The excessive amount of food loss and waste strongly impacts the agriculture and
climate change, being the major source of the community’s solid wastes [1]. In fact, the
accumulation of wastes in landfills, in addition to requiring even larger spaces, causes
the release of methane gas produced by microorganisms during the anaerobic digestion
of the compostable by-products. On one hand, this process has in the past opened the
route to the recycling of biogas; on the other hand, if not well managed, it is 84 times more
responsible for global warming emissions than the carbon dioxide [1,2]. Wastes derived
from fruits primarily contain cellulosic residues and, for this reason, they are the favorite
substrate in the anaerobic process for biogas production [1]. Thus, reducing and recycling
food by-products is important for the environment, the agriculture, and the recovery of the
spaces destined for landfills.

Over the last decades, customers have been requesting healthy food containing active
ingredients to delay aging and prevent diseases. Thus, while the scientific research is illus-
trating their beneficial properties [3–5], introducing the concept of “food as a medicine” [6],
enriched and fortified foods have made their appearance on the market shelves. It is worth
noting that the term “enriched food” indicates alimentary products in which elements
that are originally present in the raw materials but are lost or deteriorated during process-
ing have been added, while the term “fortified food” identifies foods in which bioactive
molecules, such as many phytocompounds, not present in the original ingredients, have
been introduced. Most of the success of phytocompounds comes from their antioxidant
properties. These molecules have the ability to neutralize or quench the chemical reac-
tions, leading to free radical production. The intake of foods containing these molecules
helps to reduce inflammatory processes, improving lipid profiles and reducing the risk of
chronic disease. Furthermore, phytocompounds present in many agri-food by-products
still possess relevant functional biological activities [7,8] that contribute in the treatment of
neurodegeneration [9], metabolic syndrome [10], cardiovascular diseases [11], cancer [12],
and against virus-related infections [13]. Antimicrobial properties have also been found in
food waste from citrus waste [14,15].

Longevity is associated with healthy food intake, and recent research in vitro and
in vivo have demonstrated that the length of telomers, which directly affect the lifespan, is
deeply modified by antioxidant treatment [16,17].

Thus, today the consumers want to be aware of the nature of the molecules present in
their food or, better yet, to know the bioactive molecules that make food a healthy food.

Pomegranate (Punica granatum L.) is a small plant belonging to the Punicaceae family,
originally cultivated in India and Iran, from where cultivation later extended to the entire
Mediterranean basin. The edible part of the fruit corresponds to about 40% of the total
weight, while the seeds and peel account for 10 and 50%, respectively [18]. The plant
has been appreciated since ancient times for its effects on human health. It has also been
mentioned in the Bible as a sacred fruit capable of bestowing luck, health, and fertility [19].

Pomegranate exhibits potent antioxidant, antibacterial, antifungal, antimicrobial, and
antihypertensive effects [20–24]. It has also been reported that pomegranates contribute to
the lowering of the blood lipid levels [25] and have significant antitumor activity, particu-
larly against prostatic cancer [26].

The aim of the present work is to study the biological effects of the addition of the
pomegranate peel powder (PPP) in the dough prepared for biscuits. Recent studies have
illustrated the potential of fortified biscuits. The partial replacement of fats of animal
origin or margarine, used in the original recipes of Italian Cantuccini biscuits with extra
virgin olive oil, has allowed for the greater stability of the product during storage [5]. The
addition of the byproduct obtained from instant coffee to the biscuit dough seems to be



Biology 2022, 11, 416 3 of 17

recommended for obese or diabetic patients as a low-fat food [3]. Opuntia ficus-indica L.
peel flour was a successful partial substitute for sugar and gluten in the preparation of
biscuits, increasing their content of bioactive molecules, fibers, and textural properties [4].
A comprehensive discussion regarding the incorporation of nutraceutical ingredients in
baked food can be found in Hayta and Polat, 2014 [6].

In the present study, the total phenolic content of the PPP obtained from a biological
farm was initially evaluated. Then, the single compounds present in the alcoholic fraction
of PPP, treated at 180 ◦C for 20 min to simulate the baking treatment, were identified by
HPLC-ESI-TOF-MS analysis as belonging prevalently to the hydrolysable tannin chemical
class. The PPP water-soluble fraction (PPPwsf) was then added in the Caco-2 cell culture
as a model of the intestinal epithelial barrier to verify its dose-dependent toxicity, ability
in counteracting the oxidative stress, and anti-inflammatory action. Rheological and SEM
experiments gave their contribution to predict the macroscopic behavior of the PPP-added
doughs during lamination and baking and to the microscopic comprehension of the dough
structure, respectively. Finally, a consumer panel composed of thirty volunteers was
enrolled to express its opinion on the sensory agreeableness on the biscuits prepared with
two different concentrations of PPP compared with the reference dough.

2. Materials and Methods
2.1. Materials

The pomegranate peel powder was purchased from Packtin, s.r.l. (Reggio Emilia,
IT). The plants from which the powder was obtained belong to the Wonderful and Ako
cultivars, with an average age of 10 years, grown in organic farming. Fertilizers with very
similar values of potassium, phosphorus, and nitrogen (20 g per plant every 2 months)
were used. The soil was drained to avoid stagnation. Once produced, the PPP was stored
up to 18 months in a cool and dry place.

Nitric acid was purchased from Merck (Darmstadt, Germany). Methanol, acetonitrile,
2-propanol were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Folin–
Ciocalteu solution, sodium carbonate, gallic acid, methanol (HPLC grade), acetonitrile
(LC-MS grade), phosphoric acid 85%, Luperox® TBH70X tert-butyl hydroperoxide solution
(TBH) and 20,70-dichlorodihydrofluorescein diacetate (DCFH-DA) were purchased from
Sigma–Aldrich (Milan, Italy). The chemicals and solvents were analytical grade reagents
or LC-MS grade. CellTiter 96® Aqueous One Solution Assay (MTS) was purchased from
Promega (Milan, Italy). The water used in all experiments was obtained from Millipore
Milli-Q (Millipore, Bedford, MA, USA). All sample solutions were stored at −20 ◦C until
analysis and were used within three days of preparation.

2.2. Biological Evaluation
2.2.1. Total Phenolic Content

A conventional solid–liquid extraction was used to evaluate the biophenols contained
in PPP before and after its thermal treatment at 180 ◦C for 20 min. A total of 3 g of the
sample was added with 30 mL of 80:20 ethanol:water extraction solvent, kept for 30 min
and decanted. The supernatant phase was magnetically stirred at room temperature
for 1 h. Then, the suspensions were centrifuged at a relative centrifugal force (RCF) of
12,499 for 15 min at 4 ◦C in a Sorvall ST 16 R centrifuge (Thermo Scientific, Leicestershire,
UK) and the supernatants dried at 35 ◦C in the Savan SC250EXP Speed-Vac (Thermo
Scientific, Leicestershire, UK). The total phenolic amount present was measured by the
Folin–Ciocalteu assay in agreement with Hrncirik and Frische [27]. The flavonoid content
was determined as described in [28]. The extraction procedure was carried out in triplicate.

2.2.2. HPLC-ESI-TOF-MS Analysis

PPP was treated as described in [28]. The gradient elution for resolving the PPP
compounds was as follows: initial conditions 5% v/v B; 5 min, 15% v/v B; 10 min, 20% v/v
B; 14 min, 22% v/v B; 17 min, 24% v/v B; 20 min, 26% v/v B; 23 min, 29% v/v B; 25 min,
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55% v/v B; 32 min, 95% v/v B; 35 min, 5% v/v B; 40 min, 5% v/v B. The flow rate of mobile
phase was 0.5 mL/min. The temperature of the column was maintained at 25 ◦C and the
injection volume was 10 µL.

Detection was performed as in [28].
Data acquisition and processing for chemical characterization of PPP were controlled

with HyStar 3.2 and Data Analysis 4.0 software, respectively (Bruker Daltonics, Bremen,
Germany). The compound identification was done by using the molecular formula pro-
vided through parallel verification of software, literature information [29], and a database
such as SciFinder, Scopus, or SciDirect.

2.2.3. Extraction of Pomegranate Peel Powder Water-Soluble Fraction (PPPwsf)

PPPwsf was obtained from PPP after thermal treatment at 180 ◦C for 20 min by
dissolving 10 mg of PPP in 1 mL of PBS buffer (pH = 7.4; 137 mM NaCl, 2.7 mM KCl,
8 mM Na3PO4). The suspension was sonicated twice in an ultrasonic bath at 59 kHz and
198 W for 30 s and magnetically stirred for two hours at room temperature. The insoluble
fraction was removed after centrifugation at 2500 rpm for 15 min at 4 ◦C and resulted in
about 55 wt% of the total weight of the sample and mainly consisted of fibers, proteins,
and ash [30]. The collected supernatant was filtered (0.45 µm Sartorius filter), aliquoted
(1 mL/vial), and stored at −20 ◦C for further analyses.

2.2.4. Cell Cultures and Treatment

Caco-2 cells were cultured in T25 tissue culture flasks in DMEM (Corning) were used,
supplemented with 10% v/v fetal bovine serum (FBS), 100 U/mL penicillin and 100 U/mL
streptomycin (Sigma) and 2 mM l-glutamine in humidified atmosphere of 95% v/v air and
5% v/v CO2 at 37 C. Caco-2 cells were allowed to grow to confluence and were immediately
used, undifferentiated, for biological experiments.

2.2.5. Cell Viability and Morphology

Cells cultures and viability were performed as reported in [28]. Reported viability
data were obtained as the percentage with respect to the control value. The PPPwsf toxicity
evaluation was done by plating the cells in a 96-well and treating them with 100 µg/mL,
200 µg/mL, 400 µg/mL, 500 µg/mL of PPPwsf (hereafter identified as PPPwsf100, PPP-
wsf200, PPPwsf400, and PPPwsf500) for 24 h. In the control set, an equal volume of PBS was
added. For the morphological analysis, cells were grown at a density of 5 × 103 cell/well
on a 96-well plate in a final volume of 100 µL/well and were washed twice with PBS.
The cellular images were obtained using a Zeiss Axio Scope 2 microscope (Carl Zeiss,
Oberkochen, Germany).

2.2.6. PPPwsf Effect against ROS

The oxidative stress was generated by an addition of 2 mM of tert-butyl hydroperoxide
(TBH, Luperox® TBH70X, Merck). The stimulation was conducted for 24 h, alone and in
mixture with PPPwsf. The control groups (Control) received an equal volume of PBS. Then,
each sample was added to 100 µM of DCFH-DA (Abcam, Italy) and placed in the dark for
10 min at 37 ◦C. After washing twice with PBS, cells were analyzed using a fluorimeter
Microplate Reader GloMax (Promega Corporation, Italy) at the excitation and emission
wavelengths of 475 nm and 530 nm, respectively. Results were expressed as a fluorescence
intensity.

2.2.7. Genotoxicity Assay

To determinate the genotoxicity of PPPwsf, the cells were incubated for 24 h with the
extracts at different concentrations. At the end of the experiment, the medium was removed,
and cells were washed twice with PBS and subsequently stained with acridine orange/PBS
solution (Merck, Italy) at 100 µg/mL for 10 min in the dark at room temperature. After
three washes in PBS solution, the cells were analyzed using a fluorimeter Microplate Reader
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GloMax (Promega Corporation, Italy) at the excitation wavelength of 475 nm and emission
wavelengths 526 nm and 650 nm for single-stranded DNA (ssDNA) and double-stranded
DNA (dsDNA), respectively. Results were expressed as the dsDNA/ssDNA fluorescence
intensity ratio using the control fluorescence intensity as reference. Cell fluorescence was
also visualized using the fluorescence microscope Zeiss Axio Scope 2 microscope (Carl
Zeiss, Germany). TBH at a concentration of 2 mM was used as a positive control.

2.2.8. Immunological Tests

The peripheral blood mononuclear cells (PBMCs) were isolated from 5 mL of ve-
nous blood collected early in the morning from five healthy donors with an age range
of 40–45 years old (Ethics Committee number 8/2021, 15 September 2021). PBMCs were
isolated from heparinized blood by Lymphosep (Biowest) and cultured at a concentra-
tion of 3 × 105/mL cells in a 24-well, flat-bottom plate in complete RPMI 1640 medium
supplemented with 10% FBS, 2 mM glutamine, and 100 U/mL penicillin/streptomycin at
37 ◦C. PBMCs were not treated (control) or were 4-h treated with PPPwsf at a concentration
of 200 µg/mL with or without lipopolysaccharide (LPS) at a concentration of 1 µg/mL.
At the end of the treatment, the cells were collected for RNA extraction and the super-
natant was submitted to IL1β Enzyme-Linked Immunosorbent Sandwich Assay–ELISA
(Sigma–Aldrich) according to manufacturer instruction.

2.2.9. Quantitative Real-Time qPCR

Total RNA was extracted using High Pure RNA Isolation Kit (Roche). One µg of RNA
was used to synthesize the cDNA using iScript cDNA Synthesis Kit (Bio-Rad). Synthesized
cDNAs were amplified using SsoAdvanced Universal SYBER Green Supermix (Bio-Rad)
by StepOne Real-Time instrument (Applied Biosystem). Gene expression validation was
performed using home-made sequence primers for human TNFα, Interleukin 1 beta (IL-1β),
Interleukin 8 (IL-8), and β-actin (Table 1). Gene expression was normalized to β-actin. The
relative expression levels of RNA were calculated by StepOne™ software by using the
comparative CT (∆∆CT) quantitation method.

Table 1. Oligonucleotides sequences of forward and reverse primers used in PCR real time.

Items Forward Reverse

TNFα 5′-CCTCTCTCTAATCAGCCCTCTG-3′ 5′-GAGGACCTGGGAGTAGATGAG-3′

L-1β 5′-CCTGTCCTGCGTGTTGAAAGA-3′ 5′-GGGAACTGGGCAGACTCAAA-3′

L-8 5′-ATGACTTCCAAGCTGGCCGTGGCT-3′ 5′-TCTCAGCCCTCTTCAAAAACTTCTC-3′

β-actin 5′-CATGTACGTTGCTATCCAGGC-3′ 5′-CTCCTTAATGCTACGCACGAT-3′

2.2.10. Statistical Analysis

All values reported were obtained as the mean of at least three independent experi-
ments ± standard errors (SE). Results were compared using one-way analysis of variance
with pairwise comparisons among treatments made using t-test. The analyses were per-
formed using the SigmaPlot 11.0 statistical program (Systat Softwar, San Jose, CA, USA).
Results were considered statistically significant at p < 0.05.

2.3. Biscuit Dough Preparation and Characterization
2.3.1. Biscuits Composition and Preparation

The biscuits were produced by a local company (“Natisani s.r.l.”, Palermo, Italy)
producing food for celiac subjects. Dough ingredients in descending amount were rice
flour, potato starch and modified potato starch (51%), sucrose (18.4%), vegetable margarine
(10.5%), egg (9%), water (7.5%), glucose powder (2.3), locust bean gum and guar gum
(1%), and baking powder (0.3%). The chemical composition, as indicated by the producer
company, was carbohydrates 64 wt%, fats 12 wt%, proteins 4.5 wt%, fibers 2 wt%, and
minerals 0.15 wt%.
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The biscuits were prepared as follows: as a first step, rice flour, starches, sucrose,
glucose powder, water, locust bean gum, and guar gum were mixed in the planetary. Then,
margarine and baking powder were added. Finally, eggs were added to the dough. Mixing
was continued until a homogeneous mixture was obtained. The dough was kept for 1 h at
4 ◦C before being used.

PPP was added at a concentration of 3 wt% and 5 wt% instead of the rice flour ingre-
dient and indicated as PPP3 and PPP5, respectively. The blank reference dough indicated
as BD. For the biscuit preparation, the doughs were kept in the oven at a temperature of
180 ◦C for 20 min. After baking, the biscuit dimensions were 0.7 cm thickness and 4.5 cm
diameter.

2.3.2. Rheological Measurements

Dynamic tests were carried out on the fresh raw doughs using an AR-G2 (TA In-
struments, New Castels, DE, USA) rheometer equipped with an acrylic plate geometry
(diameter: 40 mm, gap height ranging from 2500 to 4000 µm) at a temperature of 25 ± 0.1 ◦C,
controlled with a built-in Peltier system. The strain sweep measurements were performed
at constant frequency (1 Hz) in the strain range 5 × 10−6 ÷ 1. The frequency sweeps
were performed in the LVE region at constant strain (8 × 10−5) in the frequency range
0.02 ÷ 100 Hz.

2.3.3. SEM Morphological Analysis

Fresh raw dough microstructures were investigated using a Field Emission Scanning
Electron Microscope (SEM) Phenom ProX desktop at an accelerating voltage of 15 kV. The
samples were frozen at −20 ◦C, freeze-dried, mounted on aluminum stubs, and were gold
coated by JFC-1300 gold coater (JEOL) for 120 s at 30 mA before scanning.

2.3.4. Panel Test

Thirty volunteer subjects, trained in the use of the sensory profiles method, were
enrolled for the sensory characterization of the biscuits obtained with the blank dough
and the doughs containing PPP3 and PPP5 [19]. Panel members (60% women and 40%
men) were aged between 20 and 65; 2 were smokers; 8 were researchers, 12 laboratory
technicians, 6 employers, and 4 PhD students. The blind panel expressed its opinion on the
tested products through the evaluation of nine different descriptors (color, smell, sweetness,
sapidity, compactness, friability, crunchiness, adhesion to the palate, and persistence of
flavor), weighing the appearance, the flavor and the chewiness of the products. The
evaluation was done by giving a score from 1 (very low intensity) to 5 (very high intensity)
for each descriptor.

3. Results
3.1. Total Phenolic Content

The total phenolic content was preliminarily evaluated in the PPP. Results (Table 2)
indicated that the PPP is highly rich in antioxidant molecules. It should be noted that
the extra virgin olive oils, particularly appreciated for their phenolic content, contain
between 200 and 800 mg/kg of these molecules, being this value is strongly affected by
several parameters, such as the geographical area of the cultivated land, olive cultivar,
fruit ripening and harvesting, agronomic procedure, and technological operation for oil
production [31].

Table 2. Total phenolic content in the PPP.

Molecules Concentration (mg/kg)

Polyphenols * 16,220 ± 1206
Flavonoids 3300 ± 96

Antocyanins 363 ± 24
* Results are referred to the gallic acid calibration curve.
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3.2. HPLC-ESI-TOF-MS Analysis

To the purpose of identifying the molecules present in the PPP, an HPLC-ESI-TOF-
MS measurement was performed, allowing the detection of a total of 17 phytochemical
compounds (Figure 1 and Table 3). Twelve compounds, previously reported in pomegranate
by-products [30], were classified according to their chemical nature in the following families:
sugars, organic acids, phenolic acids, and hydrolysable tannins.
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Table 3. Proposed compounds tentatively identified in pomegranate peel powder by HPLC-ESI-TOF-
MS. The numbers correspond to the peaks illustrated in Figure 1.

Peak RT Meas. m/z Calc. m/z Err. [ppm] Formula Proposed Compound Chemical Class

1 3.6 353.072 353.0725 1.6 C12H17O12 Sugar Sugar
2 4.9 353.0716 353.0878 46 C16H17O9 Chlorogenic acid Phenolic acids
3 5.5 191.0195 191.0197 0.9 C6H7O7 Citric acid Organic acids
6 8.8 169.0127 169.0142 9.4 C7H5O5 Gallic acid Phenolic acids
8 10.4 541.0266 541.026 −1 C24H13O15 Punicalagin α Hydrolysable tannins
9 11.9 541.0277 541.026 −3.1 C24H13O15 Punicalagin β Hydrolysable tannins
10 13 541.0263 541.026 −0.5 C24H13O15 Punicalagin γ Hydrolysable tannins
11 15.4 633.0712 633.0733 3.4 C27H21O18 Corilagin Hydrolysable tannins
12 15.6 463.0503 463.0518 3.3 C20H15O13 Ellagic acid hexoside Hydrolysable tannins

15 19.5 447.0552 447.0569 3.9 C20H15O12
Ellagic

acid-deoxyhexoside Hydrolysable tannins

16 19.8 433.0387 433.0412 5.9 C19H13O12 Ellagic acid pentoside Hydrolysable tannins
17 21.3 300.9973 300.999 5.6 C14H5O8 Ellagic acid Hydrolysable tannins

3.3. Biological Effects of the PPPwsf

The in vitro evaluation of the effects of the bioactive compounds present in the PPP
was performed by collecting the water-soluble fraction obtained from the whole PPP after
its thermal treatment at 180 ◦C for 20 min.

Previous work has indicated that there is no significant difference between water-
and alcoholic-extracts of PPP [32,33] used for the HPLC-ESI-TOF-MS experiments. These
results suggested that the chemical molecules identified in the HPLC-ESI-TOF-MS analysis
continued to be present in the PPPwsf used for biological experiments.

To study the effect of PPPwsf, undifferentiated Caco-2 cells were used. This choice
was justified, considering that differentiated Caco-2 cells present a high cell line variability
that may significantly affect their response to the same molecules [34]. As a first step, the
toxicity analysis was done to detect the concentration range that is nontoxic for the cells.
In Figure 2A, the results of the toxicity tests obtained after the addition of the Caco-2 cell
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model of four PPPwsf solutions containing pomegranate peel powder at concentrations
of 100 µg/mL, 200 µg/mL, 400 µg/mL, and 500 µg/mL are reported. The solutions were
kept 24 h in direct contact with the cells. Results indicated that in the concentration range
explored neither the viability of the cells nor their morphology; monolayer integrity and
organization aptitude were affected by the addition of PPPwsf, even at the higher concen-
tration used. (Figure 2B). In Figure 2C the microscopic fluorescence images concerning
the signal induced by the acridine orange fluorescent probe are presented. This is a cell
permeating nucleic acid binding dye that emits green fluorescence when bound to double-
stranded DNA and red fluorescence when linked to single-stranded DNA and is thus able
to discriminate between intact (green nuclei) and damaged DNA, that is between alive
and dead cells [35]. As evidenced by the largely dominant green fluorescence, after the
addition of PPPwsf at the highest concentration (500 µg/mL), a negligible DNA damage
was detectable in the samples.
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Figure 2. Cytotoxicity test of the PPPwsf solutions: (A) Cell viability 24 h after the addition of PPPwsf
at the concentration of 100 µg/mL, 200 µg/mL, 400 µg/mL, 500 µg/mL in Caco-2 cell culture. Data
were obtained as a percentage with respect to the control sample. (B) Visual inspections of the
morphology of Caco-2 cells 24 h after the addition of PPPwsf at the concentration of 500 µg/mL.
The morphology of the control is also reported. Magnification 40×. (C) Microscopic fluorescence
visualization of the morphology of Caco-2 cells 24 h after the addition of PPPwsf at a concentration
of 500 µg/mL after staining with orange acridine. Data concerning the control were also reported.
Magnification 20×.

To test the scavenging ability of the PPPwsf solution, TBH was added to the cell
culture together with PPPwsf at various concentrations, namely 100 µg/mL, 200 µg/mL,
400 µg/mL, and 500 µg/mL for 4 h, which is the time at which, at the intestinal level,
the maximum biophenolic absorption, corresponding only to a fraction of the total intake,
occurs [36]. Results indicated that the co-treatment was effective against ROS-induced
cellular damage. In particular, it can be observed that: (i) no decrease in the cell viability was
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observed (Figure 3A, left panel); (ii) a remarkable decrease in the fluorescence associated
with the ROS presence could be recorded in the cell culture, particularly at the highest
PPPwsf concentration used (Figure 3A, right panel); (iii) although still present, breaks in
the integrity of the epithelial layer were noticeably reduced when TBH was added to the
cells together with PPPwsf (Figure 3B,C) when compared with the effect of TBH alone;
(iv) the addition of acridine orange fluorescence allowed the authors to conclude that only
a slight DNA damage was detectable, as evidenced by the value of the ratio between the
fluorescence induced by the bond with the single and double stranded DNAs and the
microscopic fluorescence investigation of the cells (Figure 3D,E).
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Figure 3. PPPwsf co-treatment in Caco-2 cells: (A, left) Cell viability of Caco-2 cells and (A, right)
fluorescence intensity values due to the ROS presence in Caco-2 cells, 4 h after the addition of PPPwsf
at the concentration of 100 µg/mL, 200 µg/mL, 400 µg/mL, and 500 µg/mL together with TBH 2 mM.
Cell viability data are reported as percentage with reference to the control value. * Control vs. other
treatments (p ≤ 0.05); # TBH samples vs. control and other treatments (p ≤ 0.05). (B) Microscopic
inspection of the Caco-2 cell layer treated with TBH alone (positive control) and after the complete
co-treatment with PPPwsf500 and TBH 2 mM. The dashed red lines circumscribe the area without
cells. Control and PPPwsf500-treated cells are also reported. (C) Plot of the values of the areas of the
Caco-2 layer without cells. (D) Fluorescence intensity of the ratio between red and green fluorescence
intensities in Caco-2 cells 4 h after co-treatment with PPPwsf500 and TBH 2 mM and staining with
orange acridine. * Control vs. other treatments (p ≤ 0.05); # TBH samples vs. control and other
treatments (p≤ 0.05). (E) Microscopic fluorescence signals after orange acridine staining of the Caco-2
cells 4 h after co-treatment with PPPwsf500 and TBH 2 mM. Data concerning the control and TBH
alone were also reported. Magnification 40×.
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To verify the effect of the PPPwsf on inflammation, the 200 µg/mL concentration
was chosen due its better response in counteracting ROS formation (Figure 3A, left). To
this aim, the activation of the immune cells (Figure 4A) and the expression of some of
the most highly expressed genes associated with inflammation, such as TNFα, IL1β and
IL8, were evaluated (Figure 4B). During the 4 h co-treatment with PPPwsf200, significant
changes in the levels of the expression of the proinflammatory genes were detected. In
particular, our results revealed an up-regulation of the mRNA of the cytokines investigated.
In addition, the concentration of IL1β protein (Figure 4C), the most critical cytokine of
inflammatory processes [37], was significatively decreased when the cells were co-treated
with PPPwsf, with respect to the LPS alone treatment. These data suggested that the
mediators of inflammation are down-regulated in the presence of PPPwsf.

Biology 2022, 11, x FOR PEER REVIEW 10 of 18 
 

 

Control vs. other treatments (p ≤ 0.05); # TBH samples vs. control and other treatments (p ≤ 0.05). (B) 
Microscopic inspection of the Caco-2 cell layer treated with TBH alone (positive control) and after 
the complete co-treatment with PPPwsf500 and TBH 2mM. The dashed red lines circumscribe the 
area without cells. Control and PPPwsf500-treated cells are also reported. (C) Plot of the values of 
the areas of the Caco-2 layer without cells. (D) Fluorescence intensity of the ratio between red and 
green fluorescence intensities in Caco-2 cells 4 h after co-treatment with PPPwsf500 and TBH 2mM 
and staining with orange acridine. * Control vs. other treatments (p ≤ 0.05); # TBH samples vs. control 
and other treatments (p ≤ 0.05). (E) Microscopic fluorescence signals after orange acridine staining 
of the Caco-2 cells 4 h after co-treatment with PPPwsf500 and TBH 2mM. Data concerning the 
control and TBH alone were also reported. Magnification 40X. 

To verify the effect of the PPPwsf on inflammation, the 200 μg/mL concentration was 
chosen due its better response in counteracting ROS formation (Figure 3A, left). To this 
aim, the activation of the immune cells (Figure 4A) and the expression of some of the most 
highly expressed genes associated with inflammation, such as TNFα, IL1β and IL8, were 
evaluated (Figure 4B). During the 4 h co-treatment with PPPwsf200, significant changes 
in the levels of the expression of the proinflammatory genes were detected. In particular, 
our results revealed an up-regulation of the mRNA of the cytokines investigated. In 
addition, the concentration of IL1β protein (Figure 4C), the most critical cytokine of 
inflammatory processes [37], was significatively decreased when the cells were co-treated 
with PPPwsf, with respect to the LPS alone treatment. These data suggested that the 
mediators of inflammation are down-regulated in the presence of PPPwsf. 

 
Figure 4. PPPwsf co-treatment in PBMCs: (A) Morphological analyses of cells activation by 
clustering formations after 4 h treatment with LPS 1 μg/mL, LPS 1 μg/mL + PPPwsf 200 μg/mL, and 
PPPwsf 200 μg/mL. Red circles indicate the clusters of activated immune cells. Magnification 20X. 
(B) Immunological response evaluated by mRNA quantification of TNFα, IL1β, and IL8. (C) Level 

Figure 4. PPPwsf co-treatment in PBMCs: (A) Morphological analyses of cells activation by clus-
tering formations after 4 h treatment with LPS 1 µg/mL, LPS 1 µg/mL + PPPwsf 200 µg/mL, and
PPPwsf 200 µg/mL. Red circles indicate the clusters of activated immune cells. Magnification 20×.
(B) Immunological response evaluated by mRNA quantification of TNFα, IL1β, and IL8. (C) Level of
interleukin IL1β measured by ELISA assay. * Control vs. other treatments (p ≤ 0.05); # TBH samples
vs. control and other treatments (p ≤ 0.05).

3.4. Biscuit Dough Preparation and Characterization

In Figure 5 (upper panel), the appearance of the dough containing 3 (PPP3) and 5
(PPP5) wt% of PPP before heat treatment is reported and compared with the one of the
base doughs (BD). The final products, after baking, are also represented (lower panel).
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Figure 5. (Upper panel) Appearance of the raw doughs for biscuit preparation. (Left) BD, (middle)
PPP3, (right) PPP5 doughs before baking at 180 ◦C for 20 min. (Lower panel) The BD (left) and PPP3
(right) doughs after baking.

In Table 4, the concentration of the phenolic compounds found in the dough treated at
180 ◦C for 20 min and containing the 5 wt% of PPP is described. As evidenced, a significant
amount of the bioactive molecules was present in the dough, notwithstanding the thermal
treatment.

Table 4. Total phenolic content in the heat treated PPP5 dough.

Molecules Concentration (mg/kg)

Polyphenols 6087 ± 525
Flavonoids 294 ± 36

Antocyanins 137 ± 10

During the preparation of biscuits, the control of the viscoelastic parameters of the
raw dough is of primary importance. On the one hand, a high elasticity can make difficult
the dough lamination; on the other hand, a low viscosity can favor the spreading of the
doughs during baking. Thus, rheological experiments performed under oscillatory shear
conditions at low strain (mechanical spectra) as well as over an extended stress range (stress
sweeps) can be useful to characterize the structural and textural properties of the dough.

In Figure 6, the rheological behavior of the reference dough and of the doughs added
with 3 wt% and 5 wt% PPP are displayed as a function of the increasing stress (Figure 6A).
For each sample, the limit of the linear viscoelastic region has been set corresponding to a
value of G’ lower than 5% of its plateau value. It can be observed that the blank dough has
a critical stress threshold (7.6 Pa) lower than those containing the pomegranate powder at
both the concentrations used. Furthermore, for the samples in which the pomegranate peel
powder is present, the stress values above which the viscoelastic response became nonlinear
is at least one order of magnitude higher that that identified for the blank dough, ranging
from 76.7 (PPP3) to 269 (PPP5) Pa. These results indicated that the addition of increasing
amounts of powder caused a progressive mechanical reinforcement of the doughs. The
profile of the mechanical spectra appeared slightly dependent on the frequency, with an
appearance typical of solid-like materials. This behavior increased at increasing PPP content
(Figure 6B). However, the dough containing the pomegranate peel powder remained a
suitable material for lamination and baking [38].
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Figure 6. Rheological behavior of the raw doughs: (A) G’ vs. applied stress for the reference dough
(BD) and the doughs containing the pomegranate peel powder at a concentration of 3 (PPP3) and
5 (PPP5) wt%. The full green dots show the stress values limiting the linear viscoelastic region.
(B) Mechanical spectra illustrating the profiles of the elastic, G’ (full symbols), and viscous, G” (empty
symbols), moduli as a function of the frequency for P3 (triangles) and P5 (squares) samples compared
to the blank dough (circles).

The results illustrated by rheological measurements were confirmed by the SEM
experiments performed on the BD, PPP3, and PPP5 raw doughs (Figure 7). The PPP5
sample presented the higher compactness degree; on the contrary, the BD sample showed a
heterogeneous and coarse structure due to the existence of differently sized granules. Large
fissures were also visible, interrupting the matrix. The PPP3 sample had an intermediate
aspect between BD and PPP5: there were some small fissures interrupting the matrix
continuum, but the appearance approached the homogeneity of the PPP5 sample.
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Figure 7. SEM images of the BD, P3, and P5 samples morphology. Magnification 500×.

A blind test was performed to test the appearance, taste, and chewiness of the PPP-
containing biscuits in comparison to the PPP-free biscuits, representing the reference
commercial product. Results (Figure 8) indicated a slight general preference of the panel
for the sample without addition of PPP for each descriptor. In particular, the panelists
did not perceive any difference among the samples for what concerned color, sapidity,
palate adhesion, and compactness. Conversely, significant differences were found in the
crunchiness, persistency, friability smell, and sweetness descriptors. The lowest rating was
recorded for the biscuits containing the highest pomegranate peel powder concentration,
probably due the excessive presence of polyphenols, which overall reduced the sensory
pleasantness of the biscuit, and, for this reason, was excluded from the industrial production.
The PPP3 product obtained a more than satisfactory approval from the panel members.
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Figure 8. Blind panel results testing the sensory pleasantness of the biscuits prepared with the
reference dough (BD) and the biscuits prepared with pomegranate peel powder at a concentration of
3 (PP3) and 5 (PPP5) wt%. The mean SD was ≤0.3.

4. Discussion

The HPLC-ESI-TOF-MS phenolic profile illustrated in the present work was in perfect
agreement with previous literature data [39]. Molecules belonging to the hydrolysable
tannin group (such as different chemical forms of the punicalagin) and some punicalagin
derivatives (such as chemical species of ellagitannins) were found. These large molecules
are not absorbed in vivo but, after reaching the colon, are metabolized by the human
microflora in urolithins. Corilagin, chlorogenic acid and gallic acid were also present.

After intake, the fate of the polyphenolic molecules is a complex mechanism. Their
absorption at a gastric level is a rare event and pertains only to few molecular species such
as hydroxycinnamic acids and anthocyanins [40].

Only in the small intestine can they be absorbed after the hydrolysis of the glycoside
group, and two mechanisms have been proposed for this process. In the first one, the
molecule is de-glycosylated inside the enterocyte after active absorption of the Na+ depen-
dent glucose transporter. In the second proposed mechanism, the enzymatic hydrolysis
takes place in the intestinal lumen from which the de-glycosylated product would pas-
sively enter the cells. Whatever the mechanism, only very few polyphenolic molecules
are absorbed in the small intestine, while the rest is transferred to the colon, where it can
reach a high concentration (up to millimolar) to be metabolized by the gut microbiota,
which therefore plays a fundamental role in their absorption. The absorbed polyphenolic
molecules are transported by the bloodstream to the liver, from which, through the bile,
they return to the large intestine [41,42]. Interestingly, on the one hand, intestinal microbiota
are able to modify and alter the biophenol composition; on the other hand, biophenols can
in turn modify the gut microbiota and their balance [43].

The antioxidant ability of the PPPwsf was previously studied by Sorrenti and cowork-
ers [44], testing its ability in reducing the stable DPPH (2,2-diphenyl-1-picrylhydrazil)
radical. The inhibition activity was up to 75% for a 0.028 mg/mL PPPswf concentration.
Moreover, a scavenging ability of 95% was observed at the same concentration with re-
spect to the superoxide anion formation. These results were obtained by using the whole
water-soluble extract of PPP. Analyzing pomegranate juices, Gil et al. observed that the
antioxidant activity was higher in juices containing the whole fruit with respect to the ones
obtained by the arils only [45]. Furthermore, the antioxidant activity of each isolated phe-
nolic component and of each individual phenolic family measured with the DPPH method
were higher for punicalagin and punicalagins, respectively. These data suggests that the
results obtained in the present work can be ascribed to the same molecules identified by
Gil et al.
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Previous studies performed on muffin doughs containing PPP at the concentrations of
5 wt%, 10 wt%, and 15 wt% indicated that the total polyphenol content increased three-,
five-, and seven-fold, respectively, compared with the dough without PPP. Furthermore,
their antioxidant activity was increased 10-, 21-, and 27-fold, respectively [46]. Tomato
juice and orange juice added with 2 wt% PPP showed an increase in the antioxidant power
25- and 35-times greater than the controls, respectively. However, it is important to note
that, although in all the experiments in which PPP has been added a significant increase
in the polyphenol content and of the antioxidant power are observed, the values can
change because of the variability in pomegranate plants and their geographical area of
cultivation. It has been observed that pomegranate arils grown in Mediterranean regions
possess a higher concentration of antioxidant molecules compared to the plants cultivated
in desert zones [47]. On the contrary, peels of the fruits grown in desert areas show higher
levels of antioxidant molecules [48]. The phenolic profiles of pomegranates are strongly
dependent on the part of the fruit analyzed. Negligible concentrations of punicalagin were
observed in the arils of 12 different cultivars, while peels revealed very high levels of this
molecule [39]. Furthermore, the cultivar has also a great importance in determining the
phenolic profiles [48]. The agronomic procedures for plant cultivation, and the technological
processes applied to obtain the powders, also play a key role in the final characteristic of
the product [46].

The integrity of the intestinal epithelium, formed by a single layer of cells, is of
primary importance to prevent and avoid the entrance of toxic and noxious agent into
the mucosa and bloodstream. Recent research has demonstrated that the ellagic acid is
particularly effective in strengthening the intestinal epithelium by reducing the expression
of the claudin-4, -7, and -15 pore-forming proteins in Caco-2 cells [49], thus contributing
to the epithelium integrity. Furthermore, in Caco2 cells, urolithin A reinforced the barrier
function of the colonic epithelium by upregulation of the expression of proteins involved in
the tight junctions through activation of the Nrf2-dependent pathways. An attenuation of
colitis pathological status was also evidenced in preclinical models due to the recovery of
barrier dysfunction [50]. This molecule was also effective in other parts of the human body;
in fact, urolithin was able to reduce the ROS, inhibited the production of proinflammatory
cytokines and increased the anti-inflammatory IL-10 cytokine in LPS-stimulated microglial
cells [51].

Recent research has reported that punicalagin and ellagic acid inhibited in vitro the
growth rate of HepG2 cells (hepatoma cells) in a dose- and time-dependent manner. No
effect was recorded against normal liver cells [52]. The results could be obtained by
retaining the cancer cells at the G1 phase and blocking their division in the G0 phase.
A further effect of the punicalagin consisted in the inhibition of the DNA synthesis of
the cancer cells during the S phase [52]. The antiproliferative effect of the pomegranate
phenolic extract was also observed against human oral cancer. The extract triggered the
dysfunction of the mitochondria by damaging their membrane potential and inducing the
apoptotic mechanism [53]

Chlorogenic acid is an interesting antioxidant molecule due to its wide spectrum
of healthy effects on some pathologies, from diabetes to cardiovascular disease and can-
cer [54]. The oral administration of green coffee, particularly rich in chlorogenic acid, in
hypertensive rats reduced the systolic blood pressure dose dependently without inducing
any modification in the normotensive control group [55].

Food fortification is a valid method to solve micronutrients deficiencies. The most
common example is the addition of iodine in cooking salt. In several countries, food
fortification programs are becoming mandatory. In North and South America, the addition
of folic acid to wheat flour is requested to reduce the risks of defects in the fetal neural
structures [56,57]. Food fortification with iron produced a significant increase in hemoglobin
and serum ferritin and reduced anemia and iron deficiency [58]. The fortified margarine
with vitamin A showed its efficacy in increasing the levels of the vitamin in preschool
children [59]. Sugar fortification with vitamin A is mandatory in Guatemala, where a
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tripling of the vitamin A is observed [56]. Polyphenol-fortified food showed their effects in
fighting obesity by acting on the energy and food requests, lipid metabolism, and adipocyte
differentiation [60]. These results indicate that food fortification is a good system to improve
the diet quality.

5. Conclusions

The results of this work indicate that doughs enriched with PPP possess nutraceutical
valuable compounds preserved during baking. The PPP bioactive compounds added
in the biscuits were nontoxic and were able to counteract oxidative stress in Caco2 cells.
Furthermore, the PPP compounds reduced the expression of proinflammatory genes in
PBM cells. The doughs enriched with PPP have suitable mechanical properties that allow
their lamination and provide them with adequate resistance during baking. All gathered
evidence encourages further biological and clinical investigations to proceed.
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