
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2021) 14:186
https://doi.org/10.1007/s44196-021-00036-7

RESEARCH ARTICLE

SCMFTS: Scalable and Distributed Complexity Measures and Features
for Univariate and Multivariate Time Series in Big Data Environments

Francisco J. Baldán1 · Daniel Peralta2,3 · Yvan Saeys2,3 · José M. Benítez1

Received: 3 September 2021 / Accepted: 12 October 2021
© The Author(s) 2021

Abstract
Time series data are becoming increasingly important due to the interconnectedness of the world. Classical problems, which
are getting bigger and bigger, require more and more resources for their processing, and Big Data technologies offer many
solutions. Although the principal algorithms for traditional vector-based problems are available in Big Data environments,
the lack of tools for time series processing in these environments needs to be addressed. In this work, we propose a scalable
and distributed time series transformation for Big Data environments based on well-known time series features (SCMFTS),
which allows practitioners to apply traditional vector-based algorithms to time series problems. The proposed transforma-
tion, along with the algorithms available in Spark, improved the best results in the state-of-the-art on the Wearable Stress
and Affect Detection dataset, which is the biggest publicly available multivariate time series dataset in the University of
California Irvine (UCI) Machine Learning Repository. In addition, SCMFTS showed a linear relationship between its runt-
ime and the number of processed time series, demonstrating a linear scalable behavior, which is mandatory in Big Data
environments. SCMFTS has been implemented in the Scala programming language for the Apache Spark framework, and
the code is publicly available.1

Keywords Time series · Time series features · Feature-based approach · Big Data · Scalability

Abbreviations
AB AdaBoost
ARIMA Autoregressive integrated moving average
CV Cross-validation
DFST Distributed FastShapelet Transform

DT Decision tree
FS FastShapelet
IoT Internet of things
KNN K-Nearest neighbors
LDA Linear discriminant analysis
LOSO Leave-one-subject-out
MTS Multivariate time series
RDD Resilient distributed datasets
RF Random forest
SCMFTS Scalable and distributed complexity measures

and features for univariate and multivariate
time series

ST Shapelet transform
UCI University of California Irvine
WESAD Wearable stress and affect detection

 * Francisco J. Baldán
 fjbaldan@decsai.ugr.es

 Daniel Peralta
 daniel.peralta@irc.vib-ugent.be

 Yvan Saeys
 yvan.saeys@ugent.be

 José M. Benítez
 J.M.Benitez@decsai.ugr.es

1 Department of Computer Science and Artificial Intelligence,
DiCITS, iMUDS, DaSCI, University of Granada,
18071 Granada, Spain

2 Data Mining and Modelling for Biomedicine, VIB Center
for Inflammation Research, Technologiepark-Zwijnaarde 71,
9052 Ghent, Belgium

3 Department of Applied Mathematics, Computer Science
and Statistics, Ghent University, Krijgslaan 281, S9,
9000 Ghent, Belgium

1 Baldán et al. [1] in Scalable Complexity Measures and Features for
Times Series classification. https:// github. com/ fjbal dan/ SCMFTS/.

http://orcid.org/0000-0003-3102-8367
http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-021-00036-7&domain=pdf
https://github.com/fjbaldan/SCMFTS/

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 2 of 15

1 Introduction

Nowadays, we can find devices generating data anywhere
and at any time [2]. With the expansion of new technolo-
gies, the volume of data generated is growing by leaps and
bounds. Until now, the typical time series data comes from
well-known fields, for example, from the stock market [3],
from industry with power consumption logs [4], or from
medical fields with specific applications, such as electrocar-
diograms [5]. However, nowadays we have access to a lot of
new devices like smartwatches which continuously gener-
ate information through their incorporated sensors, such as
heart rate, temperature or humidity monitors. All the data
sources mentioned contain information of high importance
that needs to be extracted and used to improve the service
offered.

All the examples mentioned above are related to record-
ing one or multiple magnitudes over time, generating a spe-
cific type of data named time series. Any magnitude regu-
larly recorded over time is a time series. On the one hand,
forecasting future values of a time series has been a very
popular topic [6]. Forecasting stock price trends [7] is the
most typical example but also one of the hardest. On the
other hand, the search for patterns in time series is a task that
is attracting more attention each day. Problems like detection
of fraudulent energy consumption [8] or detection of heart
malfunctions [9] are gathering increasing attention from
the research community. With increasingly cheaper sensors
and more complex models, new problems of interest appear
every day.

There are growing numbers of cases in which multiple
variables are recorded at the same time in the same pro-
cess [10], generating multivariate time series (MTS). MTS
problems have additional complexity due to the relationships
between the different variables that compose each MTS. An
example of this kind of problem is the forecast of the energy
demand when additional meteorological variables are availa-
ble like temperature, humidity, or wind speed, among others.

The data volume generated by the expansion of IoT scales
quickly providing a quantity of data that is not processa-
ble by the traditional computation model. The concept of
Big Data arises in order to face this kind of problem. The
MapReduce paradigm [11] proposes a distributed computa-
tional model that can face a high volume of data efficiently.
Apache Spark [12] is a popular framework that offers high-
speed capabilities and includes the MapReduce workflow.
Spark has one of the most extensive libraries for machine
learning in Big Data environments, MLlib [13], and an extra
repository with some untested proposals named spark pack-
ages [14]. Although the MLlib has the most representative
algorithms for machine learning, the set of available algo-
rithms is still limited. At the time of writing this paper, there

are few tools for time series processing in MLlib or spark
packages, and in general in Big Data environments.

In this work, we propose a scalable and distributed time
series transformation based on well-known time series fea-
tures, named SCMFTS, to provide an alternative vector-
based representation of time series that enables the use of
the traditional machine learning techniques available in Big
Data environments. We have implemented it in Apache
Spark through Scala, guaranteeing a fully scalable behav-
ior, being the first proposal of this type made for Big Data
environments. The code is publicly available [1]. SCMFTS
allows practitioners to face problems that would otherwise
be impossible and to improve the results obtained through
the additional information provided by the new time series
features. The proposed transformation is applicable for uni-
variate and multivariate time series. It has been tested for
effective accuracy and linear scalability.

The remainder of this paper is organized as follows.
In Sect. 2, we analyze the works related to our proposal.
Section 3 explains the transformation proposed, the time
series features selected, and the workflow of our proposal.
In Sect. 4, we summarize the obtained results. Finally, we
show the conclusions of our work in Sect. 5.

2 Related Works

In this section, we analyze the state-of-the-art of time series
processing in Big Data Sect. 2.1 and the main Big Data
frameworks Sect. 2.2.

2.1 Time Series in Big Data

For almost a decade, the processing of enormous amounts
of time series has been an active research topic. One of the
most representative works tries to process trillions of time
series subsequences through the dynamic time warping dis-
tance measure [15], which has a high complexity. After this
first work, we can see a succession of new proposals that
try to face the problem of processing time series to a larger
scale. For example, the FastShapelet (FS) algorithm [16]
which provides a reduction in time complexity of the origi-
nal proposal at a cost in accuracy, proposals of a generic and
scalable framework for automated anomaly detection to deal
with large-scale time series data [17], a fast and scalable
Gaussian process modeling oriented to astronomical time
series [18], or a scalable distance-based classifier for time
series named proximity forest [19], show us the growing
interest in processing larger and larger sets of time series.
However, we can see how the limitations of the traditional
computation model and computation systems are also there
in these works. Limitations in the available resources to deal
with a large problem, becoming impossible its storage in

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 3 of 15 186

memory or obtaining unacceptable running times, among
others.

To face the limitations mentioned above the Distributed
FastShapelet Transform (DFST) algorithm [20] has been
introduced, the first time series classification algorithm
developed in a distributed way. DFST joins the low com-
plexity of the FastShapelet (FS) algorithm with the Shapelet
Transform (ST) [21] performance. ST proposes to use the
distance between the selected shapelets and each time series
in the dataset as the input features. For this reason, we can
consider it as a feature-based method. The performance of
ST depends on the machine learning algorithm used on the
transformed dataset, but it provides competitive results con-
cerning the best proposals of the state-of-the-art. In addition,
the DFST method lets us apply the traditional vector-based
algorithms already available in Apache Spark to time series
problems, expanding the tools to process this kind of data.
But this approach can only be used in supervised problems.

The time series analysis problem has additional character-
istics with respect to the traditional vector-based problems.
Characteristics like time dependency, trend, seasonality, or
stationarity of a time series, among others, must be consid-
ered in the algorithm proposals, raising the complexity of
the methods or adding some limitations to them and mak-
ing the application of the proposed methods in distributed
environments impossible. For example, on the one hand, FS
analyzes the entire dataset sequentially and provides the best
decision tree, based on shapelets founded, evaluating each
shapelet with the complete dataset. On the other hand, DFST
evaluates the shapelets candidates in a distributed way on
the data available in each node and saves the most valuated.
This is because the shapelets evaluation process has a high
complexity, which makes it impossible to apply it to the
complete dataset in Big Data environments.

Following the feature-based approach used in DFTS and
ST, but without depending on shapelets, we can find multiple
works based on extracting time series features. For example,
the application of multiple types of mathematical operations
over a time series to obtain valuable information from it that
explains the underlying structure of their behavior [22, 23],
the selection from a theoretical point of view of the most
representative features of a time series that could explain
their behavior [24], or the proposal of a set of 22 character-
istics [25] through exhaustive experimentation which guar-
antee these features as the most representative of the original
set of features, among others.

Unsupervised feature extraction has been applied in
other domains [26]. In the particular case of time series,
recently, it has been demonstrated that a set of well-known
complexity measures and time series features is able to pro-
vide competitive results concerning the state-of-the-art of
univariate [27] and multivariate [28] time series classifica-
tion. To extrapolate this approach to a distributed Big Data

environment is necessary to filter and prepare the selected
features to be totally independent of each other and do not
require relationships between different time series or addi-
tional information. These conditions allow their inclusion in
a distributed environment, increasing the limited amount of
tools for time series processing in Big Data environments.

2.2 Big Data Frameworks

Even with the previous scalable—but not distributed—
proposals, some problems are impossible to process when
storage needs become untractably large for a single com-
puter. The MapReduce paradigm addresses these issues by
proposing a distributed computation model that joins the
capabilities of multiple computers to obtain the necessary
resources transparently for the user. The MapReduce para-
digm is based on two types of operations:

• The map operation distributes throughout the cluster
the computation needed over each instance of the data-
set. This operation is applied independently over each
instance, and there is no possible interaction between
different instances.

• The reduce operation brings to the cluster driver the gen-
erated results for a previous map operation. In this case,
there are interactions between the different instances of
the dataset.

The most popular framework that includes this paradigm
was Apache Hadoop [29], written in Java. However, its
limitations, such as the necessity of writing to disk every
step in the workflow, the impossibility to implement iter-
ative behaviors efficiently, or the necessity to hand code
every operation, among others, have led to the emergence
of new frameworks, like Apache Spark [12] or Apache
Flink [30]. Spark proposes a framework that includes in-
memory processing, increasing the processing speed with
several orders of magnitude. In addition, Spark introduces
the new Resilient Distributed Datasets (RDD) data struc-
ture [31] and lazy evaluation. Every transformation and
action applied over the RDD is recorded in the RDD line-
age. This lineage is a register of each operation applied
to the RDD. It allows the RDD to be recovered in any of
its previous states, giving a high fault tolerance to the
system.

Although Spark provides the framework to process enor-
mous quantities of data and the time series processing is
evolving towards processing ever-increasing amounts of
data, we cannot find enough tools for processing time series
in Spark with official support yet. If we analyze MLlib, we
cannot find specific time series algorithms for classification,
clustering, or forecasting tasks. In spark packages [14], we
only can find two time series proposals. The first one is the

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 4 of 15

spark-ts2 package, which provides statistical modeling for
time series in a distributed way. However, it is oriented to
forecasting tasks, and it has been discontinued for a long
time. The second one is the Distributed FastShapelet Trans-
form referred to in the previous section. MLlib includes
tools for handling data streaming, but only a streaming linear
regression model is available.

3 Scalable and Distributed Time Series
Transformation Proposal

In this work, we propose, through a MapReduce framework,
a scalable and distributed transformation for univariate and
multivariate time series (SCMFTS) based on well-known
time series features for Big Data environments. The pro-
posed transformation provides a traditional vector-based rep-
resentation for time series data. SCMFTS allows us to apply
algorithms that are not time series specific to time series
problems. Table A1, in Appendix, contains the selected set
of features used in this work.

In sequential and supervised scenarios, the above
approach has proven to obtain competitive results concern-
ing the main algorithms of the state-of-the-art [27, 28]. In
addition, SCMFTS is able to process MTS with multiple
frequencies and lengths, allowing practitioners to add new
features easily.

Our proposal is based on the extraction of the features
of each time series. More formally, it can be stated as fol-
lows. Given a time series dataset represented in the tempo-
ral domain, a new, vectorial representation of the dataset is
obtained as follows:

• Unidimensional case. For each time series in the dataset,
all the features are computed. The time series is repre-
sented by the vector composed of the values for the com-
puter features. The order of the feature values is the same
for all the time series in the dataset.

• Multidimensional case. For each time series in the data-
set, for each variable in the multivariate time series, all
the features are computed. The individual time series is
represented by the vector composed of the values for the
computer features. The order of the feature values is the
same for all the time series in the dataset. The multivari-
ate time series is represented by a vector formed as the
concatenation of the corresponding vectors to each of the
individual time series composing the multivariate time
series.

This new vector-based representation of time series opens
a huge landscape of applicable methods for time series. But
it is also rather robust allowing for easy usage of complex
methods.

While these transformations follow trivially from our
proposal for time series representations in previous papers
[27, 28], in the current work, we dive deep into its effective
application in a Big Data scenario. To effectively study this,
we have designed and developed an actual implementation
of the representation conversion in a software package able
to face real-world problems. This particular implementation
is what we term SCMFTS. Its most relevant design issues
are detailed in the rest of this section. Its performance and
scalability are further analyzed in the remainder of the paper.

Our implementation unifies the distributed computation
provided by Spark with the powerful statistical tools avail-
able in R to obtain the desired transformation in Big Data
environments. We have developed SCMFTS in Scala/Spark,
and the communications between Spark and R have been
done through rscala [32].

To process the time series correctly, a number of consid-
erations must be made:

• Each multivariate time series has a unique key that identi-
fies it (tsKey).

• Each variable of an MTS has a unique key (varKey). The
combination of a time series key with a variable key is
unique.

• The input data must have the following format: (tsKey,
varKey, tsClass [optional], tsData1 , tsData2,… , tsData

n
).

• Due to the possible differences between the multiple vari-
ables that compose an MTS, we chose to process each
variable individually. For example, one variable could
have hundreds of data points, but another variable could
have thousands of data points. Because the communica-
tion between Spark and R must be done through a sim-
ple data structure like Array[Array[PrimitiveDataType]],
including both variables in the same RDD forces us to fill
the shortest time series with 0.0 wasting a vast amount of
memory resources.

Figure 1 shows the workflow of SCMFTS for the multivari-
ate case. We have included the class column to illustrate a
typical supervised problem. In the case of univariate time
series, the process is the same, but we do not need the filter
and joins steps. First, the framework reads the data in the
correct format or processes it until we obtain this format
(step 1). Due to this, we can unequivocally identify each
time series and variable. Second, we generate an RDD for
each problem variable, filtering the input data by the varKey
column (step 2). Next, we process each RDD/Variable in a
distributed way, generating a new RDD for each variable
with the extracted features (step 3), which are then joined 2 https:// spark- packa ges. org/ packa ge/ sryza/ spark- times eries.

https://spark-packages.org/package/sryza/spark-timeseries

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 5 of 15 186

iteratively (step 4), obtaining a final RDD/dataset where
each instance contains the ordered extracted features from
each variable (step 5).

In Algorithm 1, we show the pseudocode of SCMFTS,
utilizing the operations in Scala/Spark and R. In line 1, we
initialize a list that will contain the computed RDDs with
the time series features. In lines 2 to 5, our proposal obtains
the input data of each variable that composes the MTS pro-
cessed. We chose a mapPartition transformation because the

initialization of the R environment is a time-consuming pro-
cess. Using this transformation, we only initialize an R envi-
ronment for each data partition, processing every time series
in that partition in the same R session. In line 6, we initialize
the output RDD that will contain, in order, the RDDs with
the calculated features for each variable that composes the
input MTS. In this first step, we include the feature-RDD of
the first variable. In lines 7 to 9, we join, iteratively and in
order, the output RDD with each feature-RDD of the rest

RDDvar_1
(tsID, varID, class, tsData)

(1, 1, 0,)

(1, 2, 0,)

(1, m, 0,)

...
...

(tsID, varID, class, tsData)

(2, 1, 1,)

(2, 2, 1,)

(2, m, 1,)

...

(tsID, varID, class, tsData)

(n, 1, 0,)

(n, 2, 0,)

(n, m, 0,)

...

MVTS_1

MVTS_2

MVTS_n

(tsID, varID, class, tsData)

(1, 1, 0,)

(2, 1, 1,)

(n, 1, 0,)

...

Original Data

(tsID, varID, class, tsData)

(1, 2, 0,)

(2, 2, 1,)

(n, 2, 0,)

...

(tsID, varID, class, tsData)

(1, m, 0,)

(2, m, 1,)

(n, m, 0,)

...

RDDvar_2

RDDvar_m

SCMFTS_RDDvar_1

(tsID, varID, class, SCMFTS_features)

(1, 1, 0, f1, f2, ... , fz)

(2, 1, 1, f1, f2, ... , fz)

(n, 1, 0, f1, f2, ... , fz)

...
SCMFTS_RDD

(tsID, class, SCMFTS_features_var_1, SCMFTS_features_var_2, SCMFTS_features_var_m)

(1, 0, f1, f2, ... , fz, f1, f2, ... , fz, f1, f2, ... , fz)

(2, 1, f1, f2, ... , fz, f1, f2, ... , fz, f1, f2, ... , fz)

(n, 0, f1, f2, ... , fz, f1, f2, ... , fz, f1, f2, ... , fz)

...

...

...

SCMFTS_RDDvar_2

(tsID, varID, class, SCMFTS_features)

(1, 2, 0, f1, f2, ... , fz)

(2, 2, 1, f1, f2, ... , fz)

(n, 2, 0, f1, f2, ... , fz)

...

SCMFTS_RDDvar_m

(tsID, varID, class, SCMFTS_features)

(1, m, 0, f1, f2, ... , fz)

(2, m, 1, f1, f2, ... , fz)

(n, m, 0, f1, f2, ... , fz)

...
...

Transformed Data

1

2 3

5

...

...

4

Filtered by varID
Distributed features calculation

with mapPartitions

varID,

1,

2,

m,

varID,

1,

2,

m,

varID,

1,

2,

m,

(tsID,

(1,

(2,

(n,

(tsID,

(1,

(2,

(n,

(tsID,

(1,

(2,

(n,

(tsID,

(1,

(2,

(n,

(tsID,

(1,

(2,

(n,

(tsID,

(1,

(2,

(n,

(tsID,

(1,

(2,

(n,

...

Fig. 1 Workflow example of SCMFTS. The shaded column in each case represents the key value of the typical MapReduce paradigm schema
(key, value). The remaining unshaded columns belong to the value field

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 6 of 15

of the variables. We use the tsID as the unique key for the
join, and we remove the varID and class columns because
we included them in the first RDD for this output. Finally,
in line 10, we return the final RDD that contains the features
calculated for every variable that composes each MTS. The

output RDD can be used as input of any traditional vec-
tor-based machine learning algorithm available in Spark.
Naturally, it can also be exported to a CSV-like format so
that it can be published or further processed on a different
platform.

Algorithm 1 SCMFTS procedure
Input:

inputData: list of input RDDs with (tsID, varID, class, tsData)
structure

Output:
outputData: output RDD that contains the time series features
calculated for each input time series with (tsID, class,
scmftsFeaturesVars) structure

1: scmftsVars ← []
2: for each variable in inputData do
3: varData ← inputData.filter(variable==varID)
4: scmftsVars[variable]← varData.mapPartitions{rscala::scmfts(varDataPartition)}
5: end for
6: outputRDD ← scmftsVars[first]
7: for each scmftsRDD in scmftsVars[-first] do
8: outputRDD ← outputRDD.join(scmftsRDD[-varID,-class], by=tsID)
9: end for

10: return (outputRDD)

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 7 of 15 186

Sometimes, the time series features used are not present in
the processed time series. For example, a time series without
a seasonal pattern or too short to calculate an autocorrelation
coefficient cannot offer values for these features. To face this
problem, we have included an imputation process after the
application of Algorithm 1, explained in Algorithm 2. This
procedure grants our proposal a robust behavior to a wide
variety of scenarios such as time series that are too short,
non-seasonal, trendless, among others.

Table 1 MTS characteristics of the WESAD dataset

Variable Time series length Frequency (Hz)

c_ACCx 3500 700
c_ACCy 3500 700
c_ACCz 3500 700
c_ECG 42,000 700
c_EDA 42,000 700
c_EMG 42,000 700
c_RESP 42,000 700
c_TEMP 42,000 700
w_ACCx 160 32
w_ACCy 160 32
w_ACCz 160 32
w_BVP 3840 64
w_EDA 240 4
w_TEMP 240 4

Algorithm 2 Imputation procedure
Input:

SCMFTS RDD: input RDD that contains the time series
features calculated for each input time series (tsID, class,
scmftsFeaturesVars) structure

Output:
imputedSCMFTSDataset: output RDD with (tsID, class,
scmftsFeaturesVars) structure without the non-desirable values

1: for each column in SCMFTS RDD[-tsID, -class] do
2: for each value in SCMFTS RDD[, column.index] do
3: if is.infinite(value) then
4: if value ≥ 0 then
5: value ← max(SCMFTS RDD[, column.index], ignore.inf)
6: else
7: value ← min(SCMFTS RDD[, column.index], ignore.inf)
8: end if
9: end if

10: end for
11: column ← imputeMean(SCMFTS RDD[, column.index])
12: end for
13: imputedSCMFTSDataset ← SCMFTS RDD
14: return (imputedSCMFTSDataset)

In lines 1–12, we focus our imputation process on the
time series features columns. For each value in each column,
we identify if this value is infinite or -infinite, replacing this
value by the maximum or minimum finite value of the col-
umn, respectively (lines 2–10). After this imputation, the
rest of the non-desirable values are imputed using the mean
of the column, ignoring the non-desirable values in the mean
calculation of each column (line 11). Finally, we obtain the
final RDD without non-desirable values (lines 13–14).

In summary, the proposal computes multiple features out
of MTS in a robust and scalable way thanks to its MapRe-
duce workflow, whose design, combined with an imputa-
tion strategy, enables the tackling of MTS with different
lengths and frequencies for each variable with no memory
nor runtime overhead, resulting in a fixed length vector for
each MTS. The combination of R, Scala, and Spark ensures
the efficiency, failure tolerance, and extensibility of the
software.

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 8 of 15

4 Empirical Study

In this section, we conduct an empirical evaluation of the
performance and scalability of SCMFTS. Section 4.1 details
the empirical evaluation design. In Sect. 4.2, we show the
results obtained by SCMFTS and the selected proposals for
comparison.

4.1 Experimental Design

With the aim to evaluate the scalability and performance of
SCMFTS, we thoroughly designed and rigorously conducted
an empirical analysis. Section 4.1.1 includes the motiva-
tion of the selected dataset along with their description.
Section 4.1.2 specifies the measures used to evaluate our
proposal and the methodology performed. In Sect. 4.1.3, we
describe the models to which SCMFTS is compared. Finally,
Sect. 4.1.4 includes the hardware and software used for the
experiments.

4.1.1 Datasets

To evaluate the performance of SCMFTS in a real world,
we have selected the multivariate time series dataset with
the highest number of instances in the UCI Repository [33],
the Wearable Stress and Affect Detection (WESAD) dataset
[34]. In this dataset, we try to identify the patient’s state
through 14 different sensors that measure biological param-
eters of the subject, such as blood volume pulse or respira-
tion, among others, and its movement through acceleration
sensors in the x, y, and z axes. We have information from
15 different patients. WESAD dataset is used to address two
different problems:

• The first problem tries to differentiate three states: base-
line vs. stress vs. amusement.

• The second problem differentiates stress vs. non-stress
states, joining baseline and amusement states under the
same label non-stress.

For data extraction, we followed the segmentation process
with a sliding window explained by the original authors:
window shift of 0.25 s, a window size of 5 s for the ACC
signals, and 60 s for the physiological signals. For subject

14, we also removed the first 136 time series because they
contain multiple missing values. In this way, we have gener-
ated 132,477 MTS composed of 14 variables each. Table 1
shows the names of each variable and its most representative
characteristics.

To better evaluate the scalability, a larger dataset is nec-
essary. Since there is no one publicly available, we have
created a synthetic dataset composed of MTS with three
variables, with 100 data points per variable. We have gener-
ated two different sets of time series:

• The first set of ten datasets containing from 100,000
to 1,000,000 MTS with increments of 100,000 MTS
between each dataset.

• A second set of 10 datasets contained from 1,000,000
to 10,000,000 MTS with increments of 1,000,000 MTS
between each dataset

The problem generated has four classes obtained from com-
bining random walk processes with AutoRegressive Inte-
grated Moving Average (ARIMA) models in different ways.
In Table 2, we show the setup for the variables of these
four classes. For variable one, we use an ARIMA(0, 1, 0)
model to simulate a random walk process. Variable two is
composed of different ARIMA models, and variable three
contains combinations of variables one and two through
multiple functions.

4.1.2 Measures and Methodology

To evaluate the performance of our proposal, we com-
pare SCMFTS in two and three class sub-problems from
the WESAD dataset against the original work using all the

Table 2 Setup for four class
problem

Class Variable 1 Variable 2 Variable 3

0 ARIMA(0, 1, 0) ARIMA(1, 1, 1): AR(0.5), MA(0.5) sin(var1 + var2)
1 ARIMA(0, 1, 0) ARIMA(1, 1, 1): AR(0.25), MA(0.5) cos(var1 + var2)
2 ARIMA(0, 1, 0) ARIMA(2, 1, 2): AR(0.2, 0.1), MA(0.1, 0.1) sin(var1) + cos(var2)
3 ARIMA(0, 1, 0) ARIMA(2, 1, 2): AR(0.5, 0.25), MA(0.1, 0.1) cos(var1) + sin(var2)

Table 3 Hyperparameters for used models

Model Setup

DT MaxDepth = 10, MinInstancesPerNode = 20, Seed = 1
RF MaxDepth = 10, MinInstancesPerNode = 20,

numTrees = 100, maxBins = 32, Seed = 1
KNN K = 9, Euclidean distance, Normalized data with mean

0 and standard deviation 1

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 9 of 15 186

available variables, using as much data as possible due to
the Big Data approach of our proposal. Although a number
of papers with algorithmic proposals working on varied ver-
sions of the dataset have been published [35–39], they do not
follow the original segmentation process nor the leave-one-
subject-out (LOSO) cross-validation (CV) approach. Due to
this, their results are not comparable with those reported in
the original work. We have opted to follow the specifications
provided in [34], using the same measures and the same
validation criteria. To compare the different models, we use
the accuracy and F1-score [40]. The accuracy is obtained
by dividing the number of correctly classified instances by
the total number of instances in the test set. The F1-score is
defined as the harmonic mean of model precision and recall,
and it is obtained by combining model precision and recall.
F1-score represents a measure of thoroughness. We have
evaluated all models using the LOSO CV procedure.

The scalability of SCMFTS is evaluated through two dif-
ferent approaches. First, we measure runtimes by increasing
the number of processed time series. In this case, we seek
to obtain a linear relationship between the runtimes and the
number of processed time series. Second, we will measure
runtimes by varying the number of workers in the cluster and
the number of cores per worker independently. In both cases,
we will compare the evolution of runtimes with the ideal
and unachievable case of scalability expressed by Amdahl’s
law [41].

4.1.3 Models

Since the main target of our proposal is Big Data scenarios,
we have focused our experimentation on all the available
variables to process as much data as possible. The study
in [34] used the following models: Decision Tree (DT),
Random Forest (RF), AdaBoost (AB), Linear Discriminant
Analysis (LDA),3 and K-Nearest Neighbors (KNN) with

k = 9. For the (DT, RF, AB) models, the referred to work
set the minimum number of samples required to split a node
to 20, and they set the number of base estimators to 100 for
(RF and AB). To ensure a fair comparison and reproduc-
ibility, we have chosen the models available in the MLlib
of Apache Spark (DT, RF, KNN). In addition, we have used
the same hyperparameters specified in [34]. Some of these
models have additional parameters that were not specified in
the mentioned work. All hyperparameters used in our experi-
mentation are listed in Table 3.

To maintain the number of data partitions over the entire
process, we have set this number in all experiments per-
formed to three times the number of total available cores,
which is the typical recommendation for Spark.

Considering the LOSO approach used in [34], we have
applied the imputation process explained in Algorithm 2 to
each subject data independently. Due to the data source of
the WESAD dataset, we have an additional column that con-
tains the identification number of the subject that provides
each time series. Using this information, we can filter the
data of each subject and process it independently. Obviously,
this value is not used within the training datasets.

Table 4 Accuracy and F1-score results for WESAD dataset

The best results in each case are in bold

Three classes Two classes

Accuracy F1-score Accuracy F1-score

WESAD proposal
 DT 63.56 58.05 83.60 80.83
 RF 74.97 64.08 87.74 85.71
 AB 79.57 68.85 87.00 83.88
 LDA 75.80 71.56 92.28 90.74
 KNN (k = 9) 56.14 48.70 74.20 69.14

SCMFTS
 DT 64.08 62.69 85.38 84.71
 RF 81.62 77.16 92.67 91.96
 KNN (k = 9) 77.78 75.79 89.89 89.90

Table 5 Run times for WESAD dataset

Variable Time SCMFTS
(s)

Time series
length

Frequency (Hz)

c_ACCx 990.51 3500 700
c_ACCy 1008.76 3500 700
c_ACCz 994.42 3500 700
c_ECG 23,007.39 42,000 700
c_EDA 22,727.54 42,000 700
c_EMG 22,263.16 42,000 700
c_RESP 23,639.61 42,000 700
c_TEMP 22,396.20 42,000 700
w_ACCx 151.24 160 32
w_ACCy 150.72 160 32
w_ACCz 145.75 160 32
w_BVP 813.51 3840 64
w_EDA 242.28 240 4
w_TEMP 244.43 240 4
All variable join 183.93
Total time 118,959.47

3 The LDA method available in Spark corresponds to Latent Dir-
ichlet Allocation and is not related to the Linear Discriminant Analy-
sis method used in WESAD work.

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 10 of 15

Fig. 2 Scalability experiment:
Runtime vs Number of time
series

y = 138.7 + 0.002413 ⋅ x, r2 = 0.99985138

0

5000

10000

15000

20000

25000

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07
Number of time series

R
un

tim
e

(s
ec

s)

Fig. 3 Scalability experimenta-
tion: Runtime vs Number of
workers

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9 11 13 15 17
Number of workers

R
un

tim
e

(s
ec

s)

Amdahl's law

SCMFTS

Fig. 4 Scalability experiment:
Runtime vs Number of cores
per worker

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19
Number of cores per worker

R
un

tim
e

(s
ec

s)

Amdahl's law

SCMFTS

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 11 of 15 186

4.1.4 Hardware and Software

We have performed the experimentation in a Big Data clus-
ter composed of one driver/master node and 17 slave/com-
puting nodes. The computing nodes hold the following char-
acteristics: 2 × Intel(R) Xeon(R) CPU E5-2620 processors, 6
cores per processor with HyperThreading, 2.00 GHz, 64 GB
RAM, 2 TB HDD (1 TB HDFS). We have used the follow-
ing software configuration: Ubuntu 18.04.5 LTS, Apache
Hadoop 2.7, Apache Spark 3.0.1, 19 threads/node, 833 RAM
GB (48 GB/node).

The source code of SCMFTS is publicly available [1].

4.2 Results

In this section, we evaluate the two main aspects of SCM-
FTS: performance and scalability. Section 4.2.1 includes the
performance results of SCMFTS on the WESAD dataset. In
Sect. 4.2.2, we analyze the scalability of SCMFTS on the
synthetic dataset.

4.2.1 Performance Results on WESAD

To assess the performance of the SCMFTS proposal, we
have applied it to solve the two- and three-classes problems
of WESAD and compared it to the ML procedures analyzed
in the original work. The empirical results, expressed in
terms of accuracy and F1-score, are displayed in Table 4.

The results show that SCMFTS provides consistently bet-
ter results than the WESAD work, with the available Spark
machine learning models, in both cases. In addition, we can
see in the WESAD work [34], Table 3, that the best results
for the three classes problem are provided by the AB model
but only using the chest physiological modalities (c_ECG,
c_EDA c_EMG, c_RESP, and c_TEMP): 80.34 of accuracy
and 72.51 of F1-score, and still SCMFTS+RF provides bet-
ter results. In the two classes problem, the WESAD work
provides the LDA model with the chest physiological modal-
ities as the best results with 93.12 of accuracy and 91.47 of
F1-score, Table 4 in WESAD work [34], outperforming in
accuracy our best model but not in F1-score. In this case, the
WESAD work uses fewer variables and a model that is not
available in Spark, so we cannot make a direct comparison.
It is important to note that the LDA model provides the best
results in 20 out of 32 cases in the WESAD work, so this
particular model clearly offers better results than the others.
In addition, the AB model in the three-class problem and
the LDA model in the two-class problem provide results

significantly better than DT, RF, and KNN models in the
WESAD work.

There are relevant differences between the multiple vari-
ables that compose the MTS of this problem. Due to the
segmentation applied to the original time series proposed in
the WESAD work, we have variables that contain from 160
to 42,000 data points in the same problem. These differences
between variables generate significant variations in runtime
for feature calculation between the different variables, as we
can see in Table 5. As usual, a high number of data points
generates high runtimes, but if we compare runtimes for
variables c_ACCx, c_ACCy, or c_ACCz with w_BVP, this
does not happen. It is so because of the differences in the
frequency value of these variables, which is included in the
time series features calculation affecting the runtime. These
phenomena are not related to the Spark implementation per-
formed, but it depends on the structure of the input time
series.

4.2.2 Scalability Results on Synthetic Dataset

In this section, we analyze the scalability performance of
SCMFTS. Particularly, we focus on the three most fre-
quently considered dimensions: number of instances to pro-
cess, number of machines available, and number of cores
per machine. In Fig. 2, we show the relationship between the
runtime of SCMFTS and the number of MTS to process. For
this experimentation, we have used the 17 available work-
ers and 19 cores/threads per worker. Figure 2 allows us to
graphically identify a linear relationship between the runt-
ime and the number of time series to be processed through
SCMFTS. This feature is a mandatory requirement for the
scalability considerations in Big Data environments.

In Fig. 3, we can compare the runtime of SCMFTS with
different numbers of workers. In this case, we perform the
experimentation with a dataset composed of 1,000,000
MTS. As usual, an increase in the number of workers entails
a reduction in the runtime. For example, if we compare the
one and three workers cases, we can appreciate that the
reduction obtained is close to three times. This behavior is
present in the rest of the comparison in the Fig. 3. In this
kind of process, the ideal case is to obtain a time reduc-
tion equal to the number of the added workers as Amdahl’s
law [41] specifies, but it is a theoretical limit and in general
impossible to achieve in practice. SCMFTS is near to the
optimal case. Furthermore, we have to note the existence of
additional procedures related to adding workers to the clus-
ter, like extra workers communications, data transmission,

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 12 of 15

among others, that do not let us reach the performance of
the ideal case.

Each worker has 12 real/physical cores, 24 with hyper-
threading technology. To evaluate the core’s performance of
SCMFTS, we process 1,000,000 MTS using the 17 workers
available in our cluster, but we vary the number of used cores
in each worker. Figure 4 shows the relationship between the
runtime of SCMFTS and the number of cores per worker.
We can appreciate that the reduction in runtime has similar
behavior to the one observed previously, Fig. 3, but with a
greater gap regarding the optimal case. If we compare the
case of one core per worker with the cases of three or five
cores per worker, among others, we can see that the amount
of runtime reduction is directly related to the number of
cores used: one core case has a runtime close to 25,000 s,
three cores case has a runtime close to 7500 s, five cores case
has a runtime slightly higher to 5000 s, etc. But in this case,
we can appreciate that the runtime stops decreasing with the
number of cores with 11 cores per worker. This issue is due
to the number of physical cores by machine, which is 12.
Although hyper-threading technology allows us to increase
the efficiency of a core to provide an additional virtual core,
we cannot reach the maximum desired performance in com-
putationally intensive tasks.

Based on the results obtained in this section, in which our
proposal shows behaviors close to the ideal, we can conclude
that SCMFTS has a high scalability performance.

5 Conclusions

In this paper, we have presented a scalable and distributed
method, named SCMFTS, for transforming univariate and
multivariate time series into a vector of well-known features.
This method lets us apply the traditional vector-based algo-
rithms already available in Big Data to time series problems,
allowing us to address problems that would otherwise be

impossible. SCMFTS extends considerably the limited num-
ber of algorithms available to process time series in Big Data
environments. Our proposal is able to process MTS with
multiple frequencies and lengths and allows practitioners to
add new features easily.

SCMFTS has improved the results obtained, under the
same conditions, by the state-of-the-art on the biggest mul-
tivariate time series dataset available in the UCI Machine
Learning Repository, wearable stress and affect detection
(WESAD). The results obtained by SCMFTS on a general
problem improved those obtained by the WESAD work
solution, applying the proposed transformation without
additional considerations and allowing it to be a tool of
interest to a large number of researchers in multiple areas.
In addition, SCMFTS has shown a totally scalable behavior
through exhaustive experimentation, with a linearly scalable
relationship in runtime concerning the number of time-series
processed.

Our proposal has been implemented in the Scala program-
ming language for the Apache Spark framework, and the
code is publicly available. The implementation of SCMFTS
has followed the principles of FAIR [42] (Findability, Acces-
sibility, Interoperability, and Reuse) and Open Science.

This proposal opens promising research lines in this
topic, as exploring the semi-supervised approach based on
the proposed set of features. In Big Data environments, the
volume of processed data is high, and the labeling is limited.
In those environments, the semi-supervised approach offers
very interesting solutions. Another research line is the study
of the improvement in the expressivity and performance of
the selected set of features in Big Data environments.

Appendix: Time Series Complexity Measures
and Features Selected

See Table A1.

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 13 of 15 186

Table A1 Time series complexity measures and features selected

Fea. Name Description

f
1

lempel_ziv LempelZiv (LZA)
f
2

approximation_entropy Approximation Entropy
f
3

sample_entropy Sample Entropy (DK Lake in Matlab)
f
4

permutation_entropy Permutation Entropy (tsExpKit)
f
5

shannon_entropy_CS Chao-Shen Entropy Estimator
f
6

shannon_entropy_SG Schurmann–Grassberger Entropy Estimator
f
7

spectral_entropy Spectral Entropy
f
8

nforbidden Number of forbidden patterns
f
9

kurtosis Kurtosis, the “tailedness” of the probability distribution
f
10

skewness Skewness, asymmetry of the probability distribution
f
11

x_acf1 First autocorrelation coefficient
f
12

x_acf10 Sum of squares of the first 10 autocorrelation coefficients
f
13

diff1_acf1 Differenced series first autocorrelation coefficients
f
14

seas_acf1 First autocorrelation coefficient of the seasonal component
f
15

diff1_acf10 Differenced series sum of squares of the first 10 autocorrelation coefficients
f
16

diff2_acf1 Twice differenced series first autocorrelation coefficients
f
17

diff2_acf10 Twice differenced series sum of squares of the first 10 autocorrelation coefficients
f
18

max_kl_shift Maximum shift in Kullback–Leibler divergence between two consecutive windows
f
19

time_kl_shift Instant of time in which the Maximum shift in Kullback–Leibler divergence between two consecutive
windows is located

f
20

outlierinclude _mdrmd Calculates the median of the medians of the values, while adding more outliers
f
21

max_level_shift Maximum mean shift between two consecutive windows
f
22

time_level_shift Instant of time in which the maximum mean shift between two consecutive windows is located
f
23

ac_9 Autocorrelation at lag 9
f
24

crossing_points The number of times a time series crosses the median line
f
25

max_var_shift Maximum variance shift between two consecutive windows
f
26

time_var_shift Instant of time in which the maximum variance shift between two consecutive windows is located
f
27

nonlinearity Modified statistic from Teräsvirta’s test
f
28

embed2_incircle Proportion of points inside a given circular boundary in a 2-d embedding space
f
29

spreadrandomlocal _meantaul Mean of the first zero-crossings of the autocorrelation function in each segment of the 100 time-series
segments of length l selected at random from the original time series

f
30

flat_spots Maximum run length within any single interval obtained from the ten equal-sized intervals of the sample
space of a time series

f
31

x_pacf5 Sum of squares of the first 5 partial autocorrelation coefficients
f
32

seas_pacf Sum of squares of the first 5 partial autocorrelation of the seasonal component
f
33

diff1x_pacf5 Differenced series sum of squares of the first 5 partial autocorrelation coefficients
f
34

diff2x_pacf5 Twice differenced series sum of squares of the first 5 partial autocorrelation coefficients
f
35

firstmin_ac Time of first minimum in the autocorrelation function
f
36

std1st_der Standard deviation of the first derivative of the time series
f
37

stability Stability variance of the means
f
38

firstzero_ac First zero crossing of the autocorrelation function
f
39

trev_num The numerator of the trev function, a normalized nonlinear autocorrelation, with the time lag set to 1
f
40

alpha Smoothing parameter for the level-alpha of Holt’s linear trend method
f
41

beta Smoothing parameter for the trend-beta of Holt’s linear trend method
f
42

nperiods Number of seasonal periods (1 for no seasonal data)
f
43

seasonal_period Seasonal periods (1 for no seasonal data)
f
44

trend Strength of trend
f
45

spike Spikiness variance of the leave-one-out variances of the remainder component
f
46

linearity Linearity calculated based on the coefficients of an orthogonal quadratic regression
f
47

curvature Curvature calculated based on the coefficients of an orthogonal quadratic regression

 International Journal of Computational Intelligence Systems (2021) 14:186

1 3

 186 Page 14 of 15

Acknowledgements This work has been partially carried out while
Francisco J. Baldán was on a research stay at the University of Ghent.
Francisco J. Baldán is grateful for the valuable feedback and knowl-
edge received from the members of the Data Mining and Modeling for
Biomedicine (DAMBI) group.

Author Contributions Paper writing and experiment implementation:
FJB; methodology: FJB and DP; revising and reviewing: DP, JMB, and
YS; supervision: DP, JMB, and YS; funding acquisition: JMB and YS.

Funding This research has been partially funded by the following
grants: TIN2016-81113-R from the Spanish Ministry of Economy
and Competitiveness, P12-TIC-2985 and P18-TP-5168 from Andalu-
sian Regional Government, Spain, and EU Commission with FEDER
funds. Francisco J. Baldán holds the FPI grant BES-2017-080137
from the Spanish Ministry of Economy and Competitiveness. D. Per-
alta is a Postdoctoral Fellow of the Research Foundation of Flanders
(170303/12X1619N). Y. Saeys is an ISAC Marylou Ingram Scholar.

Availability of Data and Materials The code of our proposal and syn-
thetic time series generation is publicly available (https:// github. com/
fjbal dan/ SCMFTS/). The Wearable Stress and Affect Detection dataset
is publicly available already (https:// ubico mp. eti. uni- siegen. de/ home/
datas ets/ icmi18/).

Declarations

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication The authors consent to this work for publica-
tion.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http:// creat iveco mmons.
org/ licen ses/ by/4. 0/.

References

 1. Baldán, F.J., Peralta, D., Saeys, Y., Benítez, J.M.: Scalable com-
plexity measures and features for times series classification pack-
age repository (2021). https:// github. com/ fjbal dan/ SCMFTS/

 2. Kobusińska, A., Leung, C., Hsu, C.-H., Raghavendra, S., Chang,
V.: Emerging trends, issues and challenges in Internet of Things,
Big Data and cloud computing. Future Gener. Comput. Syst. 87,
416–419 (2018)

 3. Lee, S.W., Kim, H.Y.: Stock market forecasting with super-high
dimensional time-series data using ConvLSTM, trend sampling,
and specialized data augmentation. Expert Syst. Appl. 161,
113704 (2020)

 4. Kim, T.-Y., Cho, S.-B.: Predicting the household power consumption
using CNN-LSTM hybrid networks. In: Intelligent Data Engineering
and Automated Learning—IDEAL 2018, pp. 481–490 (2018)

 5. Aarthy, S., Iqbal, J.M.: Time series real time Naive Bayes elec-
trocardiogram signal classification for efficient disease prediction
using fuzzy rules. J. Ambient Intell. Humaniz. Comput. 12(5),
5257–5267 (2021)

 6. Nguyen, T., Nguyen, T., Nguyen, B.M., Nguyen, G.: Efficient
time-series forecasting using neural network and opposition-
based coral reefs optimization. Int. J. Comput. Intell. Syst. 12(2),
1144–1161 (2019)

 7. Wu, B., Duan, T.: A performance comparison of neural networks
in forecasting stock price trend. Int. J. Comput. Intell. Syst. 10(1),
336–346 (2017)

Table A1 (continued)

Fea. Name Description

f
48

e_acf1 First autocorrelation coefficient of the remainder component
f
49

seasonal_strength Strength of seasonal
f
50

peak Strength of peaks
f
51

trough Strength of trough
f
52

e_acf10 Sum of the first then squared autocorrelation coefficients
f
53

walker_propcross Fraction of time series length that walker crosses time series
f
54

hurst Long-memory coefficient
f
55

unitroot_kpss Statistic for the KPSS unit root test with linear trend and lag one
f
56

histogram_mode Calculates the mode of the data vector using histograms with 10 bins (It is possible to select a different
number of bins)

f
57

unitroot_pp Statistic for the PP unit root test with constant trend and lag one
f
58

localsimple_taures First zero crossing of the autocorrelation function of the residuals from a predictor that uses the past train-
Length values of the time series to predict its next value

f
59

lumpiness Lumpiness variance of the variance
f
60

motiftwo_entro3 Entropy of words in the binary alphabet of length 3. The binary alphabet is obtained as follows: Time-
series values above its mean are given 1, and those below the mean are 0

https://github.com/fjbaldan/SCMFTS/
https://github.com/fjbaldan/SCMFTS/
https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/
https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/fjbaldan/SCMFTS/

International Journal of Computational Intelligence Systems (2021) 14:186

1 3

Page 15 of 15 186

 8. Viegas, J.L., Cepeda, N.M., Vieira, S.M.: Electricity fraud detection
using committee semi-supervised learning. In: 2018 International
Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2018)

 9. Haddi, Z., Ananou, B., Trardi, Y., Pons, J.-F., Delliaux, S., Deharo,
J.-C., Ouladsine, M.: Advanced machine learning coupled with
heart-inter-beat derivatives for cardiac arrhythmia detection. In:
2020 American Control Conference (ACC), pp. 5433–5438 (2020)

 10. Handhika, T., Murni, Lestari, D.P., Sari, I.: Multivariate time
series classification analysis: state-of-the-art and future chal-
lenges. In: IOP Conference Series: Materials Science and Engi-
neering, vol. 536, p. 012003 (2019)

 11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. In: Proceedings of the 6th Conference on Sym-
posium on Operating Systems Design and Implementation, vol.
6, p. 10 (2004)

 12. Hamstra, M., Karau, H., Zaharia, M., Konwinski, A., Wendell,
P.: Learning Spark: Lightning-Fast Big Data Analytics. O’Reilly
Media, Inc., Sebastopol (2015)

 13. Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S.,
Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al.: MLlib:
machine learning in apache spark. J. Mach. Learn. Res. 17(1),
1235–1241 (2016)

 14. Packages, S.: 3rd Party Spark Packages (2019). https:// spark- packa
ges. org/

 15. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westo-
ver, B., Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining tril-
lions of time series subsequences under dynamic time warping. In:
Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 262–270 (2012)

 16. Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm
for discovering time series shapelets. In: Proceedings of the 2013
SIAM International Conference on Data Mining, pp. 668–676
(2013)

 17. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable frame-
work for automated time-series anomaly detection. In: Proceed-
ings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1939–1947 (2015)

 18. Foreman-Mackey, D., Agol, E., Ambikasaran, S., Angus, R.:
Fast and scalable Gaussian process modeling with applications
to astronomical time series. Astron. J. 154(6), 220 (2017)

 19. Lucas, B., Shifaz, A., Pelletier, C., O’Neill, L., Zaidi, N., Goeth-
als, B., Petitjean, F., Webb, G.I.: Proximity forest: an effective
and scalable distance-based classifier for time series. Data Min.
Knowl. Discov. 33(3), 607–635 (2019)

 20. Baldán, F.J., Benítez, J.M.: Distributed FastShapelet Transform:
a Big Data time series classification algorithm. Inf. Sci. 496,
451–463 (2019)

 21. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform
for time series classification. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 289–297 (2012)

 22. Fulcher, B.D., Little, M.A., Jones, N.S.: Highly comparative time-
series analysis: the empirical structure of time series and their
methods. J. R. Soc. Interface 10(83), 20130048 (2013)

 23. Fulcher, B.D.: Feature-based time-series analysis (2017). arXiv
preprint. arXiv: 1709. 08055

 24. Kang, Y., Hyndman, R.J., Li, F., et al.: Efficient generation of
time series with diverse and controllable characteristics. Techni-
cal report, Monash University, Department of Econometrics and
Business Statistics (2018)

 25. Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D.,
Jones, N.S.: catch22: CAnonical Time-series CHaracteristics.
Data Min. Knowl. Discov. 33(6), 1821–1852 (2019)

 26. Peralta, D., Saeys, Y.: Robust unsupervised dimensionality reduc-
tion based on feature clustering for single-cell imaging data. Appl.
Soft Comput. 93, 106421 (2020)

 27. Baldán, F.J., Benítez, J.M.: Complexity measures and features
for times series classification (2020). arXiv preprint arXiv: 2002.
12036

 28. Baldán, F.J., Benítez, J.M.: Multivariate times series classification
through an interpretable representation. Inf. Sci. 569, 596–614
(2021)

 29. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
Sebastopol (2012)

 30. Flink, A.: Apache Flink (2019). http:// flink. apache. org/
 31. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly,

M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster com-
puting. In: Proceedings of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12), pp.
15–28 (2012)

 32. Dahl, D.B.: Integration of R and Scala using rscala. J. Stat. Softw.
92(1), 1–18 (2020)

 33. Dua, D., Graff, C.: UCI Machine Learning Repository (2017).
http:// archi ve. ics. uci. edu/ ml

 34. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laer-
hoven, K.: Introducing wesad, a multimodal dataset for wearable
stress and affect detection. In: Proceedings of the 20th ACM
International Conference on Multimodal Interaction, pp. 400–408
(2018)

 35. Bobade, P., Vani, M.: Stress detection with machine learning and
deep learning using multimodal physiological data. In: 2020 Sec-
ond International Conference on Inventive Research in Computing
Applications (ICIRCA), pp. 51–57 (2020)

 36. Indikawati, F.I., Winiarti, S.: Stress detection from multimodal
wearable sensor data. In: IOP Conference Series: Materials Sci-
ence and Engineering, vol. 771, p. 012028 (2020)

 37. Lin, J., Pan, S., Lee, C.S., Oviatt, S.: An explainable deep fusion
net-work for affect recognition using physiological signals. In:
Proceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management, pp. 2069–2072 (2019)

 38. Saeed, A., Salim, F.D., Ozcelebi, T., Lukkien, J.: Federated self-
supervised learning of multisensor representations for embedded
intelligence. IEEE Internet Things J. 8(2), 1030–1040 (2020)

 39. Samyoun, S., Sayeed Mondol, A., Stankovic, J.A.: Stress detection
via sensor translation. In: 2020 16th International Conference on
Distributed Computing in Sensor Systems (DCOSS), pp. 19–26
(2020)

 40. Espíndola, R.P., Ebecken, N.F.: On extending f-measure and
g-mean metrics to multi-class problems. WIT Trans. Inf. Com-
mun. Technol. 35 (2005)

 41. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Com-
puter 41(7), 33–38 (2008)

 42. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos,
L.B., Bourne, P.E., et al.: The fair guiding principles for scientific
data management and stewardship. Sci. Data 3(1), 1–9 (2016)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://spark-packages.org/
https://spark-packages.org/
http://arxiv.org/abs/1709.08055
http://arxiv.org/abs/2002.12036
http://arxiv.org/abs/2002.12036
http://flink.apache.org/
http://archive.ics.uci.edu/ml

	SCMFTS: Scalable and Distributed Complexity Measures and Features for Univariate and Multivariate Time Series in Big Data Environments
	Abstract
	1 Introduction
	2 Related Works
	2.1 Time Series in Big Data
	2.2 Big Data Frameworks

	3 Scalable and Distributed Time Series Transformation Proposal
	4 Empirical Study
	4.1 Experimental Design
	4.1.1 Datasets
	4.1.2 Measures and Methodology
	4.1.3 Models
	4.1.4 Hardware and Software

	4.2 Results
	4.2.1 Performance Results on WESAD
	4.2.2 Scalability Results on Synthetic Dataset

	5 Conclusions
	Acknowledgements
	References

