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Abstract
Time series data are becoming increasingly important due to the interconnectedness of the world. Classical problems, which 
are getting bigger and bigger, require more and more resources for their processing, and Big Data technologies offer many 
solutions. Although the principal algorithms for traditional vector-based problems are available in Big Data environments, 
the lack of tools for time series processing in these environments needs to be addressed. In this work, we propose a scalable 
and distributed time series transformation for Big Data environments based on well-known time series features (SCMFTS), 
which allows practitioners to apply traditional vector-based algorithms to time series problems. The proposed transforma-
tion, along with the algorithms available in Spark, improved the best results in the state-of-the-art on the Wearable Stress 
and Affect Detection dataset, which is the biggest publicly available multivariate time series dataset in the University of 
California Irvine (UCI) Machine Learning Repository. In addition, SCMFTS showed a linear relationship between its runt-
ime and the number of processed time series, demonstrating a linear scalable behavior, which is mandatory in Big Data 
environments. SCMFTS has been implemented in the Scala programming language for the Apache Spark framework, and 
the code is publicly available.1
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1 Introduction

Nowadays, we can find devices generating data anywhere 
and at any time [2]. With the expansion of new technolo-
gies, the volume of data generated is growing by leaps and 
bounds. Until now, the typical time series data comes from 
well-known fields, for example, from the stock market [3], 
from industry with power consumption logs [4], or from 
medical fields with specific applications, such as electrocar-
diograms [5]. However, nowadays we have access to a lot of 
new devices like smartwatches which continuously gener-
ate information through their incorporated sensors, such as 
heart rate, temperature or humidity monitors. All the data 
sources mentioned contain information of high importance 
that needs to be extracted and used to improve the service 
offered.

All the examples mentioned above are related to record-
ing one or multiple magnitudes over time, generating a spe-
cific type of data named time series. Any magnitude regu-
larly recorded over time is a time series. On the one hand, 
forecasting future values of a time series has been a very 
popular topic [6]. Forecasting stock price trends [7] is the 
most typical example but also one of the hardest. On the 
other hand, the search for patterns in time series is a task that 
is attracting more attention each day. Problems like detection 
of fraudulent energy consumption [8] or detection of heart 
malfunctions [9] are gathering increasing attention from 
the research community. With increasingly cheaper sensors 
and more complex models, new problems of interest appear 
every day.

There are growing numbers of cases in which multiple 
variables are recorded at the same time in the same pro-
cess [10], generating multivariate time series (MTS). MTS 
problems have additional complexity due to the relationships 
between the different variables that compose each MTS. An 
example of this kind of problem is the forecast of the energy 
demand when additional meteorological variables are availa-
ble like temperature, humidity, or wind speed, among others.

The data volume generated by the expansion of IoT scales 
quickly providing a quantity of data that is not processa-
ble by the traditional computation model. The concept of 
Big Data arises in order to face this kind of problem. The 
MapReduce paradigm [11] proposes a distributed computa-
tional model that can face a high volume of data efficiently. 
Apache Spark [12] is a popular framework that offers high-
speed capabilities and includes the MapReduce workflow. 
Spark has one of the most extensive libraries for machine 
learning in Big Data environments, MLlib [13], and an extra 
repository with some untested proposals named spark pack-
ages [14]. Although the MLlib has the most representative 
algorithms for machine learning, the set of available algo-
rithms is still limited. At the time of writing this paper, there 

are few tools for time series processing in MLlib or spark 
packages, and in general in Big Data environments.

In this work, we propose a scalable and distributed time 
series transformation based on well-known time series fea-
tures, named SCMFTS, to provide an alternative vector-
based representation of time series that enables the use of 
the traditional machine learning techniques available in Big 
Data environments. We have implemented it in Apache 
Spark through Scala, guaranteeing a fully scalable behav-
ior, being the first proposal of this type made for Big Data 
environments. The code is publicly available [1]. SCMFTS 
allows practitioners to face problems that would otherwise 
be impossible and to improve the results obtained through 
the additional information provided by the new time series 
features. The proposed transformation is applicable for uni-
variate and multivariate time series. It has been tested for 
effective accuracy and linear scalability.

The remainder of this paper is organized as follows. 
In Sect. 2, we analyze the works related to our proposal. 
Section 3 explains the transformation proposed, the time 
series features selected, and the workflow of our proposal. 
In Sect. 4, we summarize the obtained results. Finally, we 
show the conclusions of our work in Sect. 5.

2  Related Works

In this section, we analyze the state-of-the-art of time series 
processing in Big Data Sect. 2.1 and the main Big Data 
frameworks Sect. 2.2.

2.1  Time Series in Big Data

For almost a decade, the processing of enormous amounts 
of time series has been an active research topic. One of the 
most representative works tries to process trillions of time 
series subsequences through the dynamic time warping dis-
tance measure [15], which has a high complexity. After this 
first work, we can see a succession of new proposals that 
try to face the problem of processing time series to a larger 
scale. For example, the FastShapelet (FS) algorithm [16] 
which provides a reduction in time complexity of the origi-
nal proposal at a cost in accuracy, proposals of a generic and 
scalable framework for automated anomaly detection to deal 
with large-scale time series data [17], a fast and scalable 
Gaussian process modeling oriented to astronomical time 
series [18], or a scalable distance-based classifier for time 
series named proximity forest [19], show us the growing 
interest in processing larger and larger sets of time series. 
However, we can see how the limitations of the traditional 
computation model and computation systems are also there 
in these works. Limitations in the available resources to deal 
with a large problem, becoming impossible its storage in 
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memory or obtaining unacceptable running times, among 
others.

To face the limitations mentioned above the Distributed 
FastShapelet Transform (DFST) algorithm [20] has been 
introduced, the first time series classification algorithm 
developed in a distributed way. DFST joins the low com-
plexity of the FastShapelet (FS) algorithm with the Shapelet 
Transform (ST) [21] performance. ST proposes to use the 
distance between the selected shapelets and each time series 
in the dataset as the input features. For this reason, we can 
consider it as a feature-based method. The performance of 
ST depends on the machine learning algorithm used on the 
transformed dataset, but it provides competitive results con-
cerning the best proposals of the state-of-the-art. In addition, 
the DFST method lets us apply the traditional vector-based 
algorithms already available in Apache Spark to time series 
problems, expanding the tools to process this kind of data. 
But this approach can only be used in supervised problems.

The time series analysis problem has additional character-
istics with respect to the traditional vector-based problems. 
Characteristics like time dependency, trend, seasonality, or 
stationarity of a time series, among others, must be consid-
ered in the algorithm proposals, raising the complexity of 
the methods or adding some limitations to them and mak-
ing the application of the proposed methods in distributed 
environments impossible. For example, on the one hand, FS 
analyzes the entire dataset sequentially and provides the best 
decision tree, based on shapelets founded, evaluating each 
shapelet with the complete dataset. On the other hand, DFST 
evaluates the shapelets candidates in a distributed way on 
the data available in each node and saves the most valuated. 
This is because the shapelets evaluation process has a high 
complexity, which makes it impossible to apply it to the 
complete dataset in Big Data environments.

Following the feature-based approach used in DFTS and 
ST, but without depending on shapelets, we can find multiple 
works based on extracting time series features. For example, 
the application of multiple types of mathematical operations 
over a time series to obtain valuable information from it that 
explains the underlying structure of their behavior [22, 23], 
the selection from a theoretical point of view of the most 
representative features of a time series that could explain 
their behavior [24], or the proposal of a set of 22 character-
istics [25] through exhaustive experimentation which guar-
antee these features as the most representative of the original 
set of features, among others.

Unsupervised feature extraction has been applied in 
other domains [26]. In the particular case of time series, 
recently, it has been demonstrated that a set of well-known 
complexity measures and time series features is able to pro-
vide competitive results concerning the state-of-the-art of 
univariate [27] and multivariate [28] time series classifica-
tion. To extrapolate this approach to a distributed Big Data 

environment is necessary to filter and prepare the selected 
features to be totally independent of each other and do not 
require relationships between different time series or addi-
tional information. These conditions allow their inclusion in 
a distributed environment, increasing the limited amount of 
tools for time series processing in Big Data environments.

2.2  Big Data Frameworks

Even with the previous scalable—but not distributed—
proposals, some problems are impossible to process when 
storage needs become untractably large for a single com-
puter. The MapReduce paradigm addresses these issues by 
proposing a distributed computation model that joins the 
capabilities of multiple computers to obtain the necessary 
resources transparently for the user. The MapReduce para-
digm is based on two types of operations:

• The map operation distributes throughout the cluster 
the computation needed over each instance of the data-
set. This operation is applied independently over each 
instance, and there is no possible interaction between 
different instances.

• The reduce operation brings to the cluster driver the gen-
erated results for a previous map operation. In this case, 
there are interactions between the different instances of 
the dataset.

The most popular framework that includes this paradigm 
was Apache Hadoop [29], written in Java. However, its 
limitations, such as the necessity of writing to disk every 
step in the workflow, the impossibility to implement iter-
ative behaviors efficiently, or the necessity to hand code 
every operation, among others, have led to the emergence 
of new frameworks, like Apache Spark [12] or Apache 
Flink [30]. Spark proposes a framework that includes in-
memory processing, increasing the processing speed with 
several orders of magnitude. In addition, Spark introduces 
the new Resilient Distributed Datasets (RDD) data struc-
ture [31] and lazy evaluation. Every transformation and 
action applied over the RDD is recorded in the RDD line-
age. This lineage is a register of each operation applied 
to the RDD. It allows the RDD to be recovered in any of 
its previous states, giving a high fault tolerance to the 
system.

Although Spark provides the framework to process enor-
mous quantities of data and the time series processing is 
evolving towards processing ever-increasing amounts of 
data, we cannot find enough tools for processing time series 
in Spark with official support yet. If we analyze MLlib, we 
cannot find specific time series algorithms for classification, 
clustering, or forecasting tasks. In spark packages [14], we 
only can find two time series proposals. The first one is the 
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spark-ts2 package, which provides statistical modeling for 
time series in a distributed way. However, it is oriented to 
forecasting tasks, and it has been discontinued for a long 
time. The second one is the Distributed FastShapelet Trans-
form referred to in the previous section. MLlib includes 
tools for handling data streaming, but only a streaming linear 
regression model is available.

3  Scalable and Distributed Time Series 
Transformation Proposal

In this work, we propose, through a MapReduce framework, 
a scalable and distributed transformation for univariate and 
multivariate time series (SCMFTS) based on well-known 
time series features for Big Data environments. The pro-
posed transformation provides a traditional vector-based rep-
resentation for time series data. SCMFTS allows us to apply 
algorithms that are not time series specific to time series 
problems. Table A1, in Appendix, contains the selected set 
of features used in this work.

In sequential and supervised scenarios, the above 
approach has proven to obtain competitive results concern-
ing the main algorithms of the state-of-the-art [27, 28]. In 
addition, SCMFTS is able to process MTS with multiple 
frequencies and lengths, allowing practitioners to add new 
features easily.

Our proposal is based on the extraction of the features 
of each time series. More formally, it can be stated as fol-
lows. Given a time series dataset represented in the tempo-
ral domain, a new, vectorial representation of the dataset is 
obtained as follows:

• Unidimensional case. For each time series in the dataset, 
all the features are computed. The time series is repre-
sented by the vector composed of the values for the com-
puter features. The order of the feature values is the same 
for all the time series in the dataset.

• Multidimensional case. For each time series in the data-
set, for each variable in the multivariate time series, all 
the features are computed. The individual time series is 
represented by the vector composed of the values for the 
computer features. The order of the feature values is the 
same for all the time series in the dataset. The multivari-
ate time series is represented by a vector formed as the 
concatenation of the corresponding vectors to each of the 
individual time series composing the multivariate time 
series.

This new vector-based representation of time series opens 
a huge landscape of applicable methods for time series. But 
it is also rather robust allowing for easy usage of complex 
methods.

While these transformations follow trivially from our 
proposal for time series representations in previous papers 
[27, 28], in the current work, we dive deep into its effective 
application in a Big Data scenario. To effectively study this, 
we have designed and developed an actual implementation 
of the representation conversion in a software package able 
to face real-world problems. This particular implementation 
is what we term SCMFTS. Its most relevant design issues 
are detailed in the rest of this section. Its performance and 
scalability are further analyzed in the remainder of the paper.

Our implementation unifies the distributed computation 
provided by Spark with the powerful statistical tools avail-
able in R to obtain the desired transformation in Big Data 
environments. We have developed SCMFTS in Scala/Spark, 
and the communications between Spark and R have been 
done through rscala [32].

To process the time series correctly, a number of consid-
erations must be made:

• Each multivariate time series has a unique key that identi-
fies it (tsKey).

• Each variable of an MTS has a unique key (varKey). The 
combination of a time series key with a variable key is 
unique.

• The input data must have the following format: (tsKey, 
varKey, tsClass [optional], tsData1 , tsData2,… , tsData

n
).

• Due to the possible differences between the multiple vari-
ables that compose an MTS, we chose to process each 
variable individually. For example, one variable could 
have hundreds of data points, but another variable could 
have thousands of data points. Because the communica-
tion between Spark and R must be done through a sim-
ple data structure like Array[Array[PrimitiveDataType]], 
including both variables in the same RDD forces us to fill 
the shortest time series with 0.0 wasting a vast amount of 
memory resources.

Figure 1 shows the workflow of SCMFTS for the multivari-
ate case. We have included the class column to illustrate a 
typical supervised problem. In the case of univariate time 
series, the process is the same, but we do not need the filter 
and joins steps. First, the framework reads the data in the 
correct format or processes it until we obtain this format 
(step 1). Due to this, we can unequivocally identify each 
time series and variable. Second, we generate an RDD for 
each problem variable, filtering the input data by the varKey 
column (step 2). Next, we process each RDD/Variable in a 
distributed way, generating a new RDD for each variable 
with the extracted features (step 3), which are then joined 2 https:// spark- packa ges. org/ packa ge/ sryza/ spark- times eries.

https://spark-packages.org/package/sryza/spark-timeseries
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iteratively (step 4), obtaining a final RDD/dataset where 
each instance contains the ordered extracted features from 
each variable (step 5).

In Algorithm 1, we show the pseudocode of SCMFTS, 
utilizing the operations in Scala/Spark and R. In line 1, we 
initialize a list that will contain the computed RDDs with 
the time series features. In lines 2 to 5, our proposal obtains 
the input data of each variable that composes the MTS pro-
cessed. We chose a mapPartition transformation because the 

initialization of the R environment is a time-consuming pro-
cess. Using this transformation, we only initialize an R envi-
ronment for each data partition, processing every time series 
in that partition in the same R session. In line 6, we initialize 
the output RDD that will contain, in order, the RDDs with 
the calculated features for each variable that composes the 
input MTS. In this first step, we include the feature-RDD of 
the first variable. In lines 7 to 9, we join, iteratively and in 
order, the output RDD with each feature-RDD of the rest 

RDDvar_1
(tsID, varID, class, tsData)

(1, 1, 0, )  

(1, 2, 0, )  

(1, m, 0, )  

...
...

(tsID, varID, class, tsData)

(2, 1, 1, )  

(2, 2, 1, )  

(2, m, 1, )  

...

(tsID, varID, class, tsData)

(n, 1, 0, )  

(n, 2, 0, )  

(n, m, 0, )  

...

MVTS_1

MVTS_2

MVTS_n

(tsID, varID, class, tsData)

(1, 1, 0, )  

(2, 1, 1, )  

(n, 1, 0, )  

...

Original Data

(tsID, varID, class, tsData)

(1, 2, 0, )  

(2, 2, 1, )  

(n, 2, 0, )  

...

(tsID, varID, class, tsData)

(1, m, 0, )  

(2, m, 1, )  

(n, m, 0, )  

...

RDDvar_2

RDDvar_m

SCMFTS_RDDvar_1

(tsID, varID, class, SCMFTS_features)

(1, 1, 0, f1, f2, ... , fz)

(2, 1, 1, f1, f2, ... , fz)

(n, 1, 0, f1, f2, ... , fz)

...
SCMFTS_RDD

(tsID, class, SCMFTS_features_var_1, SCMFTS_features_var_2, SCMFTS_features_var_m)

(1, 0, f1, f2, ... , fz, f1, f2, ... , fz, f1, f2, ... , fz)

(2, 1, f1, f2, ... , fz, f1, f2, ... , fz, f1, f2, ... , fz)

(n, 0, f1, f2, ... , fz, f1, f2, ... , fz, f1, f2, ... , fz)

...

...

...

SCMFTS_RDDvar_2

(tsID, varID, class, SCMFTS_features)

(1, 2, 0, f1, f2, ... , fz)

(2, 2, 1, f1, f2, ... , fz)

(n, 2, 0, f1, f2, ... , fz)

...

SCMFTS_RDDvar_m

(tsID, varID, class, SCMFTS_features)

(1, m, 0, f1, f2, ... , fz)

(2, m, 1, f1, f2, ... , fz)

(n, m, 0, f1, f2, ... , fz)

...
...

Transformed Data

1
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5

...

...

4
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Fig. 1  Workflow example of SCMFTS. The shaded column in each case represents the key value of the typical MapReduce paradigm schema 
(key, value). The remaining unshaded columns belong to the value field
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of the variables. We use the tsID as the unique key for the 
join, and we remove the varID and class columns because 
we included them in the first RDD for this output. Finally, 
in line 10, we return the final RDD that contains the features 
calculated for every variable that composes each MTS. The 

output RDD can be used as input of any traditional vec-
tor-based machine learning algorithm available in Spark. 
Naturally, it can also be exported to a CSV-like format so 
that it can be published or further processed on a different 
platform.

Algorithm 1 SCMFTS procedure
Input:

inputData: list of input RDDs with (tsID, varID, class, tsData)
structure

Output:
outputData: output RDD that contains the time series features
calculated for each input time series with (tsID, class,
scmftsFeaturesVars) structure

1: scmftsVars ← [ ]
2: for each variable in inputData do
3: varData ← inputData.filter(variable==varID)
4: scmftsVars[variable]← varData.mapPartitions{rscala::scmfts(varDataPartition)}
5: end for
6: outputRDD ← scmftsVars[first]
7: for each scmftsRDD in scmftsVars[-first] do
8: outputRDD ← outputRDD.join(scmftsRDD[-varID,-class], by=tsID)
9: end for

10: return (outputRDD)
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Sometimes, the time series features used are not present in 
the processed time series. For example, a time series without 
a seasonal pattern or too short to calculate an autocorrelation 
coefficient cannot offer values for these features. To face this 
problem, we have included an imputation process after the 
application of Algorithm 1, explained in Algorithm 2. This 
procedure grants our proposal a robust behavior to a wide 
variety of scenarios such as time series that are too short, 
non-seasonal, trendless, among others.

Table 1  MTS characteristics of the WESAD dataset

Variable Time series length Frequency (Hz)

c_ACCx 3500 700
c_ACCy 3500 700
c_ACCz 3500 700
c_ECG 42,000 700
c_EDA 42,000 700
c_EMG 42,000 700
c_RESP 42,000 700
c_TEMP 42,000 700
w_ACCx 160 32
w_ACCy 160 32
w_ACCz 160 32
w_BVP 3840 64
w_EDA 240 4
w_TEMP 240 4

Algorithm 2 Imputation procedure
Input:

SCMFTS RDD: input RDD that contains the time series
features calculated for each input time series (tsID, class,
scmftsFeaturesVars) structure

Output:
imputedSCMFTSDataset: output RDD with (tsID, class,
scmftsFeaturesVars) structure without the non-desirable values

1: for each column in SCMFTS RDD[-tsID, -class] do
2: for each value in SCMFTS RDD[ , column.index] do
3: if is.infinite(value) then
4: if value ≥ 0 then
5: value ← max(SCMFTS RDD[ , column.index], ignore.inf)
6: else
7: value ← min(SCMFTS RDD[ , column.index], ignore.inf)
8: end if
9: end if

10: end for
11: column ← imputeMean(SCMFTS RDD[ , column.index])
12: end for
13: imputedSCMFTSDataset ← SCMFTS RDD
14: return (imputedSCMFTSDataset)

In lines 1–12, we focus our imputation process on the 
time series features columns. For each value in each column, 
we identify if this value is infinite or -infinite, replacing this 
value by the maximum or minimum finite value of the col-
umn, respectively (lines 2–10). After this imputation, the 
rest of the non-desirable values are imputed using the mean 
of the column, ignoring the non-desirable values in the mean 
calculation of each column (line 11). Finally, we obtain the 
final RDD without non-desirable values (lines 13–14).

In summary, the proposal computes multiple features out 
of MTS in a robust and scalable way thanks to its MapRe-
duce workflow, whose design, combined with an imputa-
tion strategy, enables the tackling of MTS with different 
lengths and frequencies for each variable with no memory 
nor runtime overhead, resulting in a fixed length vector for 
each MTS. The combination of R, Scala, and Spark ensures 
the efficiency, failure tolerance, and extensibility of the 
software.
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4  Empirical Study

In this section, we conduct an empirical evaluation of the 
performance and scalability of SCMFTS. Section 4.1 details 
the empirical evaluation design. In Sect. 4.2, we show the 
results obtained by SCMFTS and the selected proposals for 
comparison.

4.1  Experimental Design

With the aim to evaluate the scalability and performance of 
SCMFTS, we thoroughly designed and rigorously conducted 
an empirical analysis. Section 4.1.1 includes the motiva-
tion of the selected dataset along with their description. 
Section 4.1.2 specifies the measures used to evaluate our 
proposal and the methodology performed. In Sect. 4.1.3, we 
describe the models to which SCMFTS is compared. Finally, 
Sect. 4.1.4 includes the hardware and software used for the 
experiments.

4.1.1  Datasets

To evaluate the performance of SCMFTS in a real world, 
we have selected the multivariate time series dataset with 
the highest number of instances in the UCI Repository [33], 
the Wearable Stress and Affect Detection (WESAD) dataset 
[34]. In this dataset, we try to identify the patient’s state 
through 14 different sensors that measure biological param-
eters of the subject, such as blood volume pulse or respira-
tion, among others, and its movement through acceleration 
sensors in the x, y, and z axes. We have information from 
15 different patients. WESAD dataset is used to address two 
different problems:

• The first problem tries to differentiate three states: base-
line vs. stress vs. amusement.

• The second problem differentiates stress vs. non-stress 
states, joining baseline and amusement states under the 
same label non-stress.

For data extraction, we followed the segmentation process 
with a sliding window explained by the original authors: 
window shift of 0.25 s, a window size of 5 s for the ACC 
signals, and 60 s for the physiological signals. For subject 

14, we also removed the first 136 time series because they 
contain multiple missing values. In this way, we have gener-
ated 132,477 MTS composed of 14 variables each. Table 1 
shows the names of each variable and its most representative 
characteristics.

To better evaluate the scalability, a larger dataset is nec-
essary. Since there is no one publicly available, we have 
created a synthetic dataset composed of MTS with three 
variables, with 100 data points per variable. We have gener-
ated two different sets of time series:

• The first set of ten datasets containing from 100,000 
to 1,000,000 MTS with increments of 100,000 MTS 
between each dataset.

• A second set of 10 datasets contained from 1,000,000 
to 10,000,000 MTS with increments of 1,000,000 MTS 
between each dataset

The problem generated has four classes obtained from com-
bining random walk processes with AutoRegressive Inte-
grated Moving Average (ARIMA) models in different ways. 
In Table 2, we show the setup for the variables of these 
four classes. For variable one, we use an ARIMA(0, 1, 0) 
model to simulate a random walk process. Variable two is 
composed of different ARIMA models, and variable three 
contains combinations of variables one and two through 
multiple functions.

4.1.2  Measures and Methodology

To evaluate the performance of our proposal, we com-
pare SCMFTS in two and three class sub-problems from 
the WESAD dataset against the original work using all the 

Table 2  Setup for four class 
problem

Class Variable 1 Variable 2 Variable 3

0 ARIMA(0, 1, 0) ARIMA(1, 1, 1): AR(0.5), MA(0.5) sin(var1 + var2)
1 ARIMA(0, 1, 0) ARIMA(1, 1, 1): AR(0.25), MA(0.5) cos(var1 + var2)
2 ARIMA(0, 1, 0) ARIMA(2, 1, 2): AR(0.2, 0.1), MA(0.1, 0.1) sin(var1) + cos(var2)
3 ARIMA(0, 1, 0) ARIMA(2, 1, 2): AR(0.5, 0.25), MA(0.1, 0.1) cos(var1) + sin(var2)

Table 3  Hyperparameters for used models

Model Setup

DT MaxDepth = 10, MinInstancesPerNode = 20, Seed = 1
RF MaxDepth = 10, MinInstancesPerNode = 20, 

numTrees = 100, maxBins = 32, Seed = 1
KNN K = 9, Euclidean distance, Normalized data with mean 

0 and standard deviation 1
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available variables, using as much data as possible due to 
the Big Data approach of our proposal. Although a number 
of papers with algorithmic proposals working on varied ver-
sions of the dataset have been published [35–39], they do not 
follow the original segmentation process nor the leave-one-
subject-out (LOSO) cross-validation (CV) approach. Due to 
this, their results are not comparable with those reported in 
the original work. We have opted to follow the specifications 
provided in [34], using the same measures and the same 
validation criteria. To compare the different models, we use 
the accuracy and F1-score [40]. The accuracy is obtained 
by dividing the number of correctly classified instances by 
the total number of instances in the test set. The F1-score is 
defined as the harmonic mean of model precision and recall, 
and it is obtained by combining model precision and recall. 
F1-score represents a measure of thoroughness. We have 
evaluated all models using the LOSO CV procedure.

The scalability of SCMFTS is evaluated through two dif-
ferent approaches. First, we measure runtimes by increasing 
the number of processed time series. In this case, we seek 
to obtain a linear relationship between the runtimes and the 
number of processed time series. Second, we will measure 
runtimes by varying the number of workers in the cluster and 
the number of cores per worker independently. In both cases, 
we will compare the evolution of runtimes with the ideal 
and unachievable case of scalability expressed by Amdahl’s 
law [41].

4.1.3  Models

Since the main target of our proposal is Big Data scenarios, 
we have focused our experimentation on all the available 
variables to process as much data as possible. The study 
in [34] used the following models: Decision Tree (DT), 
Random Forest (RF), AdaBoost (AB), Linear Discriminant 
Analysis (LDA),3 and K-Nearest Neighbors (KNN) with 

k = 9. For the (DT, RF, AB) models, the referred to work 
set the minimum number of samples required to split a node 
to 20, and they set the number of base estimators to 100 for 
(RF and AB). To ensure a fair comparison and reproduc-
ibility, we have chosen the models available in the MLlib 
of Apache Spark (DT, RF, KNN). In addition, we have used 
the same hyperparameters specified in [34]. Some of these 
models have additional parameters that were not specified in 
the mentioned work. All hyperparameters used in our experi-
mentation are listed in Table 3.

To maintain the number of data partitions over the entire 
process, we have set this number in all experiments per-
formed to three times the number of total available cores, 
which is the typical recommendation for Spark.

Considering the LOSO approach used in [34], we have 
applied the imputation process explained in Algorithm 2 to 
each subject data independently. Due to the data source of 
the WESAD dataset, we have an additional column that con-
tains the identification number of the subject that provides 
each time series. Using this information, we can filter the 
data of each subject and process it independently. Obviously, 
this value is not used within the training datasets.

Table 4  Accuracy and F1-score results for WESAD dataset

The best results in each case are in bold

Three classes Two classes

Accuracy F1-score Accuracy F1-score

WESAD proposal
 DT 63.56 58.05 83.60 80.83
 RF 74.97 64.08 87.74 85.71
 AB 79.57 68.85 87.00 83.88
 LDA 75.80 71.56 92.28 90.74
 KNN (k = 9) 56.14 48.70 74.20 69.14

SCMFTS
 DT 64.08 62.69 85.38 84.71
 RF 81.62 77.16 92.67 91.96
 KNN (k = 9) 77.78 75.79 89.89 89.90

Table 5  Run times for WESAD dataset

Variable Time SCMFTS 
(s)

Time series 
length

Frequency (Hz)

c_ACCx 990.51 3500 700
c_ACCy 1008.76 3500 700
c_ACCz 994.42 3500 700
c_ECG 23,007.39 42,000 700
c_EDA 22,727.54 42,000 700
c_EMG 22,263.16 42,000 700
c_RESP 23,639.61 42,000 700
c_TEMP 22,396.20 42,000 700
w_ACCx 151.24 160 32
w_ACCy 150.72 160 32
w_ACCz 145.75 160 32
w_BVP 813.51 3840 64
w_EDA 242.28 240 4
w_TEMP 244.43 240 4
All variable join 183.93
Total time 118,959.47

3 The LDA method available in Spark corresponds to Latent Dir-
ichlet Allocation and is not related to the Linear Discriminant Analy-
sis method used in WESAD work.
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Fig. 2  Scalability experiment: 
Runtime vs Number of time 
series
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Fig. 3  Scalability experimenta-
tion: Runtime vs Number of 
workers
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Fig. 4  Scalability experiment: 
Runtime vs Number of cores 
per worker
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4.1.4  Hardware and Software

We have performed the experimentation in a Big Data clus-
ter composed of one driver/master node and 17 slave/com-
puting nodes. The computing nodes hold the following char-
acteristics: 2 × Intel(R) Xeon(R) CPU E5-2620 processors, 6 
cores per processor with HyperThreading, 2.00 GHz, 64 GB 
RAM, 2 TB HDD (1 TB HDFS). We have used the follow-
ing software configuration: Ubuntu 18.04.5 LTS, Apache 
Hadoop 2.7, Apache Spark 3.0.1, 19 threads/node, 833 RAM 
GB (48 GB/node).

The source code of SCMFTS is publicly available [1].

4.2  Results

In this section, we evaluate the two main aspects of SCM-
FTS: performance and scalability. Section 4.2.1 includes the 
performance results of SCMFTS on the WESAD dataset. In 
Sect. 4.2.2, we analyze the scalability of SCMFTS on the 
synthetic dataset.

4.2.1  Performance Results on WESAD

To assess the performance of the SCMFTS proposal, we 
have applied it to solve the two- and three-classes problems 
of WESAD and compared it to the ML procedures analyzed 
in the original work. The empirical results, expressed in 
terms of accuracy and F1-score, are displayed in Table 4.

The results show that SCMFTS provides consistently bet-
ter results than the WESAD work, with the available Spark 
machine learning models, in both cases. In addition, we can 
see in the WESAD work [34], Table 3, that the best results 
for the three classes problem are provided by the AB model 
but only using the chest physiological modalities (c_ECG, 
c_EDA c_EMG, c_RESP, and c_TEMP): 80.34 of accuracy 
and 72.51 of F1-score, and still SCMFTS+RF provides bet-
ter results. In the two classes problem, the WESAD work 
provides the LDA model with the chest physiological modal-
ities as the best results with 93.12 of accuracy and 91.47 of 
F1-score, Table 4 in WESAD work [34], outperforming in 
accuracy our best model but not in F1-score. In this case, the 
WESAD work uses fewer variables and a model that is not 
available in Spark, so we cannot make a direct comparison. 
It is important to note that the LDA model provides the best 
results in 20 out of 32 cases in the WESAD work, so this 
particular model clearly offers better results than the others. 
In addition, the AB model in the three-class problem and 
the LDA model in the two-class problem provide results 

significantly better than DT, RF, and KNN models in the 
WESAD work.

There are relevant differences between the multiple vari-
ables that compose the MTS of this problem. Due to the 
segmentation applied to the original time series proposed in 
the WESAD work, we have variables that contain from 160 
to 42,000 data points in the same problem. These differences 
between variables generate significant variations in runtime 
for feature calculation between the different variables, as we 
can see in Table 5. As usual, a high number of data points 
generates high runtimes, but if we compare runtimes for 
variables c_ACCx, c_ACCy, or c_ACCz with w_BVP, this 
does not happen. It is so because of the differences in the 
frequency value of these variables, which is included in the 
time series features calculation affecting the runtime. These 
phenomena are not related to the Spark implementation per-
formed, but it depends on the structure of the input time 
series.

4.2.2  Scalability Results on Synthetic Dataset

In this section, we analyze the scalability performance of 
SCMFTS. Particularly, we focus on the three most fre-
quently considered dimensions: number of instances to pro-
cess, number of machines available, and number of cores 
per machine. In Fig. 2, we show the relationship between the 
runtime of SCMFTS and the number of MTS to process. For 
this experimentation, we have used the 17 available work-
ers and 19 cores/threads per worker. Figure 2 allows us to 
graphically identify a linear relationship between the runt-
ime and the number of time series to be processed through 
SCMFTS. This feature is a mandatory requirement for the 
scalability considerations in Big Data environments.

In Fig. 3, we can compare the runtime of SCMFTS with 
different numbers of workers. In this case, we perform the 
experimentation with a dataset composed of 1,000,000 
MTS. As usual, an increase in the number of workers entails 
a reduction in the runtime. For example, if we compare the 
one and three workers cases, we can appreciate that the 
reduction obtained is close to three times. This behavior is 
present in the rest of the comparison in the Fig. 3. In this 
kind of process, the ideal case is to obtain a time reduc-
tion equal to the number of the added workers as Amdahl’s 
law [41] specifies, but it is a theoretical limit and in general 
impossible to achieve in practice. SCMFTS is near to the 
optimal case. Furthermore, we have to note the existence of 
additional procedures related to adding workers to the clus-
ter, like extra workers communications, data transmission, 
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among others, that do not let us reach the performance of 
the ideal case.

Each worker has 12 real/physical cores, 24 with hyper-
threading technology. To evaluate the core’s performance of 
SCMFTS, we process 1,000,000 MTS using the 17 workers 
available in our cluster, but we vary the number of used cores 
in each worker. Figure 4 shows the relationship between the 
runtime of SCMFTS and the number of cores per worker. 
We can appreciate that the reduction in runtime has similar 
behavior to the one observed previously, Fig. 3, but with a 
greater gap regarding the optimal case. If we compare the 
case of one core per worker with the cases of three or five 
cores per worker, among others, we can see that the amount 
of runtime reduction is directly related to the number of 
cores used: one core case has a runtime close to 25,000 s, 
three cores case has a runtime close to 7500 s, five cores case 
has a runtime slightly higher to 5000 s, etc. But in this case, 
we can appreciate that the runtime stops decreasing with the 
number of cores with 11 cores per worker. This issue is due 
to the number of physical cores by machine, which is 12. 
Although hyper-threading technology allows us to increase 
the efficiency of a core to provide an additional virtual core, 
we cannot reach the maximum desired performance in com-
putationally intensive tasks.

Based on the results obtained in this section, in which our 
proposal shows behaviors close to the ideal, we can conclude 
that SCMFTS has a high scalability performance.

5  Conclusions

In this paper, we have presented a scalable and distributed 
method, named SCMFTS, for transforming univariate and 
multivariate time series into a vector of well-known features. 
This method lets us apply the traditional vector-based algo-
rithms already available in Big Data to time series problems, 
allowing us to address problems that would otherwise be 

impossible. SCMFTS extends considerably the limited num-
ber of algorithms available to process time series in Big Data 
environments. Our proposal is able to process MTS with 
multiple frequencies and lengths and allows practitioners to 
add new features easily.

SCMFTS has improved the results obtained, under the 
same conditions, by the state-of-the-art on the biggest mul-
tivariate time series dataset available in the UCI Machine 
Learning Repository, wearable stress and affect detection 
(WESAD). The results obtained by SCMFTS on a general 
problem improved those obtained by the WESAD work 
solution, applying the proposed transformation without 
additional considerations and allowing it to be a tool of 
interest to a large number of researchers in multiple areas. 
In addition, SCMFTS has shown a totally scalable behavior 
through exhaustive experimentation, with a linearly scalable 
relationship in runtime concerning the number of time-series 
processed.

Our proposal has been implemented in the Scala program-
ming language for the Apache Spark framework, and the 
code is publicly available. The implementation of SCMFTS 
has followed the principles of FAIR [42] (Findability, Acces-
sibility, Interoperability, and Reuse) and Open Science.

This proposal opens promising research lines in this 
topic, as exploring the semi-supervised approach based on 
the proposed set of features. In Big Data environments, the 
volume of processed data is high, and the labeling is limited. 
In those environments, the semi-supervised approach offers 
very interesting solutions. Another research line is the study 
of the improvement in the expressivity and performance of 
the selected set of features in Big Data environments.

Appendix: Time Series Complexity Measures 
and Features Selected

See Table A1.
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Table A1  Time series complexity measures and features selected

Fea. Name Description

f
1

lempel_ziv LempelZiv (LZA)
f
2

approximation_entropy Approximation Entropy
f
3

sample_entropy Sample Entropy (DK Lake in Matlab)
f
4

permutation_entropy Permutation Entropy (tsExpKit)
f
5

shannon_entropy_CS Chao-Shen Entropy Estimator
f
6

shannon_entropy_SG Schurmann–Grassberger Entropy Estimator
f
7

spectral_entropy Spectral Entropy
f
8

nforbidden Number of forbidden patterns
f
9

kurtosis Kurtosis, the “tailedness” of the probability distribution
f
10

skewness Skewness, asymmetry of the probability distribution
f
11

x_acf1 First autocorrelation coefficient
f
12

x_acf10 Sum of squares of the first 10 autocorrelation coefficients
f
13

diff1_acf1 Differenced series first autocorrelation coefficients
f
14

seas_acf1 First autocorrelation coefficient of the seasonal component
f
15

diff1_acf10 Differenced series sum of squares of the first 10 autocorrelation coefficients
f
16

diff2_acf1 Twice differenced series first autocorrelation coefficients
f
17

diff2_acf10 Twice differenced series sum of squares of the first 10 autocorrelation coefficients
f
18

max_kl_shift Maximum shift in Kullback–Leibler divergence between two consecutive windows
f
19

time_kl_shift Instant of time in which the Maximum shift in Kullback–Leibler divergence between two consecutive 
windows is located

f
20

outlierinclude _mdrmd Calculates the median of the medians of the values, while adding more outliers
f
21

max_level_shift Maximum mean shift between two consecutive windows
f
22

time_level_shift Instant of time in which the maximum mean shift between two consecutive windows is located
f
23

ac_9 Autocorrelation at lag 9
f
24

crossing_points The number of times a time series crosses the median line
f
25

max_var_shift Maximum variance shift between two consecutive windows
f
26

time_var_shift Instant of time in which the maximum variance shift between two consecutive windows is located
f
27

nonlinearity Modified statistic from Teräsvirta’s test
f
28

embed2_incircle Proportion of points inside a given circular boundary in a 2-d embedding space
f
29

spreadrandomlocal _meantaul Mean of the first zero-crossings of the autocorrelation function in each segment of the 100 time-series 
segments of length l selected at random from the original time series

f
30

flat_spots Maximum run length within any single interval obtained from the ten equal-sized intervals of the sample 
space of a time series

f
31

x_pacf5 Sum of squares of the first 5 partial autocorrelation coefficients
f
32

seas_pacf Sum of squares of the first 5 partial autocorrelation of the seasonal component
f
33

diff1x_pacf5 Differenced series sum of squares of the first 5 partial autocorrelation coefficients
f
34

diff2x_pacf5 Twice differenced series sum of squares of the first 5 partial autocorrelation coefficients
f
35

firstmin_ac Time of first minimum in the autocorrelation function
f
36

std1st_der Standard deviation of the first derivative of the time series
f
37

stability Stability variance of the means
f
38

firstzero_ac First zero crossing of the autocorrelation function
f
39

trev_num The numerator of the trev function, a normalized nonlinear autocorrelation, with the time lag set to 1
f
40

alpha Smoothing parameter for the level-alpha of Holt’s linear trend method
f
41

beta Smoothing parameter for the trend-beta of Holt’s linear trend method
f
42

nperiods Number of seasonal periods (1 for no seasonal data)
f
43

seasonal_period Seasonal periods (1 for no seasonal data)
f
44

trend Strength of trend
f
45

spike Spikiness variance of the leave-one-out variances of the remainder component
f
46

linearity Linearity calculated based on the coefficients of an orthogonal quadratic regression
f
47

curvature Curvature calculated based on the coefficients of an orthogonal quadratic regression
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