
PHYSICAL REVIEW A 105, 032215 (2022)

Anharmonicity-induced excited-state quantum phase transition in the symmetric phase of the
two-dimensional limit of the vibron model

Jamil Khalouf-Rivera , Francisco Pérez-Bernal , and Miguel Carvajal *

Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación,
Unidad Asociada GIFMAN CSIC-UHU, Universidad de Huelva, Huelva 21071, Spain

and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada 18071, Spain

(Received 30 July 2021; accepted 16 March 2022; published 30 March 2022)

In most cases, excited-state quantum phase transitions can be associated with the existence of critical points
(local extrema or saddle points) in a system’s classical limit energy functional. However, an excited-state
quantum phase transition might also stem from the lowering of the asymptotic energy of the corresponding
energy functional. One such example occurs in the two-dimensional (2D) limit of the vibron model, once an
anharmonic term in the form of a quadratic bosonic number operator is added to the Hamiltonian. This case has
been studied in the broken-symmetry phase [Pérez-Bernal and Álvarez-Bajo, Phys. Rev. A 81, 050101 (2010)].
In the present work we delve further into the nature of this excited-state quantum phase transition and we
characterize it in the symmetric phase of the model, making use of quantities such as the effective frequency, the
expected value of the quantum number operator, the participation ratio, the density of states, and the quantum
fidelity susceptibility. In addition to this, we extend the usage of the quasilinearity parameter, introduced in
molecular physics, to characterize the phases in the spectrum of the anharmonic 2D limit of the vibron model
and a practical analysis is included with the characterization of the critical energies for the linear isomers HCN
and HNC.
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I. INTRODUCTION

Quantum phase transitions (QPTs) are zero-temperature
phase transitions that occur when the ground state of a
given quantum system undergoes an abrupt variation once a
Hamiltonian parameter, a control parameter, goes through a
critical value. Such transitions have been observed in numer-
ous quantum systems and in different fields: quantum optics,
condensed-matter physics, and atomic, nuclear, and molecular
systems [1]. In algebraic models, based on Lie algebras and
useful in studies of molecular [2,3], nuclear [4], and hadronic
structure [5], the different phases can be mapped to the model
dynamical symmetries. A general classification of ground-
state QPTs in algebraic models can be found in [6] and for
an extended treatment see the reviews in [7–9] and references
therein.

The abrupt variation that characterizes a QPT is only fully
realized in the large-system-size limit (also called thermody-
namic or mean-field limit). However, for finite system sizes,
the critical point can be identified by the appearance of QPT
precursors in the form of sharp changes in several quantities,
e.g., an energy gap collapse between consecutive levels, an
increase in the energy density, or sudden changes in the par-
ticipation ratio or the Wehrl entropy [10–15].

More recently, the study of QPTs has been extended to
the realm of excited states, with the excited-state quantum
phase transitions (ESQPTs) [16–18]. In ESQPTs, for a fixed
value of the control parameter, a nonanalyticity in a certain
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derivative of the density of energy levels is found at a crit-
ical energy value [19–23]. Eigenstates below and above the
critical energy are considered to belong to different phases.
Therefore, ESQPTs can be accessed in two different ways:
(i) varying the control parameter and tracing the changes of a
given eigenstate once it goes through the critical energy value
or (ii) fixing the control parameter and examining the prop-
erties of eigenstates at increasing energy values. Excited-state
QPTs have been studied in different models, e.g., the nuclear
interacting boson model [8], the kicked-top model [24], the
Tavis-Cummings, Rabi, and Dicke [11,25–32] models, and
the Lipkin-Meshkov-Glick model [8,33–37]. For a recently
published complete review of the ESQPT field, see Ref. [23].

It is worth emphasizing that the bending vibration of non-
rigid molecules is the first physical system where ESQPT
signatures have been identified in experimental data [38–40].
In these cases, most fits have been performed within the
two-dimensional limit of the vibron model (2DVM) using
Hamiltonians that include up to two-body interactions. Con-
sidering the advances in molecular spectroscopy and the
accuracy of the observed vibrational spectra, we recently
obtained satisfactory results using an extended Hamiltonian
including up to four-body interactions [41]. Other systems
where signatures of ESQPTs have been detected in experi-
mental results are superconducting microwave billiards [42]
and spinor Bose-Einstein condensates [43]. In the latter case,
recently published works include some promising develop-
ments [44,45].

Using as a starting point the results presented in Ref. [46]
for the broken-symmetry phase, the study of ESQPTs in an
anharmonic 2DVM Hamiltonian is extended to the symmetric
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phase. The consideration of anharmonic terms is instrumen-
tal in the description of phase transitions and other physical
phenomena in many systems. A limited set of examples
includes the transition to chaos in the Fermi-Pasta-Ulam
model [47,48], the description of nuclear critical shape phase
transitions [49], the vibrational properties of solids [50], and
the transition from normal to local vibrational modes in
molecules [51–53].

In particular, we pay heed to the ESQPT in the symmetric
phase, induced by an anharmonic term in the 2DVM Hamil-
tonian. This transition can be explained by changes in the
phase-space boundary of the classical energy functional of
the system obtained using the coherent state formalism. We
compute several quantities that allow for the identification of
the ESQPT critical energy such as the effective frequency, the
expectation value of the quantum number operator, the density
of states, the participation ratio, and the quantum fidelity
susceptibility. The last two quantities were not included in
the study of the broken-symmetry phase of Ref. [46]. For the
sake of completeness, in addition to results for the symmetric
phase, we also include results for the broken-symmetry phase.

The rest of this paper is organized as follows. In Sec. II
we briefly outline the main results for the ground- and
excited-state quantum phase transitions in a model Hamilto-
nian including an anharmonic term. We analyze the classical
limit of the model, which allows us to obtain explicit expres-
sions for the separatrix lines that mark the critical energies
of the ESQPTs. Section III emphasizes the anharmonicity-
induced ESQPT at the symmetric phase region. Nevertheless,
we stress the connection with the symmetry-broken phase,
aiming to have a complete description of the system ESQPTs.
In addition to the characterization of the ESQPTs using the
above-mentioned quantities, we introduce a quantity inspired
by the molecular quasilinearity parameter that clearly marks
the onset of each of the ESQPTs. In Sec. IV the previously
presented results are applied to the bending degree of freedom
of the linear isomers HCN and HNC. We summarize in Sec. V.

II. GROUND- AND EXCITED-STATE QUANTUM PHASE
TRANSITIONS IN THE ANHARMONIC MODEL

HAMILTONIAN OF THE 2DVM

In the present work we deal with the 2DVM, a two-
dimensional approach introduced to model bending molecular
vibrations as collective bosonic excitations (vibrons) [54]. The
dynamical algebra of the system is u(3), with two dynamical
symmetries, associated with the u(2) and so(3) subalge-
bras [38,54]. As a consequence of the conservation of the
angular momentum component perpendicular to the plane of
the bending motion, both chains end up in the system symme-
try algebra so(2):

u(2)
↗ ↘

u(3) so(2).
↘ ↗

so(3)

(1)

Each subalgebra chain provides a basis set and a solvable
Hamiltonian that can be associated with a limiting phys-
ical case. In the molecular case, the u(2), or cylindrical

oscillator chain, is associated with the bending degree of
freedom for linear molecules. The states associated with this
chain can be labeled as |[N]n�〉, where n = N, N − 1, . . . , 0
is the vibrational quantum number and � = ±n,±(n −
2), . . . , mod (n, 2) the vibrational angular momentum. The
second chain, known as so(3) or a displaced oscillator chain,
is linked with the bending of semirigid bent molecules. In
this chain, the states are expressed as |[N]ω, �〉, with branch-
ing rules ω = N, N − 2, . . . , mod(N, 2) and � = ±ω,±(ω −
1), . . . , 0, which are connected with the bending quantum
number νb and the figure axis projection K of the total angular
momentum J of bent molecules by the relation νb = N−ω

2
and K = �. Additionally, the quantum numbers n and νb are
connected by the formula n = 2νb + |�|.

The 2DVM encompasses all possible situations between
the two previous limiting cases [55,56]. This can be evinced
using a very simple Hamiltonian, with only two interaction
terms: the first-order Casimir of u(2), n̂, and the pairing oper-
ator P̂ = N (N + 1) − Ŵ 2, where N is the system size and Ŵ 2

is the second-order Casimir of the so(3) subalgebra [38],

Ĥ = (1 − ξ )n̂ + ξ

N − 1
P̂. (2)

We set to unity the overall energy scale and the control pa-
rameter ξ ∈ [0, 1] takes the system from one limit to the other.
Since the Hamiltonian (2) commutes with the operator �̂, the
vibrational angular momentum is conserved. The calculations
in the present work are carried out in the u(2) basis |[N]n�〉,
which, for the sake of brevity, is shortened to |n�〉.

The ground state of the system abruptly changes when
going through the critical value ξc = 0.2 of the control
parameter, where the system experiences a second-order
ground-state QPT [38]. If ξ = 0, the Hamiltonian (2) is re-
duced to a truncated two-dimensional harmonic oscillator that
is a convenient first approximation to bending vibrations for
linear molecules. When ξ = 1, the model Hamiltonian has
an anharmonic spectrum with a Goldstone mode that is suit-
able for modeling semirigid bent molecules. In the symmetric
phase, for ξ ∈ [0, ξc], the spectrum has a positive anharmonic-
ity, a typical signature of quasilinear bending vibrations. The
classical limit of the Hamiltonian at the critical point is a
purely quartic potential [38]. In the broken-symmetry phase,
for ξ ∈ (ξc, 1], the spectrum is more complex, including the
main features that characterize the bending of nonrigid and
semirigid molecular species. Therefore, the 2DVM can tackle
the feature-rich large-amplitude bending spectrum of nonrigid
species [55,56]. This approach has also been used to model
coupled benders [57–59] or the coupling between bending and
stretching degrees of freedom [60–63].

The 2DVM is the simplest two-level model with a non-
trivial angular momentum. This explains why it has been
instrumental in the definition of ESQPTs from the onset [18].
Another relevant aspect regarding the 2DVM is the connec-
tion between quantum monodromy and the ESQPT [38]. The
ESQPT appears in the broken-symmetry phase, where excited
energy levels undergo a bent-to-linear transition for increas-
ing energy values. An explicit expression of the separatrix
line, which marks the energy with a high local density of
states, can be obtained from the classical bending energy
functional obtained using the coherent state formalism [38].
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The bending spectrum in this parameter range ξ ∈ (0.2, 1]
presents signatures associated with the vibrations of nonrigid
molecules, characterized by the existence of a barrier to lin-
earity in the bending potential low enough to be straddled by
excited states. This results in a large-amplitude bending mode
and a feature-rich spectroscopy [64], with a sign-changing
anharmonicity (Dixon dip [65]) and a dependence of en-
ergy on vibrational angular momentum that changes from
quadratic to linear as the excitation energy goes through the
barrier to linearity [39,66,67]. Mexican hat–or Champagne
bottle–type potentials have been used for the modeling of
nonrigid species, and the presence of the barrier to linearity
prevents the definition of a set of globally valid action-angle
variables [68]. When this classical feature is translated into
the quantum realm, the result is quantum monodromy, which
precludes the definition of a unique set of vibrational quantum
numbers globally valid for the system [66,69]. Taking into
consideration quantum monodromy simplifies the assignment

of quantum labels to experimental bending levels in nonrigid
molecular species [67,70–75].

Anharmonicity is included from the onset in the 2DVM,
but the fit to experimental bending term values implies the
explicit use of anharmonic corrections like the one considered
in this work, n̂(n̂ + 1). Thus, we consider the same Hamilto-
nian as in Ref. [46]: a 2DVM model Hamiltonian (2) plus a
two-body interaction n̂(n̂ + 1) with its corresponding control
parameter α,

Ĥ = (1 − ξ )n̂ + α

N − 1
n̂(n̂ + 1) + ξ

N − 1
P̂, (3)

where we scale the anharmonic interaction by a factor N −
1 to transform the Hamiltonian into a form that allows for a
convenient calculation of results in the large-size (mean-field)
limit. The matrix elements of the Hamiltonian (3) in the u(2)
basis are

〈
n�

2

∣∣Ĥ∣∣n�
1

〉 =
{

(1 − ξ )n1 + α

N − 1
n1(n1 + 1) + ξ

N − 1
[N (N + 1) − (N − n1)(n1 + 2) − (N − n1 + 1)n1 − �2]

}
δn2,n1

+ ξ

N − 1

√
(N − n1 + 2)(N − n1 + 1)(n1 + �)(n1 − �)δn2,n1−2

+ ξ

N − 1

√
(N − n1)(N − n1 − 1)(n1 + � + 2)(n1 − � + 2)δn2,n1+2. (4)

The addition of higher-order interactions to the model
Hamiltonian (2) substantially modifies the model ESQPT. In
Ref. [46] it was shown that the inclusion of the n̂(n̂ + 1)
term in the broken-symmetry phase ξ ∈ (0.2, 1] induces a
second critical energy and the corresponding separatrix line,
marked by a high excited-state level density. Recently, in the
framework of a study of the transition state in isomerization
reactions [76], we noticed that the inclusion of the anharmonic
term n̂(n̂ + 1) with a negative parameter in the Hamiltonian
triggers an ESQPT in the symmetric region too. The main
motivation for the present work is to fully understand the
ESQPT associated with the anharmonic term that, contrary to
the case associated with the barrier to linearity and quantum
monodromy, is not due to the existence of a saddle point or
a local maximum in the energy functional obtained in the
classical limit of the model [41]. This ESQPT can be traced
back to changes in the phase-space boundary of the system’s
finite-dimensional Hilbert space [22,23,27]. In the case of
Ref. [27], the so-called static ESQPTs were found at the
edge of phase space for radiation-matter interaction models
(Tavis-Cummings and Dicke models). However, as we will
make clear below, the ESQPT related to anharmonicity is not
a static one, as it has a singularity in the level density that will
translate into significant effects for the system dynamics.

As in the broken-symmetry phase [46], the relevant fea-
tures appear only for negative values of the α parameter. We
depict in Fig. 1 the excitation energy for states with vibra-
tional angular momenta � = 0 (blue solid line) and 1 (red
dashed line) versus the control parameter ξ for α = −0.6 and
N = 100. Both ESQPT separatrices are characterized by a
large local density of excited states and are marked in the

figure with yellow dashed lines. The first ESQPT only occurs
for ξ > ξc = 0.2, in the broken-symmetry phase. The second
one, associated with the anharmonic term, can be present in
the full ξ control parameter range.

The energy functional of the system’s Hamiltonian (3)
has been obtained in the mean-field limit using the number-
projected coherent (or intrinsic) state approach and normaliz-
ing by the system size [38,46].

E (r) = (1 − ξ )
r2

1 + r2
+ α

r4

(1 + r2)2
+ ξ

(
1 − r2

1 + r2

)2

(5)

The energy functional (5) for α = −0.6 and several ξ

values is shown in the insets of Fig. 1 with different colors.
The corresponding spectrum in the correlation energy diagram
is marked by a vertical dashed line of the same color. It
can be noted that the energy functional transforms from a
functional with a minimum at r = 0 (symmetric phase) into
one with a minimum at r �= 0 and a maximum at the origin
(broken-symmetry phase) as the ξ value goes through the
critical value ξc = 0.2. The larger the absolute value of the
anharmonicity parameter α, the larger the decrease of the
asymptotic value of the classical energy functional E (r). In the
particular case of ξ = 0.0 (top left inset of Fig. 1), a maximum
appears out of the origin above the asymptotic value. This
case is explained below and, as a consequence, a threshold
value of α is defined to avoid this situation. For a given α,
there is a ξ value for which the two separatrices cross. In this
case, the maximum at the origin and the asymptotic energy
functional value limr→∞ E (r) are equal. From this ξ value on,
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FIG. 1. Normalized excitation energy Ej,�, in arbitrary units, for
states with vibrational angular momentum � = 0, 1, as a function of
the control parameter ξ for α = −0.6 and a system size N = 100.
The � = 0 (1) energies are depicted using blue solid (red dashed)
lines. The yellow dashed lines are the two ESQPT separatrices calcu-
lated in the mean-field limit. The insets (from top to bottom and left
to right) provide the energy functionals of the system’s Hamiltonian
E (r), setting their minima to zero, corresponding to the vertical
colored dashed lines at ξ = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 (from left
to right, black, light blue, light green, orange, dark green, and pink,
respectively)

the energy functional at the origin is larger than its asymptotic
value.

A Landau analysis of the ground-state QPT for the model
Hamiltonian (2) was performed in Ref. [38] and for the Hamil-
tonian with the anharmonic term in Ref. [46]. In the latter
case, the analysis was limited to the bent or broken-symmetry
phase, where two ESQPTs occur. The equations for the sepa-
ratrices in the broken-symmetry phase (yellow dashed lines in
Fig. 1), f1(ξ, α) and f2(ξ, α), provide the normalized critical
excitation energy for each ESQPT and were published in
Ref. [46]. In the present work, an analysis of the classical en-
ergy functional is carried out to define the continuation of the
broken-symmetry phase separatrix f2(ξ, α) in the symmetric
phase. Thus the equations for the two separatrices along the
full ξ range, ξ ∈ [0, 1], are

f1(ξ, α) = E (r = 0) − E (r = rmin)= (5ξ − 1)2

4(4ξ + α)
if ξ > ξc,

(6)

f2(ξ, α)

= E (r → ∞) − E (r = rmin)

=
{E (r →∞) − E (r = 0) = 1 + α − ξ, ξ � ξc

E (r →∞) − E (r = rmin) = (1+2α+3ξ )2

4(4ξ+α) , ξ > ξc,

(7)

where rmin =
√

5(ξ−ξc )
2α+(3ξ+1) is the r value associated with a

minimum in the broken-symmetry phase. The first separatrix
f1(ξ, α) is the relative height of the barrier to linearity (max-
imum in the origin of the energy functional) and the second
one f2(ξ, α) is the difference between the asymptotic value

FIG. 2. Energy functionals for the Hamiltonian of Eq. (3) with
a control parameter ξ = 0.1 and α values 0 (red line), 0.5αt (blue
line), αt (black dashed line), and 1.5αt (green line). All quantities are
unitless.

of the energy functional and its minimum [46]. In the present
work we consider also the symmetric phase ξ ∈ [0, ξc], where
there can be only one separatrix line f2(ξ, α), defined as
the energy difference between the minimum of the energy
functional, located at r = 0 in this phase, and its asymptotic
value (see Fig. 1). Therefore, as can be easily seen in Eq. (7),
the f2(ξ, α) separatrix is a continuous function of ξ , albeit its
first derivative is discontinuous at ξ = ξc.

In Fig. 1 it can be clearly seen how the ground-state QPT
occurs at ξ = ξc = 0.2, where the onset of the bent-to-linear
ESQPT is also located, marked by its associated separatrix
f1(ξ, α). At higher-energy values, the ESQPT associated with
the anharmonicity and its separatrix f2(ξ, α) defines a sec-
ond region of high density of states that is also present in
both the symmetric and broken-symmetry phases. Separatrix
lines denote critical energies at which states with different
vibrational angular momenta can be degenerate or the de-
generacy can be broken. In the symmetric phase, eigenstates
with different angular momenta below the f2(ξ, α) separatrix
are nondegenerate and become degenerate above the critical
energy. In the broken-symmetry phase and before the crossing
of separatrices, states at energies below the f1(ξ, α) and above
the f2(ξ, α) separatrix are degenerate. This is reversed after
the crossing and the degeneracy is broken for states in between
both separatrices.

A threshold value of α in the symmetric region, αt , can be
obtained by applying the maximum condition to the energy
functional (5) out of the origin (r �= 0):

∂E (r)

∂r

∣∣∣∣
r �=0

= 0 −→ r2 = 5(ξ − ξc)

2α + (3ξ + 1)
. (8)

We can compute a minimum value of the negative parameter
α by imposing that there is no other extreme but the one in the
origin, which translates into a lower bound in the value of the
control parameter: α � αt . As we are interested in the range
ξ ∈ [0, ξc], the numerator of (8) is zero or negative. Hence, we
impose the condition 2α + (3ξ + 1) > 0, obtaining a thresh-
old value αt = − 3ξ+1

2 . Therefore, the range of α values with
a single minimum at the origin that characterizes the bending
vibration in linear and quasilinear molecular configurations is
given by α � − 3ξ+1

2 . This is shown in Fig. 2, where we depict
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(a)

(c)

(b)

(d)

FIG. 3. Density of vibrational angular momentum � = 0 states (DOS) for α = −0.6 and (a) ξ = 0.15, (b) 0.3, (c) 0.4, and (d) 0.5. Each
case is computed for system size values N = 1024, 2048, and 4096. All quantities are unitless.

various energy functionals (5) for ξ = 0.1 and different α

values. Apart from the threshold value αt (black dashed line),
the α = 0 (red line), 0.5αt (blue line), and 1.5αt (green line)
cases are depicted. In this figure it can be clearly seen that
the main outcome of the anharmonic operator in the model
classical limit is to shift the asymptotic potential value. If
the anharmonicity were positive, the asymptotic value would
increase without an associated ESQPT. However, for negative
α, the asymptotic energy functional value happens at lower
energies. If α < αt , a maximum at r �= 0 appears and the
asymptotic energy could be the minimum energy and become
the ground state of the system, e.g., the green line in Fig. 2,
where α = 1.5αt .

In the present work we only address the case α ∈ [αt , 0],
which has been found a realistic approach in the study of
highly excited states of linear molecules in the presence of
bond-breaking isomerization [76]. Therefore, for the range
of α values under consideration, the asymptotic value of the
energy functional (5) becomes the f2(ξ, α) separatrix that
characterizes the second ESQPT. Nevertheless, the second-
order QPT is basically unaffected by this addition and it is still
occurring at ξc = 0.2 [46]. A similar situation occurs in the

anharmonic Lipkin-Meshkov-Glick model [77–79]. As pre-
viously mentioned, the anharmonic 2DVM symmetric phase
provides a case in point of the occurrence of an ESQPT with-
out an associated QPT. In systems with more than one control
parameter, there are other examples of ESQPTs without an
associated QPT that can be traced back to critical points in
particular trajectories in the parameter space [80–82]. In the
present case, as can be seen in the energy functionals in Fig. 2,
the control parameter α varies the asymptotic value of the
functional instead of generating new critical points. This is
a fine example of an ESQPT induced by the boundary of a
finite Hilbert space [23].

As previously mentioned, the f1(ξ, α) and f2(ξ, α) sep-
aratrices in Fig. 1 denote the critical ESQPT energies,
characterized by a high density of excited states. In Fig. 3
we depict the density of � = 0 states calculated numerically
versus the normalized energy for N = 1024, 2048, and 4096;
α = −0.6; and ξ = 0.15 (symmetric phase) and ξ = 0.3,
0.4, and 0.5 (broken-symmetry phase). In the ξ = 0.15 case
[Fig. 3(a)], the peak in the density of states can be traced back
to the ESQPT associated with the anharmonicity. It can also be
observed that for ξ = 0.3 and 0.5 [Figs. 3(b) and 3(d)], there
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(a) (b)

(c) (d)

FIG. 4. (a) Effective frequency ωeff
j,�=0 versus the mean value of the normalized excitation energy for � = 0 states. (b) Expected value of

n̂ for the system with � = 0 eigenstates versus the normalized excitation energy. The calculations in both (a) and (b) are carried out for the
Hamiltonian (3) with N = 50 (dot-dashed lines), 100 (dashed lines), and 1000 (solid lines); ξ = 0.16; and different α values [from left to right,
α = −0.7 (blue), −0.6 (green), and −0.5 (red)]. The thin vertical black dashed lines indicate the critical energy obtained in the mean-field
limit. (c) and (d) Close-up of the results for the corresponding quantities in the N = 1000 and α = −0.6 case depicted for various angular
momentum values. In both (c) and (d) solid (dashed) lines are used for even (odd) angular momentum values. All depicted quantities are
unitless.

are two peaks in the density of states, one for each separatrix.
Finally, at the intersection of the separatrices, for ξ = 0.4,
only one maximum occurs [Fig. 3(c)]. As expected, the larger
the value of N , the higher the peaks in the density of states
due to the logarithmic divergence associated with ESQPTs in
the mean-field limit.

III. CHARACTERIZATION OF THE
ANHARMONICITY-INDUCED EXCITED-STATE

QUANTUM PHASE TRANSITION

The present section aims to characterize the
anharmonicity-induced ESQPT in the symmetric phase
region with the effective frequency, the expectation value
of the number operator, the participation ratio, and the
quantum fidelity susceptibility. In addition to this, a quantity
inspired on the molecular quasilinearity parameter used to
quantify molecular bending degrees of freedom as linear,
quasilinear, or semirigid [64,83] is introduced to locate the
different phases in the excited spectrum. This parameter
was previously considered to characterize the ground-state
quantum phase transition in the 2DVM [41].

The effective frequency [84], defined as the difference be-
tween adjacent levels 	Ej,� divided by the number of quanta
	 j, ωeff

j,� = 	Ej,�/	 j, allows for the characterization of ES-
QPTs, as well as the expectation value of the n̂ operator in the
Hamiltonian eigenstates. The latter quantity behaves as an or-

der parameter for the ground-state QPT [38]. Both quantities
are depicted in Fig. 4 for system sizes N = 50, 100, and 1000;
control parameter ξ = 0.16; and anharmonicity parameter
values α = −0.5, −0.6, and −0.7. In Fig. 4(a), ωeff

j,� is de-
picted versus the normalized mean excitation energy between
adjacent states [E j,� = (Ej−1,� + Ej,�)/2], a plot that is akin
to a Birge-Sponer diagram. In this figure, a deep minimum
evinces the critical ESQPT energy. This minimum, in the
transition to linearity, is the well-known Dixon dip [65]. The
expectation value of n̂ is depicted in Fig. 4(b) as a function
of the normalized excitation energy, with peaks at the same
critical energy values. Though these features grow sharper for
larger system sizes, clear ESQPT precursors are found for low
N values. As the value of N increases, the critical energy tends
to the f2(ξ, α) (7) values marked with vertical black dashed
lines. The behavior of these two quantities agrees with the
observed one in the broken-symmetry phase (ξ > 0.2) [46]
when the system goes across the f2(ξ, α) critical energy in
the symmetric region (ξ < 0.2). In Figs. 4(c) and 4(d) the cor-
responding quantities are depicted for energies close to the
critical energy and various angular momentum values for the
N = 1000 and α = −0.6 system. In both cases, staggering
between even (solid lines) and odd (dashed lines) angular mo-
menta is evinced. The explanation for this staggering requires
the analysis of the wave-function structure in the vicinity of
the critical energy, which is carried out with the participation
ratio.
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(a)

(b)

FIG. 5. Normalized PR for eigenstates expressed in the u(2)
basis as a function of the normalized excitation energy for systems
with N = 1000, α = −0.6, and control parameters (a) ξ = 0.16 and
(b) ξ = 0.3. The squared components of the wave functions in the
u(2) basis versus n/N for the critical states are shown as bar graphs in
three insets. The critical states are highlighted using the same color of
the bar diagram [(a) yellow and (b) red (left) and green (right)]. The
thin vertical black dashed lines indicate the critical energy obtained
in the mean-field limit. All depicted quantities are unitless.

It has been shown for systems in one, two, and three dimen-
sions that the eigenstates having energies close to the critical
energy are strongly localized in the u(n) basis in ESQPTs as-
sociated with a u(n) − so(n + 1) ground-state quantum phase
transition [85–87]. In the 2DVM case, the localization of a
given state, expressed in the u(2) basis, |ψ〉 = ∑

n,� Cn,�|n�〉,
can be assessed using the participation ratio (PR) [88] (also
known as the inverse participation ratio [89] or number of
principal components [90])

P(ψ ) = 1∑
n,� |Cn,�|4 . (9)

In the ESQPT associated with the barrier to linearity, the
states with energies close to the critical energy are strongly
localized when expressed in the u(2) chain basis in the state
of the basis with the lowest value of n (n = � for a given �

block). For � = 0, the largest weight corresponds to the |00〉
component [41,87,91].

We plot in Fig. 5 the normalized PR versus the normalized
excitation energy for Hamiltonian (3) eigenstates with � = 0,
ξ = 0.16 [Fig. 5(a)] and 0.3 [Fig. 5(b)], α = −0.6, and a
system size N = 1000. The lower the PR value, the higher the

state localization. As expected, states close to the spectrum
edges are well located in the u(2) basis. In the system with
ξ = 0.16 [Fig. 5(a)], a minimum PR value occurs for states
with energies close to the ESQPT critical energy. The critical
energy computed in the mean-field limit, f2(ξ, α), is marked
with a black dashed line. The state with the minimum value
of the PR and closest to the critical energy is highlighted
with a yellow point and the squared coefficients |C j

n,�|2 of
its wave function are displayed in the inset as a function of
the normalized quantum number n/N . In particular, as it was
already noticed in Ref. [76], the localization is achieved in the
u(2) basis state with a maximum n value, which corresponds
to n = N = 1000 in this case.

In Fig. 5(b) a case in the broken-symmetry phase (ξ =
0.3) for � = 0 is included. For this value of the control pa-
rameter, the system goes through both ESQPTs. The first
one corresponds to the transition to linearity and the state
with a minimum value of the PR (highlighted with a red
point) is well localized in the first state of the basis |00〉,
as expected [41,87,91] (see the left inset, where the squared
components of the wave function are plotted as a function of
n/N). The second ESQPT is due to the anharmonic term. In
this case, the state with a minimum value of the PR is marked
with a green point and, as we showed in the symmetric phase,
its wave function is localized in the |N�=0〉 state (see the right
inset, where we display the squared coefficients of the wave
function versus n/N).

The structure of the wave function for states close to the
critical energy of the anharmonicity-induced ESQPT explains
the staggering between results for odd and even angular mo-
menta shown in Figs. 4(c) and 4(d). Assuming N is even and
even (odd) values of the angular momentum, the state close to
the critical energy are localized in |N�〉 (|N − 1�〉), which is
the state of the u(2) basis with the largest possible n value. In
both cases, the staggering is reversed when an odd value of N
is considered, and the largest changes occur for odd angular
momenta.

Following Ref. [91], we use the quantum fidelity suscep-
tibility (QFS) as an ESQPT marker. The quantum fidelity,
initially introduced in the field of quantum information, is
defined as the module of the overlap between two quantum
states [92]. It was later extended to the study of QPTs [93,94].
In the latter case, for a λ control parameter, the fidelity is
computed as F (λ, δλ) = |〈φ�

j (λ)|φ�
j (λ + δλ)〉|. This quantity

can be used to characterize QPTs, though it has the drawback
of being dependent on the δλ value. This can be overcome
using the QFS χF (λ), defined as minus the second derivative
of F (λ, δλ) with respect to the perturbation δλ, which is the
leading term in the series expansion of the quantum fidelity as
a function of δλ [94,95]. In this case, if the system Hamilto-
nian is expressed as Ĥ (λ) = Ĥ0 + λĤ I , the QFS for the jth
system state can be computed as

χ
( j)
F (λ) =

dim∑
i �= j

|〈φi(λ)|Ĥ I |φ j (λ)〉|2
[Ei(λ) − Ej (λ)]2

, (10)

where |φi(λ)〉 and Ei(λ) are the ith eigenstate and eigenvalue,
respectively. We have introduced this approach for the charac-
terization of ESQPTs in the 2DVM [91] and it has also been
used recently in the study of the chaotic regime of spin chain
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(a) (b)

FIG. 6. Quantum fidelity susceptibility χ
( j)
F (λ = 0) as a function of the normalized energy for eigenstates with � = 0 (blue solid line),

1 (red dot-dashed line), 2 (yellow dashed line), 3 (green dotted line) and 4 (fuchsia dotted line) and a system size N = 100. The control
parameters are α = −0.6 and (a) ξ = 0.16 and (b) ξ = 0.3. All depicted quantities are unitless.

models [96] and the adiabatic and counteradiabatic driving in
ESQPTs [23].

Using the approach described in [91], we assign a weight
1 − λ to the terms diagonal in the u(2) basis in the Hamilto-
nian (3) and 1 + λ to the term diagonal in the so(3) basis

Ĥ (λ) = (1 − λ)
[
(1 − ξ )n̂ + α

N − 1
n̂(n̂ + 1)

]

+ (1 + λ)

[
ξ

N − 1
P̂

]
, (11)

where Ĥ I is the interaction Hamiltonian, which in the present
case is

Ĥ I = −
[
(1 − ξ )n̂ + α

N − 1
n̂(n̂ + 1)

]
+ ξ

N − 1
P̂.

The obtained results are depicted in Fig. 6 for two different
values of ξ , 0.16 [Fig. 6(a)] and 0.3 [Fig. 6(b)], α = −0.6, and
N = 100 as a function of the normalized excitation energy for
the eigenstates of a system with λ = 0. Different values of the
vibrational angular momentum �, 0 (blue solid line), 1 (red
solid line), 2 (yellow dashed line), 3 (green dotted line), and 4
(fuchsia dotted line), are considered.

In the case of ξ = 0.16 [Fig. 6(a)], there are two maxima.
The first one is a smooth maximum at values in the range
(0.05, 0.20), which can be explained by the QFS shape in the
symmetric phase for cases with α = 0. The second maximum
is steeper and is localized in the vicinity of the anharmonicity-
induced ESQPT critical energy. In the plot, this maximum
takes two different values depending on the parity of the angu-
lar momentum, being lower for odd � values. This staggering
can be again explained by taking into account that states close
to this ESQPT critical energy are localized in the u(2) basis
state with the maximum possible n value, n = N (n = N − 1)
for even (odd) values of the angular momentum, assuming an
even value of the total boson number N . As with the previous
quantities, we check that for an odd N value, the staggering is
reversed.

In Fig. 6(b) we show the QFS for a system with ξ = 0.3. In
this case, the lower energy maximum is due to the transition
to linearity. As was anticipated [18,41,87,91], the precursors
of this transition become softer as the vibrational angular
momentum increases as a consequence of the centrifugal bar-
rier hindering the system’s exploration of the maximum in

the origin. The second maximum is lower and displays the
same staggering observed in the symmetric case ξ = 0.16.
Therefore, for large values of �, ESQPT precursors are only
presented for the anharmonicity-induced transition.

The last quantity we study can be traced back to the
quasilinearity parameter for bending vibrations introduced by
Yamada and Winnewisser [83]. The quasilinearity parameter
aims to quantify the degree of quasilinearity in a bending
vibration and it is defined as the ratio between the excitation
energies of the first � = 1 and � = 0 excited states [64]. In this
work this parameter is recast and is extended to the realm of
excited states. This parameter is helpful in the identification
of the critical energies for the two ESQPT in the anharmonic
2DVM. The generalization of the quasilinearity parameter
introduced is

γn,� = En+1,�+1 − En,�

En+2,� − En,�

, (12)

where it takes, for the ground state, the value 1/2 in the
symmetric phase and 0 in the broken-symmetry phase. The
labeling of the energy levels can also be expressed in the
so(3) chain basis with (νb, K) quantum numbers, using the
customary notation for bent molecules.

FIG. 7. Parameter γn,�=0 as a function of the normalized energy
levels with vibrational angular momentum � = 0 for N = 100, α =
−0.6, and ξ = 0.15, 0.2, 0.3, 0.4, and 0.5 (light blue, light green,
orange, dark green, and pink, respectively). All depicted quantities
are unitless.
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(a) (b)

FIG. 8. Quantum fidelity susceptibility for states with vibrational angular momentum � = 0, 1, 2, and 3 for the (a) HCN and (b) HNC
isomers.

In Fig. 7 we depict γn,�=0 as a function of the normal-
ized excitation energy for the Hamiltonian (3) with N = 100,
α = −0.6, and various values of the control parameters ξ

(ξ = 0.15, 0.2, 0.3, 0.4, and 0.5) using the same colors as
in Fig. 1. It can be clearly seen in this figure how the γn,0

quasilinearity parameter identifies the ESQPT critical ener-
gies, changing abruptly as it straddles the critical energy of an
ESQPT. In the symmetric phase ξ = 0.15, γn,0 presents a step
from 0.5 to 1.0 when the system reaches the critical energy of
the ESQPT associated with the anharmonicity. The value of
γn,0 is 1 above of the anharmonicity-induced ESQPT, because
the states |n + 1�+1〉 = |νb, � + 1〉 and |n + 2�〉 = |νb + 1, �〉
become degenerated. At ξc = 0.2, the behavior is similar,
although signatures of the ground-state QPT are observed for
low energies. In the broken-symmetry phase, the ξ = 0.3 and
0.5 cases, the parameter increases from 0.0 to 0.5 and from
0.5 to 1.0, as it reaches the critical energy of each one of
the two ESQPTs. As in the symmetric phase, γn,0 is equal to
1.0 above the two ESQPT separatrices, because of the degen-
eration of the states |n + 1�+1〉 = |νb, � + 1〉 and |n + 2�〉 =
|νb + 1, �〉. However, when γn,0 = 0.0, the degenerate states
are |n + 1�+1〉 = |νb, � + 1〉 and |n�〉 = |νb, �〉. The last value
of the control parameter we consider is ξ = 0.4, when both
separatrices cross. At the crossing energy, γn,0 increases from
0.0 to 1.0, as it is sensitive to the change in the way the states
are degenerate. It is worth emphasizing that the quasilinearity
parameter distinguishes between the two different phases and
indicates the critical energy.

IV. APPLICATION TO THE LINEAR ISOMERS
HCN AND HNC

As an application, an analysis of the anharmonicity-
induced ESQPT is carried out for the bending degree of
freedom of the two linear isomers HCN and HNC. In Ref. [76]
it was shown that the anharmonicity-induced ESQPT in the
symmetric phase for these two molecules is instrumental for
reproducing the transition state energy for the isomerization
between these two species. In this section the ESQPT critical
points associated with the functional asymptotes are identified
using the QFS and the γn,� parameter for the two molecular
species HCN and HNC. The predicted spectra and eigenfunc-
tions for the two isomers are taken from Ref. [76], where
N = 50 and 40 for HCN and HNC, respectively. Both molec-

ular species are described using a more complex Hamiltonian
considering up to four-body interactions, which allows for a
more accurate modeling.

In Fig. 8 the QFS is calculated for the � = 0, 1, 2, and
3 energy levels of HCN [Fig. 8(a)] and HNC [Fig. 8(b)]. It
can be observed that the behavior for both species is similar
to the one obtained for the model Hamiltonian: A smooth
maximum appears before the peak coming from the ESQPT
associated with the anharmonicity. In both cases the first max-
imum decreases with �, something that can be traced back to
the influence of the centrifugal barrier. The ESQPT-associated
peak has a noticeable staggering, with an approximately con-
stant value for even � values and odd � values, the value being
larger for the even angular momenta. This staggering can
be explained as in the anharmonic model Hamiltonian. The
ESQPT-related peaks in both cases occur at the energies as-
sociated with the isomerization transition state, in agreement
with the results published in Ref. [76]. It is worth emphasizing
how for low N values the ESQPT precursors can be clearly
evinced.

The γn,�=0 parameter for the two species HCN and HNC
is plot in Fig. 9 as a function of the excitation energy of the
vibrational bending degree of freedom. As in the ξ = 0.15
case in Fig. 7, both molecules present an increase of the γn,�=0

FIG. 9. Quasilinearity parameter γn,�=0 with respect to the exci-
tation energy of the vibrational bending degree of freedom for HCN
and HNC.
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parameter from 0.5 to 1.0 as the excitation energy approaches
the critical ESQPT energy, corresponding to the isomerization
transition state for this system.

V. CONCLUSION

We have shown that the ESQPT associated with the
inclusion of an anharmonic n̂(n̂ + 1) term in the model Hamil-
tonian of the 2DVM is not limited to the broken-symmetry
phase, as studied in [46], but it also extends to the symmetric
phase. We have studied this situation for anharmonic param-
eters α over a threshold value and derived, using the intrinsic
state formalism, the analytic dependence of the separatrix in
this phase [see Eq. (7)]. We have depicted the ground-state
QPT order parameter (the expectation value of n̂) and the
effective frequency plot (see Fig. 4) for different parameter
values observing the ESQPT precursors. Using the resulting
eigenfunctions, we have shown the high degree of localization
in the u(2) basis of eigenstates with an energy close to the
ESQPT critical energy (see Fig. 5) and we have studied the
effect of the ESQPT over the QFS (see Fig. 6). For the ESQPT
probes considered, we have explained the staggering observed
for states close to critical energy with angular momentum of
different parity.

Moreover, we suggested the use of a parameter inspired
by the molecular quasilinearity parameter to denote the ES-
QPT presence as it abruptly changes when going through the
critical energy of any ESQPT. We would like to emphasize
that the ESQPT in the 2DVM symmetric phase is not related
to the existence of critical points in the energy functional
obtained in the classical limit of the system (local maxima or
saddle points) but to the changes in the phase-space boundary
brought by the anharmonic term.

In a recent work, using a Hamiltonian with higher-order
interactions, we successfully used the anharmonicity-induced
ESQPT to characterize the transition state in the HCN-HNC
isomerization [76]. In this work the linear isomers HCN and
HNC were taken as examples for the characterization of the
anharmonicity-induced ESQPT without an associated QPT
and the transition states were identified using QFS and the
quasilinearity parameter.
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