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Charge radii of Ca isotopes and correlations
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We study the effects of short- and long-range correlations on the charge radii of Ca isotopes. We start our
investigation with an independent particle model consisting of Hartree-Fock plus Bardeen-Cooper-Schrieffer
calculations with finite-range effective nucleon-nucleon interactions of Gogny type. The short-range correlation
effects are evaluated by considering all the terms of a cluster expansion containing a single correlation line.
The long-range correlations are taken into account by including the coupling with the quasiparticle random
phase approximation phonons. While the effects of the short-range correlations are negligible, those of the long-
range correlations largely modify the independent particle model results and improve the agreement with the
experimental data.
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I. INTRODUCTION

In these last few years, the measurement of several isotope
shifts completed the information about the charge radii of Ca
nuclei. Garcia Ruiz et al. [1] measured the isotope shifts of
the neutron rich 49,51,52Ca nuclei using laser spectroscopy and
Miller et al. [2] investigated the proton rich 36,37,38Ca isotopes
with similar experimental techniques. These new data have
been used to derive the values of the charge radii of these
nuclei.

The behavior of the experimental values of the charge radii
shows a steep enhancement for nuclei with A > 48. This be-
havior is not described by several independent particle models
[1–3]). It has been shown [2] that by using elaborate energy
functionals, containing a large number of free parameters
[4–6], it is possible to reproduce the full set of experimental
data. However, the physics simulated by these new functionals
is difficult to disentangle.

In this work we attack the problem by using a more tradi-
tional independent particle model, which in our case consists
in Hartree-Fock (HF) plus Bardeen-Cooper-Schrieffer (BCS)
calculations, and we study the effects of the correlations. We
consider short-range correlations related to the strongly repul-
sive core of the nucleon-nucleon interaction and long-range
correlations generated by the coupling of collective nuclear
excitations to the single-particle degrees of freedom.

This work is organized as follows. Section II is devoted
to present some details of the various theoretical approaches
used in our calculations. In Sec. III we show our results,
which are discussed in Sec. IV where we also present our
conclusions.

II. THEORETICAL APPROACHES

The goal of our study is the evaluation of the root
mean square (r.m.s.) radii of nuclear density distributions

ρα (r):

Rα =
[∫ ∞

0 dr r4 ρα (r)∫ ∞
0 dr r2 ρα (r)

] 1
2

. (1)

Proton and neutron r.m.s. radii are obtained by considering the
(pointlike) proton, ρp, and neutron, ρn, density distributions,
which are defined as

ρα (r) = A

〈�|�〉 〈�|
∑

j

′
δ(r − r j )|�〉, α ≡ p, n, (2)

where |�〉 is the state describing the full nucleus, which has A
nucleons (Z protons and N neutrons). In the above equation,
and in all the following ones,

∑′ indicates that the sum is
limited either to the protons or to the neutrons as indicated by
the subindex α. Mass r.m.s. radii are obtained by using the
mass density distributions, ρm = ρp + ρn. We calculate the
charge r.m.s. radii by inserting in Eq. (1) the charge distribu-
tions, ρc obtained by folding the (pointlike) proton densities,
ρp, with the charge proton form factor. We used a dipole
parametrization of this form factor [7], having verified that
other, more complex expressions produce differences smaller
than the numerical accuracy of our calculations.

The aim of the various nuclear models we adopted in our
study is the evaluation of the density distributions required to
calculate the r.m.s radii.

A. Independent particle model

The starting point of our approach is the independent parti-
cle model (IPM) in which the nuclear state |�〉 is described as
a Slater determinant, �(1, 2, . . . , A), of single-particle (s.p.)
wave functions. We exploit the spherical symmetry of the
problem, and for the s.p. wave functions we have used the
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expression [8,9]

φμ(r) ≡ φ
mt
nl jm(r) = Rnl jm(r)Yl jm(�) χ 1

2 mt
, (3)

where we have indicated with n the principal quantum num-
ber, and with l , j, and m the quantum numbers identifying the
orbital, the total angular momentum, and its projection on the
z axis, respectively. The symbol Y indicates the spin-spherical
harmonics [10] and mt the third component of the isospin.

Since we have considered nuclei without deformation, we
have assumed a unique radial wave function for the same
n, l, j quantum numbers, i.e., Rnl jm ≡ Rnl j . In open shell
nuclei the degenerate, not fully occupied, s.p. neutron state
near the Fermi level is equally occupied with respect to the
projection quantum number m.

The first step of our IPM calculation consisted of obtaining
the s.p. radial wave functions Rnl j by solving a set of HF
equations. In a second step, we considered the pairing effects
by using these HF s.p. wave functions in a BCS calculation
which modifies the occupation probability, v2

μ, of each s.p.
state. We named this IPM type of calculation HF+BCS [8,9],
and, in this model, the density distributions are given by

ρIPM
α (r) = 1

4π

∑
μ

′
(2 j + 1) v2

μ [Rμ(r)]2, α ≡ p, n. (4)

The only physical input of this calculation is the effective
nucleon-nucleon interaction. We consistently used the same
finite-range effective nucleon-nucleon interactions of Gogny
type [11] in both the HF and the BCS steps. In order to test
the sensitivity of our results to the effective nucleon-nucleon
interaction we carried out calculations with three different
parametrizations. Two of them are the well known D1S [12]
and D1M [13] interactions, and the third one is the D1ST2a, a
force built by adding tensor terms to D1S [14].

B. Short-range correlations

In the IPM each nucleon is free to move independently
of the presence of the other ones. On the other hand, the
nucleon-nucleon interaction has a strongly repulsive core
which prevents two nucleons from approaching each other at
distances smaller than about 0.5 fm. This is the source of the
short-range correlations (SRC).

We have evaluated the effects of the SRC by following the
approach of Ref. [15], where the nuclear state is described as

|�〉 ≡ �SRC(1, 2, . . . , A) = F (1, 2, . . . , A) �(1, 2, . . . , A),
(5)

with � indicating the IPM Slater determinant, and F a many-
body correlation function which we have assumed to be of the
form

F (1, 2, . . . , A) = S
∏
i< j

6∑
p=1

f (p)(ri j ) O(p)
i, j , (6)

We indicate with S a symmetrization operator, with f (p)(ri j )
a two-body correlation scalar function acting on the (i, j)
nucleon pair, and with {O(p), p = 1, . . . , 6} a set of operators
depending on spin, isospin, and tensor terms, classified as
in the usual Urbana-Argonne sequence [16]. Specifically, we

(a) (b) (c)

(d) (e)

FIG. 1. The set of SRC diagrams considered in our calcula-
tions. The dashed lines indicate the correlation function h, Eq. (10),
while the oriented lines represent the IPM one-body density matrices
ρIPM

α (r1, r2), Eq. (11). The solid dots indicate a coordinate where an
integration is carried out and the open ones those where the density
is evaluated.

have considered operators of central type,

O(1)
i j = 1, O(2)

i j = τ(i) · τ( j), O(3)
i j = σ(i) · σ( j),

O(4)
i j = σ(i) · σ( j)τ(i) · τ( j), (7)

and of tensor type,

O(5)
i j = S(i, j), O(6)

i j = S(i, j) τ(i) · τ( j), (8)

where σ indicates the spin operator, τ the isospin operator, and
S(i, j) the tensor operator defined as

S(i, j) = 3
[σ(i) · ri j] [σ( j) · ri j]

r2
i j

− σ(i) · σ( j). (9)

The key point of the model of Ref. [15] is the truncation
of the cluster expansion of the density distribution in order to
consider only those terms with a single correlation function:

h(p)(ri j ) = f (p)(ri j ) − δp,1, (10)

where δ is the Kronecker symbol. We show in Fig. 1 the
diagrams included in the calculations. The dashed lines repre-
sent the h correlation function and the oriented lines the IPM
one-body density matrix,

ρIPM
α (r1, r2) =

∑
μ

′
v2

μ φ∗
μ(r1) φμ(r2), α ≡ p, n. (11)

A solid dot indicates a point in r space that is integrated, while
the empty dot is the point where the density is calculated.

Due to the orthonormality of the s.p. wave functions, the
IPM density matrices satisfy the property∫

d3r′ ρIPM
α (r1, r′) ρIPM

α (r′, r2) = ρIPM
α (r1, r2). (12)

Because of this, the integration on the open dots in the
diagrams of Fig. 1 implies that, in absolute value, the contri-
butions of the diagrams (b) and (d) are equal, as well as those
of the diagrams (c) and (e). For this reason, the integral on r of
the correlated terms cancel exactly, and the correlated density
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FIG. 2. The SRC functions f (1) and f (p) (p = 2, . . . , 6), Eq. (6),
for the six operator channels considered in our calculations.

is normalized as the IPM one:∫
d3r ρSRC

α (r) =
∫

d3r ρIPM
α (r). (13)

These integrals are equal to A, Z , or N depending on the
density distribution considered. We indicate with ρ(r) the
diagonal part of the one-body density matrix. It is worth
remarking on the need to consider all the diagrams of Fig. 1,
i.e., those with two and three points, in order to conserve the
proper normalization of the correlated density.

Explicit expressions of the contribution of the diagrams in
terms of the radial s.p. wave functions are given in Ref. [15].
The only difference in the present calculations is the presence
of the v2 occupation probability multiplying every pair of s.p.
wave functions.

The two-body correlation scalar functions are the only
physics input which is not consistently derived from the se-
lected effective nucleon-nucleon interaction. We present here
the results obtained by using the f (p)(ri j ) taken from a Fermi
hypernetted-chain calculation for the 48Ca nucleus [17], car-
ried out with the microscopic V8′ Urbana interaction [16]
(see Fig. 2). We have tested the effects of other correlation
functions presented in Ref. [17] related to other doubly magic
nuclei and to nuclear matter, and we did not find remarkable
differences with the results presented below.

C. Long-range correlations

The part of the nuclear Hamiltonian not considered by the
IPM, the residual interaction, is the source of the so-called
long-range correlations (LRC), which take into account col-
lective phenomena inside the nucleus.

We have described the effects of the LRC on the den-
sity distributions by extending the model presented in
Refs. [18–20]. We have substituted the random phase ap-
proximation Y amplitudes with those obtained with the
quasiparticle random phase approximation (QRPA) theory. In

this approach, the density distributions can be written as

ρLRC
α (r) = ρIPM

α (r) −
∑
J�

2J + 1

8π

∑
Ek

∑
μ<ν

′ ∣∣Y J�

μν (Ek )
∣∣2

× {
[Rμ(r)]2 − [Rν (r)]2

}
, α ≡ p, n. (14)

From the above expression emerges the fact that the rele-
vant ingredient modifying the IPM density is provided by the
QRPA Y amplitudes calculated for a specific excited state of
energy Ek , angular momentum J , and parity �. Because of the
orthonormalization of the s.p. wave functions, an integration
on r produces equal contributions of the two terms related
to the same QRPA Y amplitudes, therefore they cancel each
other. Also in this case the normalization of ρLRC is the same
as that of ρIPM.

Our QRPA calculations, whose technical details can be
found in Ref. [21], are based on a discrete set of s.p. wave
functions, therefore the energy spectrum we obtain is discrete.
On the other hand, the three sums in Eq. (15) have to be
truncated. The dimensions of the s.p. configuration space,
which limit the sum on the states μ and ν and ensure the sta-
bility of the QRPA results, are fixed by using the prescriptions
described in Ref. [21].

For a given multipolarity J�, we have studied the maxi-
mum energy required in the sum on Ek to stabilize the result.
Even though every excitation multipole, in each of the nuclei
investigated, has its own value for this maximum energy Emax,
we have found that Emax = 20 MeV, for all multipolarities
included in Eq. (15), ensures sufficient stability of our results.

Concerning the sum on J�, we have considered all the pos-
itive and negative multipoles with angular momentum from
J = 1 to J = 3 and also the contribution of J = 0+. As the
more relevant contributions come from the low-lying excited
states, in the case of the 42Ca, 44Ca, and 46Ca isotopes, we
have included also the 4+ and 6+ multipoles since, in our
calculations, some excited states with these multipolarities
appear below 4 MeV.

III. RESULTS

In our study we have considered the even-even Ca isotopes.
The parameters of the effective nucleon-nucleon interactions
have been chosen to provide a good IPM description of the
ground state of a set of nuclei all along the nuclear chart
[13,22]. As an example of the performances of these in-
teractions, we compare in Table I the experimental binding
energies of the nuclei we have investigated [23] with those
obtained with our IPM (HF+BCS) by using the three interac-
tions considered. The good agreement between the empirical
values and the results of our calculations is evident, and also
expected, since binding energies, among other data, have been
used to select the values of the force parameters [22].

Since our IPM is built to reproduce some experimental
nuclear quantities, the appearance of phenomena beyond IPM
can be identified by doing a relative comparison between the
theoretical results. On the other hand, the quantity experi-
mentally measured, the isotope shift, is defined in a relative
manner as the difference between the square of the charge
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TABLE I. Binding energies per nucleon, in MeV, for the Ca
isotopes under investigation, obtained with our HF+BCS IPM by
using the D1S, D1ST2a, and D1M interactions, compared to the
experimental values taken from the compilation by Brookhaven
National Laboratory [23]. The largest experimental uncertainty is
0.012 MeV in 60Ca.

A D1S D1ST2a D1M Expt.

34 7.254 7.255 7.148 7.173
36 7.867 7.871 7.754 7.816
38 8.296 8.296 8.180 8.240
40 8.626 8.624 8.513 8.551
42 8.668 8.669 8.556 8.617
44 8.711 8.718 8.602 8.658
46 8.719 8.732 8.614 8.669
48 8.694 8.714 8.593 8.667
50 8.551 8.572 8.458 8.550
52 8.404 8.427 8.320 8.429
54 8.211 8.230 8.140 8.248
56 8.028 8.033 7.956 8.033
58 7.832 7.834 7.768 7.828
60 7.614 7.620 7.577 7.627

radii of the each Ca isotope and that of 40Ca,

δR2
ch(A) = [Rch(A)]2 − [Rch(A = 40)]2. (15)

These are the two reasons that have induced us to concentrate
our study on the isotope shifts rather than on the charge radii.

In Fig. 3(a), we compare the values of the isotope shifts
obtained in our IPM calculations, carried out with the three
different parametrizations of the Gogny interaction, D1S
(red open dots), D1M (blue open squares), and D1ST2a
(green solid dots), with the available experimental data of
Refs. [1,2,24–26] (black triangles).

The first remark is that the behaviors of our IPM results
are very similar, independently of the interaction used. A
quantitative indicator of this similarity is the average of the
absolute differences between these curves, which is smaller
than 0.07 fm2, with a maximum value of 0.2 fm2 (in the case
of 54Ca). It is also worth noting that the tensor terms of the
force do not play any relevant role: the results obtained with
D1ST2a and D1S almost overlap.

The comparison with the experimental data is not straight-
forward. We observe good agreement with the isotope shifts
of the nuclei lighter than 40Ca and heavier than 48Ca, while in
the cases of 42Ca, 44Ca, and 48Ca the IPM fails to describe the
data. The IPM isotope shifts increase smoothly with increas-
ing neutron number. In contrast, the experimental data show
a steeper increase from 40Ca up to the value of 44Ca and a
decreasing behavior for 46Ca and 48Ca, whose isotope shift is
almost zero.

A direct comparison between the r.m.s. radii obtained
by using our IPM densities, as indicated by Eq. (1), and
the empirical ones is shown in Fig. 3(b). The latter values
have been obtained from Eq. (15) by considering the exper-
imental isotope shifts and the reference value Rch(A = 40) =
3.4776(19) fm [27].
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FIG. 3. IPM results obtained with the D1S (open red dots),
D1ST2a (solid green dots), and D1M (open blue squares) Gogny
interactions for the Ca isotopes considered in our work, with the
experimental data (black triangles). (a) Isotope shifts of the squared
r.m.s. charge radii evaluated with respect to the 40Ca r.m.s. radius,
Eq. (15); the experimental data were obtained from Refs. [1,2,24–
26]. (b) r.m.s. charge radii of the Ca isotopes; the experimental
values were calculated by considering the experimental isotope
shifts shown in panel (a) and the reference r.m.s. charge radius
Rch(A = 40) = 3.4776(19) fm [27].

The D1S and D1ST2a results are almost overlapping, with
differences smaller than 0.5%, and this indicates again that
the tensor terms in the interaction do not produce noticeable
effects on the charge radii.

We observe a systematic difference, of about 1%, between
the results obtained with the D1S and the D1M interactions,
the latter one producing smaller values. This difference im-
proves the description of the data obtained with the D1M
force with respect to the D1S and D1ST2a interactions. We
remark that in the set of empirical information used to select
the parameters of the D1M force, the charge radii values of
707 nuclei were considered [13]. This is probably the reason
for the better agreement with the experiment obtained with the
D1M interaction.
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FIG. 4. Isotope shifts, Eq. (15), obtained in the IPM calculations
with the D1M interaction (open blue squares) and experimental re-
sults of Refs. [1,2,24–26] (solid black dots). The linear fits to the
three sections of the IPM results and to the experimental values
for the heavier Ca isotopes are indicated by the straight lines. The
angular coefficients, i.e., slopes, of these lines are also given.

In any case, it is very striking that all the IPM calculations
fail to describe the charge radius of 48Ca, a doubly magic
nucleus, and, in general, the charge radii of the nuclei between
40Ca and 48Ca. This is a well known problem since 1968 [28],
and it has been shown to be present in different kinds of IPMs
(see for example the results of Refs. [29–31]).

The behavior of the isotopes shifts that we have obtained
with our IPM can be separated into three regions. As example
of this analysis, we show again in Fig. 4 the comparison
between the isotope shifts obtained with the D1M interaction
(blue open squares) and the experimental values (black solid
triangles). These latter values are the average of those quoted
by different experiments [1,2,24–26]. The red lines of the
figure are the results of linear fits of the D1M data for three
regions: nuclei lighter than 48Ca, from 48Ca to 52Ca, and
nuclei heavier than 52Ca. The values of the angular coeffi-
cients, i.e., the slopes, of these lines are also indicated in the
figure. Similar results are obtained for the other two forces
considered.

We identify three regions also in the case of the experi-
mental data, but, in this case, the trend is remarkably different
from that found for the IPM. The behavior of the data for the
isotopes lighter than 40Ca and heavier than 48Ca is linear. The
value of the slope of the line fitting this latter set of data is
very similar to that of the IPM results for nuclei heavier than
54Ca. The real problem is related to the experimental data
of the Ca isotopes from 40Ca to 48Ca. Contrary to the IPM
results, these data present a maximum for the 44Ca nucleus,
and a minimum for the 48Ca that, as we have already pointed
out, shows a null isotope shift, indicating that its charge r.m.s.
radius is essentially the same as that of 40Ca.

The inclusion of the correlations modifies the IPM charge
distributions and, consequently, the values of the charge r.m.s.
radii. The effects of the SRC are mainly concentrated in
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FIG. 5. Effect of the short- and long-range correlations on the
isotope shifts, defined in Eq. (15). The IPM results (open circles)
are compared to those found after adding SRC (solid circles) and
LRC (solid squares). Results for the D1S (a), D1ST2a (b), and D1M
(c) interactions are shown. Experimental data of Refs. [1,2,24–26]
are indicated by solid black triangles.

the nuclear interior, therefore the IPM radii are only slightly
modified. Equation (1) clearly indicates that the values of the
r.m.s. radii are obtained by integrating the densities weighted
by a factor r4, against a factor r2 related to the normalization.
For this reason, the radii are more sensitive to the changes of
the nuclear surface than those of the interior. The LRC, which
consider the coupling of the IPM ground state with low-lying
surface collective excitations, enlarge the charge distributions
and increase the values of the r.m.s radii by about 15%.

The effects of the correlations on the isotope shifts defined
in Eq. (15) are shown in Fig. 5. The three panels present,
separately, the results obtained for the three interactions con-
sidered. In each panel the open circles indicate the IPM
results, the solid circles those obtained by considering the
SRC, and the solid squares those including the LRC.
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The effects of the SRC are extremely small, and the results
obtained by taking them into account almost overlap with
those of the IPM. In contrast, the LRC produce a significant
modification of the overall trend.

In the isotopes lighter than 40Ca, the LRC effects are neg-
ligible. However, already the IPM values describe well the
corresponding experimental data.

The largest effects of the LRC are seen in the nuclei be-
tween 40Ca and 48Ca. The inclusion of the LRC generates
a set of almost constant values for the D1S and D1ST2a
interactions, while for the D1M interaction we found a mod-
erate growth, though much smaller than that shown by the
IPM results. The important point is that by including LRC
a good description of the 48Ca isotope shift for the D1S and
D1ST2a interactions is obtained. The value found for the D1M
interaction is not as good, but certainly much better than that
of the IPM.

Above 48Ca, the trend of the isotope shift is roughly the
same as in the IPM calculations, showing an enhancement
with two well defined slopes for A < 52 and A > 52, respec-
tively. For the nuclei heavier than this isotope, the growth
rate of the isotope shifts is similar to the experimental one,
as determined from the values of 48Ca, 50Ca, and 52Ca.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have presented the results of our study
of the isotope shifts of even-even Ca isotopes. We first car-
ried out IPM calculations, based on a HF+BCS approach,
by using three finite-range effective interactions. The HF and
BCS steps of our calculations were executed by consistently
using the same interaction. The results obtained do not show
any particular sensitivity to the interaction used, especially
to the presence of tensor terms. These IPM results agree
with the experimental values for the lighter Ca isotopes (with
A � 40) and describe the growth rate of the heavier ones
(with A � 50). The problem is the failure in describing the
behavior of the experimental data of the nuclei from 40Ca to
48Ca, in particular the fact that these two doubly magic nuclei,
which in principle should be well described by the IPM, have
the same charge radius. We did not find remarkable effects
generated by the pairing, contrary to what has been claimed
in Ref. [32].

We have extended our calculations by including short- and
long-range correlations. The effects of the SRC, treated by us-
ing the model of Ref. [15], are irrelevant. This result disagrees
with the findings of Ref. [33]. However, we found it difficult
to make a direct comparison between our and their definition

of SRC and, therefore, to compare the specific contributions
taken into account in both calculations. We remark that the
fully microscopic calculation of Ref. [34] gives the correct
proton radius of 48Ca.

More significant are the effects of the LRC which we have
described by extending the model of Ref. [20] in order to
consider QRPA backward amplitudes. The LRC do not affect
the behavior of the IPM in the region of the light and heavy Ca
isotopes where the IPM provides already a good description
of the data. The results of the intermediate region between
40Ca and 48Ca are strongly modified. The first, important point
is that with the inclusion of LRC we obtain the same radii
for the two doubly magic nuclei. The results are better for
the D1S and D1ST2a forces than for the D1M, but also in
this latter case the improvement with respect to the IPM is
evident.

The second point is that, for this set of isotopes, the LRC
calculations generate almost constant values of the isotope
shifts, contrary to the IPM results which show a continuous
increase. Despite of a clear improvement, the trend of the
experimental data, showing a maximum for 44Ca, is not yet
well described.

In Ref. [35] the authors pointed out the need to include
terms related to proton and neutron magnetic moments and
spin-orbit in order to obtain a precise description of isotope
shifts. These effects are very small, and, furthermore, they
show a linear trend in the region between 40Ca and 48Ca,
therefore they are unable to explain the behavior of the ex-
perimental results.

A good description of the data in the region of interest is
provided by the shell model calculation of Ref. [36]. By using
our language, we may say that in this approach the LRC have
been taken into account in a wider manner by including effects
beyond the single-quasiparticle excitations, which are the only
ones considered in our QRPA calculations.

In conclusion, there is no problem in describing the
new isotope shift data measured for neutron rich Ca iso-
topes, and the data in the region between the two doubly
magic isotopes 40Ca and 48Ca indicate the relevance of the
LRC.

ACKNOWLEDGMENTS

This work has been partially supported by the Junta de
Andalucía (FQM387), the Spanish Ministerio de Economía y
Competitividad (PID2019-104888GB-I00) and the European
Regional Development Fund (ERDF). One of us (G.C.) thanks
Sonia Bacca for useful discussions.

[1] R. F. Garcia Ruiz et al., Nat. Phys. 12, 594 (2016).
[2] A. J. Miller et al., Nat. Phys. 15, 432 (2019).
[3] M. Tanaka et al., Phys. Rev. Lett. 124, 102501 (2020).
[4] S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D.

Zawischa, Nucl. Phys. A 676, 49 (2000).
[5] P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn,

Phys. Rev. C 79, 034310 (2009).

[6] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328
(2017).

[7] B. Povh, K. Rith, C. Scholz, and F. Zetche, Teilchen und Kerne:
Eine Einfürung in die Physicalischen Konzepte (Springer,
Berlin, 1993).

[8] M. Anguiano, A. M. Lallena, G. Co’, and V. De Donno, J. Phys.
G 41, 025102 (2014).

034320-6

https://doi.org/10.1038/nphys3645
https://doi.org/10.1038/s41567-019-0416-9
https://doi.org/10.1103/PhysRevLett.124.102501
https://doi.org/10.1016/S0375-9474(00)00192-5
https://doi.org/10.1103/PhysRevC.79.034310
https://doi.org/10.1103/PhysRevC.95.064328
https://doi.org/10.1088/0954-3899/41/2/025102


CHARGE RADII OF CA ISOTOPES AND CORRELATIONS PHYSICAL REVIEW C 105, 034320 (2022)

[9] M. Anguiano, A. M. Lallena, G. Co’, and V. De Donno, J. Phys.
G 42, 079501 (2015).

[10] A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, 1957).

[11] J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[12] J. F. Berger, M. Girod, and D. Gogny, Comput. Phys. Commun.

63, 365 (1991).
[13] S. Goriely, S. Hilaire, M. Girod, and S. Péru, Phys. Rev. Lett.

102, 242501 (2009).
[14] M. Anguiano, M. Grasso, G. Co’, V. De Donno, and A. M.

Lallena, Phys. Rev. C 86, 054302 (2012).
[15] G. Co’, Nuovo Cimento A 108, 623 (1995).
[16] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C

51, 38 (1995).
[17] F. Arias de Saavedra, C. Bisconti, G. Co’, and A. Fabrocini,

Phys. Rep. 450, 1 (2007).
[18] D. J. Rowe, Nuclear Collective Motion (Methuen, London,

1970).
[19] H. Lenske and J. Wambach, Phys. Lett. B 249, 377 (1990).
[20] M. Anguiano and G. Co’, J. Phys. G 27, 2109 (2001).
[21] V. De Donno, G. Co’, M. Anguiano, and A. M. Lallena,

Phys. Rev. C 95, 054329 (2017).
[22] F. Chappert, Nouvelles paramétrisation de l’interaction nu-

cléaire effective de Gogny, Ph.D. thesis, Université de Paris-Sud

XI (France), 2007 (unpublished), http://tel.archives-ouvertes.fr/
tel-001777379/en/

[23] Brookhaven National Laboratory, National Nuclear Data Cen-
ter, http://www.nndc.bnl.gov/

[24] H. D. Wohlfahrt, E. B. Shera, M. V. Hoehn, Y. Yamazaki, and
R. M. Steffen, Phys. Rev. C 23, 533 (1981).

[25] C. W. P. Palmer et al., J. Phys. B 17, 2197 (1984).
[26] L. Vermeeren, R. E. Silverans, P. Lievens, A. Klein, R. Neugart,

Ch. Schulz, and F. Buchinger, Phys. Rev. Lett. 68, 1679
(1992).

[27] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69
(2013).

[28] R. F. Frosch et al., Phys. Rev. 174, 1380 (1968).
[29] Y. Aboussir, J. M. Pearson, A. Dutta, and F. Tondeur,

Nucl. Phys. A 549, 155 (1992).
[30] T. R. Werner et al., Nucl. Phys. A 597, 327 (1996).
[31] H. Nakada, Phys. Rev. C 100, 044310 (2019).
[32] R. An, L.-S. Geng, and S.-S. Zhang, Phys. Rev. C 102, 024307

(2020).
[33] G. A. Miller et al., Phys. Lett. B 793, 360 (2019).
[34] G. Hagen et al., Nat. Phys. 12, 186 (2016).
[35] P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 103, 054310

(2021).
[36] E. Caurier et al., Phys. Lett. B 522, 240 (2001).

034320-7

https://doi.org/10.1088/0954-3899/42/7/079501
https://doi.org/10.1103/PhysRevC.21.1568
https://doi.org/10.1016/0010-4655(91)90263-K
https://doi.org/10.1103/PhysRevLett.102.242501
https://doi.org/10.1103/PhysRevC.86.054302
https://doi.org/10.1007/BF02816857
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1016/j.physrep.2007.06.001
https://doi.org/10.1016/0370-2693(90)91001-R
https://doi.org/10.1088/0954-3899/27/10/311
https://doi.org/10.1103/PhysRevC.95.054329
http://tel.archives-ouvertes.fr/tel-001777379/en/
http://www.nndc.bnl.gov/
https://doi.org/10.1103/PhysRevC.23.533
https://doi.org/10.1088/0022-3700/17/11/014
https://doi.org/10.1103/PhysRevLett.68.1679
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1103/PhysRev.174.1380
https://doi.org/10.1016/0375-9474(92)90038-L
https://doi.org/10.1016/0375-9474(95)00476-9
https://doi.org/10.1103/PhysRevC.100.044310
https://doi.org/10.1103/PhysRevC.102.024307
https://doi.org/10.1016/j.physletb.2019.05.010
https://doi.org/10.1038/nphys3529
https://doi.org/10.1103/PhysRevC.103.054310
https://doi.org/10.1016/S0370-2693(01)01246-1

