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Abstract
We show that all the symmetric projective tensor products of a Banach space X 
have the Daugavet property provided X has the Daugavet property and either X is an 
L
1
-predual (i.e., X∗ is isometric to an L

1
-space) or X is a vector-valued L

1
-space. In 

the process of proving it, we get a number of results of independent interest. For 
instance, we characterise “localised” versions of the Daugavet property [i.e., Dau-
gavet points and Δ-points introduced in Abrahamsen et  al. (Proc Edinb Math Soc 
63:475–496 2020)] for L

1
-preduals in terms of the extreme points of the topo-

logical dual, a result which allows to characterise a polyhedrality property of real 
L
1
-preduals in terms of the absence of Δ-points and also to provide new examples of 

L
1
-preduals having the convex diametral local diameter two property. These results 

are also applied to nicely embedded Banach spaces [in the sense of Werner (J Funct 
Anal 143:117–128, 1997)] so, in particular, to function algebras. Next, we show 
that the Daugavet property and the polynomial Daugavet property are equivalent for 
L
1
-preduals and for spaces of Lipschitz functions. Finally, an improvement of recent 

results in Rueda Zoca (J Inst Math Jussieu 20(4):1409–1428, 2021) about the Dau-
gavet property for projective tensor products is also obtained.
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1 Introduction

A Banach space X is said to have the Daugavet property if every rank-one operator 
T ∶ X ⟶ X satisfies the so-called Daugavet equation:

where Id ∶ X ⟶ X denotes the identity operator (and then the equality actually 
holds for all weakly compact operators). This property comes from the 1963 work 
of Daugavet [11] in which the author proved that every compact operator on C[0, 1] 
satisfies the Daugavet equation. Since then, a big effort has been done to give more 
examples of spaces enjoying this property, and also to understand its strong connec-
tion with different geometrical properties of Banach spaces (see [24–27, 40, 43, 44] 
and references therein). Let us mention that the list of examples of spaces with the 
Daugavet property includes C(K) spaces when the compact Hausdorff topological 
space K is perfect, L1(�) and L

∞
(�) when the positive measure � is atomless (actu-

ally, arbitrary vector valued versions of these three kind of spaces work), and the 
disk algebra, among others. It is of special interest the celebrated characterisation of 
the Daugavet property given in [26, Lemma 2.1] in terms of a geometric condition 
of the slices of the unit ball of the Banach space (see the paragraph after Defini-
tion 2.1 for details). This characterisation has allowed to obtain big progresses on 
the Daugavet property by making use of techniques coming from the geometry of 
Banach spaces. A key application of the theory is that a Banach space with the Dau-
gavet property cannot be embedded into a Banach space with unconditional basis 
[26], extending the classical result by Pełczyński for L1[0, 1] (and so for C[0, 1]).

One of the oldest questions that nowadays remains open concerning the Dau-
gavet property (explicitly posed in [43, Section  6, Question (3)]) is whether 
X �⊗𝜋Y  has the Daugavet property if X and Y do. Actually, the original question 
asked whether X �⊗𝜋Y  has the Daugavet property if one of the factors does. How-
ever, it was quickly answered in the negative in [27, Corollary 4.3] (see [31] for a 
counterexample failing even a weaker property than the Daugavet property). Very 
recently, in [36, Theorem 1.2], it has been proved that X �⊗𝜋Y  has the Daugavet 
property if X and Y are L1-preduals with the Daugavet property. The proof relies 
on an strengthening of the Daugavet property, that the authors of [36] named the 
operator Daugavet property (see Definition 5.1), which is satisfied by L1-preduals 
with the Daugavet property thanks to the possibility of extending compact opera-
tors on them, a classical result by Lindenstrauss [33]. In the final section of [36], 
the operator Daugavet property is also applied to give non-trivial examples of 
symmetric projective tensor products with the Daugavet property. More precisely, 
it is proved in [36, Proposition 5.3] that �⊗𝜋,s,NC(K) has the Daugavet property if 
K is a compact Hausdorff topological space without isolated points and N is an 
odd positive integer. In view of the non-symmetric case, it is a natural question 

(DE)‖Id + T‖ = 1 + ‖T‖,
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(suggested in the paragraph after Remark 5.2 in [36]) whether �⊗𝜋,s,NX has the 
Daugavet property if X is an L1-predual with the Daugavet property.

The main aim of this paper is to provide a positive answer to that question and 
also to give completely different examples of symmetric tensor products with the 
Daugavet property. Actually, as a consequence of the results of Sect. 5, we obtain 
the following theorem.

Theorem 1.1 Let N ∈ ℕ . Then, the space �⊗𝜋,s,NX has the Daugavet property in the 
following cases: 

1. when X is an L1-predual with the Daugavet property.
2. when X = L1(�, Y) , for an atomless �-finite positive measure � and a (non-zero) 

Banach space Y.

Note that item (1) extends [36, Proposition 5.3] to general L1-preduals, whereas 
item (2) provides a different kind of examples of symmetric projective tensor 
products with the Daugavet property.

In the way of proving the above result, we develop a number of techniques and 
we get a number of results which are of independent interest. Let us present them 
here while detailing the content of the sections of the paper.

We devote Sect.  2 to give the necessary notation and preliminary results 
needed for the rest of the paper. Next, in Sect.  3, we make a deep study of the 
Daugavet property for L1-preduals which extends the characterisation given in [4] 
(based on the results of [42]). Actually, the results are “localised” in the sense 
introduced very recently in [1] of the study of the Daugavet-points and Δ-points 
in Banach spaces (see Definition 3.1). We characterise in Theorem 3.2 these kind 
of points for an L1-predual in terms of the behaviour of the extreme points of 
the dual ball, and also in terms of the possibility of getting special c0-sequences 
in the bidual space. This characterisation generalises previously known results 
from [1]. The main tool to prove the theorem is the use of L-projections tech-
niques, so it is actually true for nicely embedded Banach spaces (Proposition 3.7), 
in particular, for function algebras. The section ends with a discussion on the 
relationship between our results and polyhedrality of real L1-preduals and with 
applications to the convex diametral local diameter two property for L1-preduals 
(Corollaries 3.9, 3.10) and for nicely embedded Banach spaces (Corollary 3.11) 
so, in particular, for function algebras. These results extend again results from 
[1] and provide new examples of Banach spaces with the convex diametral local 
diameter two property.

Section 4 deals with the polynomial Daugavet property, a property (formally) 
stronger than the Daugavet property which requires Eq. (DE) to hold for weakly 
compact polynomials instead of just for linear operators (see Definition  4.1). 
Using the results of Sect. 3, we show that L1-preduals with the Daugavet property 
actually fulfill the polynomial Daugavet property (Theorem  4.2), extending the 
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result from [8], where it is proved that his happens for C(K) spaces. This result 
will be a key tool for proving in Sect.  5 item (1) of Theorem  1.1. Besides, we 
include the analogous result to Theorem 4.2 for spaces of Lipschitz functions, see 
Proposition 4.4.

Finally, we devote Sect. 5 to the last steps to prove Theorem 1.1. We introduce in 
Definition 5.2 a property called weak operator Daugavet property (WODP), which 
is (formaly) weaker that the ODP but still implies the Daugavet property. We show 
that the WODP is stable by projective tensor products (Theorem 5.4), a promising 
result in connection with a possible positive answer to [43, Section 6, Question (3)]. 
Observe that this result improves those of [36]. Furthermore, we introduce a mix of 
the WODP and the polynomial Daugavet property, which we call the polynomial 
weak operator Daugavet property (polynomial WODP in short), see Definition 5.7, 
which implies both of them. We prove in Propositions  5.9 and 5.11 that both L1
-preduals with the Daugavet property and L1(�, Y) , for a non-atomic measure � 
and any non-zero Banach space Y, enjoy the polynomial WODP. Finally, in Theo-
rem 5.12 we prove that if X has the polynomial WODP, then �⊗𝜋,s,NX has the WODP 
(so, in particular, the Daugavet property) for every positive integer N. Putting all 
together, we obtain the promised proof of Theorem 1.1.

2  Notation and preliminary results

We denote by � the scalar field, which will always be either ℝ or ℂ , and the set of 
modulus one scalars by �  . Given a Banach space X, we denote the closed unit ball 
and the unit sphere of X by BX and SX , respectively. The topological dual of X is 
denoted by X∗ . Given a closed convex and bounded subset C of X, a slice of C is the 
non-empty intersection of C with an open half space. We use the notation:

where x∗ ∈ X∗ and 𝛼 > 0 . Note that every slice of C can be written in the above 
form. We write ext(C) to denote the set of extreme points of C. Given a subset 
B ⊂ X , the convex hull and the absolutely convex hull of B are denoted, respectively, 
by conv (B) and aconv (B) . The closure of these two sets is denoted by conv (B) and 
aconv (B) , respectively.

Let us recall the definition of the Daugavet property from [26]

Definition 2.1 [26] A Banach space X is said to have the Daugavet property if every 
rank-one operator T ∶ X ⟶ X satisfies the equation:

where Id ∶ X ⟶ X denotes the identity operator.

As commented in the introduction, examples of Banach spaces with the Dau-
gavet property are C(K) spaces when the compact Hausdorff space K has no iso-
lated points, L1(�) when the positive measure � has no atoms, the disk algebra, 

S(C, x∗, 𝛼) ∶= {x ∈ C ∶ Re x∗(x) > sup Re x∗(C) − 𝛼}

‖Id + T‖ = 1 + ‖T‖,
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and non-atomic C∗-algebras, among many others. We refer the reader to the 
papers [3, 24–27, 40, 43, 44] and references therein for background. The follow-
ing geometric characterisation of the Daugavet property, given in [26, Lemma 
2.1], is well known and will be freely used throughout the text without any 
explicit mention.

A Banach space X has the Daugavet property if, and only if, for every 𝜀 > 0 , 
every point x ∈ SX and every slice S of BX , there exists a point y ∈ S , such 
that ‖x + y‖ > 2 − 𝜀.

Given two Banach spaces X and Y, we denote by L(X, Y) the space of bounded 
linear operators T ∶ X ⟶ Y  . We denote by B(X, Y) the space of bounded bilinear 
maps G ∶ X × Y ⟶ � . For N ∈ ℕ , P(NX, Y) is the Banach space of N-homoge-
neous continuous polynomials from X into Y and we write P(0X, Y) for the space 
of constant functions. The space of all Y-valued continuous polynomials is then

Recall that P(X, Y) is a normed space when endowed with the norm 
‖P‖ = supx∈BX

‖P(x)‖ for every P ∈ P(X, Y) . We simply write P(NX) and P(X) for, 
respectively, P(NX,�) and P(X,�).

Recall that the projective tensor product of X and Y, denoted by X �⊗𝜋Y  , is the 
completion of the algebraic tensor product X ⊗ Y  under the norm given by

It follows easily from the definition that

It is well known that (X �⊗𝜋Y)
∗
= L(X, Y∗

) = B(X, Y) , see [13, p.  27] for instance. 
We refer the reader to [13, 37] for a detailed treatment of tensor product spaces.

Given a Banach space X, the (N-fold) projective symmetric tensor product of 
X, denoted by �⊗𝜋,s,NX , is defined as the completion of the space ⊗s,NX under the 
norm:

Notice that B�⊗𝜋,s,NX
= aconv

({
xN ∶ x ∈ SX

})
 and that 

[
�⊗𝜋,s,NX

]∗
= P(NX) (see [16] 

for background).
A projection P ∶ X ⟶ X on a Banach space X is said to be an L-projection if 

‖x‖ = ‖Px‖ + ‖x − Px‖ for every x ∈ X . The range of an L-projection is called an 
L-summand. The following easy result on L-projection is surely well known. We 

P(X, Y) ∶=

{
n∑

k=0

Pk ∶ n ∈ ℕ, Pk ∈ P(
kX, Y) ∀k = 1,… , n

}
.

‖u‖ ∶= inf

�
n�
i=1

‖xi‖‖yi‖ ∶ u =

n�
i=1

xi ⊗ yi

�
.

BX �⊗𝜋Y
= conv (BX ⊗ BY ) = conv (SX ⊗ SY ).

‖u‖ ∶= inf

�
n�
i=1

��i�‖xi‖N ∶ u ∶=

n�
i=1

�ix
N
i
, n ∈ ℕ, xi ∈ X

�
.
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include it here as we have not found any concrete reference, although it follows rou-
tinely from [22, Theorem I.1.10].

Lemma 2.2 Let Z be a Banach space and let z1,… , zn ∈ SZ pairwise linearly inde-
pendent elements, such that each �zk is an L-summand of Z for k = 1,… , n . For each 
k ∈ {1,… , n} , write Pk for the L-projection with range �zk , so Z = �zk ⊕1 kerPk . 
Then, PkPj = 0 when k ≠ j , P ∶= P1 +⋯ + Pn is an L-projection with kernel ⋂n

k=1
kerPk , and P(Z) ≡ �

n
1
 with BP(Z) = aconv

(
{z1,… , zn}

)
 . In particular, the 

points z1,… , zn are linearly independent.

Proof First, fix k, j with k ≠ j and use that PkPj = PjPk by [22, Theorem I.1.10] to 
get that PkPj(Z) ⊂ Pk(Z) ∩ Pj(Z) = (�zk) ∩ (�zj) . As zk and zj are linearly independ-
ent, we get that PkPj(Z) = 0 , that is, PkPj = 0 . Now, it follows also from [22, Theo-
rem I.1.10] that P = P1 +⋯ + Pn is an L-projection. It is straightforward to show 
that kerP =

⋂n

k=1
kerPk using that the projections are orthogonal. Finally, it is also 

immediate that P(Z) ≡ �
n
1
 and that BP(Z) = aconv

(
{p1,… , pn}

)
 .   ◻

By an L1-predual we mean a Banach space X, such that X∗ ≡ L1(�) for certain 
measure � . We refer the reader to the book [29] and the seminal paper [33] for back-
ground on these spaces. In addition, we refer to [4, 42] for background on L1-predu-
als with the Daugavet property. Recall that the extreme points of the unit ball of an 
L1(�) space are of the form � �A

�(A)
 , where � ∈ �  and A is an atom of � with 

0 < 𝜇(A) < ∞ . It follows that �f0 is an L-summand of L1(�) when f0 ∈ ext(BL1(�)
) . 

Actually, if f0 = �
�A

�(A)
 , then L1(𝜇) = �f0 ⊕1 Z , where Z is just the subspace of those 

functions of L1(�) whose support do not intersect A and the projection onto �f0 is 
given by P(f ) = 1

�(A)
∫ f�A for every f ∈ L1(�) . With this in mind, the particular 

case of Lemma 2.2 in which Z = L1(�) and z1,… , zn are pairwise linearly independ-
ent extreme points of BZ is immediate.

3  Daugavet‑points and 1‑points in L
1
‑preduals

Our main goal in this section is to study L1-preduals with the Daugavet property, 
showing some characterisations which will be the key in Sect. 4 to get that they have 
the polynomial Daugavet property and in Sect. 5 to get the stability of the Daugavet 
property by symmetric tensor product of them. We need some notation which allows 
to “localise” the Daugavet property in the sense that has been recently done in [1].

Definition 3.1 [1] Given a Banach space X, a point x ∈ SX is said to be: 

(a) a Daugavet-point if, for every slice S of BX and every 𝜀 > 0 there exists y ∈ S 
with ‖x − y‖ > 2 − 𝜀 , equivalently, if 
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(b) a Δ-point if, for every 𝜀 > 0 and every slice S of BX containing x, there exists 
y ∈ S with ‖x − y‖ > 2 − 𝜀 , equivalently, if 

It is clear that a Banach space X has the Daugavet property if, and only if, every 
element of SX is a Daugavet-point (see [43, Corollary 2.3]). The case that every ele-
ment of SX is a Δ-point is known to be equivalent to a property called the diametral 
local diameter two property, see [1, Proposition 1.1]. It is immediate that every Dau-
gavet-point is a Δ-point but, in general, a Δ-point does not need to be a Daugavet-
point [1, Example 4.7]. See [1, 2, 21] for background, motivation, and applications 
of the study of Daugavet-points and Δ-points.

Let us start with the following characterisation of the Daugavet-points and Δ
-points in L1-preduals. Given a Banach space X and x ∈ SX , we write

and we write

Observe that � ext
+

x
(BX∗ ) = ext(BX∗ ).

From now on, we consider the set ext+
x
(BX∗ ) endowed with the restriction of the 

weak-start topology. Finally, note that two different elements in ext+
x
(BX∗ ) for which 

the value at x is not zero have to be linearly independent.

Theorem  3.2 Let X be an L1-predual and x ∈ SX . The following assertions are 
equivalent: 

(1) x is a Daugavet-point.
(2) x is a Δ-point.
(3) For every 𝜀 > 0 , the set

is infinite.
(4) For every 𝜀 > 0 , the set

contains infinitely many pairwise linearly independent elements.
(5) D(x) ∩ [ ext

+

x
(BX∗ )]

� ≠ � , where ′ stands for the set of accumulation points for 
the weak-star topology.

BX = conv
�
{y ∈ BX ∶ ‖x − y‖ > 2 − 𝜀}

�
for every 𝜀 > 0.

x ∈ conv
�
{y ∈ BX ∶ ‖x − y‖ > 2 − 𝜀}

�
for every 𝜀 > 0.

D(x) ∶= {x∗ ∈ SX∗ ∶ x∗(x) = 1} = {x∗ ∈ SX∗ ∶ Re x∗(x) = 1}

ext
+

x
(BX∗ ) ∶= {x∗ ∈ ext(BX∗ ) ∶ Re x∗(x) = |x∗(x)|}.

{e∗ ∈ ext
+

x
(BX∗ ) ∶ Re e∗(x) > 1 − 𝜀}

{e∗ ∈ ext(BX∗ ) ∶ |e∗(x)| > 1 − 𝜀}
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(6) For every y ∈ BX  there exists a sequence {x∗∗
n
} ⊆ BX∗∗ satisfying that 

lim sup ‖x − x∗∗
n
‖ = 2 and that

for every m ∈ ℕ and every �1,… , �m ∈ � (that is, the linear operator T from 
c0 to X∗∗ defined by T(en) = x∗∗

n
− y for all n ∈ ℕ is continuous, where en stands 

for the sequence which takes value 1 at n and 0 otherwise).
(7) For every y ∈ BX  there exists a sequence {x∗∗

n
} ⊆ BX∗∗ satisfying that 

lim sup ‖x − x∗∗
n
‖ = 2 and that {x∗∗

n
} ⟶ y in the weak-star topology.

Note that in the real case, (5) is equivalent to D(x) ∩
[
ext(BX∗ )

]� ≠ �.
Proof (1)⇒(2) is obvious.

(2)⇒(3). Assume that (3) does not hold and so that there exists 𝜀0 > 0 , such that 
the set

is finite. Then, there exist extreme points e∗
1
,… , e∗

k
 and 𝛼 > 0 , such that e∗

i
(x) = 1 for 

i = 1,… , k and |e∗(x)| ≤ 1 − � if e∗ ∈ ext(BX∗ )⧵�{e∗
1
,… , e∗

k
}.

Define g ∶=
1

k

∑k

i=1
e∗
i
 , which is a norm-one functional as g(x) = 1 . Define 

S = S(BX , g,
�

2k
) . Pick y ∈ S and let us estimate ‖x − y‖ . As Re g(y) > 1 −

𝛼

2k
 , a con-

vexity argument gives

In particular, �e∗
i
(x − y)� < √

𝛼 for every 1 ≤ i ≤ k . Now, since 
� ext

+

x
(BX∗ ) = ext(BX∗ ) , we have that

Since, clearly, x ∈ S and y ∈ S was arbitrary, we get that x is not a Δ-point.
(3)⇔(4)⇔(5) are immediate.
(3)⇒(6). Pick y ∈ BX . By the assumption, take an infinite set {e∗

n
} ⊆ ext

+

x
(BX∗ ) , 

such that Re e∗
n
(x) > 1 −

1

n
 for all n ∈ ℕ . Observe that the elements of {e∗

n
∶ n ∈ ℕ} 

are pairwise linearly independent. Notice that, since X∗ ≡ L1(�) for some positive 

‖‖‖‖‖

m∑
k=1

�k(x
∗∗

k
− y)

‖‖‖‖‖
≤ 2max

{|�1|,… , |�m|
}

{e∗ ∈ ext
+

x
(BX∗ ) ∶ Re e∗(x) > 1 − 𝜀0}

Re e∗
i
(y) > 1 −

𝛼

2
for everyi ∈ {1,… , k}.

‖x − y‖ = sup
��e∗(x − y)� ∶ e∗ ∈ ext

+

x
(BX∗ )

�

= max

�
max
1≤i≤k �e

∗

i
(x − y)�, sup

e∗∉{e∗
1
,…,e∗

k
}

�e∗(x − y)�
�

≤ max

�√
�, sup

e∗∉{e∗
1
,…,e∗

k
}

�e∗(x)� + �e∗(y)�
�

≤ max
�√

�, 1 + 1 − �
� ≤ 2 − �.
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measure � , being each e∗
n
 an extreme point of BX∗ , we may find an L-projection 

Pn ∶ X∗
⟶ X∗ , such that Pn(X

∗
) = �e∗

n
 . Now, for every n ∈ ℕ define the linear 

functional x∗∗
n

∶ X∗
= �e∗

n
⊕1 kerPn ⟶ � by

Notice that, since ‖y‖ ≤ 1 , we have that

so x∗∗
n

 is continuous and, moreover, x∗∗
n

∈ BX∗∗ . Let us now prove that the 
sequence {x∗∗

n
− y} satisfies our requirements. Indeed, pick m ∈ ℕ and 

�1,… , �m ∈ � . We consider P = P1 +⋯ + Pm and use Lemma  2.2 to get that 
P is an L-projection, that X∗

= P(X∗
)⊕1 kerP , that kerP =

⋂m

k=1
kerPk , and 

that BP(X∗)
= aconv

(
{e∗

1
,… , e∗

m
}
)
 . With this in mind, taking into account that 

x∗∗
k
(x∗) − x∗(y) = 0 for k = 1,… ,m whenever x∗ ∈ kerP , we have that

But now, as x∗∗
k
(e∗

j
) − e∗

j
(y) = 0 whenever k, j ∈ {1,… ,m} with k ≠ j , it follows that

On the other hand, since

it follows that lim sup ‖x − x∗∗
n
‖ = 2 , as desired.

(6)⇒(7). It is immediate, since the basis {en} of c0 converges weakly to 0 and 
then, so does {T(en)} = {x∗∗

n
− y} . A fortiori, {x∗∗

n
} converges to y in the weak-star 

topology.
(7)⇒(1). Pick 𝜀 > 0 and a slice S = S(BX , g, �) of BX , where g ∈ SX∗ and 𝛼 > 0 . 

Pick y ∈ S and consider, by the assumption, a sequence {x∗∗
n
} in SX∗∗ satisfy-

ing that lim sup ‖x − x∗∗
n
‖ = 2 and that x∗∗

n
⟶ y in the weak-star topology. Since 

Re g(y) > 1 − 𝛼 , we may find n ∈ ℕ large enough, so that

Now, by the weak-star denseness of BX in BX∗∗ and the lower weak-star semicontinu-
ity of the norm of X∗∗ , we may find z ∈ BX , such that

(⋆)x∗∗
n
(�e∗

n
+ z∗) = −� + z∗(y).

��x∗∗n (�e∗
n
+ z∗)�� ≤ ��� + ‖z∗‖ = ‖�e∗

n
+ z∗‖,

‖‖‖‖‖

m∑
k=1

�k(x
∗∗

k
− y)

‖‖‖‖‖
= sup

j=1,…,m

|||||

m∑
k=1

�k
(
x∗∗
k
(e∗

j
) − e∗

j
(y)

)|||||
.

‖‖‖‖‖

m∑
k=1

�k(x
∗∗

k
− y)

‖‖‖‖‖
= max

j=1,…,m

||�j
(
x∗∗
j
(e∗

j
) − e∗

j
(y)

)||
≤ max

j=1,…,m

||�j
(|x∗∗

j
(e∗

j
)| + |e∗

j
(y)|)|| ≤ 2 max

1≤j≤m |�j|.

‖x − x∗∗
n
‖ ≥ ��e∗n(x) − x∗∗

n
(e∗

n
)�� > 2 −

1

n
,

Re x∗∗
n
(g) > 1 − 𝛼 and ‖x − x∗∗

n
‖ > 2 − 𝜀.

Re g(z) > 1 − 𝛼 and ‖x − z‖ > 2 − 𝜀.
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This proves that x is a Daugavet-point, as desired.   ◻

There are several remarks and consequences of the result above which we 
would like to state. Let us start by presenting some results which are improved by 
it.

Remark 3.3 

(a) Theorem 3.2 extends [1, Theorem 3.4], where the equivalences (1)⇔(2)⇔(5) 
were given for C(K) spaces. Observe that assertion (5) for a C(K) space can be 
written in terms of accumulation points of K using the well-known homeomor-
phism between �K and the set of extreme points of the unit ball C(K)∗ endowed 
with the weak-star topology. This is how (4) is given in [1].

(b) Besides, the fact that Daugavet-points and Δ-points are equivalent for general 
L1-preduals was already known. It is shown in [1, Theorem 3.7] with an indirect 
argument. Indeed, they first proved the result for C(K) spaces (item (a) above) 
and then translated it to arbitrary L1-preduals by an argument depending on the 
principle of local reflexivity.

Our next comment is that Theorem 3.2 gives an alternative proof of a charac-
terisation of the Daugavet property for L1-preduals given in [4, 42]. We need to 
introduce some notation. Given a Banach space X, we consider the equivalence 
relation f ∼ g if and only if f and g are linearly independent elements of ext(BX∗ ) 
and we endow the quotient space ext(BX∗ )∕ ∼ with the quotient topology of the 
weak-star topology. Observe that f , g ∈ ext(BX∗ ) are linearly dependent if and 
only if f = �g for some � ∈ �  , so the equivalence class of f ∈ ext(BX∗ ) identifies 
with � f .

Corollary 3.4 [42, Theorem 3.5] and [4, Theorem 2.4] Let X be an L1-predual. Then, 
X has the Daugavet property if and only if ext(BX∗ )∕ ∼ does not contain any isolated 
point.

Proof Suppose X does not have the Daugavet property. Then, there is x ∈ SX 
which is not a Daugavet-point, so by Theorem 3.2 there is 𝜀0 > 0 , such that writ-
ing W ∶= {x∗ ∈ BX∗ ∶ Re x∗(x) > 1 − 𝜀0} , we have that W ∩ ext

+

x
(BX∗ ) is finite. 

Observe that this implies that only finitely many linearly independent extreme points 
of BX∗ belong to W, which is an weak-star open set. This shows that ext(BX∗ )∕ ∼ con-
tains isolated points.

Conversely, suppose that the equivalent class of e∗ ∈ ext(BX∗ ) is isolated in 
ext(BX∗ )∕ ∼ . That is, there is a weak-star open set W of X∗ containing e∗ , such that 
ext(BX∗ ) ∩W ⊆ � e∗ . By Choquet’s lemma, we may suppose that W is a weak-star 
slice, that is, there is x ∈ SX and 𝜀 > 0 , such that

But this clearly implies that the set

{x∗ ∈ ext(BX∗ ) ∶ Re x∗(x) > 1 − 𝜀} ⊆ � e∗.



Daugavet property in projective symmetric tensor products… Page 11 of 32    35 

contains only one element. Therefore, Theorem 3.2 gives that x is not a Daugavet-
point and so X fails the Daugavet property.   ◻

Next, a look at the proof of Theorem 3.2 shows that the hypothesis of X being an 
L1-predual is only used for the implication (3)⇒(6), so the rest of implications are 
true for general Banach spaces.

Remark 3.5 Let X be a Banach space and consider the assertions (1) to (7) of Theo-
rem 3.2. Then, the following implications hold:

Let us observe that (3)⇒(2) does not hold in general (and so, neither does (3)⇒
(6)), as X = �2 shows.

Our next remark on Theorem 3.2 is that it is possible to give a version of it 
for nicely embedded spaces. Let us introduce some notation. Let S be a Haus-
dorff topological space, and let Cb

(S) be the sup-normed Banach space of all 
bounded continuous scalar-valued functions. For s ∈ Ω , the functional f ⟼ f (s) 
is denoted by �s.

Definition 3.6 [42] A Banach space X is nicely embedded into Cb(S) if there is 
an isometry J ∶ X ⟶ Cb

(S) , such that for all s ∈ S the following properties are 
satisfied: 

 (N1) For ps ∶= J∗(�s) ∈ X∗ we have ‖ps‖ = 1.
 (N2) �ps is an L-summand in X∗.

We will further suppose, for the sake of simplicity and since it can be done in 
the most interesting examples, that the elements of the set {ps ∶ s ∈ S} ⊂ X∗ 
are pairwise linearly independent (so, by (N1), they are linearly independent, see 
Lemma 2.2).

Observe that canonical examples of nicely embedded Banach spaces are 
L1-predual spaces. Indeed, if X is an L1-predual, then the canonical embedding 
J ∶ X ⟶ Cb

(extBX∗ ) satisfies the requirements. Other examples of nicely embed-
ded spaces are the function algebras, which are nicely embedded into Cb

(K) being K 
the Choquet boundary, see [42].

We have the following version of Theorem 3.2.

Proposition 3.7 Let X be a Banach space nicely embedded into Cb
(S) for which 

{ps ∶ s ∈ S} is (pairwise) linearly independent and let x ∈ SX . Then, the following 
assertions are equivalent: 

{x∗ ∈ ext
+

x
(BX∗ ) ∶ Re x∗(x) > 1 − 𝜀}

(1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5) and (6) ⇒ (7) ⇒ (1).
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(1) x is a Daugavet-point.
(2) x is a Δ-point.
(4) For every 𝜀 > 0 , the set

is infinite.
(5) There is � ∈ �  , such that D(x) ∩

[
{�ps ∶ s ∈ S}

]� ≠ �.
(6) For every y ∈ BX  there exists a sequence {x∗∗

n
} ⊆ BX∗∗ satisfying that 

lim sup ‖x − x∗∗
n
‖ = 2 and that

for every m ∈ ℕ and every �1,… , �m ∈ � (that is, the linear operator T from c0 
to X∗∗ defined by T(en) = x∗∗

n
− y for all n ∈ ℕ is continuous).

(7) For every y ∈ BX  there exists a sequence {x∗∗
n
} ⊆ BX∗∗ satisfying that 

lim sup ‖x − x∗∗
n
‖ = 2 and that {x∗∗

n
} ⟶ y in the weak-star topology.

The proof is just an adaptation of the one of Theorem  3.2. Actually, as it is 
noted in Remark 3.5, only (4)⇒(6) has to be proved. To get this implication, we 
follow the proof of (3)⇒(6) of Theorem  3.2, find a sequence {sn} of different 
points of S, such that |psn(x)| > 1 −

1

n
 and, instead of using Eq. (⋆ ), we define the 

linear functional x∗∗
n

∶ X∗
= �psn ⊕1 kerPn ⟶ � by

where �n ∈ �  satisfies that psn(x) = �n|psn(x)| for every n ∈ ℕ.
The above result applies, for instance, to a function algebra A on a compact 

Hausdorff space K, that is, A is a closed subalgebra of a C(K) spaces separating 
the points of K and containing the constant functions. Indeed, to a function alge-
bra A, a distinguished subset 𝜕A ⊂ K is associated which is called the Choquet 
boundary of A and it is defined by

Then, it is known that A is nicely embedded into Cb
(�A) (see the proof of [42, Theo-

rem 3.3] for instance). A paradigmatic example is the disk algebra � , the space of 
those functions on C

(
�
)
 which are holomorphic on � , endowed with the supremum 

norm. The Choquet boundary of � is �  , so Proposition 3.7 gives an alternative proof 
of the fact that � has the Daugavet property from [44] or [42].

Next, let us relate Δ-points and polyhedrality for real Banach spaces. Recall 
that a real Banach space is said to be polyhedral if the unit balls of all its finite-
dimensional subspaces are polytopes (i.e., they have finitely many extreme 
points). There are several versions of polyhedality which have been studied in 
the literature (see [15, 17] and references therein) of which we would like to 

{s ∈ S ∶ |ps(x)| > 1 − 𝜀}

‖‖‖‖‖

m∑
k=1

�k(x
∗∗

k
− y)

‖‖‖‖‖
≤ 2max

{|�1|,… , |�m|
}

x∗∗
n
(�psn + z∗) = −��n + z∗(y)

�A =
{
k ∈ K ∶ �k|A is an extreme point of BA∗

}
.
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emphasise the following two, named using the notation of [7]. A real Banach 
space X is said to be: 

(a) (GM) polyhedral if x∗(x) < 1 whenever x ∈ SX and x∗ ∈ [ext(BX∗ )]
�;

(b) (BD) polyhedral if for each x ∈ SX , sup{x∗(x) ∶ x∗ ∈ ext(BX∗ )⧵D(x)} < 1.

It is known that

see [15, Theorem 1] or [17, Theorem 1.2]. The above implications does not reverse 
in general [15, 17].

Our first observation is the following easy consequence of Theorem  3.2, 
Remark 3.5, and Proposition 3.7.

Corollary 3.8 Let X be a real Banach space. 

(a) If X is (GM) polyhedral, then the set of Δ-points of X is empty.
(b) The converse result to (a) holds when X is nicely embedded in some Cb

(S) space.
(c) In particular, if X is an L1-predual, then X is (GM) polyhedral if and only if the 

set of Δ-points of X is empty.

Contrary to what it was stated during years in many papers, the implications in 
Eq. (⋆ ⋆ ⋆ ) does not reverse for L1-preduals, a result recently discovered in [7], see 
also [19, 45]. Actually, (GM) polyhedrality and (BD) polyhedrality are not equiva-
lent for L1-preduals. This is exactly the “breaking” point for L1-preduals [7], as all 
versions of polyhedrality weaker than (BD) polyhedrality (including polyhedral-
ity itself) are equivalent to (BD) polyhedrality for L1-preduals. It is easy to see that 
examples of Banach spaces failing (BD) polyhedrality are C(K) spaces and C0(L) 
spaces when the locally compact topological space L has an accumulation point.

Inspired by Corollary 3.8, one may wonder if the failure of (BD) polyhedrality 
for L1-preduals can be characterised by some kind of “massiveness” of the set of 
Δ-points. The example given in [7] to show that (GM) polyhedrality and (BD) poly-
hedrality are not equivalent, makes us think that a positive answer could be possible. 
Let us state the example here. Consider

It is shown in [7, Section 3] that W is an L1-predual (the operator � ∶ �1 ⟶ W∗ 
given by

(⋆⋆⋆)(GM) polyhedral ⟹ (BD) polyhedral ⟹ polyhedral,

W =

{
x ∈ c ∶ lim

n
x(n) =

∞∑
n=1

x(n)

2n

}
.

[�(y)](x) =

∞∑
n=1

x(n)y(n) for every x ∈ W and every y ∈ �1
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is an onto isometry) and that W is (BD) polyhedral. Besides, {e∗
n
} converges weakly-

star to the functional 
{

1

2n

}
 in SW∗ . This shows that the constant function 1 of W is a 

Δ-point by Theorem 3.2, so W is not (GM) polyhedral. Actually, it also follows from 
Theorem 3.2 that the only Δ-points of SW are the constant function 1 and its oppo-
site, since they are the only points of SW at which the functional 

{
1

2n

}
 attains its 

norm.
A property related to Δ-points which implies some “massiveness” of the set of 

Δ-points is the following one from [1]. Let X be a Banach space, and let ΔX be the 
set of Δ-points of SX . A Banach space X is said to have the convex diametral local 
diameter two property (convex-DLD2P in short) if BX = conv (ΔX) . This property 
is introduced in [1] as a property which is implied by the diametral local diam-
eter two property or DLD2P (in our language, ΔX = SX ) and which implies that 
every slice of BX has diameter two [1, Proposition 5.2]. It is also shown in [1] 
that C(K) spaces (with K infinite) and Müntz spaces on [0, 1] have the convex-
DLD2P [1, Proposition 5.3 and Theorem 5.7], and that c0 fails the convex-DLD2P 
[1, Remark 5.5]. This shows, in particular, that the DLD2P, the convex-DLD2P, 
and the diameter two property of the slices are different properties even in the 
L1-preduals ambient.

As a consequence of Theorem  3.2, we get the following result on the 
convex-DLD2P.

Corollary 3.9 Let X be an infinite-dimensional L1-predual. If there is e∗ ∈ ext(BX∗ ) 
which is the weak-star limit of a net {e∗

�
} of pairwise linearly independent elements 

in ext(BX∗ ) , then X has the convex-DLD2P. In the real case, the previous condition 
can be replaced with [ext(BX∗ )]

�
∩ ext(BX∗ ) ≠ �.

Proof As e∗ ∈ ext(BX∗ ) , it is known that the set F(e∗) = {x ∈ SX ∶ e∗(x) = 1} is not 
empty and, moreover, that

(see [28, Corollary 2.13], for instance). Pick any x ∈ F(e∗) . As {|e∗
�
(x)|} converges 

to e∗(x) = 1 and the {e∗
�
} are pairwise linearly independent, it follows from Theo-

rem 3.2 that x is a Δ-point. Therefore, X has the convex-DLD2P, as desired.   ◻

Two particular cases of the above result are interesting. Item (a) extends the 
result on C(K) spaces from [1, Theorem 3.4] and item (c) provides new examples of 
L1-preduals with the convex-DLD2P.

Corollary 3.10 Let X be an infinite-dimensional L1-predual. Then, each of the follow-
ing conditions implies the convex-DLD2P: 

(a) if ext(BX∗ ) is weak-star closed (in particular, if X = C(K) for some compact space 
K);

BX = conv
(
F(x)

)
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(b) if SX contains a Δ-point at which the norm is smooth;
(c) X = C0(L) for some locally compact space L containing an accumulation point.

Proof For (a), being X infinite-dimensional, we may find a net {e∗
�
} of pairwise 

linearly independent elements of ext(BX∗ ) . Being {e∗
�
∶ � ∈ Λ} an infinite subset 

of the weakly star compact subset BX∗ , it contains a weak-star limit point e∗ . As 
ext(BX∗ ) is weakly star closed, such a limit point must belong to ext(BX∗ ) . But then, 
e∗ ∈ ext(BX∗ ) is the weak-star limit of a net of pairwise linearly independent extreme 
points, so Corollary 3.9 gives the result.

For (b), pick e∗ ∈ ext(BX∗ ) with e∗(x) = 1 . If the norm of X is smooth 
at x, then D(x) = {e∗} . As x is a Δ-point, it follows from Theorem  3.2 that 
D(x) ∩ [ ext

+

x
(BX∗ )]

� ≠ � , so there is a net of distinct elements of ext+
x
(BX∗ ) which 

is weakly-star convergent to e∗ . However, distint elements of ext+
x
(BX∗ ) are clearly 

pairwise linearly independent. Then, Corollary 3.9 gives the result.
Finally, (c) follows taking an accumulation point t0 of L, considering a net t� → t0 , 

so that t� ≠ t0 for every � and applying Corollary 3.9 to e∗
�
∶= �t� and e∗ ∶= �t0 .   ◻

Let us observe that part of the results in Corollaries 3.9 and 3.10 can be obtained 
for nicely embedded Banach spaces by applying Proposition 3.7 instead of Theo-
rem 3.2. Only part of the language changes, so we only include a sketch of its proof.

Corollary 3.11 Let X be an infinite-dimensional Banach space which is nicely 
embedded into Cb

(S) for which {ps ∶ s ∈ S} is (pairwise) linearly independent (in 
particular, if X is a function algebra). Then, each of the following conditions implies 
that X has the convex DLD2P: 

(a) if there is a net {ps�} of distinct elements which is weak-star converging to some 
ps0;

(b) if {ps ∶ s ∈ S} is weak-star closed;
(c) if SX contains a Δ-point at which the norm is smooth.

Proof (a) Since �ps0 is L-embedded, it follows from [28, Example 2.12.a] that ps0 
is a spear element of BX∗ (see [28, Definition 2.1]), so [28, Theorem 2.9] gives us 
that A = {x ∈ SX ∶ ps0 (x) = 1} is non-empty and that conv (A) = BX . The rest of the 
proof is completely analogous to that of Corollary 3.9, using Proposition 3.7 instead 
of Theorem 3.2.

(b) and (c) follows from the previous result in the same manner than it is done in 
the proof of Corollary 3.10.   ◻

We do not know whether Corollary 3.9 or assertion (b) of Corollary 3.10 charac-
terises the convex-DLD2P for L1-preduals. On the other hand, we also do not know 
if the convex-DLD2P for real L1-preduals can be characterised in terms of the failure 
of some kind of polyhedrality. Let us emphasise the question.
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Problem 3.12 Is it true that a real L1-predual has the convex-DLD2P if and only if X 
has fails to be (BD) polyhedral.

4  Polynomial Daugavet property

Let us start by recalling the definition of the polynomial Daugavet property intro-
duced in [8, 9].

Definition 4.1 [8, 9] A Banach space X has the polynomial Daugavet property if 
every weakly compact polynomial P ∈ P(X,X) satisfies the Daugavet equation:

Examples of Banach spaces with the polynomial Daugavet property include C(K) 
for perfect Hausdorff topological spaces K, L1(�) and L

∞
(�) for atomless positive 

measures � , and some generalisations of these examples, as non-atomic C∗-algebras, 
representable spaces, C-rich subspaces of C(K) spaces, among others. We refer the 
reader to [5, 8–10, 35, 38, 39] for more information and background. Let us com-
ment that it is still unknown whether the Daugavet property always implies the poly-
nomial Daugavet property. The following equivalent reformulation of the polyno-
mial Daugavet property is well known and we will make use of it profusely, see [8, 
Proposition 1.3 and Corollary 2.2] or [9, Lemma 6.1]:

X has the polynomial Daugavet property if, and only if, given x ∈ SX , 𝜀 > 0 , 
and a norm-one polynomial P ∈ P(X) , there exists y ∈ BX and � ∈ �  with 
Re𝜔P(y) > 1 − 𝜀 and ‖x + 𝜔y‖ > 2 − 𝜀.

Our main goal in this section is to use the results of Sect. 3 to prove the following 
extension of the fact that C(K) spaces with the Daugavet property actually satisfy the 
polynomial Daugavet property.

Theorem 4.2 The following spaces have the polynomial Daugavet property: 

(a) L1-preduals with the Daugavet property;
(b) more in general, spaces nicely embedded in Cb

(Ω) when Ω has no isolated points 
and for which {ps ∶ s ∈ S} is (pairwise) linearly independent.

The particular case of item (b) for uniform algebras whose Choquet boundaries 
have no isolated points was already known, see [10, Theorem 2.7].

The proof of Theorem 4.2 will follow directly from Theorem 3.2 and Proposi-
tion 3.7 using the following general result which extends [9, Proposition 6.3].

Proposition 4.3 Let X be a Banach space. Suppose that given x ∈ SX , y ∈ BX , and 
� ∈ �  , there is a sequence {x∗∗

n
} in BX∗∗ , such that

‖Id + P‖ = 1 + ‖P‖.
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and that the linear operator from c0 to X∗∗ defined by en ⟼ x∗∗
n

− y for all n ∈ ℕ is 
continuous. Then, X has the polynomial Daugavet property.

Observe that the only difference between the above result and [9, Proposition 6.3] 
is that, in the latter case, the sequence {x∗∗

n
} has to belong to X.

Proof Pick x ∈ SX , P ∈ P(X) with ‖P‖ = 1 , and 𝜀 > 0 . Let us find an element z ∈ BX 
and � ∈ �  , such that Re𝜔P(z) > 1 − 𝜀 and that ‖x + 𝜔z‖ > 2 − 𝜀 , and then apply [8, 
Proposition 1.3 and Corollary 2.2] to get that X has the polynomial Daugavet prop-
erty. To this end, pick y ∈ BX and � ∈ �  , such that Re𝜔P(y) > 1 − 𝜀 and let {x∗∗

n
} 

be in BX∗∗ the sequence given by the hypothesis. Therefore, on the one hand, we have 
that

Define a linear operator T ∶ c0 ⟶ X∗∗ by T(e1) = y and T(en+1) = x∗∗
n

− y 
for n ∈ ℕ . It follows from the hypothesis that T is continuous. Therefore, 
Q ∶= P̂◦T ∶ c0 ⟶ � , where P̂ is the Aron-Berner extension of P (see, e.g., [12, P. 
352] for the construction), is a continuous polynomial on c0 . As {e1 + en} converges 
weakly to e1 in c0 , using the weak continuity of polynomials on bounded subsets of 
c0 (see [14, Proposition 1.59]), we get that {Q(e1 + en)} ⟶ Q(e1) . In particular

This, together with Eq. (⋆⋆ ), allows us to find n ∈ ℕ , such that

By [12, Theorem 2] we can find a net {z�} in BX converging to x∗∗
n

 in the polynomial-
star topology of X∗∗ (that is, R(z�) ⟶ R̂(x∗∗

n
) for every polynomial R ∈ P(X) ) so, in 

particular, it also converges in the weak-star topology. Consequently, we can find � 
large enough, so that

  ◻

Proof of Theorem 4.2 We only have to check that the hypotheses of Proposition 4.3 
are satisfied. For X being a L1-predual with the Daugavet property, given x ∈ SX , 
y ∈ BX , and � ∈ �  , we just have to apply condition (6) of Theorem 3.2 for −�̄�x ∈ SX 
(which is a Daugavet point). For a nicely embedded space, as S has no isolated 
points, the condition (d) of Proposition 3.7 is clearly satisfies for −�̄�x , so item (e) of 
that proposition provides the proof that we are in the hypotheses of Proposition 4.3, 
as desired.   ◻

lim sup ‖x + �x∗∗
n
‖ = 2

(⋆⋆)lim sup ‖x + �x∗∗
n
‖ = 2.

Re𝜔�P(x∗∗
n
) ⟶ Re𝜔�P(y) = Re𝜔P(y) > 1 − 𝜀.

‖x + 𝜔x∗∗
n
‖ > 2 − 𝜀 and Re𝜔�P(x∗∗

n
) > 1 − 𝜀.

‖x + 𝜔z𝛼‖ > 2 − 𝜀 and Re𝜔P(z𝛼) > 1 − 𝜀.
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A final result in this section will deal with the spaces of Lipschitz functions. Let 
us say that this result will not be used in Sect. 5, but we include it here as the same 
kind of arguments than the previous ones allows us to provide new examples of 
Banach spaces in which the Daugavet property and the polynomial Daugavet prop-
erty are equivalent. Let us briefly introduce the necessary notation. Given a metric 
space M and a point x ∈ M , we will denote by B(x, r) the closed ball centred at x 
with radius r. Let M be a metric space with a distinguished point 0 ∈ M . The pair 
(M, 0) is commonly called a pointed metric space. By an abuse of language, we will 
say only “let M be a pointed metric space” and similar sentences. The vector space 
of Lipschitz functions from M to ℝ will be denoted by Lip (M) . Given a Lipschitz 
function f ∈ Lip (M) , we denote its Lipschitz constant by

This is a seminorm on Lip (M) which is a Banach space norm on the space 
Lip

0
(M) ⊆ Lip (M) of Lipschitz functions on M vanishing at 0.

Proposition 4.4 Let M be a pointed complete metric space. If Lip
0
(M) has the Dau-

gavet property, then it has the polynomial Daugavet property.

Proof We will follow the lines of the proof of [30, Proposition 3.3]. Pick 
f , g ∈ S

Lip
0
(M)

 . Notice that, by [18, Proposition 3.4 and Theorem  3.5], for every 
𝜀 > 0 the set

is infinite, so we can take a sequence {wn} of different points of V 1

k

 . An inductive 
argument allows to take rn > 0 small enough, so that d(wn,wm) ≥ 2rn holds for every 
n > m and such that 

∑∞

n=1

rn

8−rn
< ∞ . By the property defining wn , for every n ∈ ℕ 

we can take a pair of different points xn, yn ∈ B
(
wn,

r2
n

8

)
 , such that

Now, we define gn ∶
[
M⧵B(wn, rn)

]
∪ {xn, yn} ⟶ ℝ by gn(t) = g(t) if 

t ≠ xn and gn(xn) = g(yn) + d(xn, yn) . Let us estimate the norm of gn . First, 
gn(xn) − gn(yn) = d(xn, yn) , so ‖gn‖ ≥ 1 . Next, we only have to compare slopes of gn 
at xn and z ∉ B(wn, rn) . Notice that d(z, xn) ≥ rn −

r2
n

8
 by the triangle inequality and, 

similarly, d(z, yn) ≥ rn −
r2
n

8
 . Now

‖f‖L = sup

��f (x) − f (y)�
d(x, y)

∶ x, y ∈ M, x ≠ y

�
.

V𝜀 =

�
x ∈ M ∶ inf

𝛽>0
‖f�B(x,𝛽)‖ > 1 − 𝜀

�

f (xn) − f (yn) >
(
1 −

1

k

)
d(xn, yn).
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By McShane’s extension Theorem (see [41, Theorem 1.33], for instance), we can 
extend gn to be defined in the whole of M still satisfying

We clearly have that supp(gn − g) ⊆ B(wn, rn) . This implies that

Then, the arguments in the proof of [6, Lemma  1.5] implies that the operator 
T ∶ c0 ⟶ Lip

0
(M) given by T(en) ∶= gn − g for every n ∈ ℕ is continuous (even 

more, ‖T‖ ≤ 2 ). Using that ���
gn

‖gn‖ − gn
��� < 2

rn

8−rn
 for every n ∈ ℕ , it is routine to 

prove that the operator c0 ⟶ Lip
0
(M) given by en ⟼

gn

‖gn‖ − g is bounded (actu-
ally, its norm is bounded by 2 + 2

∑∞

n=1

rn

8−rn
 ). On the other hand

Finally, an application of Proposition 4.3 concludes that Lip
0
(M) has the polyno-

mial Daugavet property, as desired.   ◻

5  Weak operator Daugavet property and polynomial weak operator 
Daugavet property

Let us start the section by recalling the definition of the operator Daugavet prop-
erty introduced in [36] with the aim of providing a weaker version.

Definition 5.1 ([36, Definition 4.1]) Let X be a Banach space. We say that X has 
the operator Daugavet property (ODP in short) if, given x1,… xn ∈ SX , 𝜀 > 0 , and a 
slice S of BX , there exists an element x ∈ S , such that for every x� ∈ BX we can find 
an operator T ∶ X ⟶ X with ‖T‖ ≤ 1 + � , ‖T(xi) − xi‖ < 𝜀 for every i ∈ {1,… , n} 
and T(x) = x�.

|gn(xn) − gn(z)|
d(xn, z)

≤ |g(yn) − g(z)| + d(xn, yn)

d(xn, z)
≤ d(yn, z) + d(xn, yn)

d(z, xn)

≤ d(z, xn) + 2d(xn, yn)

d(z, xn)
= 1 +

2d(xn, yn)

d(z, xn)

≤ 1 +
2
r2
n

8

rn −
r2
n

8

= 1 + 2
rn

8 − rn
.

1 ≤ ‖gn‖ ≤ 1 + 2
rn

8 − rn
.

d(supp(gn − g), supp(gm − g)) > 0 for every n ≠ m.

����f +
gn

‖gn‖
���� ≥

�
f +

gn

‖gn‖
�
(xn) −

�
f +

gn

‖gn‖
�
(yn)

d(xn, yn)
> 1 −

1

k
+

1

1 + 2
rn

8−rn

.
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This property was introduced in the aforementioned paper [36] as a sufficient 
condition for a pair of Banach spaces X and Y to get that X �⊗𝜋Y  have the Dau-
gavet property. Examples of spaces satisfying the ODP are L1-preduals with the 
Daugavet property and L1(�, Y) when � is atomless and Y is arbitrary. Besides, 
this property is stable by finite �

∞
 sums.

Our strategy for proving the main results of this paper will be to consider the 
following weakening of the ODP.

Definition 5.2 Let X be a Banach space. We say that X has the weak operator Dau-
gavet property (WODP in short) if, given x1,… xn ∈ SX , 𝜀 > 0 , a slice S of BX and 
x� ∈ BX , we can find x ∈ S and T ∶ X ⟶ X with ‖T‖ ≤ 1 + � , ‖T(xi) − xi‖ < 𝜀 for 
every i ∈ {1,… , n} and ‖T(x) − x�‖ < 𝜀.

The ODP clearly implies the WODP. Actually, the following result also holds.

Remark 5.3 If X is a Banach space with the WODP, then X has the Daugavet prop-
erty. Indeed, given x ∈ SX , an slice S of BX , and 𝜀 > 0 , taking x� = −x we can find, 
by the definition of WODP, an element y ∈ S and an operator T ∶ X ⟶ X with 
‖T‖ ≤ 1 + � and such that max{‖T(x) − x‖, ‖T(y) + x‖} < 𝜀 . It is not difficult to 
prove that ‖x + y‖ ≥ 2−2�

1+�
.

We do not know whether the DP implies the WODP. On the other hand, our first 
interest in the WODP is that it is stable by projective tensor product, a result which 
improves the main ones of [36].

Theorem 5.4 Let X and Y be two Banach spaces with the WODP. Then, X �⊗𝜋Y  has 
the WODP.

We need the following technical lemma.

Lemma 5.5 Let X be a Banach space with the WODP. Then, for all x1,… , xn ∈ SX , 
for all y�

1
,… , y�

k
∈ BX , all slices S1,… , Sk of BX and all 𝜀 > 0 we can find yj ∈ Sj for 

every 1 ≤ j ≤ k and an operator T ∶ X ⟶ X with ‖T‖ ≤ 1 + � satisfying that

Proof Let us prove the result by induction on k. For the case k = 1 there is nothing 
to prove. Now assume by induction hypothesis that the result holds for k, and let us 
prove the case k + 1 . To this end, pick x1,… , xn ∈ SX , 𝜀 > 0 , S1,… , Sk+1 slices of 
BX and y�

1
,… , y�

k+1
∈ BX , and let us find an operator � witnessing the thesis of the 

lemma.
To this end, by the induction hypothesis, we can find yi ∈ Si for 1 ≤ i ≤ k and an 

operator T ∶ X ⟶ X with ‖T‖ ≤ 1 + � and such that 

(1) ‖T(xi) − xi‖ < 𝜀 for every 1 ≤ i ≤ n and ‖T(y�
k+1

) − y�
k+1

‖ < 𝜀.
(2) ‖T(yi) − y�

i
‖ < 𝜀 holds for every 1 ≤ i ≤ k.

‖T(xi) − xi‖ < 𝜀 for 1 ≤ i ≤ n and ‖T(yj) − y�
j
‖ < 𝜀 for 1 ≤ j ≤ k.
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Now, by the definition of the WODP we can find yk+1 ∈ Sk+1 and an operator 
G ∶ X ⟶ X with ‖G‖ ≤ 1 + � and such that 

(3) ‖G(xi) − xi‖ < 𝜀 for 1 ≤ i ≤ n and ‖G(yj) − yj‖ < 𝜀 for 1 ≤ j ≤ k.
(4) ‖G(yk+1) − y�

k+1
‖ < 𝜀.

Define � ∶= T◦G ∶ X ⟶ X and let us prove that � satisfies our purposes. First, 
‖�‖ ≤ (1 + �)2 . Next, given 1 ≤ i ≤ n we have

just combining (1) and (3). Moreover, given i ∈ {1,… , k} , we obtain

by combining (2) and (3). Finally,

by combining (1) and (4). This proves, up to making a choice of a smaller � , that � is 
our desired operator.   ◻

We are now ready to give the pending proof.

Proof of Theorem  5.4 Let Z ∶= X �⊗𝜋Y  . Fix z1,… , zn ∈ BZ , 𝜀 > 0 , z� ∈ BZ , and a 
slice S = S(BZ ,B, �) for certain norm-one bilinear form B ∶ X × Y ⟶ �.

By a density argument, we can assume with no loss of generality that

and, in a similar way, that z� =
∑t

k=1
𝜇kx

�

k
⊗ y�

k
∈ conv (SX ⊗ SY ).

Take u0 ⊗ v0 ∈ S with u0 ∈ BX and v0 ∈ BY , which means ReB(u0, v0) > 1 − 𝛼 
or, equivalently, that u0 ∈ S� ∶= {z ∈ BX ∶ ReB(z, v0) > 1 − 𝛼} , which is a slice 
of BX . By Lemma 5.5, for every 1 ≤ k ≤ t we can find an element xk ∈ S� (which 

‖𝜙(xi) − xi‖ = ‖T(G(xi)) − T(xi) + T(xi) − xi‖
≤ ‖T(G(xi) − xi)‖ + ‖T(xi) − xi‖
≤ ‖T‖‖G(xi) − xi‖ + 𝜀

< (1 + 𝜀)𝜀 + 𝜀 = (2 + 𝜀)𝜀

‖𝜙(yi) − y�
i
‖ = ‖T(G(yi)) − T(yi) + T(yi) − y�

i
‖

≤ ‖T(G(yi) − yi)‖ + ‖T(yi) − y�
i
‖

≤ ‖T‖‖G(yi) − yi‖ + 𝜀

< (1 + 𝜀)𝜀 + 𝜀 = (2 + 𝜀)𝜀

‖𝜙(yk+1) − y�
k+1

‖ = ‖T(G(yk+1)) − T(y�
k+1

) + T(y�
k+1

) − y�
k+1

‖
≤ ‖T(G(yk+1) − y�

k+1
)‖ + ‖T(y�

k+1
) − y�

k+1
‖

< ‖T‖‖G(yk+1) − y�
k+1

‖ + 𝜀

< (1 + 𝜀)𝜀 + 𝜀 = (2 + 𝜀)𝜀

zi =

ni∑
j=1

𝜆ijaij ⊗ bij ∈ conv (SX ⊗ SY ) i ∈ {1,… , n}
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implies that xk ⊗ v0 ∈ S ) and an operator T ∶ X ⟶ X with ‖T‖ ≤ 1 + � , satisfying 
that

Notice that v0 ∈ Sk ∶= {z ∈ BY ∶ ReB(xk, z) > 1 − 𝛼} for every k ∈ {1,… , t} . 
Again, by the previous lemma, for every k ∈ {1,… , t} we can find yk ∈ Sk (which 
means that xk ⊗ yk ∈ S ) and an operator U ∶ Y ⟶ Y  with ‖U‖ ≤ 1 + � satisfying 
that

Now, define z ∶=
∑t

k=1
𝜇kxk ⊗ yk . Notice that z ∈ S , since

Finally define 𝜙 ∶= T ⊗ U ∶ Z ⟶ Z . By [37, Proposition 2.3], 
‖�‖ = ‖T‖‖U‖ ≤ (1 + �)2 . On the other hand, given 1 ≤ i ≤ n , we get

Similar estimates to the previous ones prove that ‖𝜙(z) − z�‖ < (2 + 𝜀)𝜀 .   ◻

Our next goal is to introduce the polynomial WODP. We need some notation. 
Given x1,… , xn ∈ SX , 𝜀 > 0 , and x� ∈ BX , write

Notice that a Banach space X has the WODP if, and only if, all the sets of the form 
OF (x1,… , xn;x

�, �) are norming for X∗ , that is, if and only if

‖T(aij) − aij‖ < 𝜀 for every i, j and ‖T(xk) − x�
k
‖ < 𝜀 for every k.

‖U(bij) − bij‖ < 𝜀 for every i, j and ‖U(yk) − y�
k
‖ < 𝜀 for 1 ≤ k ≤ t.

ReB(z) =

t∑
k=1

𝜇k ReB(xk, yk) > (1 − 𝛼)

t∑
k=1

𝜇k = 1 − 𝛼.

‖𝜙(zi) − zi‖ =

������

ni�
j=1

𝜆ij(T(aij)⊗ T(bij) − aij ⊗ bij)

������
≤

ni�
j=1

𝜆ij‖T(aij)⊗ T(bij) − T(aij)⊗ bij + T(aij)⊗ bij − aij ⊗ bij‖

≤
ni�
j=1

𝜆ij(‖T(aij)‖‖T(bij) − bij‖ + ‖T(aij) − aij‖‖bij‖)

<

ni�
j=1

𝜆ij((1 + 𝜀)𝜀 + 𝜀) = (2 + 𝜀)𝜀

ni�
j=1

𝜆ij = (2 + 𝜀)𝜀.

OF (x1,… , xn;x
�, 𝜀) ∶=

⎧
⎪⎨⎪⎩
y ∈ BX ∶

there exists T ∶ X ⟶ X

‖T‖ ≤ 1 + 𝜀, ‖T(y) − x�‖ < 𝜀,
‖T(xi) − xi‖ < 𝜀 ∀i ∈ {1,… , n}

⎫
⎪⎬⎪⎭
.

BX = conv
(
OF (x1,… , xn;x

�, �)
)
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regardless of x1,… , xn, x
�, � . Actually, the sets are even more massive in this case, as 

the following result exhibits.

Lemma 5.6 Let X be a Banach space with the WODP. Then, for every 
x1,… , xn ∈ SX , x� ∈ BX , and 𝜀 > 0 the set OF (x1,… , xn;x

�, �) intersects any convex 
combination of slices of BX . In particular, the set is weakly dense.

Proof Pick C =
∑t

k=1
�kSk to be a convex combination of slices of BX . Pick 

x1,… , xn ∈ SX , 𝜀 > 0 and x� ∈ BX . Lemma  5.5 allows us to find yk ∈ Sk for 
every k ∈ {1,… , t} and an operator T ∶ X ⟶ X satisfying that ‖T‖ ≤ 1 + � , 
‖T(xi) − xi‖ < 𝜀 for i ∈ {1,… , n} , and ‖T(yk) − x�‖ < 𝜀 for k ∈ {1,… , t} . Now,

This implies that OF (x1,… , xn;x
�, �) ∩ C ≠ � , as desired. Finally, the weak dense-

ness of OF (x1,… , xn;x
�, �) follows, since every non-empty weakly open subset of 

BX contains a convex combination of slices of BX by Bourgain’s Lemma (see [20, 
Lemma II.1] for instance).   ◻

Let us now consider the definition of polynomial WODP which is a stronger ver-
sion of the WODP.

Definition 5.7 Let X be a Banach space. We say that X has the polynomial weak 
operator Daugavet property (polynomial WODP in short) if, for every P ∈ P(X) 
with ‖P‖ = 1 , every x1,… , xn ∈ SX , x� ∈ BX , 𝛼 > 0 and 𝜀 > 0 , there exists 
y ∈ OF (x1,… , xn;x

�, �) and � ∈ �  with Re𝜔P(y) > 1 − 𝛼.

Remark 5.8 The polynomial WODP implies the WODP and the polynomial Dau-
gavet property. Indeed, the first assertion is immediate, since bounded linear func-
tionals are in particular continuous polynomials. The second assertion follows with 
similar ideas behind the implication WODP ⇒ Daugavet property in Remark 5.3.

Now it is time to exhibit examples of Banach spaces with the polynomial WODP, 
which in turn provides examples of Banach spaces with the WODP.

The first family of examples is the one of L1-preduals with the Daugavet property.

Proposition 5.9 If X is an L1-predual with the Daugavet property, then X has the 
polynomial WODP.

We will need a technical result which follows from [39, Proposition 2.3] in the 
real case and which can be adapted also for the complex case.

������
T

�
t�

k=1

𝜆kyk

�
− x�

������
=

�����

t�
k=1

𝜆kT(yk) −

t�
k=1

𝜆kx
�

�����

≤
t�

k=1

𝜆k‖T(yk) − x�‖ < 𝜀

t�
k=1

𝜆k = 𝜀.
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Lemma 5.10 Let X be a Banach space with the polynomial Daugavet property. 
Then, given a finite-dimensional subspace F of X, a norm-one polynomial P ∈ P(X) , 
and 𝜀 > 0 , 𝛼 > 0 , there exists a norm-one polynomial Q ∈ P(X) and 𝛼1 > 0 satisfy-
ing that: 

(a) the set {z ∈ BX ∶ |Q(z)| > 1 − 𝛼1} is contained in {z ∈ BX ∶ |P(z)| > 1 − 𝛼};
(b) the inequality

holds for every e ∈ F , every � ∈ � , and every x ∈ {z ∈ BX ∶ |Q(z)| > 1 − 𝛼1}.

Proof Let us start proving the following:
Claim For every y0 ∈ SX , every norm-one polynomial P ∈ P(X) , and 𝛼 > 0 , 

𝜀 > 0 , there exist a norm-one polynomial Q ∈ P(X) and 𝛼′ > 0 , such that the set 
{z ∈ BX ∶ |Q(z)| > 1 − 𝛼�

} is contained in {z ∈ BX ∶ |P(z)| > 1 − 𝛼} and satisfies 
that the inequality

holds for every x ∈ BX satisfying that |Q(x)| > 1 − 𝛼�.
Notice that an inductive argument allows us to replace y0 with any finite subset 

{y1,… , yn} ⊆ SX.
Indeed, define � ∶ X ⟶ X by �(z) ∶= P(z)y0 for every z ∈ X , which is a 

rank-one norm-one polynomial. Since X has the polynomial Daugavet property, 
it follows that 2 = ‖Id + �‖ = ‖Id∗ + �∗‖ , where �∗

∶ X∗
⟶ P(X) is defined by 

�∗
(y∗) ∶= y∗◦� (see [39] for background). So, taking 0 < 𝜀� < min{𝜀, 𝛼} > 0 , we 

can find y∗ ∈ SX∗ , such that

Next, define

Let us prove that Q and �′ satisfies the required properties, following a similar argu-
ment to that of [39, Theorem 2.2]. Pick x ∈ BX , such that |Q(x)| > 1 − 𝛼� . Then

from where it follows that |P(x)| > 1 − 𝜀� > 1 − 𝛼 . Moreover, such x also satisfies 
that

and so

‖e + 𝜆x‖ > (1 − 𝜀)
�‖e‖ + �𝜆��

‖‖‖‖y0 +
P(x)

|P(x)|x
‖‖‖‖ > 2 − 𝜀

‖y∗ + y∗◦𝜙‖ > 2 − 𝜀�.

Q ∶=
y∗ + y∗◦�

‖y∗ + y∗◦ �‖ and ��
∶= 1 −

2 − ��

‖y∗ + y∗◦�‖ .

2 − 𝜀� < |y∗(x) + P(x)y∗(y0)| ≤ 1 + |P(x)y∗(y0)| ≤ 1 + |P(x)|,

‖x + P(x)y0‖ ≥ �y∗(x) + P(x)y∗(y0)� > 2 − 𝜀�
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finishing the proof of the claim.
Now, if we take a �-net A of SF , for 𝛿 > 0 small enough, a standard argument (see 

the proofs of [39, Proposition 2.3] or of [34, Lemma  II.1.1]) provide a norm-one 
polynomial Q and �1 , such that (a) is satisfied and so that the inequality

holds for every x ∈ {z ∈ BX ∶ |Q(z)| > 1 − 𝛼1} and every y ∈ F . Being Y a sub-
space, by just rotating y, we actually have that

Using again that Y is a subspace, we routinely get the desired inequality in (b).   ◻

We are now ready to provide the pending proof.

Proof of Proposition 5.9 Fix x1,… , xn ∈ SX , x� ∈ BX , 𝜀 > 0 , 𝛼 > 0 , and P ∈ P(X) 
with ‖P‖ = 1 . By Theorem  4.2 we get that X has the polynomial Daugavet prop-
erty. Hence, by Lemma  5.10 there exists an element y ∈ BX and � ∈ �  with 
Re𝜔P(y) > 1 − 𝛼 and such that denoting E ∶= span {x1,… , xn} , we have that

holds for every e ∈ E and every � ∈ � . Define T ∶ E⊕ �y ⟶ X by the equation

Notice that

so ‖T‖ ≤ 1

1−�
 . Since X is an L1-predual, T can be extended to the whole of X (still 

denoted by T) with norm ‖T‖ ≤ 1+�

1−�
 (the real case follows from [33, Theorem 6.1] 

and the complex case from [23], see [32, p. 3]).
Since T(xi) = xi and T(y) = x� , it follows that y ∈ OF

(
x1,… , xn;y,

2�

1−�

)
 . This, 

the arbitrariness of 𝜀 > 0 and the fact that Re𝜔P(y) > 1 − 𝛼 , show that X has the 
polynomial WODP.   ◻

The second family that we would like to present is the one of vector-valued L1 
spaces.

Proposition 5.11 Let � be an atomless �-finite positive measure and let Y be a 
Banach space. Then, L1(�, Y) has the polynomial WODP.

‖‖‖‖y0 +
P(x)

|P(x)|x
‖‖‖‖ =

1

|P(x)|
‖‖x + P(x)y0

‖‖ > 2 − 𝜀� > 2 − 𝜀,

����y +
P(x)

�P(x)�x
���� > (1 − 𝜀)(‖y‖ + 1)

‖y + x‖ > (1 − 𝜀)(‖y‖ + 1).

‖e + 𝜆y‖ > (1 − 𝜀)(‖e‖ + �𝜆�)

T(e + �y) ∶= e + �x�.

‖T(e + �y)‖ = ‖e + �x�‖ ≤ ‖e‖ + ��� ≤ 1

1 − �
‖e + �y‖,



 M. Martín, A. Rueda Zoca    35  Page 26 of 32

Proof Fix x1,… , xn ∈ SL1(�,Y) , x� ∈ BL1(�,Y)
 , 𝜀 > 0 , 𝛼 > 0 , and P ∈ P(X) with 

‖P‖ = 1 . From the finiteness of {x1,… , xn} and the fact that � is atomless, we may 
find 𝛿 > 0 satisfying that

By the proof of [35, Theorem 3.3] there are g ∈ SL1(�,Y) and � ∈ �  satisfying

Write B ∶= supp(g) . As L
∞
(�, Y∗

) is norming for L1(�, Y) (because L1(�)∗ = L
∞
(�) 

and simple functions are dense in L1(�, Y) ), we can find h ∈ SL
∞
(�,Y∗)

 , such that

Using again the denseness of simple functions, and taking into account that 
∫
B
|xi| < 𝜀

2
 , we can find pairwise disjoint sets C1,… ,Ct ∈ Σ with positive and finite 

measure, all of them included in Ω⧵B , and aj
i
∈ Y  , i ∈ {1,… , n} , j ∈ {1,… , t} , such 

that x�
i
∶=

∑t

k=1
ak
i
�Ck

 satisfies

Define now T ∶ L1(�, Y) ⟶ L1(�, Y) by the equation

It is not difficult to see that ‖T‖ ≤ 1 and that T(x�
i
) = x�

i
 , so

In addition, since Ci ∩ B = � and supp(g) = B , we get

This concludes the proof.   ◻

Now, we are ready to establish the following result which, together with Prop-
ositions 5.9 and 5.11, provides the promised proof of Theorem 1.1.

Theorem 5.12 Let X be a Banach space with the polynomial WODP and let N ∈ ℕ . 
Then, �⊗𝜋,s,NX has the WODP and so, the Daugavet property.

We will need the following result which can be proved by induction with a 
similar argument to the one of Lemma 5.5.

A ∈ Σ, 𝜇(A) < 𝛿 ⟹ ∫A

‖xi‖ <
𝜀

2

𝜇(supp(g)) < 𝛿 and Re𝜔P(g) > 1 − 𝛼.

supp(h) ⊆ B and Re ⟨h, g⟩ = Re ∫B

⟨h(t), g(t)⟩ d𝜇(t) > 1 − 𝜀.

‖xi − x�
i
‖ <

𝜀

2
.

T(f ) ∶=

t�
k=1

�
1

�(Ck) ∫Ck

f d�

�
�Ck

+

�
∫B

⟨h(t), f (t)⟩ d�(t)
�
x�.

‖T(xi) − xi‖ ≤ ‖T(xi − x�
i
)‖ + ‖x�

i
− xi‖ < 𝜀.

‖T(g) − x�‖ ≤ ����1 − �B

⟨h(t), g(t)⟩ d𝜇(t)����‖x
�‖ <

√
2𝜀.
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Lemma 5.13 Let X be a Banach space with the polynomial WODP. Then, for all 
x1,… , xn ∈ SX , all 𝜀 > 0 , all polynomials P1,… ,Pk ∈ SP(X) and all x�

1
,… , x�

k
∈ BX 

we can find yj ∈ BX and �j ∈ �  for every 1 ≤ j ≤ k and an operator T ∶ X ⟶ X 
with ‖T‖ ≤ 1 + � satisfying that

and that

Throughout the rest of the section, given a Banach space X and a natural number 
N, we write

We divide the proof in two cases: First, when either 𝕂 = ℂ or 𝕂 = ℝ and N is odd 
(here B�⊗𝜋,s,NX

= conv (SN
X
) ); second, when 𝕂 = ℝ and N is even (here we only have 

B�⊗𝜋,s,NX
= aconv (SN

X
) ). Observe that the difference is whether we may find N-roots 

of every scalar or not.
Let us start with the first case.
Proof of Theorem 5.12 for either 𝕂 = ℂ or 𝕂 = ℝ and N odd.
Let Y ∶= �⊗𝜋,s,NX . Pick z1,… , zn ∈ BY , 𝜀 > 0 , z� ∈ BY and S ∶= S(BY ,P, �) , for a 

certain P ∈ SP(
NX) . By a density argument and since B�⊗𝜋,s,NX

= conv (SN
X
) , we can 

assume that

By Lemma  5.13 we can find yk ∈ BX with ReP(yk) > 1 − 𝛼 and T ∶ X ⟶ X 
with ‖T‖ ≤ 1 + � and such that ‖T(xij) − xij‖ < 𝜀 for every i,  j and such that 
‖T(yk) − x�

k
‖ < 𝜀 for every k ∈ {1,… , t} . Define z ∶=

∑t

k=1
�ky

N
k
∈ BY . First of all, 

notice that z ∈ S . Indeed

Now, define � ∶= TN
∶ Y ⟶ Y  by the equation

By [16, (6) in Proposition of page 10], we get that ‖𝜙‖ = ‖T‖N < (1 + 𝜀)N . Let us 
estimate ‖�(zi) − zi‖ . Indeed, given i ∈ {1,… , n} , we get

Re𝜔jP(yj) > 1 − 𝛼 and ‖T(yj) − x�
j
‖ < 𝜀 for every 1 ≤ j ≤ k,

‖T(xi) − xi‖ < 𝜀 for every1 ≤ i ≤ n.

SN
X
∶= {xN ∶ x ∈ SX} ⊆ �⊗𝜋,s,NX.

zi ∶=

ni∑
j=1

�ijx
N
ij
∈ conv (SN

X
) and z� =

t∑
k=1

�k(x
�

k
)
N
∈ conv (SN

X
).

ReP(z) =

t∑
k=1

𝜇k ReP(y
N
k
) =

t∑
k=1

𝜇k ReP(yk) > (1 − 𝛼)

t∑
k=1

𝜇k = 1 − 𝛼.

�(aN) ∶= T(a)N .

‖�(zi) − zi‖ =

������

ni�
j=1

�ij(T(xij)
N
− xN

ij
)

������
≤

ni�
j=1

�ij‖T(xij)N − xN
ij
‖
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and using the polarization constant (see [16, Subsection 2.3 in page 11]) in each of 
the summands, we get

Now, fix j ∈ {1,… , ni} . Then, in X �⊗𝜋X �⊗𝜋 ⋯
�⊗𝜋X , we get the following equality:

Therefore

Putting all together, we get

Similar estimates to the above ones prove also that

The arbitrariness of 𝜀 > 0 gives that Y has the WODP, as desired.   ◻

For the case of an even number N and 𝕂 = ℝ , the proof will be similar but a bit 
more delicate. Notice that, given a polynomial P ∈ SP(

NX) , it is not true, in con-
trast with the odd case, that sup

x∈SX

P(x) = 1 and inf
x∈SX

P(x) = −1 but we can only guar-

antee that one of those condition is met (in other words, the set SN
X

 is not balanced 
in �⊗𝜋,s,NX ). This induces a technical difficulty, because given a slice 
S = S(B�⊗𝜋,s,NX

,P, 𝛼) and given �xN ∈ S , for x ∈ BX and � ∈ {−1, 1} , we will not be 
able to determine the sign of � . This difficultly will be overcome by taking a 
smaller slice using the following technical result.

Lemma 5.14 Let X be a real Banach space and let N be an even number. Take 
P ∈ SP(

NX) and assume that supx∈SX P(x) = 1 . Then, for every 𝛼 > 0 there exists a 
polynomial Q ∈ BP(

NX) with the following properties: 

‖𝜙(zi) − zi‖ ≤ NN

N!

ni�
j=1

𝜆ij‖T(xij)N − xN
ij
‖X �⊗𝜋X �⊗𝜋…

�⊗𝜋X
.

T(xij)
N
− xN

ij
=

N∑
k=1

T(xij)
N−k+1xk−1

ij
− T(xij)

N−kxk
ij

=

N∑
k=1

T(xij)
N−k ⊗ (T(xij) − xij)⊗ xk

ij
.

���T(xij)
N
− xN

ij

��� ≤
N�
k=1

‖T(xij)‖N−k‖T(xi) − xi‖‖xij‖k <
N�
k=1

(1 + 𝜀)N−k𝜀

< 𝜀

N�
k=0

(1 + 𝜀)k = 𝜀
1 − (1 + 𝜀)N+1

−𝜀
= (1 + 𝜀)N+1 − 1.

‖�(zi) − zi‖ ≤ NN

N!

ni�
j=1

�ij((1 + �)N+1 − 1) =
NN

N!
((1 + �)N+1 − 1).

‖𝜙(z) − z�‖ <
NN

N!
((1 + 𝜀)N+1 − 1).



Daugavet property in projective symmetric tensor products… Page 29 of 32    35 

(1) ‖Q‖ > 1 −
𝛼

2
.

(2) If � ∈ {−1, 1} and y ∈ BX are so that 𝜉Q(y) > 1 −
𝛼

2
 then � = 1.

(3) If Q(y) > 1 −
𝛼

2
 for y ∈ BX then P(y) > 1 − 𝛼.

Note that if infx∈SX P(x) = −1 , an analogous statement holds making appropri-
ate change of sings and order in (2) and (3).

Proof Pick x0 ∈ SX , such that P(x0) > 1 − 𝛼 . Pick x∗ ∈ SX∗ , so that x∗(x0) = 1 and 
define Q ∶=

P+(x∗)N

2
 . Notice that Q ∈ BP(

NX) and that

which proves (1). Moreover, if � ∈ {−1, 1} and y ∈ BX satisfies that 𝜉Q(y) > 1 −
𝛼

2
 , 

then

It follows that 2 − 𝛼 < 1 + 𝜉x∗(y)N , so 𝜉x∗(y)N > 1 − 𝛼 . Since x∗(y)N > 1 − 𝛼 , 
because N is even, we get that � = 1 which proves (2). Finally, we get (3) by a simple 
convexity argument similar to the previously exposed.   ◻

Now, we are able to prove the remaining case.
Proof of Theorem 5.12 for 𝕂 = ℝ and N even.
Let Y ∶= �⊗𝜋,s,NX . Pick z1,… , zn ∈ BY , 𝜀 > 0 , z� ∈ BY and S ∶= S(BY ,P, �) , for 

a certain P ∈ SP(
NX) . By a density argument and since B�⊗𝜋,s,NX

= aconv (SN
X
) , for 

every i we can assume that zi ∶=
∑ni

j=1
�ijx

N
ij
∈ aconv (SN

X
) with 

∑ni
j=1

��ij� = 1 , and 
also that z� =

∑t

k=1
�k(x

�

k
)
N
∈ aconv (SN

X
) with 

∑t

k=1
��k� = 1 . Pick a polynomial 

Q ∈ BP(
NX) satisfying the thesis of Lemma 5.14 and notice that S(BY ,Q,

𝛼

2
) ⊆ S.

By Lemma 5.13 we can find yk ∈ BX with Q(yk) > 1 −
𝛼

2
 (and so yN

k
∈ S ) and 

T ∶ X ⟶ X with ‖T‖ ≤ 1 + � and such that ‖T(xij) − xij‖ < 𝜀 for every i,  j and 
such that

for every k ∈ {1,… , t} . Define z ∶=
∑t

k=1
��k�yNk ∈ BY . First of all, notice that 

z ∈ S . Indeed,

This implies that z ∈ S(BY ,Q,
𝛼

2
) ⊆ S . Now, define � ∶= TN

∶ Y ⟶ Y  by the 
equation

Q(x0) =
P(x0) + 1

2
>

2 − 𝛼

2
= 1 −

𝛼

2

1 −
𝛼

2
<

𝜉P(y) + 𝜉x∗(y)N

2
≤ 1 + 𝜉x∗(y)N

2
.

‖T( sign (𝜇k)yk) − x�
k
‖ = ‖T(yk) − sign (𝜇k)x

�

k
‖ < 𝜀

Q(z) =

t∑
k=1

|𝜇k|Q(yNk ) =
t∑

k=1

|𝜇k|Q(yk) > (1 −
𝛼

2
)

t∑
k=1

|𝜇k| = 1 −
𝛼

2
.

�(aN) ∶= T(a)N .
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Similar estimates to the ones of the proof of Theorem 5.12 for the case of N odd, 
proves that

Finally

Now, since 
∑t

k=1
��k� = 1 , ‖T( sign (𝜇k)yk) − (x�

k
)
N‖ < 𝜀 and from the estimates done 

in the proof of the case N odd of Theorem 5.12, we get again that

so we are done.   ◻
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‖𝜙(zi) − zi‖ <
NN

N!

�
(1 + 𝜀)N+1 − 1

�
.

‖‖�(z) − z�‖‖ =

‖‖‖‖‖

t∑
k=1

|�k|T(yk)N − �k(x
�

k
)
N
‖‖‖‖‖

=

‖‖‖‖‖

t∑
k=1

�k sign (�k)T(yk)
N
− �k(x

�

k
)
N
‖‖‖‖‖

=

‖‖‖‖‖

t∑
k=1

�k(T( sign (�k)yk)
N
− (x�

k
)
N
)

‖‖‖‖‖
≤

t∑
k=1

|�k|‖‖‖T( sign (�k)yk)
N
− (x�

k
)
N‖‖‖

‖𝜙(z) − z�‖ <
NN

N!
((1 + 𝜀)N+1 − 1),
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