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Abstract: In this work, an architecture for IoT networks oriented towards environmental sustainability
is presented. Due to the suitability of its characteristics in terms of coverage, power and support of
a large number of devices, an enhanced LoRaWAN network has been chosen as the basis for this
proposal. The architecture is completed with the virtualization of the different LoRaWAN network
entities and the usage of a software-defined network for their interconnection. The publication and
subscription to environmental data is carried out by using the MQTT protocol. MQTT has been
optimized thanks to the use of the SDN network and the use of edge computing resources, which
allows multicasting of published data. Thanks to our developed MQTT2MULTICAST protocol,
latency is improved by approx. 90% and the traffic load within the SDN network is reduced by 55%.
An scalability analysis shows that this solution is able to support tens of thousands of LoRaWAN
gateways. The proposed architecture has been implemented using commercial equipment as a proof
of concept.

Keywords: IoT; LPWAN; LoRaWAN; MQTT; SDN

1. Introduction

The objective of this work is the design of an IoT (Internet of Things) network archi-
tecture for the collection, processing and distribution of environmental information. The
proposed architecture is intended to be flexible and powerful enough to integrate, in the
future, the different solutions developed by the research group in this field.

The network is made up of several parts. On the one hand, a radio access network
based on an LPWAN (Low Power Wide Area Network) suitable for mass sensor commu-
nications. More specifically, a LoRaWAN (Long Range Wide Area Network) [1] network
has been chosen due to its adequate characteristics of low power consumption, high cover-
age, easy scalability, and its license free operation, which facilitates its development and
reduces costs.

On the other hand, a backbone network that will integrate the different entities nec-
essary for this type of networks and for the processing and distribution of data. Since a
LoRaWAN network is being used for the radio part, the backbone network will include the
required network and application servers. These types of servers usually utilizes the MQTT
(Message Queuing Telemetry Transport) [2] protocol to exchange information with both
internal and external entities. Many of these entities receive the same information, which
makes multicast suitable and more efficient for this type of networks. For this reason, as
will be explained in the following sections, we will introduced a multicast-based solution
that will reduce both MQTT generated traffic and its latency. An Artificial Intelligence (AI)
platform will also be included for data processing. All entities will be implemented as
Cloud-Native Network Functions (CNFs) to facilitate their orchestration, deployment and
execution in local clouds.
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A Software Defined Network (SDN) will be used for the communication between the
radio access network and the backbone network. SDN provides great flexibility and ease of
development to include, e.g., new protocols or optimizations over existing ones.

Main Contributions

The main contributions of this paper are enumerated as follows:

• This paper presents an IoT network architecture for the collection, processing and
distribution of environmental information.

• This architecture is based on LoRaWAN, with the addition of SDN and edge computing
paradigms. This allows us to improve the scalability and the innovation capabilities
of the proposed architecture.

• Based on the SDN network and the edge computing nodes, we propose an optimiza-
tion of the MQTT protocol, protocol used to publish/subscribe data. For that purpose,
MQTT proxies are deployed in edge nodes which multicast MQTT data to other edge
nodes. Our solution does not require any modification to end nodes.

• Since multicast requires using UDP (User Datagragram Protocol) instead of TCP
(Transport Control Protocol), which does not establish a connection, MQTT latency
within the SDN is reduced.

• Although another multicast routing strategies could be employed, in our proposal the
SDN controller creates source-based trees using the shortest paths, following an ap-
proach similar to PIM-SSM (Protocol Independent Multicast—Source Specific Mode).
This further reduces the MQTT latency compared to other non-optimal multicast rout-
ing based on, e.g., shared trees. An scalability analysis shows that the computation
time for multicast paths is reasonable for large networks (up to a few thousand of
edge nodes or, equivalently, tens of thousands of LoRaWAN networks).

• We have created a control protocol, MQTT2MULTICAST, which maps MQTT topics to
multicast IP addresses. MQTT2MULTICAST also includes the required signaling to
join/leave a multicast group (i.e., an MQTT topic), thus removing the need for IGMP
or similar protocols. This further reduces the traffic within the SDN network.

• A prototype has been developed as Proof of Concept. Our prototype includes real
LoRaWAN equipment connected to an SDN network based on Mininet and the RYU
SDN controller. Different LoRaWAN nodes send data through the SDN network
over MQTT, received by an MQTT subscriber connected to an edge node, and finally
visualized using Grafana.

• Our testbed environment is released as an open-source project [3], allowing for repro-
ducible research.

This article is organized into the following sections. The current section introduces the
objectives of the work and its context. Section 2 conducts a review of the State of the Art.
Section 3 gives an overview of LoRaWAN. Section 4 describes the design of the IoT network
architecture, whereas the MQTT enhancements are explained in Section 5. Section 6 shows
our network prototype, carried out as a proof of concept. Finally, Section 7 presents the
performance evaluation results, concluding the article in Section 8.

2. State of the Art

In this section we will first present a brief summary of the different possibilities to
deploy a LoRaWAN network. Other aspects such as platforms for IoT, more focused on
data storage, distribution, processing and visualization (such as Google Cloud Platform,
IBM Watson IoT, Amazon AWS IoT Core, Microsoft Azure, among others) are outside the
scope of this work.

An example of a large LoRaWAN network architecture is The Things Networks (TTN),
an open, collaborative network with more than 20,000 gateways around the world. Its
architecture [4] is made up of bridges that interact with gateways, connected to routers that
route to the corresponding brokers (depending on the geographical location). These interact
with network servers and handlers that manage communication with application servers.
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There is no detailed information about the real elements composing the architecture or
their organization.

Regarding LoRaWAN platforms, it is worth highlighting Chirpstack [5], a free and
open source platform that allows to deploy private networks, and LORIOT [6], free for
small networks (up to 30 nodes) but without the possibility of setting up private networks.
Chirpstack provides the different entities (LoRaWAN network and application servers, and
a Gateway Bridge) so it is up to the developer which network topology to use or other
deployment details. LORIOT includes 13 free community network servers, a professional
LoRaWAN network server with a 99.9% SLA, built-in redundancy and new accessible
features to manage and scale a secure LoRaWAN network, and a carrier-grade private
LoRaWAN network server solution for production services at any scale. Apart from this,
no further details about their architecture are given.

It shall be noticed that, since the Chirpstack platform freely provides all the entities
required to deploy a private network, we will use Chirpstack for our deployment.

Additionally, since this work will enhance MQTT in our platform, we also include
here some relevant works found in the literature that optimize the MQTT protocol for
IoT deployments.

One of the most relevant modifications of the MQTT protocol for IoT is MQTT-SN
(MQTT for Sensor Networks) [7]. MQTT-SN is designed for wireless networks, with low
power battery operated sensors with very limited processing power and storage, with
a limited payload size and not always connected (i.e., sleeping). With this objective in
mind, it uses UDP as transport protocol and topic identifiers instead of topic names. The
architecture also changes with respect to MQTT, with MQTT-SN clients, gateways and
forwarders. The gateways act as MQTT-SN brokers and also translate to MQTT to forward
messages to MQTT brokers (aggregating clients or not). The forwarders just retransmit
MQTT-SN packets from clients to gateways. MQTT-SN utilizes multicast for discovery, but
data is sent using unicast. The main differences with our solution is that nodes do not use
standard MQTT and that messages are not multicasted.

Another work, MQTT-ST (MQTT Spanning Tree), focuses on the communication
between distributed MQTT brokers. Its main objective is to avoid potentially harmful
message loops between brokers. After an initial phase, at runtime, the MQTT-SN brokers
work exactly as MQTT brokers. Although this optimization may be very useful, it does not
contemplate multicasting or any other feature to reduce latency or traffic generation.

Direct Multicast-MQTT (DM-MQTT) [8] follows a similar approach to our solution,
since it multicasts MQTT messages within an SDN network. However, for QoS (Quality
of Service) level 0, multicast is performed directly between publishers and subscribers
without brokers. This may create scalability issues in the SDN controller if we have a large
number of MQTT clients. In addition, they use a CBT (core-based tree) with a rendezvous
point, which may not be optimal from a delay point of view. Although a CBT is more
scalable than an SBT (source-based tree, which uses the shortest paths), our proposal
aggregates a large number of MQTT clients in a few number of MQTT proxies, so using
a source-based tree does not represent a scalability problem and additionally optimizes
delay. Furthermore, the authors do not explain how a TCP-based protocol such as MQTT
can be sent using multicast. In our work, MQTT proxies forward MQTT messages over
UDP, which allows multicasting. The mapping between MQTT topics and multicast IP
addresses is done thanks to a new MQTT2MULTICAST protocol. We also propose an
aggregation scheme for MQTT topics used by LoRaWAN in order to reduce the number of
multicast groups. Another difference is that DM-MQTT requires a hierarchical structure
for the MQTT brokers, with one master broker located on the SDN controller (although
logically separated). In our solution, all MQTT proxies are equal which also reduces the
possibility of bottlenecks.

Finally, MQTT multicast [9] is used to allow a single publisher to reach a broad
audience of subscribers without the intervention of an MQTT broker. This software is
intended for GNUnet [10], a free software for decentrilized P2P (Peer-to-Peer) networks. In
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MQTT multicast, a publisher creates a GNUnet-MULTICAST channel for each topic to start
a group. The main differences with our solution is that (1) it requires a P2P network, (2)
the multicasting is done by the publishers, i.e., messages and topics are not aggregated by
brokers or proxies, and (3) it is not compatible with already existing MQTT clients.

3. Technical Overview of LoRaWAN

LoRaWAN is an open standard which specifies the network architecture and the
communication protocol to connect between each entity of the network. The design of the
network architecture and the relates protocols are determined by the network capacity,
the battery lifetime of the nodes, the security, and the applications that can run over the
network [11]. To illustrate a typical LoRaWAN network, Figure 1 shows a star-of-stars
topology where one or more gateways (concentrators) relay download and upload traffic
among end-nodes (mobile or fixed in a location) and a central network server respectively.
The network server steers the traffic between each end-device and the associated application
server. The communications are bi-directional. Communications between gateways and
end-devices are a single-hop LoRa (the physical layer of a LoRaWAN network) or FSK
(Frequency Shift Keying) connections. Communcations between gateways and the network
servers use standard IP.

Figure 1. LoRaWAN network architecture.

LoRa is a chirp spread spectrum based modulation developed by Cycleo in 2009 and
acquired by Semtech in 2012. LoRa modulation complexity is low thanks to the equivalent
offsets in timing and frequency between the transmitter and the receiver. The data signal is
modulated onto a chirp signal that changes its frequency with time. The chirp rate defines
the spectral bandwidth (BW) of a LoRa signal. For instance, a spectral BW of 125 kHz
corresponds to a chip rate of 125,000 chips/sec. The data rate can change depending on the
employed spreading factor (SF), if we assume a fixed BW. The number of raw bits carried
per symbol is expressed as SF, and varies between 7 and 12. LoRa modulation includes
a FEC (Forward Error Correction) scheme which adds redudancy in the code to find and
correct erroneous bits. This improves the robustness of the transmitted signal [12]. CR is
the Code Rate and its values can vary between 1 and 4.

The data rate Rb is calculated as follows:

Rb = SF ×
(

BW
2SF

)
×

(
4

4 + CR

)
(1)

where SF is the spreading factor, the second term corresponds to Rs or symbol rate (sym-
bols/sec) and the third term depends on the coding rate (CR). Thus, assuming fixed BW
and coding rate, the data rate decreases as the SF increases.

Table 1 presents a data rate (DR) configuration assuming a 125 kHz bandwidth and
the default LoRaWAN Code Rate (4/5). The bit rate increases and the ToA (Time on Air)
decreases as the SF is decremented.
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Table 1. Data Rate configuration for a 125 kHz bandwidth in the EU868 ISM band.

Data Rate Spreading Factor Bit Rate (bps) ToA for a 24B Packet (ms)

0 12 293 1482.75
1 11 540 823.30
2 10 980 411.65
3 9 1757 205.82
4 8 3125 113.15
5 7 5470 61.70

The communication between end-nodes and gateways uses different spreading factors
and channels. In every transmission, the end-device selects the transmission channel
in a pseudo-random way. The SF (or DR) is selected considering the message duration
and communication range by using an Adaptive Data Rate (ADR) scheme [1]. In each
transmission, the DR is selected considering the link budget (the higher the link budget,
the faster DR or SF selected). Parallel transmissions in the same channel but in different
SFs will not collide due to the orthogonality of the SFs. This can be used to improve the
network capacity.

Three classes of LoRaWAN end-devices are considered in the LoRaWAN standard
(classes A, B and C), depicted in Figure 2. Class A is mandatory and the most employed,
typical for battery-operated sensors. In Class A devices, two receiving windows are opened
after an uplink transmission in order to receive a downlink transmission. Class B devices
are typically battery-operated actuators. These devices behave similar, but use extra receive
windows scheduled by beacon frames. Class C devices are typically mains powered. They
are continuously listening except when transmitting.

Figure 2. LoRaWAN device classes.
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Regarding frequency spectrum usage, LoRaWAN uses license-free sub-gigahertz radio
frequency bands like 433 MHz, 868 MHz, and 915 MHz depending on the country. In
Europe, LoRaWAN networks operates in the EU863-870 ISM band which allows up to eight
channels with a 125 kHz bandwidth each, being three of them mandatory (868.1, 868.3,
and 868.5 MHz). In order to respect the different regulations for these frequency bands,
LoRaWAN devices are limited to a duty-cycle, being 1% in Europe due to ETSI (European
Telecommunications Standards Institute) regulations.

4. SDN-Based IoT Network Architecture Design

Figure 3 shows the proposed architecture, which consists of an SDN network con-
necting edge nodes. These nodes will implement MQTT proxy functionality and/or AI
processing. These edge nodes will connect with a node or cluster that will implement
the different entities of a LoRaWAN network, that is, the network server, the application
server and a bridge that allows the connection between the network server and the gate-
way, as well as the necessary databases. The gateway allows the radio connection with
the LoRaWAN nodes, which will be the sensors and actuators that send environmental
information. A typical LoRaWAN network would also include an MQTT broker, which in
this case is replaced by the MQTT proxy.

Figure 3. Proposal for an IoT network architecture for the collection, processing and use of environ-
mental variables.
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These proxies forward MQTT messages using UDP between them, which reduces
the required Round-Trip Times (RTTs)—and thus latency—and allows the multicasting
of these messages, thus reducing the amount of traffic within the SDN network. These
enhancements are explained in Section 5.

In order to reduce the number of MQTT topics between proxies, which will be mapped
to multicast IP addresses (see Section 5.3), we propose to follow the TTN approach with
“application/[ApplicationID]/device/[DevEUI]/[EventType]” as topic. By aggregat-
ing them based on their ApplicationID, all the MQTT messages corresponding to the same
application will be mapped to the same multicast IP address.

Finally, we propose that the SDN network follows a tree topology, which will (1) allows
to have hierarchical levels (e.g., local, regional and national), and (2) will simplify the
routing for multicast (which are based on trees).

5. MQTT Enhancements in the SDN Segment

This section explains the MQTT enhancements that have been accomplished thanks to
the use of the SDN network and the MQTT proxies in our architecture. These improvements
are based on the usage of UDP for MQTT and the utilization of multicast for the publication
of the messages.

5.1. MQTT

In order to have a better understanding of the MQTT protocol, Figure 4 depicts the
messages exchanged between the publisher and the subscriber through the MQTT broker.
All these messages are transmitted over TCP (port 1883 by default, or port 8883 for secure
MQTT, i.e., over TLS).

First, both the publisher and the subscriber send a connection request to the broker.
Additionally, the subscriber sends a subscription request for a specific topic. MQTT has
3 Quality of Service (QoS) levels. When the publisher publish some data with an MQTT
Publish message, there may be different messages interchanges between the MQTT entities,
depending on the QoS that it uses. As Figure 4 illustrates, in the lowest QoS level 0, the
sender (publisher or broker) sends the message and no longer cares whether it has been
received by the other party or not. With QoS 1, the message is guaranteed to be received at
least once. For that purpose, it employs the Publish Acknowledgment message. Finally,
QoS 2 implies that the message is published exactly once. For that purpose, it employs the
Publish Received, Publish Release, and Publish Complete messages. Finally, the publisher
disconnects. The subscriber may continue with the MQTT connection, so it can receive new
Publish messages from other publishers, or it may opt for also finishing the connection.

5.2. MQTT Proxies

As described in Section 4, we introduced MQTT proxies in the edge nodes of the SDN
network in our architecture. MQTT proxies reduce the amount of MQTT traffic within the
SDN network and its latency.

For this, MQTT proxies act as MQTT brokers with respect to the clients directly
connected, implementing the same security mechanisms, e.g., using MQTT over TLS/SSL.
In this architecture, several entities of the LoRaWAN network will use the proxies to replace
the broker: the gateway bridge, the network server and the application server. In addition,
the data published through MQTT can be queried by external entities (“external agent”
in Figure 3). To do this, these MQTT subscribers will in turn connect to another MQTT
proxy that will act as their broker and exchange the necessary information with the other
proxy using UDP. The advantage of using UDP is that latency is reduced (several Round-
Trip Times (RTT) in case of using TCP) and it will allow us to multicast the messages.
Furthermore, although it has not been included in our proof of concept, the solution
given in [13] can be used to guarantee the reliability of UDP over SDN. Moreover, MQTT
over UDP may utilize DTLS (Datagram Transport Layer Security) in order to secure the
communications, as done for MQTT-SN [14].
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Figure 4. MQTT messages between publisher and subscriber through the broker.

Specifically, the proxies will forward subscription messages (Subscribe)—when a new
topic appears that did not have previous subscribers in that proxy; publication (Publish)—
for all messages published in topics that have a subscriber in the destination proxy; and
Disconnect—when the last subscriber to that topic in that proxy is disconnected. In this way,
the proxies will have the necessary information to forward the messages of active topics.

Additionally, they will employ our MQTT2MULTICAST protocol (see Section 5.3), which
allows the proxies to map the MQTT topics to their corresponding multicast IP addresses.

5.3. MQTT2MULTICAST Protocol

We have developed MQTT2MULTICAST with two objectives. Its main purpose is
to provide a mapping between MQTT topics and the IP address of the multicast group.
Furthermore, taking advantage of these messages, MQTT2MULTICAST also allows adding
or removing members to the group. In that sense, it eliminates the need of IGMP and thus
it further reduces the amount of traffic on the network.

MQTT2MULTICAST is composed of two different messages, MQTT2MULTICAST
Request and MQTT2MULTICAST Reply, which are exchanged between the MQTT proxies
and the MQTT2MULTICAST server (implemented as an application at the SDN controller),
see Figure 5.
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Figure 5. MQTT2MULTICAST message exchange.

Request are sent by MQTT proxies in order to ask for the multicast IP address assigned
to a specific MQTT topic. The message contains four different fields: a transaction ID
(2 bytes, used to match request and reply messsages), flags (1 byte, which indicates the
reason for the request), topic size (2 bytes) and topic (MQTT topic whose size is determined
by the topic size field).

The first bit (subscribe/publish) of the flags field is set to 0 if the reason for the Request
message is that an MQTT publisher is sending an MQTT Publish message through the
proxy, or 1 if there is an MQTT subscriber sending an MQTT Subscribe message for a new
topic. The MQTT proxy will not send Requests for new subscribers to topics that have been
already announced from the MQTT proxy to the MQTT2MULTICAST server. The second
bit (unsubscribe) of the flags field is set to 1 if the last subscriber to a specific topic is sending
an MQTT Unsubscribe message to the MQTT proxy.

The response to the previous MQTT2MULTICAST Request is an MQTT2MULTICAST
Reply, which contains a transaction ID (which shall match the value from the corresponding
request), flags (set to 0, for future use) and the multicast IP address (assigned to the MQTT
topic included in the request).

These messages allow us to achieve the following functionalities:

• The first time an MQTT publisher or subscriber sends an MQTT message about a new
topic, the MQTT2MULTICAST server assigns the next available multicast IP address
from its addresses pool for that topic. This mapping is saved onto an internal database,
and will be used for all future messages related to that topic.

• During the previous mapping, the SDN controller will also save the publishers
(sources) and subscribers (destinations) for that topic. With this data and the net-
work topology information (obtained from LLDP and ARP messages), it will generate
the required multicast routing trees. Since MQTT proxies aggregate MQTT messages
from a large amount of publishers and subscribers, we have opted for source-based
trees (SBT), in order to optimize the delay between MQTT proxies. These trees are
then transferred to the SDN switches by using one flow entry that redirects to a group
table entry. This group table entry with type ALL in which the buckets represent the
switch ports belonging to the tree, i.e., which shall forward the multicast message.

• When new devices subscribe to a topic that have been already processed by the MQTT
proxy (i.e., there are already subscribers for that topic connected to that proxy), there
is no need to send an MQTT2MULTICAST request to the SDN controller, since the
MQTT proxy is already included in the corresponding multicast trees.

• When the last subscriber for a given topic unsubscribes, the MQTT proxy shall inform
the SDN controller in order to be removed from the corresponding multicast trees.

Figure 6 depicts the aforementioned behavior.
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Figure 6. MQTT2MULTICAST flowchart from the MQTT proxy point of view.

5.4. Global Operation

Figure 7 includes the messages exchanged between the different entities (MQTT,
MQTT2MULTICAST and MQTT over UDP (multicasting)), providing a global overview of
how all the elements in our architecture interact.

Figure 7. Message exchange between the different entities in the proposed LoRaWAN network architec-
ture.
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6. Proof of Concept

As proof of concept, an SDN network has been implemented using Mininet [15] which
will create a tree topology with the required number of levels with their corresponding
fanouts. For initial testing, we employed a tree topology with 3 switches, i.e., a root switch
(s1) and two leaf switches (s2 and s3), which connect 4 edge nodes (h1 and h2 connected to
s2, and h3 and h4 connected to s3), see Figure 8.

Figure 8. Simple tree topology for the SDN network for initial testing.

Nodes h1 and h4 run MQTT proxies that have been programmed using Scapy [16].
Our implementation supports MQTT QoS 0, although it can be easily extended to support
QoS levels 1 and 2. One of the nodes (tipically h1) uses a real network interface of the PC it
is running on, allowing it to connect directly to the LoRaWAN backbone. In this case, for
simplicity, we choose to use containers, orchestrated using Kubernetes [17], which execute
the different entities of the Chirpstack platform (gateway bridge, network and application
servers) in the LoRaWAN gateway itself, as done in [18]. This gateway is a Pygate from
Pycom [19]. FiPy [20] nodes are available with PySense expansion boards, in addition to
other LoRaWAN nodes such as TTGO T-Hygrow [21] with its LoRa extension module.
RYU [22] has been selected as the SDN controller, which supports OpenFlow v1.3 [23]. We
implement the MQTT2MULTICAST server and the multicast routing algorithm (based
on the shortest path) on top of RYU. The data sent by MQTT are stored in an InfluxDB
database [24] by a Python script. These data are finally visualized using Grafana [25].
Figure 9 shows our prototype.

Figure 9. Proof of concept implementation.
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As a demonstration of its operation, Figure 10 shows the traces of all the devices when
h2 connects to h1 as a subscriber (using the mosquitto_sub command) and h4 sends a mes-
sage “message1” as publisher to the topic “topic1” (using the mosquitto_pub command).
As shown in the Wireshark trace, taken at h1, h1 responds to h2’s subscription request
behaving as a broker would, with the MQTT messages Connect, ConnAck, Subscribe and
SubAck. Additionally, h1 asks to the MQTT2MULTICAST server (implemented in the
SDN controller, with IP address 192.168.1.100) for a multicast IP address associated to the
topic using an MQTT2MULTICAST Request (UDP port 11,883 in Wireshark). In response,
h1 receives an MQTT2MULTICAST Reply assigning the multicast IP address 225.0.0.0.
Finally, we can observe the last UDP packet at port 1883 sent to the address 225.0.0.0, which
is the MQTT Publish message being forwarded using multicast, in this example, to the
MQTT proxy at h4. Finally, h4 forwards the MQTT Publish message to h3, which receives
it correctly, as shown in the corresponding console.

Figure 10. Operation of MQTT proxies on edge switches.

Figure 11 shows part of the data displayed in Grafana in our prototype. In this example,
a LoRaWAN device with several sensors measures temperature, humidity and light. The
device sends the data via LoRaWAN to a gateway, which is connected to the corresponding
LoRaWAN network and application servers. The application server is connected to one
of our MQTT proxies, which sends the information over MQTT to other proxies but also
to our Grafana platform. As it can be seen, as an example, instantaneous temperature,
humidity and light values and graphs with the values of the last day are shown. In the
implemented dashboards, graphs of the last hour and with the minimum, average and
maximum values of these metrics are also displayed for the last day per hour, and for the
last week and last month per day.
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Figure 11. Example of visualization of environmental variables.

7. Results

We have conducted three experiments to evaluate the performance of our solution.
In particular, we compare (1) the delay between one data publication and its reception
by a subscriber using MQTT and MQTT over multicast, (2) the amount of traffic in the
SDN network also for both MQTT and MQTT over multicast, and (3) the amount of
signaling traffic for a typical multicast routing protocol (PIM-SSM, Protocol Independent
Multicast—Source Specific Mode) and MQTT2MULTICAST.

First we tested the MQTT latency reduction due to the usage of MQTT over UDP/
multicast in the SDN network instead of MQTT over TCP. Using MQTT over TCP, a publi-
cation requires 12 messages (TCP connection establishment, Connect/ConnAck, Publish,
Disconnect, connection termination, and TCP ACKs). Using our solution, only the Publish
message would traverse the SDN network. This reduction in messages implies a lower
latency (from data publication until reception), being a more noticeable effect for high RTT
values, as shown in Figure 12. In order to achieve a fair comparison, in this experiment the
broker is a modification of our proxy implemented with Python/Scapy. For this experiment,
we capture packet traces using tshark [26] at the publisher and the subscribers, so we can
obtain the time between the publication and its reception by post-processing these traces.
On average, the latency is reduced by approx. 90% (between 84% for RTT = 10 ms and 95%
for RTT = 250 ms).

Figure 12. Delay between sending MQTT Publish messages (publisher) and their reception (subscriber).

Next, we describe the reduction of packets transmitted over the SDN network when
using multicast instead of unicast for the proposed tree topology. In the case of unicast,
e.g., when using normal MQTT brokers which transmit over TCP, the number of packets is
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depicted in Figure 13. We assume that one of the brokers connected to a leaf switch will
be sending one packet (e.g., an MQTT Publish message) to the brokers connected to the
remaining leaf switches, i.e., a total of F1 × F2 − 1, where F2 is the fanout in the last level and
F1 is the fanout in the first level (F1 × F2 is the number of leaf switches). Its corresponding
leaf switch will forward these messages to its parent switch. The parent of that leaf switch
will receive the packets and will (1) send one packet to its remaining F2 − 1 child switches
and (2) forward F1 × F2 − F2 = (F1 − 1) × F2 messages for the rest of the leaf switches,
messages which are sent to the root switch. The root switch will forward these messages to
its child switches, except to the parent of the source leaf switch. The number of messages in
this case is F2 to each switch, i.e., a total of F2 × (F1 − 1) messages, matching the number of
packets received by the root switch. Each of the switches in the first level (except the switch
corresponding to the source) will then forward one message to each leaf switch, i.e., a total
of (F1 − 1)× F2 messages. Finally, each of these (F1 − 1)× F2 leaf switches will forward one
message to their corresponding brokers, i.e., (F1 − 1)× F2 messages. All these messages
total 6F1F2 − 3F2 − 1. If we consider the TCP ACK messages in the opposite direction, the
number of packets would double.

Figure 13. Packets retransmitted within the SDN network due to one incoming packet using unicast,
e.g., with typical MQTT brokers.

In the case of multicast, e.g., when using our MQTT proxies which transmit using
multicast over UDP, the number of messages is depicted in Figure 14. In this case, the source
will send only one message, which is forwarded by its leaf switch to its parent switch. This
switch will forward one message to the remaining child switches, i.e., F2 − 1, which are
in turn forwarded to their respective proxies, and one message to the root tree. The root
tree will forward the message to the remaining F1 − 1 switches in the first level, which will
then transmit the message to their respective F2 leaf switches. These leaf switches will also
forward the message to their respective proxies. All these messages total 2F1F2 + F1. There
are no ACKs in this scheme.

As an illustrative example, let us consider some numbers from The Things Network [4].
Currently, TTN is composed of 20.6K LoRaWAN gateways in 547 communities (coinciding
with cities) across 151 countries, with a total of 44.3M messages/day. This means that, on
average, 1 message is sent every 40.2 s per gateway. The top 5 largest communities own
between 218 and 167 gateways. Thus, we can assume that a large city could deploy around
200 gateways.



Electronics 2022, 11, 872 15 of 19

Figure 14. Packets retransmitted within the SDN network due to one incoming packet using multicast,
e.g., with our MQTT proxies.

Let us further consider that the LoRaWAN servers and the MQTT proxies are deployed
as containers in the edge nodes. For load balancing and redundancy purposes, we should
deploy at least two LoRaWAN servers (with their corresponding MQTT proxies) per city,
i.e., one every 100 gateways. In the case of a large region such as Andalusia, with 8
provinces, we could employ an SDN network with a tree topology with fanouts F2 = 2 and
F1 = 8.

With these numbers, one MQTT message (e.g., when a node sends one LoRaWAN
frame) will generate 89 messages (6 × 8 × 2 − 3 × 2 − 1 = 89) within the SDN network
(plus their corresponding TCP ACKs) if normal MQTT brokers are employed. If we employ
our MQTT proxies with MQTT2MULTICAST, only 40 messages (2 × 8 × 2 + 8 = 40) are
required (without TCP ACKs).

Since we are considering in this example 8 cities with 200 gateways per city, assuming
1 message every 40 s (as in TTN), Figure 15 shows the evolution of the number of packets
within the SDN network. The reduction in the number of packets is 55% if we only consider
data packets, and 77.5% if we also take into account TCP ACKs.

Figure 15. Example of packets retransmitted within the SDN network.

We also tested the reduction of signalling traffic comparing our MQTT2MULTICAST
scheme to PIM-SSM, a typical source-based multicast routing protocol. Using PIM-SSM, the
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nodes and the edge routers require to also send IGMP packets to join multicast groups. This
is not required using MQTT2MULTICAST, because MQTT2MULTICAST already supports
the mapping between publishers, subscribers, their topics, and their corresponding multi-
cast addresses. In this experiment, we again used tshark in all the routers/switches and
obtained the number of packets for each protocol by using the appropriate packet filters.

Since MQTT proxies aggregate many subscribers, we assume that most likely there
is at least one subscriber for a specific topic (a specific ApplicationID in our LoRaWAN
network, which aggregates several MQTT topics, as discussed in Section 4). This means
that, using MQTT2MULTICAST, only the initial MQTT2MULTICAST requests and replies
are required. Assuming the previous scenario (F1 = 8, F2 = 2) and one topic (i.e., one
ApplicationID mapped to one multicast IP address), the number of messages is very low
(only 32 packets). However, the number of messages for joining/maintaining IGMP groups
and the PIM-SSM messages to create the multicast routing trees are much higher. We create
specific experiments using our network prototype (based on Mininet and RYU) with both
solutions (PIM-SSM and MQTT2MULTICAST). Figure 16 compares both situations, being
near 15,000 messages after 5 min in the second case. Thus, our solution highly decreases
the required signaling for multicast routing.

Figure 16. Comparison of traffic due to multicast routing between PIM & IGMP and
MQTT2MULTICAST.

Finally, we have also tested the scalability of using multicast in our architecture.
Since the number of switches in the Mininet is limited by the computational cost of their
emulation, we have chosen to calculate the time to generate the multicast routes using
graphs instead. For this, the NetworkX [27] library has been used, following the same
approach implemented in our testbed.

The tree topology consists of a root node and two levels, similar to those in
Figures 13 and 14. For simplicity, we assume that the fanouts of each level are equal.
We also assume the worst case scenario, in which all leaf nodes subscribe to all other nodes.
Multicast trees have been calculated using a virtual machine with 1 core and 8 GB of RAM
in VirtualBox. Ten repetitions have been performed for each number of edge nodes in order
to improve the reliability of the results. Figure 17 shows the time required to compute all
the possible paths between edge nodes.



Electronics 2022, 11, 872 17 of 19

Figure 17. Total number of paths and Time to generate all possible multicast paths.

As shown, the total number of possible paths increases exponentially with the number
of edge nodes. The behaviour is also similar for the time to compute those paths. This
time is lower than four minutes for up to 2500 nodes, being lower than 30 s for 1000 nodes.
These values are tolerable for large networks, especially considering that (1) this is the
worst case scenario (all possible paths are created), (2) the executing machine may have
better performance than the one used in our experiments (e.g., more CPU cores, possibly
using parallel execution of the shortest path algorithm), (3) the shortest path algorithm may
be optimized for our tree topology and (4) in a real network, all the paths are not required
to be computed simultaneously but progressively, based on publishers and subscribers’
behaviour. These calculations are performed by an application at the SDN controller. Thus,
the SDN controller will be able to accommodate large networks (up to a few thousands of
edge nodes) without scalability problems.

Finally, since each edge node can manage tens of LoRaWAN gateways, our architecture
will be able to support tens of thousands of them.

8. Conclusions

In this article, we present the design of an IoT network architecture oriented to the col-
lection, processing and visualization of environmental variables. This network is composed
of a radio access network and a core network. The RAN is based on LoRaWAN due to its
characteristics of low power consumption, high converage, easy scalability and license free
operation, which makes it adequate for massive IoT communications. The core network
is based on Software Defined Networking, which provides great flexibility and easy of
development. This SDN network provides connectivity between the LoRaWAN networks
and other entities required for data distribution, processing and visualization. Most of
these functionalities are expected to be deployed in remote clouds or edge resources.

One of the most relevant protocols for data distribution in IoT applications is MQTT,
which is based on the publish/subscribe paradigm. Leveraging SDN for enhancing MQTT,
we propose MQTT2MULTICAST. Our solution employs MQTT brokers at the edge nodes,
which act as MQTT brokers to local clients and multicast MQTT publications (using UDP
instead of TCP) to other proxies that have subscribers for the specific topic. For that
purpose, MQTT proxies utilize the MQTT2MULTICAST protocol to ask a server for a
mapping between MQTT topics and their corresponding multicast IP addresses. The
MQTT2MULTICAST server is implemented as an SDN controller application, which creates
the required multicast routing trees within the SDN. These multicast routing trees are
source-based, so the shortest paths between the publishers and the proxies are created by
enforcing flow and group entries in the required SDN switches. Once the routing trees are
created, the MQTT proxies can start multicasting the Publish messages.

We implemented this network architecture using Mininet for the SDN network, RYU
as the SDN controller, and implementing (1) the MQTT proxies in Python with the Scapy
library, (2) the MQTT2MULTICAST server as a RYU application, and (3) source-based
multicast routing also as part of the RYU application. We tested its proper behaviour
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using real applications (mosquitto_sub and mosquitto_pub) and also by implementing a
proof of concept with real equipment, i.e., a LoRaWAN network with nodes, gateways,
LoRaWAN servers (using the Chirpstack platform) and data visualization (using InfluxDB
and Grafana). We released our testbed environment as an open-source project [3], allowing
for reproducible research.

Finally, we conducted experiments to assess the performance of our prototype. We
improved the publication delay approx. by 90% by eliminating non-required signaling and
their corresponding round-trip times. In the scenario under evaluation (a tree topology
with 16 edge nodes), we reduced the number of packets within the SDN network by
55% (or 77.5% if we consider TCP ACKs) and we almost eliminated the signaling related
to multicast routing (compared to other multicast routing protocols such as PIM-SSM).
Moreover, we conducted experiments to analyze the scalability of our proposal, showing
that the architecture is able to accommodate tens of thousands of LoRaWAN gateways.
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