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The first part of our paper presents a general survey on the modeling, analytic problems,
and applications of the dynamics of human crowds, where the specific features of living
systems are taken into account in the modeling approach. This critical analysis leads to
the second part which is devoted to research perspectives on modeling, analytic problems,
multiscale topics which are followed by hints towards possible achievements. Perspectives
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include the modeling of social dynamics, multiscale problems and a detailed study of
the link between crowds and swarms modeling.

Keywords: Crowd dynamics; living systems; complexity; multiscale problems; social
dynamics; swarm dynamics.

AMS Subject Classification 2020: 82D99, 91D10

1. Plan of the Paper

The complex dynamical behavior of human crowds has fascinated researchers from

various scientific fields for decades. Academic studies started with empirical obser-

vations and continued with the development of models in the field of applied physics

and mathematics. Modeling, qualitative analysis, and computations of human crowd

dynamics have captured a wide interest in recent years, due to their challeng-

ing nature and the potential benefits that the study of these systems can bring

to our society. For instance, mathematical models can serve as decision-making

tools for crisis managers to support safe evacuation in the presence of fires or con-

trasts between antagonist groups. Interesting recent developments motivated by the

COVID-19 pandemic are in the direction of understanding the complex interactions

between crowd congestions and contagion by virus spreading.

Challenging analytic and computational problems arise from the application of

models to study real flow conditions within the general framework of the study of

systems of many living, self-propelled entities undergoing nonlinearly additive and

nonlocal interactions. This explains the growing interest in this field observed over

the last few years. Some applications have generated new analytical and computa-

tional tools.

Individual behaviors significantly affect interactions, and, hence, play an impor-

tant role on the emerging collective dynamics. This means that the modeling

approach cannot be based on a straightforward application of methods of classical

mechanics because the dynamics of a crowd does not simply rely on deterministic

causality principles. For a realistic representation of crowd dynamics, the heteroge-

neous behavior of individual entities and the related modeling of complex interac-

tions should be taken into account. In addition, one specific feature of all living sys-

tems must be accounted for: the ability to develop a self-organizing intelligence, i.e.

a collective learning ability31–33 that progressively modifies the rules of the interac-

tions. Hence, collective behaviors cannot be simply related to those of a few entities.

As it is known,7 the modeling approach can be developed at the three usual

scales, namely microscopic (individual based), macroscopic (hydrodynamic), and

mesoscopic (kinetic). The latter is intermediate between the small and the large

scale. The interested reader is addressed to Ref. 66 for a survey of the literature on

the physics and modeling of self-propelled particles, while the mathematical litera-

ture on crowd modeling by the individual based and by the hydrodynamic approach

has been reviewed in Ref. 15. The book44 is mainly focused on the modeling at

the macroscopic scale with some visions on multiscale problems. The mesoscopic

representation, which is typical of the mathematical kinetic theory, is delivered by
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a probability distribution function over the state of the individual entities, namely

their state at the microscopic scale. The kinetic theory approach has been reviewed

in Ref. 2 jointly with the mathematical approach to vehicular traffic and swarms.

Finite treatment of space for mesoscopic and macroscopic models can be developed

at each scale by classical methods of numerical analysis, e.g. finite difference,51,77–79

finite element,104 or finite volume37,62,74 methods, or by computational tools such

as cellular automata,49 and Monte Carlo particle methods in the case of kinetic

equations.5,22,87

It is worth observing that mathematicians have effectively heard the message

delivered in Ref. 15, which urges modelers to consider heterogeneous behavioral

features in crowds and the specific influence on the interactions of pedestrians to be

interpreted as active, rather than classical, particles. Indeed, the recent literature

witnesses increasing attention on the behavioral features of human crowds; detailed

references will be given in Sec. 3.

Let us focus on a number of topics that, according to the authors’ research

knowledge represent key features and offer an interesting framework for future

research perspectives.

(1) Modeling from mathematical structures representing complexity:

Models can be derived within a framework offered by a general structure suit-

able to describe the dynamics in time and space of the variables deemed to

describe the state of the system. In the book,11 this general structure comes

from a differential system suitable to capture the most relevant complexity

features of a crowd viewed as a living, hence complex, system. This study, how-

ever, is limited to the kinetic theory framework, while the approach should be

adopted at each scale pursuing a unified modeling rationale at each scale.

(2) Scaling and a critical analysis of models: Chasing the unified approach,

mentioned in Item 1, requires a critical analysis of the modeling at each scale

aimed at highlighting the merits and drawbacks of the present modeling state

of the art in representing the aforementioned complexity features. A common

modeling strategy at each scale consists first in the design of a general frame-

work able to capture the complexity features of human crowds and subsequently

in the derivation of models by implementing a mathematical description of

interactions into the said structure.7

(3) Social behaviors: It is well understood that behavioral features of humans,

for instance stress and the related propagation dynamics, can play an important

role on the overall dynamics of crowds. This development has been motivated

by human safety problems14,65,68,69,73,84,108 induced by, as an example, forced

evacuation in the presence of fire incidents.91–93,95 Indeed, it has been shown

that the walking strategy developed by pedestrians in distressed conditions is

subject to important modifications that might even lead to unsafe conditions.17

These three key issues guide the presentation of the contents of our paper which

aims at developing a conceptual strategy towards the derivation of a mathematical
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theory of multiscale behavioral crowds. The theory is required to account for

the complexity features of living systems consistently with the general framework

proposed in Ref. 13. This objective may be chased within an interdisciplinary

vision that considers the complex interaction between different scientific areas from

mechanics to psychology,53,81 learning,31,32 social sciences,1 and various others

according to the hints in Ref. 64.

The first part of the paper focuses on a review and critical analysis of the

existing literature, while the second part is devoted to topics which, according

to the authors’ research knowledge, will form the mainstream of future research

activity in the field. In more details, with the derivation of a mathematical theory

of crowd dynamics with an outlook to applications. In general, the presentation is

not limited to a concise outline of the aforementioned topics as detailed hints to

their development are given.

In detail, the contents of the following sections is as follows.

Section 2 defines the complexity features of human crowds which should be con-

sidered in the modeling approach also in view of the contribution that modeling and

simulations can give to crisis managers in charge of safety problems in crowds. These

complexity features should be captured by the mathematical structures mentioned

in Item 1.

Section 3 is devoted to the derivation of the aforementioned mathematical struc-

tures at each of the three scales, namely microscopic (individual-based), meso-scale

by kinetic theory methods, and macroscopic (hydrodynamic). The rationale towards

their derivation is the same at each scale, while the structures are deemed to pro-

vide, at each specific scale, the conceptual framework for the derivation of models.

This section also provides a review and critical analysis of the existing literature.

Section 4 shows how the structures introduced in Sec. 3 naturally lead to the

derivation of models referred to applications. Specifically, models are derived by

inserting into the said structures a mathematical description of interactions, which

are nonlocal and nonlinearly additive. It is worth stressing that these structures

depict the dynamics in time and space of the dependent variables, specialized at

each scale, deemed to describe the state of the crowd. An important feature is that

the dependent variables include an additional variable, called activity, which models

the non-mechanical state (e.g. a social state). A simplified approach is obtained

under the assumption that the activity is a parameter constant in time.

Section 5 focuses on a number of research perspectives alongside hints to tackle

them within an appropriate research program. Indeed, the critical analysis of the

existing literature presented throughout the paper offers the conceptual basis to

define new challenging research objectives. The selection of these topics does not

claim to be exhaustive, as it is the result of the authors research experience.

The final aim to our paper consists in proposing a mathematical theory of human

crowds within a multiscale vision by a modeling approach suitable to consider the

complexity features of living systems.13

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
22

.3
2:

32
1-

35
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
 D

E
 G

R
A

N
A

D
A

 o
n 

04
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 18, 2022 8:30 WSPC/103-M3AS 2250008

Towards a mathematical theory of behavioral human crowds 325

2. Complexity Features Towards Multiscale Behavioral Modeling

This section focuses on the main features of human crowds viewed as a living

system constituted of many interacting entities. The objective is the derivation of

a general mathematical structure able to capture the specific complexity features

of living systems in general and human crowds in particular. These features should

be defined for all scales in a common and unified way, as the key objective of

modeling consists in designing models that have the potential to be multiscale,

i.e. to provide a description covering all scales. Unlike inert matter, pedestrians

possess the behavioral ability to develop walking strategies and to adapt them to

the context. This leads to observable emerging behaviors which are generated by

causes that often do not appear evident.

Let us define precisely two terms: behavioral ability and walking strategy. We

need to borrow concepts from the mathematical theory of active particles (a-

particles),11 according to which each individual in every living system is a carrier of

different purposes and abilities to chase them. In general, it is impossible to account

for all of these abilities within a single mathematical framework, but we can state

that, in the case of human crowds, such purposes and abilities lead to the selection

of waling direction and adjustment of the speed to the local flow conditions, briefly

density and stream. This selection leads to the development of a walking strategy.

This complex dynamics can be simplified, as we shall see in full details in Sec. 3,

by introducing:

— The activity: A vector variable that collects a number of behavioral variables,

such as emotional state (stress/awareness induced by perception of danger),

leadership attitude, etc. The activity is modified by interactions with other

individuals in the crowd.

— The walking strategy : The way by which individuals select the trajectory to

follow in order to reach the desired target and the speed by which they move

along the trajectory. The activity has an important influence on the walking

strategy, which accounts also for the physical features of the venue where the

crowd moves.

Bearing all the above in mind, let us list five key specific features that should be

accounted for in the modeling approach, being — in our opinion — of paramount

importance.

(1) Behavioral–emotional state: Each individual has a behavioral (emotional) state

that can play an important role in the development of the walking strategy. Pos-

sible examples are the mental concentration and rationality to reach a specific

target, the stress induced by the perception of a danger, but even an aggressive

attitude to contrast an antagonist group.

(2) Ability to express a strategy: Living entities have the ability to develop specific

strategies related to their organization ability. These strategies depend on the

state of the entities in their surrounding environment and on the physical fea-
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tures of the areas where the crowd moves, as well as on non-predictable external

events.

(3) Heterogeneity: The ability to express a strategy is heterogeneously distributed

among individuals since it can include different objectives and possibly the pres-

ence of leaders who aim at driving all other pedestrians towards their own strat-

egy. All types of heterogeneity induce various stochastic features in the inter-

actions. In particular, irrational behaviors of a few entities can generate large

deviations from the usual dynamics observed in situations driven by rationality.

(4) Nonlinear interactions : Interactions are nonlinearly additive and nonlocal as

they involve not only immediate neighbors, but in some cases, also distant enti-

ties. Specifically, the topological distribution of a fixed number of neighbors can

play a prominent role in the development of a strategy, as living entities inter-

act with a fixed number of entities rather than with all those in their visibility

domain.

(5) Role of environment and venues : The dynamics is affected by the quality of the

environment, i.e. weather conditions for outdoor venues, geometry of the venue,

luminosity, and various others. Pedestrians receive inputs from their environ-

ments and have the ability to learn from past experience. Hence, their rules of

interactions evolve in time and space.

It appears to us that the above items are the most relevant. However, our choice

does not claim to be exhaustive and additional aspects can be considered as well.

Accordingly, we have to find a modeling approach flexible enough to include possi-

ble additions if consistent with the specific physical situation that is being modeled.

The key difficulty is the lack of a field theory that would offer a natural support,

as it happens in the sciences of the inert matter. This fact is strongly related to the

problem of linking a rigorous mathematical approach to the study of living systems

in general.

A common target, shared by all models, consists in describing collective motions

based on interactions to be modeled consistently at each specific scale. Hence,

the search of a general structure requires the preliminary design of substructures

suitable to model interactions consistently with the aforementioned complexity fea-

tures. These structures differ at each scale, namely: ordinary differential equations

at the microscopic scale to model the individual state of each pedestrian; kinetic

theory equations to describe, at the mesoscopic scale, the dynamics of probability

distribution functions over the individual state at the microscopic scale of pedes-

trians; and partial differential equations corresponding to macroscopic variables at

the macroscopic scale.

The mathematical approach always needs a multiscale vision,7 as only one

observation and representation scale is not sufficient to describe the overall col-

lective dynamics of living systems. For instance, the dynamics at the micro-

scopic scale defines the conceptual basis towards the derivation of models at the

higher scales, where observable macroscopic quantities correspond to the collective

dynamics.
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3. From Complexity to Mathematical Modeling

This section shows how the modeling rationale proposed in Sec. 2 can be trans-

ferred into a differential framework able to capture the complexity features therein

defined. Subsequently, we develop a critical analysis to understand how far the

present state of the art on crowds modeling has effectively contributed to deriva-

tion and application of behavioral models. In more detail, on the contents of the

following sections, we first design a strategy towards the modeling approach. Next,

we define, at each scale, the mathematical structures which can provide conceptual

basis for the derivation of models. The latter section includes a critical analysis of

the consistency of such structures with the complexity features of human crowds.

Finally, we propose additional reasonings on modeling and validation.

The main novelty of the aforementioned mathematical structures is the modeling

of social dynamics and their influence over the collective motion. This topic, which

has not been exhaustively treated in the literature, is developed in this section and

is further discussed in the next one.

3.1. Strategy towards modeling living crowds

The rationale followed in the modeling approach is shown in Fig. 1, where each

block represents a milestone towards the derivation and application of models. The

Fig. 1. (Color online) Rationale of the modeling approach.
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Fig. 2. (Color online) Venue with inlet–outlet doors and obstacles.

path moves from the phenomenological interpretation of the class of systems under

consideration to the validation and application of models.

Figure 2 shows a schematic picture of the geometry of a sample venue, where the

crowd moves, which includes inlet and outlet doors and internal obstacles. Point P

represents a pedestrian along a trajectory to the exit by avoiding obstacles, while

the associated arrow represents her/his walking direction. The motion can also take

place across several interconnected areas, each of them characterized by a different

geometry and a specific quality of the venue.

Let us introduce the following quantities that will be useful in the derivation of

the mathematical structures:

— Σv denotes the venue where the crowd moves. If Σ includes walls, internal obsta-

cles, and inlet–outlet doors, Σ ⊂ R
2 is the walkable area, while Σ0 ⊆ Σ denotes

the domain containing the whole crowd at the initial time. The boundary of Σ

is denoted by ∂ Σ. If the crowd is in an unbounded domain, then Σv includes

either preferred directions or meeting points.

— � is a characteristic length to be taken as the diameter of the circle containing

Σ for problems in domains with boundaries or Σ0 for problems in unbounded

domains.

— α ∈ [0, 1] is a parameter modeling the quality of the venue, where α = 0 cor-

responds to very low quality (i.e. motion is prevented) and α = 1 to very high

quality (i.e. fast motion is allowed).

— vM is the highest speed an individual can reach by walking fast in free flow in

high quality venues.
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— v� is the highest, venue-dependent, speed an individual can reach. It is related

to vM by the following simple model v� ∼= αvM .

— ξM is the highest mean speed that can be reached by pedestrians in free flow in

a high quality venue.

— T = �/vM is the characteristic time corresponding to the time a fast pedestrian

can cover the distance �.

— ρM is the maximal crowd density, i.e. the number of pedestrians packed in a

square meter.

— u ∈ [0, 1] is a scalar variable that models the level of the social states specifically

considered in the model, for instance the level of stress, with u = 0 and u = 1

corresponding to lowest and highest levels of u, respectively.

— β ∈ [0, 1] is a constant parameter that replaces u when this variable is equally

shared by all pedestrians and is not modified by interactions. As above, β=0 and

β = 1 correspond to lowest and highest levels of, e.g. level of stress, respectively.

— Ω is the visibility domain, where a pedestrian can see the other pedestrians. Ω is

a local quantity, generally an arc of circle referred to the local velocity direction.

A more precise definition is provided later referring to each representation scale.

Figure 3 shows the visibility domain Ωi in a two-dimensional space for the ith

pedestrian. The representation is analogous at the other two scales. Ωi is, in the

figure, symmetric, but it might be shaded by obstacles and/or walls.

It is worth stressing that the vast majority of the models make use of β, i.e. a

fixed parameter, instead of the variable u. On the other hand, physical reality

suggests that a micro-scale variable, which is modified by interactions, should be

used. Models accounting for this feature have been recently proposed.17,20,77,106

Remark 3.1. More in general, the social variable can be a vector u = {uk}, with
k = 1, 2, . . . and uk ∈ [0, 1]. In the kinetic theory of a-particles, u has been called

Fig. 3. Visibility domain Ωi.
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“activity”. Correspondingly also β is a vector. These terms can be used at all scales.

The activity has a direct influence on the motion of the crowd and motivates the

use of “behavioral dynamics” to define the collective motion of a crowd.

3.2. On the derivation of mathematical structures

In this section, we derive, at each scale, the mathematical structures for the dynam-

ics of a crowd in unbounded domains. The statement of boundary conditions, which

is an essential step towards simulations, is treated in the last section. Dimensionless

quantities are used to define variables and parameters according to criteria unified

for all scales. In more details, all linear space quantities are divided by �, all speeds

by v�, and local densities by ρM . Hence, the related physical quantities have physi-

cal meaning only within the domain [0, 1], by bounds that can be precisely defined

according to the real geometry of the venue where the crowd moves.

We consider a heterogeneous human crowd in a two-dimensional domain Σ.

Borrowing some definitions from the kinetic theory for a-particles,7 pedestrians are

considered a-particles, whose state is identified by mechanical variables, typically

position and velocity, and vector variable (called activity) modeling their emotional

or social state. These particles can be subdivided into functional subsystems (FSs)

grouping a-particles that share the same activity and mechanical purposes. How-

ever, individual behaviors are heterogeneously distributed within each FS.

Remark 3.2. In the following, the derivation of the mathematical structures is

obtained in the case of one subsystem only. The more general case of several inter-

acting FSs is developed in Sec. 4 referring to well-defined classes of models.

We proceed according to the following common rules: (i) definition of the vari-

ables deemed to describe the state of the system; (ii) derivation of mathematical

structures capturing the complexity features of human crowds; and (iii) a concise

review of the achievements available in the literature, which is limited to the last

decade in order to avoid repetitions with respect to the survey15 and the book.44

3.3. Microscopic (individual-based) scale

We consider a crowd of N individuals and the representation of the overall state

of the system. The dependent variables, deemed to define the overall state of each

i-pedestrian, are defined by position xi = xi(t) = (xi(t), yi(t)), velocity vi =

vi(t) = (vix(t), viy(t)), and activity ui, with i ∈ {1, . . . , N}. The independent

variable is the dimensionless time t, obtained by scaling the dimensional time by

the characteristic time T . Polar coordinates vi = {vi, θi} can be used to define the

velocity of the individual motion, where vi is the dimensionless speed and θi is the

direction of the i-pedestrian.

The mathematical framework is derived within a pseudo-Newtonian mechan-

ics somehow inspired by the mathematical theory of behavioral swarms.19 This
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conceptual approach can be derived according to the following rationale:

(1) Each particle is able to develop a specific strategy which is heterogeneously

distributed.

(2) A decisional hierarchy is applied supposing that interactions first modify the

activity and subsequently the motion which in turn depends also on the activity.

(3) Each a-particle has a visibility domain and interacts with all particles within

such a domain by nonlocal and nonlinearly additive interactions.

(4) The visibility domain is supposed to be an arc of circle symmetric with respect

to the pedestrian’s velocity direction. At the microscopic scale, it is denoted by

Ωi = Ωi(xi, θi) for each i-pedestrian located at xi and walking with direction θi.

(5) The action that produces a pseudo-acceleration of the activity variable of the

i-particle by all particles in Ωi is denoted by ψi, while the psycho-mechanical

acceleration over the velocity variable is denoted by ϕi.

In general, all the above quantities depend on all variables x,v,u, z, where z

is the set of all speeds dui/dt by which ui increase/decreases. Each i-pedestrian

is sensitive all pedestrians in the visibility domain. The formal structure of the

framework is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui

dt
= zi,

dzi
dt

=
∑
j∈Ωi

ψi(xi,vi,ui,xj ,vj ,uj ;α,Σ),

dxi

dt
= vi,

dvi
dt

=
∑
j∈Ωi

ϕi(xi,vi,ui,xj ,vj ,uj ;α,Σ),

(3.1)

where the notation j ∈ Ωi indicates that summation refers to all j-particles in the

domain Ωi.

The solution of mathematical problems provides the evolution of the dependent

variables corresponding to position, velocity, and activity. Macroscopic quantities

can be obtained by a local averaging at each point in the domain where the crowd

moves. In practice, in a domain σ surrounding the point x, the local density ρ(t,x)

and the mean velocity ξ(t,x) are given by

ρ(t,x) ∼=
∑

i∈σ i

ρM |σ| , ξ(t,x) ∼=
∑

i∈σ vi

ρ(t,x) |σ| , (3.2)

where |σ| denotes the measure of σ. Notice that the calculation is approximate as

the limit σ → 0 is not allowed because the system is not continuous.
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If ui
∼= β is a constant parameter shared by all pedestrians, then the dimension

of the framework simplifies to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxi

dt
= vi,

dvi
dt

=
∑
j∈Ωi

ϕi(xi,vi,β,xj ,vj ;β, α,Σ).

(3.3)

Remark 3.3. The key problem consists in modeling the two terms ψi and ϕi

that refer to interactions. Notice that both ψi and ϕi depend on the quality of the

venue, modeled by α, and on the overall geometry Σ as pedestrians modify their

trajectories to avoid walls and obstacles. This matter will be treated in Sec. 3.5.

An overview of the literature on individual-based modeling indicates a variety

of empirical studies on human behaviors under stress conditions due to perception

of danger. The main objective of the research activity consists in developing com-

putational models capable of capturing the dynamics of a crowd in emergencies

conditions (see Ref. 102 for a recent review). Various authors use the definition

models of panicking crowds to define models focused on a dynamics under stress

conditions. Actually, we prefer to refer to these latter models as models crowds

under perception of danger conditions.

Microscopic models can be roughly grouped into two categories depending on

whether the focus is on how stress impacts human decision making and how stress

spreads through the crowd. In the former case, special emphasis is put on how the

irrational behavior of pedestrians in emergency affects crowd safety. It is worth

mentioning that typically in all these contributions it is assumed that pedestrians

are already under stress, i.e. the activity variable corresponds to a constant param-

eter u ∼= β. Therefore, the onset of stress conditions and their spreading over the

crowd is not investigated. The seminal paper by Helbing et al.67 still constitutes

the main contribution to this line of research, and provides invaluable insights on

pedestrians’ behaviors not present in a calm crowd (e.g. crushing behavior).

Studies that focus on how stress sets in and spreads through a crowd can mainly

be found in the psychological literature. An interesting example is provided by

Ref. 60 where three key conditions are identified, namely perception of an immediate

threat, sense of powerlessness, and the belief that escape routes exist but are rapidly

closing.

Many microscopic computational models have been proposed which try to

embed these psychological aspects as well as social dynamics and collective learn-

ing1,32,33,90 to capture the spreading of stress conditions. These studies can be

roughly divided into two groups. To the first group belong epidemiological-like mod-

els where it is supposed that interactions with emotionally “infected” pedestrians

increase the chance that others are getting infected (see for instance Ref. 53). It

is worth mentioning that the COVID-19 pandemic has spurred a great interest in
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this modeling approach (see for instance some recent investigations of the inter-

play between pedestrian movement and virus spreading77–79). To the second group

belong models that draw their inspiration from the phenomenon of heat dissipa-

tion in thermodynamics, where energy (in this case panic) is transferred between

neighboring entities (see for instance Ref. 26).

It is worth mentioning that a growing body of studies is devoted to the ambi-

tious aim to account for both the spread of panic and the subsequent change in

pedestrians’ behavior (see for instance Refs. 107, 109 and 111) and even generation

and contagion of panic under multi-hazard circumstances (see for instance Ref. 54).

Various papers carry out empirical studies to understand how different models

of individual behaviors lead to different pattern formations, e.g. considering the

perception of the environment39 or asymmetric interactions.59 However, the mod-

eling approach of a different variety of emotional states by a variable modified by

interactions still appears to be an open problem which is tackled in Sec. 4 of our

paper.

3.3.1. On the approach of the kinetic theory for active particles

Let us consider a system of interacting pedestrians who, according to the kinetic

theory approach, are viewed — as mentioned — as a-particles. The dynamics is

in the area Σ and, similarly to the micro-scale approach, we consider a system

constituted by one FS only.

The mesoscopic (kinetic) representation is delivered by the one-particle distri-

bution function at time t, over the microscopic state:

f = f(t, x, v, θ,u), x ∈ Σ, v ∈ [0, 1], θ ∈ [0, 2π), u ∈ Du, (3.4)

where polar coordinates have been used, namely v is the speed, θ ∈ [0, 2π) is the

velocity direction related to an orthogonal plane frame and the activity u is a

vector. Let i and j denote the unit vectors of the coordinate axes. The following

notation can also be used:

v = v(cos θi + sin θj) = vω, (3.5)

where ω is the unit vector denoting the velocity direction.

The distribution function f is linked to the so-called test particle (pedestrian)

assumed to be representative of the whole system. Therefore, f is the depen-

dent variable defined over the micro-state {x,v,u}, while time and space are the

independent variables. If f is locally integrable then f(t, x, v,u)dx dv du is the

(expected) infinitesimal number of pedestrians whose micro-state, at time t, is com-

prised in the elementary volume

[x,x+ dx]× [v,v + dv]× [u,u+ du]

of the space of the micro-states.

Consistently with the physics of the system, the function f may be divided by

ρM , which is the maximal full packing density of pedestrians as defined in Sec. 3.1.
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Macroscopic observable quantities can be obtained, under suitable integrability

assumptions, by velocity weighted moments of the distribution functions. As an

example, the local density and mean velocity read

ρ(t,x) =

∫
Dv

∫
Du

f(t, x, v, θ,u)v dv dθ du, (3.6)

where Dv = [0, 2π)× [0, 1], and

ξ(t,x) =
1

ρ(t,x)

∫
Dv

∫
Du

vf(t, x, v, θ,u)v dv dθ du, (3.7)

respectively.

Interactions involve three types of a-particles: test, field, and candidate particles

whose distribution functions are f(t,x,v, u), f(t,x∗,v∗,u∗), and f(t,x∗,v∗,u∗),
respectively. As mentioned before, test particles are representative of the whole

system, while candidate particles can acquire, in probability, the micro-state of

the test particle after interaction with the field particles. At the same time, test

particles lose their state from this interaction with field particles.

In general, walking strategy of each pedestrian is determined by interactions

with pedestrians in the interaction domain. These lead to a modification of activity,

velocity direction, and speed depending on the micro-state and distribution function

of the pedestrians in the interaction domain. Interactions can be modeled using the

following quantities:

— Short-range interaction domain: Pedestrians interact with the other pedestrians

in the visibility domain Ω, which is a circular sector with radius R, symmetric

with respect to the velocity direction being defined by the visibility angles Θ

and −Θ. The a-particle perceives in Ω local density and density gradients.

— Perceived density: Particles moving along the direction θ perceive a density ρpθ
different from the local density ρ. Models should account that ρpθ > ρ when the

density increases along θ, while ρpθ < ρ when the density decreases.

— Interaction rate: η[f ](x,x∗,v∗,v∗,u∗,u∗;α,Σ) models the frequency at which

a candidate (or test) particle at x enters in contact with the field particles in Ω.

— Transition probability density : A[f ](v∗ → v,u∗ → u |x,x∗,v∗,v∗,u∗,u∗;α,Σ)
models the probability density that a candidate particle in x with state {v∗,u∗}
shifts to the state of the test particle due to the interaction with field particles

in Ω with state {v∗,u∗}.
Remark 3.4. In the above notations, round and square parenthesis distinguish

the argument of linear and nonlinear interactions, respectively. In more details,

linear interactions involve only microscopic and independent variables, while non-

linearity involves also the dependent variables. These nonlinear terms are nonlocal

and depend on the quality of the environment/venue. This concept will be further

clarified in the following.

The mathematical structure can be obtained by a balance of particles in the ele-

mentary volume of the space of the micro-states: [x,x+dx]×[v,v+dv]× [u,u+du].
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This equation is derived by equating the variation rate of the number of a-particles

plus the transport due to the velocity variable to net flux rates within the elemen-

tary volume. It consists in an integro-differential equation that describes the time

dynamics of the distribution functions f as follows:

∂f

∂t
+ v · ∇xf = G[f, f ]− fL[f ], (3.8)

where the dot product denotes the standard inner product in R
2 and ∇x denotes

the gradient operator with respect to the space variables only. Moreover, G and

L represent gain and loss, both nonlinearly acting on f , of pedestrians in the

elementary volume of the phase space about the test microscopic state (x, v),

respectively. The detailed expression of these terms correspond to different ways of

modeling pedestrian interactions at the microscopic scale.

In the case of one FS only, the aforementioned balance of particles yields:

(∂t + v · ∇x)f(t,x,v,u) = J [f ](t,x,v,u)

=

∫
Γ×Dv×Du

η[f ](x,x∗,v∗,v∗,u∗,u∗;α,Σ)

×A[f ](v∗ → v,u∗ → u |x,x∗,v∗,v∗,u∗,u∗;α,Σ)

× f(t,x,v∗,u∗)f(t,x∗,v∗,u∗)dx∗ dv∗ dv∗ du∗ du∗

− f(t,x,v,u)

∫
Γ

η[f ](x,x∗,v,v∗,u,u∗;α,Σ)

× f(t,x,x∗,v∗,u∗)dx∗ dv∗ du∗, (3.9)

where Γ = Ω×Dv ×Du.

If the activity variable can be viewed as a constant parameter u ∼= β, then the

corresponding mathematical structure takes the simplified form:

(∂t + v · ∇x)f(t,x,v) = J [f ](t,x,v)

=

∫
Γ

η[f ](x,x∗,v∗,v∗;α,β,Σ)A[f ](v∗ → v |x,x∗,v∗,v∗;α,β,Σ)

× f(t,x,v∗)f(t,x∗,v∗)dx∗ dv∗ dv∗

− f(t,x,v)

∫
Ω×Dv

η[f ](x,x∗,v,v∗;α,β,Σ)f(t,x,x∗,v∗)dx∗ dv∗.

(3.10)

Hints towards the modeling of crowd dynamics by the kinetic theory approach

were given in Ref. 15, where it is shown how the modeling tools of vehicular traf-

fic88,89 can be further developed to describe human crowds. A systematic study of

human crowds accounting for nonlinear interactions between pedestrians has been

started in Ref. 12 with a model that assumes discrete velocity directions and speed

depending on the local density. An application was technically developed to describe
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the contrast of two groups moving in opposite directions. A qualitative analysis

of the initial value problem and the derivation of macro-scale equations from the

underlying description at the micro-scale where presented in Ref. 10.

This pioneering approach generated further developments. In particular, mod-

eling by continuous velocity distributions and the study of fingering problem has

been developed in Ref. 16. In Ref. 78, the kinetic model presented in Ref. 16 is

further developed to study the dynamics in bounded domains with obstacles. A

survey and critical analysis on the modeling literature can be found in Ref. 2.

Articles devoted to safety problems clearly indicate that crisis management

can take advantage of models that account for human behaviors.92,93,95,108 These

articles have motivated recent works focused on human psychology in decision

making35,50 and related empirical studies on the calibration of models.40,41 In the

modeling of the social dynamic in crowds,17,20 interacting pedestrians modify their

psychological status and, in turn, the walking strategy. The emotional state sig-

nificantly affects the overall crowd dynamics in extreme real-life situations such

as a peaceful demonstration that turns violent55 and the spreading of panic in

emergency evacuations.65

One of the first works on a multiscale (from microscopic to macroscopic)

approach to crowd dynamics with emotional contagion is in Ref. 106. Therein,

fear is propagated by a Bhatnagar-Gross-Krook (BGK)-like model and results are

limited to one space dimension, (see for BGK models of classical particles, e.g.

Ref. 38). Studies on the impact of social dynamics on individual interactions and

their influence at a higher scale are carried out in Refs. 47 and 48.

More recently, a kinetic approach to modeling pedestrian dynamics in the pres-

ence of social phenomena (e.g. propagation of stress) is presented in Ref. 17. The

numerical results in Ref. 17 show that stress propagation significantly affects crowd

density patterns and overall crowd dynamics in Ref. 77, the kinetic model presented

in Ref. 16 is further extended to account for the propagation of stress conditions

in time and space. As for the control of crowds, this topic is studied in Ref. 3 by

means of the social influence of leaders, namely trained personnel that may guide

pedestrians to egress from a complex environment whose connectivity is not known

or modified by incidents. Besides its theoretical interest, this topic is of practical

importance as it may significantly contribute to crowd management in emergency

situations where overcrowding may cause fatal accidents, see Ref. 9.

A closely related problem is that of epidemics spread. A hybrid approach, that

couples the kinetic model of crowd dynamics from Ref. 16 with one of contagion

spreading inspired from the work on emotional contagion in Refs. 20 and 106, has

been proposed in Ref. 79. The kinetic model proposed in Ref. 79 introduces an

activity that denotes the level of exposure to people spreading the disease, with the

underlying idea that the more a person is exposed the more likely her/his is to get

infected. Such a model includes a parameter that describes the contagion interaction

strength and a kernel function that is a decreasing function of the distance between

a person and a spreading individual.
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In spite of the similarity between models that deal with evacuation and virus

transmission, a remarkable difference must be pointed out. In the former the key

social state is the level of stress, whereas in the latter is the level of awareness. The

resulting pedestrians’ behavior is completely different in the two cases. Indeed, the

level of stress promotes aggregation of pedestrians and leads to the herd behavior

under panic conditions,81 while the level of awareness pushes pedestrians to follow

social distancing guidelines.

The research program on these challenging topics has just started, and many

contributions are still to come due to the many complex aspects of human psychol-

ogy as well as the inherent system heterogeneity. A multiscale framework, like the

one proposed in Ref. 7 for the modeling of human crowds, needs to be formulated

because, for practical applications, the crowd must be described at all the three

possible modeling scales (i.e. microscopic, mesoscopic, macroscopic) by a consistent

approach, namely, models must be derived at each scale using the same principles

and similar parameters.

3.4. Macroscopic hydrodynamic modeling

The Eulerian description at the macroscopic scale can be adopted for large-scale

systems, in which the local behavior of groups is sufficient to capture the global

dynamics. The following macro-scale variables define the state of the system:

— ρ = ρ(t,x) is the dimensionless crowd density at the point x and time t, nor-

malized with respect to the maximum packing density of pedestrians ρM .

— ξ = ξ(t,x) is the dimensionless mean velocity at the point x and time t, nor-

malized with respect to the maximum average speed ξM . The mean velocity can

also be expressed in polar coordinates as follows: ξ = ξ(t, x)ω(t, x), where ξ is

the dimensionless mean speed and ω is the unit vector giving the direction of

the local mean velocity.

— u = u(t,x), with u ∈ Du, is a dimensionless variable deemed to model the

specific social-emotional state considered in each case study. It can be viewed

as a local mean activity.

— Ω = Ω(t,x;ω(t,x)) is the local visibility domain. The pedestrians at x perceive

the action of all pedestrians in Ω, which makes interactions nonlocal.

The physical meaning of u and Ω is the same we used at the lower scales.

However, the difference here consists in the fact that these quantities do not refer to

individual entities but instead to the local density corresponding to the elementary

physical element dx. In addition, we refer to the parameters already defined at

the lower scales in the search for a general mathematical framework to describe

second-order dynamics, related to density ρ and linear momentum v and involving

mechanical variables and activity u. The formal structure of the framework is as
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follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+∇x · (ρξ) = 0,

∂ξ

∂t
+ ξ · ∇xξ = A[ρ, ξ, u],

∂u

∂t
+∇x · (uξ) = S[ρ, ξ,u],

(3.11)

where A is a pseudo-mechanical acceleration acting on pedestrians in the infinites-

imal volume dx and S is a source term that implements locally the emotional state

generated by the interaction with the surrounding pedestrians. Interactions are not

only nonlocal, but also visual-based and nonlinearly additive. Like in the previous

sections, the square brackets denotes that the dependence can be functional, for

instance, dependent on the space derivatives of the variables in brackets.

If the activity is uniformly distributed in space, i.e. u ∼= β is constant in time,

the structure becomes ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ

∂t
+∇x · (ρξ) = 0,

∂ξ

∂t
+ ξ · ∇xξ = A[ρ, ξ,β].

(3.12)

Various authors (see, e.g. Ref. 44) have proposed a framework based on conser-

vation of mass only and thus leading to first-order models. The equation of mass

conservation is coupled to a phenomenological model linking the local mean veloc-

ity to the local density, as well as to the overall geometry of the venue, i.e. where

the crowd moves. The corresponding structure is as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ

∂t
+∇x · (ρξ) = 0,

ξ = ξ[ρ]ω[ρ](x;α,β),

(3.13)

where the scalar function ξ[ρ] is often related to empirical data delivered by the

so-called fundamental diagram and local gradients.57,99–101 Recall that α is the

parameter modeling the quality of the venue.

The main reference to the literature on crowd modeling by the macroscopic

approach is the book.44 This excellent book reports on the psychology of the crowd

in Chap. 3 and on various first-order and second-order structures to be used in the

modeling approach in Chap. 4. Such modeling part is followed by the study of a

variety of challenging analytical and computational problems related to a multiscale

framework.

Our paper is essentially focused on second-order models with the mathematical

structure in (3.9), which includes the dynamics of the activity variable. Indeed, this

is the main novelty with respect to the present state of the art. The main focus is on
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the modeling of pedestrians who, by rational behaviors, select optimal trajectories

developing the pioneering ideas in Ref. 72. This class of equations has been the

object of various studies devoted to qualitative analysis, e.g. Ref. 4. Instead, the

dynamics of the activity variable has been developed essentially only by the kinetic

theory approach.

In this respect, the study of crowd dynamics by hydrodynamic equations that

include the dynamics of an activity variable, suitable to consider behavioral features,

see Eq. (3.11), is still a research perspective. Then, looking ahead to forthcoming

research activity we briefly report about a very few papers, where the approach

proposed in our paper can bring added value.

Within a recent special issue devoted to the broad topic of mathematical mod-

els for collective dynamics,36 a model of crowding and pushing in corridors with

different motivation levels is proposed in Ref. 56. In the macroscopic approach

developed therein, the motivation corresponds to a re-scaling in time accelerating

or decelerating the dynamics.

Considering instead the latest engineering literature, it is worth mentioning the

density-sensitive multiscale attempt by Ref. 21. The approach proposed in such

a contribution is surely interesting, but the authors highlight some limitations in

reproducing individual behavioral attributes, focusing on the walking strategy, at

the macroscopic scale.

In Ref. 83, a novel model to quantitatively analyze pedestrian congestion in

evacuation management is proposed based on the Hughes and social force models.

In particular, the authors use the principle of virtual work to link the microscopic

level of an individual pedestrian to the macroscopic level of a crowd in a multiscale

attempt, but they do not hide, in their approach, in the modeling of the walking

strategy.

Furthermore, Ref. 97 is devoted to the coupling of disease contagion models with

crowd motion, a relevant and timely topic in the field; in this paper, the resulting

coupled system is solved with hydrodynamic mesh-free methods.

We finally mention the macroscopic Lagrangian formulation of Ref. 110, con-

sisting of mass conservation and an acceleration equation with a term of external

forces which may include behavioral assumptions. All the aforementioned formula-

tions might benefit from the ideas and the modeling framework discussed in this

paper.

An additional aspect to be considered in the modeling is the study of the inter-

action between structures and crowds. This study is particularly important in the

case of light mobile structures. A topic which has received attention in this con-

text is the interactions between crowds and foot-bridges.27,105 These applications

have been treated by deterministic first-order macro-scale models. However, rapid

changes in the motion suggest developing this approach to second-order models,

where emotional behaviors are included specifically according to the framework

proposed in Eq. (3.11).
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3.5. From mathematical structures to the derivation of models

The mathematical structures derived in Secs. 3.1–3.4 are consistent with the com-

plexity paradigms presented in Sec. 2 and provide the conceptual framework for the

derivation of models. Particular models are obtained from the general framework by

choosing how to represent interactions in ϕi and ψi for micro-scale model (3.1), η

and A for kinetic theory approach (3.9), and A and S for macro-scale model (3.11).

These terms refer, at each scale, to the ability of pedestrians to express walking

strategies based on interactions with other individuals. Interactions are assumed to

be nonlocal and nonlinearly additive as the strategy developed by a pedestrian is a

nonlinear combination of different stimuli generated by the interactions with other

pedestrians and with the environment.

The modeling of interactions is a key problem at all scales. Various authors

have tackled this problem on the basis of heuristic assumptions somehow sup-

ported by empirical data, see for instance Refs. 76 and 85. Empirical and theoret-

ical studies have been developed to contribute to modeling interactions,40,41,45,86

with some studies focusing also on the role of emotional dynamics and self-

organization.52,71,82,86,96 Often, see for instance Refs. 28, 34, and 90, theoretical

tools of game theory have been used to model interactions.

This section aims at defining the rationale to model interactions at the different

scales in a consistent manner. The contents are limited to concepts, while the ana-

lytic formalization is postponed to Sec. 4, which shows how the general theory leads

to the derivation of well-defined models corresponding to selected social dynamics.

3.5.1. Heterogeneity and functional subsystems

In general, the overall populations in the crowd is constituted by sub-populations,

called FSs, which may differ due to their walking targets (either meeting points

or exits) and/or ways of organizing their motion, e.g. antagonist groups contrast-

ing each other within the crowd or leaders attracting pedestrians towards optimal

trajectories. Then, the crowd can be divided into κ FSs labeled by superscript

κ = 1, 2, . . . ,K, which is applied, at each scale, to the dependent variables.

The generalization to multi-functional mathematical structures is obtained by

adding all interactions across FSs, while treating each FS as in the case of one

FS only. The same subdivision should be applied at each scale as a multiscale

approach might require that the same models at different scales are used in the

same venue, where the crowd presents coexistence of high density zones (where

the hydrodynamical approach is appropriate) and rarefied areas (where a low-scale

approach should be used).

3.5.2. Decisional process towards a walking strategy

A rationale, common to all scales, can be proposed towards a decisional process.

This process is further specialized for the case studies treated in Sec. 4, where the
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specific emotional–social state, namely the activity, differs from case to case. The

dynamics is induced by a collective learning31 corresponding to fast thinking,75 in

some cases almost instantaneous.

The rationale is summarized in the following which includes also some technical

indications in view of derivation of specific models:

(1) The decision process follows a hierarchy by which pedestrians first modify their

activity, subsequently select the velocity direction, and finally modify their speed

accounting for the local flow conditions. The dynamics is modeled by theoretical

tools of game theory1 describing how pedestrians learn the overall state of the

crowd in the visibility domain Ω and modify their walking strategy accordingly.

(2) Pedestrians select the velocity direction accounting for a weighted contribution

by the following trends: (i) reaching the nearest exit or meeting point; (ii)

avoiding walls by nonlocal actions depending on the distance of pedestrians

from walls; (iii) avoiding overcrowded areas; and (iv) attraction by the main

stream which acts in contrast with the search of not congested areas. The

weights by which the velocity direction is selected are supposed to depend, for

each FS, on the local density, on the activity variable, and on the distance from

the wall.

(3) Once the velocity direction has been selected, the dynamics of the speed depends

on the difference between the local density in the new direction and the local

density in the direction before the change. In detail, lower densities contribute to

increasing the speed, while higher densities tend to decrease it. Local density has

a role also in the selection of the velocity directions as it enhances trajectories

through less congested areas.

(4) The selection of the walking direction depends on a specific activity that plays

a key role in the dynamics. For instance, the stress contributes to increases the

trend towards the mainstream over the trend towards the target. A different

behavior is induced by the awareness to contagion as higher awareness increases

the trend to avoid congested areas.

(5) Walls and obstacles modify the selection of the velocity direction with respect

to the direction selected in unbounded domains. The action is nonlocal as the

modification of the velocity increases by decreasing distance from the wall.

3.5.3. On the statement of mathematical problems

Mathematical problems are stated by assigning, at each scale, initial and boundary

conditions. Initial conditions can be given at t = 0, for κ = 1, . . . ,K, as follows:

Micro-scale: By the state of all pedestrians (viewed as a-particles)uκ
i (t = 0),

zκi (t = 0), xκ
i (t = 0), and vκi (t = 0), for i = 1, . . . , N .

Meso-scale: By the distribution function over the micro-state fκ(t = 0,u,x,v),

for x ∈ Σ.
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Macro-scale: By the local activity, density, and mean velocity uk(t = 0,x), ρk(t =

0,x), ξk(t = 0,x), for x ∈ Σ.

Let us now focus on the statement of boundary conditions. First, we observe that

the presence of walls already modifies the trajectories of the motion, as pedestrians

organize their motion to avoid getting close to the boundary ∂Σ. However, for those

who do get in contact with the boundary a wall interaction law should be given

linking the dynamics of pedestrians that leave the wall (v+ if v×n ≥ 0) to that of

those who reach the wall (v− if v × n < 0), where n is the unit orthogonal to ∂Σ

directed towards the walking domain.

The statement of the boundary conditions for x ∈ ∂Σ and κ = 1, . . . ,K, requires

some heuristic assumptions on the behavior of pedestrians consistent both with the

fact that the flux of pedestrians at the wall is zero and the fact that the dynamics

of pedestrians leaving a wall needs to be consistent with the paradigms stated

in Sec. 3.5.2. The modeling has to account for a discontinuity of the dependent

variables at the wall. Accordingly, these conditions can be stated, at each scale, as

follows:

Micro-scale: Interactions with walls are local in space (xκ+
i = xκ−

i ), pedestrians

keep their activity (uκ+
i = uκ−

i ) and speed, while moving along n. Subsequently, the

dynamics of each pedestrian can be modeled following the rules given in Sec. 3.5.2

depending on the local flow conditions.

Meso-scale: Interactions are local in space preserving the activity variable, while

the distribution function of the pedestrians leaving the wall is related to that of

the pedestrians moving towards the wall, as in the classical kinetic theory.38 This

is obtained by

fκ+(u,x,v+) =
|v− × n|
|v+ × n|R(v− → v+)fκ−

(u,x,v−),

where the operator R denotes the probability density that a pedestrian moving

towards the wall with velocity v− then leaves the wall with velocity v+. The same

heuristic assumption can be adopted at the micro-scale, i.e. reflection along n and

subsequent dynamics as stated in Sec. 3.5.2.

Macro-scale: The statement of boundary conditions at the macro-scale can be

stated using the same principles applied at the lower scales. In more details

uκ+(t,x) = uκ−(t,x)

and

|ρκ−ξκ−|(t,x) = |ρκ+ξκ+|(t,x),

where ξκ+ = |ξκ+|n.
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4. On the Derivation of Mathematical Models

The derivation of mathematical models can be developed within the framework

of the structures proposed in Sec. 3. The presentation is mainly focused on con-

cepts, methodology and, essential calculations. Further technical developments of

the methods might be treated for specific applications, hopefully developed by inter-

ested readers.

The key step of the approach is the modeling of interactions to be properly

referred to the specific social dynamics considered in each class of models. Inter-

actions technically differ at each scale, but it is possible to model them according

to common guidelines that are valid at all scales. Theoretical tools of game theory

can be used to model them by further developing the methods already applied to

the social dynamics.1

The hierarchy proposed in Sec. 3.5 suggests that pedestrians first modify their

emotional state, then select a walking direction and, finally, adapt the speed to

the flow conditions along the said direction. This section shows how mathematical

models can be derived according to the guidelines given in Sec. 3. The model-

ing approach is developed for the aforementioned three representation scales. Full

details are given for models at the micro-scale. Subsequently, the generalization to

the other scales can be rapidly derived. We consider different types of emotional

dynamics referred to a scalar activity variable. Then, we indicate how each specific

emotional dynamics can be referred to real flow conditions. Overgeneralization of

the role of the activity variable is avoided by limiting our study to a few case stud-

ies, i.e. stress in evacuation dynamics, perception of contagion risk, and leadership

attraction towards optimal paths.

The literature on social dynamics is mainly based on consent dynamics. On

the other hand, one of the open key problems posed in the last chapter of Ref. 23

indicates that different types of dynamics should be considered in the modeling of

real systems. This idea was developed in Ref. 1 showing how the selection of consent

or dissent may be related to the distance of the social state between interacting

individuals. Focusing on the onset and propagation of stress in evacuation dynamics,

it can happen that both rational and irrational behaviors are contextually observed.

Therefore, both of them have to be taken into account by a dynamics which may

depend also on the specific social variable that is object of modeling.

4.1. Modeling at the microscopic (individual-based) scale

Let us consider the modeling of the dynamics according to the aforementioned hier-

archy, i.e. first the dynamics of the activity variable, then the selection of the velocity

direction, and, finally, the dynamics of the speed. The movement of the crowd can, in

various cases, be generated by a cluster of individuals localized in a small area within

Σ. Then, it can pervade the whole area Σ due to interactions. Pedestrians move, as

shown in Fig. 4, across zones with different local density which has an important

influence over the interaction dynamics and, consequently, on the trajectories.
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Fig. 4. (Color online) Flow with rarified and dense zones.

4.1.1. Dynamics of the activity variable

We consider the dynamics of the activity variable for themicro-scale referring to one

FS only. Therefore, we consider interactions of the i-pedestrian, with state xi,vi, ui

with all ij-pedestrians, i.e. the j-pedestrians which interact with the i-pedestrian as

they are within the visibility domain Ωi which, according to the definitions given in

the preceding sections, depends on vi and on Σ, while by ρi we denote the number

of ij-pedestrians in Ωi.

A very simple model relates the dynamics to the mean value Ei of the activity

in Ωi:

Ei = Ei(t;xi,vi,Σ) =
1

ρi[Ωi]

∑
j∈Ωi

uj. (4.1)

The consent/dissent dynamics can be modeled by the fractions (1− ε) and ε denot-

ing the trend towards and against Ei, respectively. Therefore, the first two equations

of (3.1) amount to the following model:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui

dt
= zi,

dzi
dt

=
∑
j∈Ωi

ψi(xi,vi,ui,uj ;α,Σ)

= η(ρi)
[
(1− ε)(Ei(t;xi,vi,Σ)− ui)

+ ε(ui − Ei(t;xi,vi,Σ))
]
,

(4.2)

where we recall that η denotes the interaction rate.
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Let us now relate the above concepts to the following specific case studies, i.e.:

Stress in evacuation dynamics : Eq. (4.2) models the dynamics of a group of people

divided into a fraction (1− ε) experiencing high levels of stress and the remaining

fraction ε that is unaffected by stress. Stress has a negative influence on the selection

of safe trajectories. Therefore, one may classify as rational the trend of pedestrians

in fraction ε, who will keep their previous walking strategy, while it is irrational

the trend of the pedestrians in fraction (1− ε), who will choose to “herd”.

Awareness of contagion risk : Analogously to what we have seen above, Eq. (4.2)

models the dynamics of a crowd divided into two groups. In this case, a fraction

(1− ε) of pedestrians show high levels of awareness, while a small fraction ε keeps

the previous level of awareness. The classification is opposite though: rational is

the trend of the fraction (1− ε), while the fraction ε is irrational.

Leadership attraction: Leaders in a crowd are trained to express a rational behavior.

They move along “optimal” trajectories, where optimality correspond to a compro-

mise (to be mathematically formalized) between the search of less congested areas

and the need to reach a well-defined target, i.e. an exit or a meeting point, in the

shortest possible time. In practice, less congested areas correspond to low risk of

incidents in the case of evacuation or contagion in the case of epidemics.

The modeling approach can be developed by adding n� leaders and a parameter

σ = n�/N0 that quantifies the presence of leaders. In this case, one only FS is not

sufficient as the crowd needs subdivided into two FSs, labeled by the subscripts

r = 1, corresponding to pedestrians, and r = 2, corresponding to leaders. Interac-

tions can be modeled by assuming that the leaders keep a constant, equally shared

activity: u1
i = u1

i (t = 0) = constant, while interactions among pedestrians and

between pedestrians and leaders are described by Eq. (4.2), where the parameter ε

has a different physical meaning in each type of interaction. The differential system

can be rapidly obtained from Eq. (4.2).

4.1.2. Selection of the velocity direction

We consider the interactions of a i-pedestrian with the ij-pedestrians in Ωi. These

interactions depend on the activities ui and uij of the pedestrians. The modeling

can be viewed as a technical development of the approach proposed in Ref. 7. Let

us start by summarizing the main ingredients.

(1) The i-pedestrian has a velocity direction and a visibility domain Ωi which is the

circular sector defined by the visibility angle and radius depending on the quality

and shape of the venue, as the presence of obstacles or walls can reduce the area of

Ωi. Each i-pedestrian perceives in Ωi the density ρi.

(2) All a-particles are subject to different stimuli towards well-defined directions:

ν
(E)
i = ν

(E)
i [xi,xE ]: Walking direction from the location xi of the i-pedestrian to

a meeting point or exit xE . If the i-pedestrian can reach xE , then ν
(E)
i is given
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by simple geometrical calculations, say the vector xE − xi divided by its modulus

‖xE −xi‖. Otherwise, if an obstacle does not allow the straight line, it is necessary

accounting for the different tracts.

ν
(s)
i = ν

(s)
i [ξi]: Attraction to the mainstream ξi computed in Ωi, i.e. the motion of

the other a-particles in Ωi. Hence, ν
(s)
i is given by ξi divided by ‖ξi‖.

ν
(v)
i = ν

(v)
i [ρi]: Attraction to less congested areas in order to avoid overcrowding

corresponding to the local distribution of density ρi computed in Ωi. In this case,

one has to compute also local gradients:

ν
(v)
i = ν

(v)
i [ρi] = − ∇xρi

‖∇xρi‖·

(3) The choice of the velocity direction, as mentioned in Item 2 of Sec. 3.5.2, cor-

responds to a weighted selection of the stimuli mentioned in Item 2 depending on

the quality of the venue, the emotional state, and the local density. We propose an

heuristic modeling approach based on the following hierarchy: Each i-pedestrian

selects first a velocity direction ν
(sE)
i , which results from weighting ν

(s)
i by ui and

ν
(E)
i by (1−ui); then, the i-walker selects ωi by weighting ν

(v)
i by ρi and ν

(sE)
i by

(1− ui). That is,

ν
(sE)
i = ν

(sE)
i [ρi, ξi,xi,xE , ui] =

ui ν
(s)
i [ξi] + (1− ui)ν

(E)
i [xi,xE ]

‖ui ν
(s)
i [ξi] + (1− ui)ν

(E)
i [xi,xE ]‖

, (4.3)

and

ωi = ωi[ρi, ξi,xi,xE , ui] =
ρi ν

(v)
i [ρi] + (1− ρi)ν

(sE)
i [ρ, ξi,xi,xE ]

‖ρi ν(v)
i [ρi] + (1− ρi)ν

(sE)
i [ρ, ξi,xi,xE ]‖

, (4.4)

where the functional dependence is denoted in square brackets (as already men-

tioned) while all quantities refer to each individual xi,νi, ui.

The following remark defines the phenomenological assumption on the role of

the activity variable in the selection of ωi.

Remark 4.1. A higher level of stress contributes to an increased attraction towards

the mainstream perceived in the visibility domain, which is preferred over the trend

towards the target. Awareness to contagion has a role opposite to that of the stress,

i.e. it decreases the trend towards the mainstream. Increasing local density con-

tributes to an increased trend towards less congested areas with respect to the

stress-weighted trends towards the stream and the target.

The i-pedestrian, once moved to the new velocity direction ωi, will perceive the

local density ρωi in the new visibility domain Ωωi = Ω(xi,ωi).

4.1.3. Modeling the acceleration term

The local density ρωi
differs from the density previously perceived in the visibility

domain Ωi = Ω(xi,νi). If ρωi
< ρi, the i-pedestrian will tend to increase the speed,

while if ρωi
> ρi, the i-pedestrian will tend to reduce the speed.
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The modeling of the acceleration term can be related to the above phenomeno-

logical description as follows:

dvi
dt

= Fi[ρi, ξi,xi,xE , ui] = ϕi[ρi, ξi,xi,xE , ui] · ωi[ρi, ξi,xi,xE , ui], (4.5)

where

ϕi = ϕi[ρi, ξi,xi,xE , ui] = αui(ρi − ρωi
), (4.6)

where the parameter α has been introduced to account for the fact that high values

of the quality of the venue promote increases of the speed, while α = 0 totally

prevents this specific dynamics.

Remark 4.2. This model corresponds to the following: If ui → 1, the pedestrian

has a trend to accelerate and decelerate with probability 1, while if ui → 0, the

pedestrian accelerates and decelerates with probability 0, i.e. an active pedestrian

is supposed to act fast or slow according to ui in both actions. More in general,

asymmetries on the role of the activity can be introduced consistently with the

specific type of behavioral variable included in the model.

Remark 4.3. The acceleration Fi is a nonlocal quantity that depends on the

averaged state of all a-particles in the domains Ωi(xi,νi) and Ω(xi,ωi). Therefore,

this modeling approach averages micro-scale quantities in the domains Ωi(xi,νi)

and Ω(xi,ωi). Then, introducing (4.5) in the structure defined in Eq. (3.1) yields

a new framework suitable to derive specific models.

4.2. Modeling at the macroscopic scale

The derivation of mathematical models at the macro-scale follows the same ratio-

nale presented in Sec. 4.1. Therefore, we do not repeat calculations, but simply

highlight the key points. Let us first consider the derivation of hydrodynamical

models which corresponds to the structure defined by Eq. (3.11).

Models can be obtained by specifying the source terms A and S, which

correspond to the acceleration term and the dynamics of the activity variable,

respectively. A can be modeled according to the same rationale proposed at the

microscopic scale, which now corresponds to:

The a-particles in the elementary volume dx first select a direction ω and subse-

quently accelerate or decelerate according to the local density conditions :

A = A[ρ, ξ,xE , u;α,Σ] = ϕ[ρ, ξ,xE , u;α,Σ] · ω[ρ, ξ,xE , u;α,Σ], (4.7)

where the calculation of the local densities is restricted to ΩM
ξ = ΩM

ξ (x, ξ) and

ΩM
ω = ΩM

ω (x,ω), which define the visibility domains in the directions ξ and ω,

respectively.

Let ρω be the density corresponding to the domain ΩM
ω and ρξ the density in

ΩM
ξ . Replacing ρi and ρωi

by ρξ and ρω, ω is computed as in Eq. (4.4) and ϕ can

be computed as in (4.6).
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As for the modeling of the activity variable, it becomes

dz

dt
= η(ρξ)

[
(1 − ε)(Eξ(t;x,v,Σ)− u) + ε(u− Eξ(t;x,v,Σ))

]
. (4.8)

4.3. Derivation of kinetic models

The derivation of kinetic models moves from the structure defined by (3.9), which

is related to the dynamics of the dependent variables defined in Eq. (3.4), where

the micro-scale variable was represented in polar coordinates.

The key feature of this approach refers to the modeling of the interaction rate

η[f ] and the transition probability density A[f ]. The concept of interaction rate is

different from that of the classical kinetic theory, where only binary interactions

are considered and η is delivered by the relative velocity of the interacting pairs

multiplied by the cross-sectional area of the interacting classical particles. The

mathematical theory of a-particles includes multiple interaction and a standard

assumption consists in supposing that η depends on the local density which is

computed in Ω. In the simplest case, η = η0 is a constant, while in a more general

case it grows with the density in the visibility domain.

The modeling of A in (3.9) can be developed following the same rationale pro-

posed at the microscopic scale, namely the a-particle first modifies the velocity

direction and subsequently the speed. Let us recall that the modeling approach con-

siders that interactions involve three types of a-particles, i.e. Test a-particles, with

distribution function f(t,x, θ, v,u); candidate a-particles, with distribution func-

tion f(t,x∗,v∗,u∗), which can acquire the state of test particles after interactions

with field particles with distribution function f(t,x∗,v∗,u∗), while field a-particles

lose their state as a consequence of interaction.

The modeling approach can be developed first by assuming a hierarchy in the

sequence of interactions, i.e. activity dynamics, selection of the velocity directions,

and adaptation of the speed. Each interaction refers to the three types of a-particles

mentioned above. The technical difference, with respect to the approach we have

presented in Sec. 4.1, corresponds to three types of visibility domains, say Ω, Ω∗, and
Ω∗, as well as to the respective densities in these domains. The interested reader can

find the details of the technical calculations in the short book,6 specifically focused

on the kinetic theory approach, and in Ref. 7 within a multiscale framework.

4.4. Further reasonings on modeling interactions

As shown in the preceding sections, the derivation of a mathematical model can

be developed by inserting heuristic models of interactions into the mathematical

structures derived in Sec. 3. The rationale to develop these models is the same at

each scale. This strategy has the advantage that models can make use of parameters

with analogous meaning so that empirical data can be used for their assessment

at all scales. Figure 5 provides a representation of these concepts, and of their

sequence.
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Fig. 5. (Color online) From modeling interactions to derivation of models.

Refinements of the models can be obtained by a progressive improvement of

the models deemed to describe interactions. Therefore, we present, in the following,

some perspective ideas, selected among various ones, that may contribute to an

improved derivation of models. Actually, the preliminary reasonings in this section

are a prelude to the overview on the research perspective presented in the last

section.

Let us first consider the concept of topological interactions that differ from inter-

actions restricted to entities in the visibility domain. We recall that the visibility

domain corresponds to an arc of a circle with a radius depending on qualitative

properties of the environment. This is a simplification of physical reality since in the

study of animal swarms it has been conjectured that the radius of the circle depends

on a critical density of individuals. Such a density corresponds to the number of

individuals needed to elaborate a consistent movement strategy.8 This conjecture

has been formalized in a mathematical framework in a paper focused on swarm

dynamics,18 where the interaction domain Ωs can differ from Ω.
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Arguably, this conjecture can be transferred to crowds, where the modeling of

Ω and Ωs should also consider the influence of rational and irrational behaviors.

Actually, if Ωs ⊂ Ω, then each pedestrian receives sufficient information for a ratio-

nal strategy. On the other hand, if Ω ⊂ Ωs then the information is not sufficient

and may generate non-symmetrical interactions.

In general, topological interactions induce asymmetric interactions. Empirical

data have been collected to investigate how the environment can modify visibil-

ity conditions94 and how heterogeneity of the environment can contribute to the

understanding of non-symmetric reactions to interactions.

Research activity to produce empirical data to inform the modeling of pedes-

trian behaviors and interactions is witnessed in a variety of interesting papers,

for instance,40–42 with the aim of contributing to model improvements.98 On the

other hand, this research field definitely needs further developments, for instance

to understand how the psychology of the crowds103 and collective learning32 may

contribute to the dynamics of the activity variable. Further improvements of the

modeling approach should consider the case of vector activity variables and, con-

sequently, how the components of the vector act on the hierarchy of the decisional

process.

All reasonings briefly presented in this section apply to the mathematical struc-

tures proposed in our paper at all scales. Arguably, further development of said

structures or alternative ones, such as the Fokker–Planck approach,25 gives rise to

research perspectives as presented in the following section.

5. A Forward Look at Research Perspectives

Various research perspectives have already been indicated in the preceding sections.

Rather than adding new ones, we will focus on a selection of topics pertaining to the

conceptual strategy that has guided our paper and has contributed to the framework

supporting the derivation of models. Specifically, we refer to the multiscale vision

that, as we have seen, leads to models derived by the same principles at each scale.

The following topics are selected according to the authors’ knowledge derived form

their research activity, however, consistently with the aforementioned vision.

In more details, in the next paragraphs we focus on: A further discussion on

the merits and pitfalls of the selection of a specific scale with respect to the others;

discrete velocity models; possible contributions of the studies of crowd dynamics to

modeling swarm dynamics.

• Further reasoning on multiscale methods: Human crowds should be viewed

as discrete systems with finite degrees of freedom corresponding to the finite number

of pedestrians. Therefore, the microscopic scale appears to offer the most appropri-

ate choice. This selection leads to systems of ordinary differential equations. On the

other hand, describing crowds at this scale requires to keep track of each individual

i.e. of their individual behaviors accounting for multiple, nonlocal interactions.
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The approach at the macroscopic scale is prone to criticisms, as crowds do not

fit the paradigm of continuity of the matter. Focusing on the mesoscopic scale,

the assumption of a continuous distribution function over the micro-states, bor-

rowed from the classical kinetic theory of gases, is questionable as the number of

pedestrians in a crowd is far less than the number of molecules in a gas.

In addition to the aforementioned conceptual difficulties, the representation

scale has to fit the need to model pedestrians behavioral features, which modify

the overall dynamics of this specific living system. We have devoted this paper

to develop a unified modeling approach at all scale including the role of social

dynamics. A key feature of this approach consists in including a behavioral variable

(scalar or vector) modeling the social and emotional state of individuals in their

micro-state. Thus, our approach belongs to the general framework of the so-called

behavioral dynamics (see Ref. 80), where dynamics and behaviors are considered

contextually in the modeling approach.

A somehow related challenging research perspective consists in deriving macro-

scale models from the underlying description at the micro-scale. Some results have

been proposed for vehicular traffic and crowd dynamics,10 however limited to models

where the behavioral variable is reduced to a constant parameter. Therefore, further

studies are necessary for a more general class of models such as those proposed in

this paper. The general methodological approach, developed in Refs. 29, 30 and

inspired to the Hilbert problem,70 can be further developed in the aforementioned

research perspective.

• Semi-discrete models: Discrete velocity models refer to a class of models where

the velocity can take only a finite number of directions and of speeds. Therefore, the

velocity v is defined by a set of velocity directions {θ1, . . . , θh, . . . , θm} and a set of

speeds {v1, . . . , vk, . . . , vn}. The velocity has a different meaning at each scale, i.e.

it refers to the individual pedestrian at the micro-scale, to the test/candidate/field

statistical particles at the meso-scale, and to the mean velocity at the macro-scale.

Discrete velocity models have been developed within the classical kinetic the-

ory of gases61 with the aim of simplifying the analytic and mechanical complexity

of the classical Boltzmann equation. In crowd dynamics12 and vehicular traffic,43

discrete models can be developed to account for the fact that the number of indi-

viduals (or vehicles) is not large enough to justify the continuity assumption for

both hydrodynamical and kinetic models.

At the meso-scale, discrete models have been introduced in Ref. 12 through a

simplified model that heuristically relates the speed to the local density. This type

of models has been further developed in Ref. 78, which focuses on the contagion

risk during pandemics.79 A sharp idea was proposed in Ref. 43 by referring the

grid of the discrete values of the speed to the local density, namely the grid shrinks

when the density increases. Surprisingly, this idea was not further developed for

vehicular traffic modeling and has not been developed yet in the case of crowd

dynamics. In the latter case, one would have to tackle the difficulty related to the
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two-dimensional representation of the velocity. Similar reasonings apply to models

coupling vehicular traffic and crowds.24,58

Discrete velocity models have been developed within the framework of the

kinetic theory approach. This approach might also be applied to the modeling at the

micro-scale to cope with the need of keeping track of the number of pedestrians in

a large crowd which otherwise would lead to simulations computational demanding

(if not unfeasible). Therefore, an interesting challenge would be developing discrete

velocity models also at the micro-scale. Then, modeling velocity dynamics should

consider jumps over the nodes of the grid of velocity directions and speed.

• From crowds to swarms: Another interesting research perspective consists in

extending the multiscale vision presented in this paper to the modeling of swarms

related to the celebrated work by Cucker and Smale,46 which has rapidly attracted

the interest of applied mathematicians and generated a huge amount of scientific

articles devoted to analytic, computational, and modeling topics. An account of

this literature is given in the survey paper.2

Generally, swarm models refer to a pseudo-Newtonian framework in unbounded

domains. The modeling of interactions (which include also the description delivered

by interaction potentials) provides the models for the acceleration terms, so that

the system giving the dynamics of all particles is well defined. The general approach

has been further developed to include internal parameters with thermodynamical

meaning,63 while models accounting for the dynamics of internal variables have

been proposed in Ref. 19. A kinetic theory formalization of the dynamics of swarms

has been developed in Ref. 18.

Mathematical models have been developed for swarm dynamics in unbounded

domains, but only some simple case studies have included dynamical behavioral

variables in the micro-state. Further developments in the modeling of animal swarms

might arise from the conceptual contribution of the mathematical theory of behav-

ioral crowds on the treatment of boundary conditions and on the interactions

between behavioral and mechanical dynamics.

• Closure: The plan of the paper presented in Sec. 1 was closed by the statement

that the main purpose of our paper was a contribution to a mathematical theory

of behavioral crowds. Indeed the contents have been developed towards this objec-

tive. Hopefully, it will contribute to the development of new models as well as to

perspective ideas in parallel field, for instance animal swarms and, more in general,

collective motion of living interacting entities.
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86. M. Moussäıd, D. Helbing, S. Garnier, A. Johansson, M. Combe and G. Theraulaz,
Experimental study of the behavioral mechanisms underlying self-organization in
human crowds, Proc. Roy. Soc. A 276 (2009) 2755–2762.

87. L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and
Monte Carlo Methods (Oxford Univ. Press, 2013).

88. S. Paveri Fontana, On Boltzmann-like treatments for traffic flow: A critical review of
the basic model and an alternative proposal for dilute traffic analysis, Transp. Res.
9 (1975) 225–235.

89. I. Prigogine and R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier,
1971).

90. Y. Rahmati and A. T. Zachry, Learning-based game theoretical framework for mod-
eling pedestrian motion, Phys. Rev. E 98 (2018) 032312.

91. E. Ronchi, Disaster management: Design buildings for rapid evacuation, Nature
528 (2015) 333.

92. E. Ronchi, E. D. Kuligowski, D. Nilsson, R. D. Peacock and P. A. Reneke, Assess-
ing the verification and validation of building fire evacuation models, Fire Technol.
52 (2016) 197–219.

93. F. Ronchi, F. Nieto Uriz, X. Criel and P. Reilly, Modeling large-scale evacuation of
music festival, Fire Saf. 5 (2016) 11–19.

94. E. Ronchi and D. Nilsson, Pedestrian movement in smoke: Theory, data and mod-
eling approaches, in Crowd Dynamics, Vol. 1: Theory, Models, and Safety Prob-
lems, Modeling Simulations Science Engineering Technology (Birkhäuser, 2018),
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