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ABSTRACT Technological advances and scalability are leading Human-Computer Interaction (HCI)
to evolve towards intuitive forms, such as through gesture recognition. Among the various interaction
strategies, radar-based recognition is emerging as a touchless, privacy-secure, and versatile solution in
different environmental conditions. Classical radar-based gesture HCI solutions involve deep learning
but require training on large and varied datasets to achieve robust prediction. Innovative self-learning
algorithms can help tackling this problem by recognizing patterns and adapt from similar contexts. Yet,
such approaches are often computationally expensive and hardly integrable into hardware-constrained
solutions. In this paper, we present a gesture recognition algorithm which is easily adaptable to new
users and contexts. We exploit an optimization-based meta-learning approach to enable gesture recogni-
tion in learning sequences. This method targets at learning the best possible initialization of the model
parameters, simplifying training on new contexts when small amounts of data are available. The reduction
in computational cost is achieved by processing the radar sensed data of gestures in the form of time
maps, to minimize the input data size. This approach enables the adaptation of simple convolutional
neural network (CNN) to new hand poses, thus easing the integration of the model into a hardware-
constrained platform. Moreover, the use of a Variational Autoencoders (VAE) to reduce the gestures’
dimensionality leads to a model size decrease of an order of magnitude and to half of the required adaptation
time. The proposed framework, deployed on the Intelr Neural Compute Stick 2 (NCS 2), leads to an
average accuracy of around 84% for unseen gestures when only one example per class is utilized at
training time. The accuracy increases up to 92.6% and 94.2% when three and five samples per class
are used.

INDEX TERMS Artificial neural networks, edge computing, FMCW, intel neural compute stick, knowledge
transfer, meta learning, human computer interaction, radar, variational autoencoder.

I. INTRODUCTION
HCI represents a primary field of study to enable the com-
munication between humans and systems [1]. A classic and
widely used HCI method exploits the conductivity of a
user’s finger or skin touch with a capacitive surface [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Cheng Hu .

Although a precise technology, this approach requires direct
contact with the user and may not be versatile in specific
contexts [4]. In recent years, the development of technolo-
gies such as optic or radio-frequency has radically increased
the interfacing capability in all application areas [5]. Many
advances in the field focus on vision-based interfacing, i.e.
the use of camera sensors such as Red Green Blue (RGB)
and Time of Flight (ToF) [6]–[9]. In Fact, Camera sensors
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bring the advantage of touchless communication. Neverthe-
less, Camera-based solutions lead to potential privacy issues
and failures with poor light conditions in the environment.
In comparison, radio-based methods are not directly affected
by light and can also be used to estimate user actions through
walls or barriers [10]. Wi-Fi-based systems can be robustly
deployed in the HCI context even when the usage environ-
ment or the user orientation changes considerably [11]–[13].
Yet, Wi-Fi technology often requires the generation of high
output power and a continuously running module to ensure
operation. In contrast to this, radar technology, thanks to a
more adaptable system power mode management, is find-
ing increasing interest in the field of HCI applications [14].
Among the various radar modulation techniques, the Fre-
quency Modulated Continuous Way (FMCW) is particularly
suitable in the context of action recognition by providing
simultaneously accurate information of the range and the
velocity of targets [15], [16].

Among the various interfacing approaches, hand gesture
represents a natural and easily interpretable communication
mean [17], [18]. For this particular purpose, radars find
wide use and can even be miniaturized and integrated into
smartphones or other portable devices, such as the Google
Soli [19]. State-of-the-art technology can allow hand move-
ment sensing with high spatial resolution but must be cou-
pled with an action recognition algorithm to enable HCI
communication. Camera-based systems can find solutions
based on computer vision techniques, such as skin color,
skeleton, or motion recognition [20]. For radar applications,
however, given the difficulty of recognizing the shape and
contours of the hands, Deep Learning solutions are often
adopted [21].

Machine learning finds applications in the most varied
research areas, both for direct task solving and as a powerful
computational tool for speeding up and modeling processes.
Multiple topologies such as VGGNet [22], ResNet [23] and
Inception [24] have been developed in the recent years to
solve complex tasks with very high accuracy. Such networks,
however, to be trained and adapted, require a fair amount
of computing power and resources, which is not suitable for
deployment on most edge devices [25]. Appropriate models
for edge devices require specific topologies and learning
processes, often leading to a trade-off between performance
and adaptability. Research in the edge domain focuses mainly
on two areas, namely, the topologies optimization for deploy-
ment and post-training adaptation [26]. Effective methods
for reducing the size of models and the computation param-
eters include the use of information compression methods
such as SqueezeNet [27] and depth-wise separable filters
like the MobileNets [28]. Post-training model optimiza-
tion can instead be achieved without important loss of per-
formance, by employing techniques like quantization [29],
factorization [30], distillation [31] and pruning [32]. Edge
efficient models development has recently led to an industry
movement toward such a framework. Indeed, devices with
embedded deep learning components account for a large

portion of state-of-the-art HCI and Internet of Things (IoT)
solutions [33]. In most of today’s industrial applications of
deep learning, however, models and related learning algo-
rithms are tailor-made for specific tasks [34], [35]. While
application-tuned models can achieve outstanding perfor-
mance in complex and multidimensional problems, they
also imply visible adaptability and interpretability weak-
nesses [36], [37]. The target algorithms often employ a lot
of data to achieve high and robust performance. In addi-
tion, data labeling can be expensive because it may require
experts, or might be sparse and depending on real-time appli-
cations [38].

A relatively new branch of machine learning, called Meta-
Learning [39] has emerged to find proper solutions to prob-
lems where the adaptability on few data is essential. The idea
behind Meta-Learning is to use contextual information, so-
called meta-knowledge, to build a more robust model, easily
adaptable to new tasks with little data. A specific subclass of
meta-models called optimization-based [40] allows the trans-
fer of meta-information between tasks via gradient method
or parameters averaging. The general optimization-based
approach is to learn, for a set of tasks, the best possible
initialization of the parameters of a model, to make it eas-
ily adaptable in new contexts. The optimization is usually
performed in the form of an episodic adaptation within two
iterative steps. In base learning (inner-loop), a model learns
how to solve an N-ways task, where N is the number of
classes randomly sampled from the large set of training
classes (if classification). In the outer loop, called meta-
learning, an algorithm adapts the model following a gener-
alization learning objective. The examples (shots) used in the
inner loop are called of support, while the data used with
the objective of generalization are called of query. While
many meta-learning techniques rely on complex topolo-
gies and forms of gradient transmission to achieve high-
performance [41]–[43], optimization-based techniques, given
their generality, can enable the deployment of optimized
models on current edge technologies.

In this paper, we propose a meta-learning optimization-
based approach that enables the fast model adaptation on
new gestures also at the edge. Radar-based gesture recogni-
tion in short-range applications (in the range of a few cm)
represents a potential method of communication or interfac-
ing with portable systems such as smartphones. Depending
on the desired application, fast adaptation to new gestures
or data may be essential. This approach can be useful
not only for recognizing new action types, but also for
adapting to individuals with motor disabilities or visual
impairment, who are unable to perform an action in a
conventional way.

We first design a radar-based setup and preprocessing
suitable for the meta-learning context. Using the sensor
BGT60TR13C FMCW [44] we gather data for a total of
twenty hand gestures, performed by five users in three dif-
ferent environments. The collected raw data follow a definite
frequency-based preprocessing and are then elaborated on
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FIGURE 1. Block Diagram of the proposed model. For each gesture, the sequence of raw radar frames is initially processed in
frequency. It is then elaborated and concatenated in the time domain to obtain the range, velocity, and azimuth angle of arrival
information of the targets. A VAE, pre-trained on 12 training gesture classes, compresses the three-channel image into a
constrained multivariate latent distribution of dimension 15. The meta-algorithm training is done on a sequence of randomly
sampled tasks, exploiting the support and query data in an N-ways K-shots approach. As the meta-iterations progress, the
adaptability performance is assessed on tasks sampled from the 8 test classes.

the time axis for dimensionality reduction without relevant
information loss. Then, employing Model Agnostic Meta-
Learning (MAML) [45] as the base algorithm, we introduce
some methods to increase the generalization capabilities of
themodel over new tasks. Respectivelywe introduce dynamic
metaclass weighting (DMCW), task-specific gradient clip-
ping (TSGC), and evaluation-based Gaussian noise summa-
tion (EGNS). We then describe how, by using part of a
pre-trained Convolutional Variational Autoencoder (Conv-
VAE) in the classifier, we can greatly reduce the size of
the meta-model without a major loss in generalization per-
formance. The block diagram of the proposed approach is
depicted in Fig. 1.

We then compare the achieved results with other state-of-
the-art meta-learning algorithms, showing how our solution
leads to an optimal trade-off between network size, accuracy,
and latency time. Finally, we perform an offline adaptation of
the base model on Raspberryr Pi4 with Intelr Neural Com-
pute Stick 2 (NCS 2), to enable the embedded application and
the fine-tuning on eight defined test gestures. In this context,
the training time required to tune the model to a new task on
Raspberryr Pi4 and the inference time per single prediction
on NCS 2 are provided. The main contributions of this paper
are as follows:

1) Implementation of a proof-of-concept user-definable
radar-based hand gesture recognition system at the
edge. To the best of our knowledge, the first imple-
mentation at the edge in the field of radar-based user-
definable gesture recognition.

2) Use of a specific preprocessing aiming at simplifying
both time domain dependency and computational com-
plexity.

3) Conceptualization of some techniques aimed at
increasing the generalization capability of the algo-
rithm on unseen gestures.

4) Design of a dimensionality reduction method, through
a Conv-VAE, suitable for the optimization-based meta-
learning at the edge.

II. RELATED WORKS
In this section, we first analyze both general and radar-based
methods for hand gesture recognition. We then focus on the
specific works that involve the use of little training data, such
as meta-Llarning.

A large part of the literature focuses on the use
of vision-based techniques for gesture recognition [46].
Sagayam and Hemanth [47] proposed a method for inter-
preting and classifying RGB Camera-based hand gestures
using a 1-D hidden Markov Model (1-D HMM). Instead of
complex dynamic programming methods, a heuristic method
called Artificial Bee Colony (ABC) is used for the 1-D HMM
optimization. The presented algorithm leads to accurate and
fast models compared to other state-based methods. The
state-based approach, however, can be too slow and unsuit-
able for adaptation in new contexts. De Smedt et al. [48]
presented amethod for classifying dynamic hand skeletal data
using the linear Support Vector Machine (SVM). Kinematic
descriptors of gestures are extracted from the input data and
then statistically and temporally coded. The pre-segmented
data are then fed to the SVM for recognition. The method
leads to a very low computational latency in all experiments
and great performance on various datasets, but it is highly
dependent on the time encoding. Liao et al. [49] illustrated
a system for hand gesture-based alphabet recognition using
both RGB and depth information. The Hough transform
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applied to the depth information is used to remove the back-
ground from the color images. The feature extraction is
done through a Double-Channel Convolution Neural Net-
work (DC-CNN). The method achieves robust performance
on a large dataset but, the multi-channel approach makes
it unsuitable for recognition based on other classes of sen-
sors. Tran et al. [50] proposed a method that uses an RGB-D
camera and a 3D Convolution Neural Network (3DCNN)
ensemble to accurately and robustly recognize both gestures
and fingertip position in real-time. Recognition is achieved
through the hand skeleton-joint extracted by the recordings’
in-depth information. The model leads to a satisfactory accu-
racy of 97.12% on the test data. Despite the accuracy, the
method is computationally expensive and complex to adapt to
new gestures, such as those featuring finger-tip oscillations.
Azad et al. [51] presented amethod for classifying sequences
of hand depth maps by analyzing and sampling temporal
information at various levels. Gesture features in the form
of spatiotemporal information are derived using Weighted
Depth Motion Maps (WDMM). The extracted information
is further reduced by Principal Component Analysis (PCA)
and classified by a single hidden layer feed-forward neural
network (SLFN) with an Extreme Learning Machine (ELM).
Their proposed method achieves satisfactory results in three
different datasets, outperforming the results obtained by deep
learning methods. Although this algorithm is less computa-
tionally complex than most deep models, its architecture is
also closely related to the nature of the data and difficult to
generalize to other types of input.

Other classes of sensors used for touchless gesture recog-
nition solutions involve ultrasonic sensors andWi-Fi technol-
ogy. Das et al. [52] explored the use of ultrasonic sensors for
gesture recognition as low power and low-cost alternative to
optical sensors. The classification is achieved by combining a
CNN and a Long Short-Term Memory (LSTM) for both spa-
tial and temporal feature extraction. Ultrasonic sensors can
represent an alternative approach to radars but, if compared
to the latter, can be subject to interference phenomena and
not always application-adaptable. Zheng et al. [53] presented
a system for gesture recognition viaWi-Fi that enables adapt-
ability in various domains (i.e. orientation of people, loca-
tions, and environments). The method exhibits zero-effort
cross-domain adaptability employing a domain-independent
body-coordinate velocity profile (BVP) estimation method.
A Deep Neural Network (DNN) trained on a set of BVPs
thus allows for robust recognition of as many as 15 hand
gestures across domains without re-training needs. Despite
the versatility of the approach, the method still requires 5,000
samples for training and is not easily adaptable to new types
of gestures.

The literature on recognition using radar sensors mainly
focuses on Doppler or FMCW modulated radars.

Skaria et al. [54] illustrated a method for classifying
14 types of gestures captured by a Doppler radar via deep
CNN. The radar device employed is a miniaturized, low-
cost dual-channel receiver model. To successfully differen-

tiate among Doppler radar sensed gestures, the phase dif-
ference between the two antennas is exploited to infer the
angle of arrival (AoA). The method shows a classifica-
tion accuracy of 95% on the test and a clear differentia-
tion between classes. However, Doppler radars, due to their
limitation in spatial resolution, find limited use for gesture
recognition commonly employed for HCI. Lee et al. [55]
presented a method to improve the prediction accuracy in
hand gesture recognition by BGT60TR13C FMCW using
deep learning. The algorithm uses domain adaptation to
address the problem of gesture misrecognition due to perfor-
mance differences as users vary. The information extracted
from the FMCW radar is frequency processed to obtain
Range-Doppler Maps (RDMs). A 3D-CNN with an Incep-
tion structure processes the spatio-temporal sequence of the
RDMs for classification. In parallel, an adversarial domain
discriminator is used to minimize the differences between
gestures performed by different users. With this method,
the accuracy of 98.8% is achieved on seven gestures per-
formed by ten users. The domain adaptation represents a
powerful generalization tool in the presence of few data
but requires a related source domain rich in labels to suc-
ceed. Chmurski et al. [56] depicted how a neural network
with depthwise separable convolutions can lead to high accu-
racy values for FMCW radar-based gesture recognition while
operating in a low-power and resource-constrained environ-
ment. The model, built on eight hand gestures is optimized
and deployed on the Coral Edge TPU Board. This approach
although efficient is hardly adaptable to new actions.

In recent years, HCI research is evolving towards the
adaptability of systems in new contexts and with little data.
Rahimian et al. [57] presented a class of few-shot learning
architectures for gesture recognition via electromyography.
The designed approach succeeds in the generalization with
only a few examples per gesture by combining temporal
convolution with an attention mechanism using a meta-
learning approach. The contextual information acquired with
experience allows the model to adapt quickly even to new
gestures which have never been observed in the training
phase. Lu et al. [58] illustrated a one-shot method for ges-
ture recognition using 3D-CNN, by exploiting transfer learn-
ing methodology from models trained with big datasets to
strengthen the one-shot predictor. This approach, tested on
several Vision benchmark datasets, leads to good classi-
fication and latency results. Madapana et al. [59] explored
Hard Zero-Shot Learning (HZSL) on vision-based datasets
for dynamic gesture recognition. The work tries to solve
the classification problem by exploiting only limited training
information in the form of semantic description. Although the
achieved performance is far from direct data classification,
this paper shows that even minimal information can lead a
model to learn how to generalize.

Some work focused directly on the use of self-learning
techniques for radar-based gestures. Fan et al. [60] have
shown how a meta-learning approach can bring high gener-
alization benefits for radar-based gesture recognition using
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FMCW modulation. The information obtained by radar for
a set of seven gestures is preprocessed in the form of time
maps to extract the information of range, velocity, and angle
of arrival of the hands. The data is then fed in the form of
tasks to an LGM-Net-based architecture [61]. The method
leads to an accuracy of 97.3% on the 2-ways task employing
5 test samples per class. However, the multi-branch structure
and the elaborate learning process make it computationally
complex. Zent et al. [62] have recently presented a work that
focuses on gesture recognition using a Doppler sensor. The
information is processed as micro-Doppler spectrograms to
map over time the change in frequency caused by the hand
displacement atop the sensor. Rather than learning a direct
mapping between gestures and labels, the presented method,
called Weighting Network, based on Relation Networks [41],
learns to compare the test spectrograms with those used
for training. The presented solution has the great benefits
of not requiring adaptation training for new gesture types
and a relatively small number of parameters. However, the
architecture needs inherently to learn the direct relationship
between the support and query examples in the comparison
module. This characteristic, intrinsic to Relation Net-based
models, can lead as exposed in [63] to lack of adaptation in
the testing phase compared to other methods. Further, in [64],
it has been shown how an optimization-based method can be
effectively employed for HCI via FMCW radar by exploiting
simplified interfacing based on hand gesture sequences and a
classical CNN for classification.

III. SYSTEM DESCRIPTION AND RADAR PREPROCESSING
In this section, we present the various components of the
system (i.e., hardware details, operating parameters, and
recording setup) and the proposed preprocessing of the data
collected via radar.

A. GENERAL OVERVIEW OF THE PROPOSED FRAMEWORK
The proposed framework is shown in Fig. 2. First of all, the
raw radar signals are preprocessed to extract both frequency
and time information. The data obtained for each gesture in
the shape of range, Doppler, and AoA temporal maps, are
then used as meta-dataset for the optimization-based meta-
learning approach. Twelve types of gestures are used to train
the classifier, whereas the other eight are utilized for testing.
After the training process, the model is deployed through
the Raspberryr Pi4 on the NCS 2 and, adapted on new test
gestures to exhibit the proof-of-concept for adaptability.

B. RADAR BOARD
In this work, gesture sensing is performed by the
BGT60TR13C FMCW radar sensor [44], manufactured by
Infineon Technologies AG. The sensor is equipped with
a Transmit (TX) and tree Receive (RX) channels with an
included antenna integrated into the package. The informa-
tion is processed channel-wise in several steps, through the
board to which the sensor is connected Fig. 3. The operating
principle of the sensor relies on linear frequency modulation

FIGURE 2. Data acquisition through FMCW radar, signal preprocessing,
meta-dataset generation, and training and testing process for the
proposed meta-learning-based hand gesture classifier. The
orange-colored parts are hardware related. In yellow is the data
processing, while in green is the classifier part. The frequency analysis is
enabled by Fast Fourier Transform (FFT).

FIGURE 3. BGT60TR13 Radar System. The radar sensor, is mounted on top
of the board.

of continuous waves. The TX transmits periodic signals
called chirps and, the RXs receive signals reflected from the
targets located in front of the sensor. During operations, the
instant local oscillations are mixed with the reflected signals
and result in an output signal called the Intermediate Fre-
quency (IF). The IF signal is then passed to a baseband chain
and digitalized through an analog-to-digital converter (ADC)
with 12-bit resolution.

The BGT60TR13C is a miniaturized solution with a center
frequency f0 of 60 GHz and a bandwidth of about 6 GHz that
enables a high range solution (≈ 2 cm). The phase analysis
of the IF signal, exploiting the micro-Doppler effect [65],
can also enable the discrimination of displacements with
millimeter accuracy. Thanks to the 3 RX channels orthogonal
to each other, the radar enables the estimation of both azimuth
(between 65 and−65 degrees) and elevation (between 45 and
−45 degrees) AoA of targets. This system also features power
mode management and an operation-optimized duty cycle
to reduce power consumption to only 5 mW for applica-
tions within the 5 m range. The BGT60TR13C represents
so, a low-power and miniaturized solution for short-range
sensing applications.

C. RADAR PARAMETERS CONFIGURATION
The BGT60TR13 system allows to transmit for each so-called
radar frame, a sequence of Nc chirps with a single signal
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TABLE 1. Radar sensor parameters configuration.

duration time tc along the slow-time dimension. Each chirp
also consists of a number ns of samples along the fast-time
dimension. The transmitted signals use the saw-tooth wave
function modulation to enable a linear behavior during the
chirp rise phase. For an FMCW radar, the range resolution
1r and the maximum detection range Rmax can be derived
through the following formulas:

1r =
c

2Bw
(1)

Rmax =
1r
2
· ns (2)

where c is the speed of light and Bw represents the frequency
bandwidth around the central f0 frequency. A bandwidth
of 6 GHz, between 57 GHz and 63 GHz, has been chosen to
enable a high range resolution of about 2.5 cm. The number of
samples per chirp has been set to 32 for enabling the detection
of targets up to a range of 40 cm. Further, an ADC sampling
frequency Fs of 2 MHz has been chosen not to limit Rmax
because of signal conversion. The velocity resolution1v and
the maximum detectable velocity in a given direction Vmax
can be computed as:

Vmax =
c

4f0tc
(3)

1v =
Vmax · 2
Nc

. (4)

A number of 64 chirps per frame Nc with single signal
duration time tc of 390.4 µs, has been chosen to allow a Vmax
of about 3.14m/s and a1v of about 9.8 cm/s respectively. The
parameters used for radar configuration in the hand gesture
sensing application are in Table 1.

D. RADAR SIGNAL PREPROCESSING
The raw sensed radar data are not easily interpretable due
to spatial resolution constraints and the influence of noise
and environment surrounding the targets. While it may be
possible to develop an application based on raw data as input,
this would involve the training on a large amount of data that
only partially contains the target information. In this work,
we propose to process the signals first in frequency to extract
and separate the shifts in range and velocity caused by the
hands located in front of the sensor. For each detected gesture,
the information is processed frame-wise and then concate-
nated in time to project the range and velocity contents in
the 2-D plane. In such a way, Range Time Maps (RTM)

FIGURE 4. Diagram illustrating step by step the preprocessing used on
each radar frame. In orange are shown the operations performed in the
time domain, in green those done in the frequency domain, in blue the
AoA computation.

and Doppler Time Maps (DTM) are generated. Exploiting
the signal sensed by two RX channels, the AoA azimuth is
also estimated via Capon beamformer algorithm [66]. The
azimuth information is then processed and projected on the
temporal plane for each frame to form Angle Time Maps
(ATM).

1) SINGLE FRAME PREPROCESSING
For this application, the IF signal SIF (n) for each of the three
available RX channels n ∈ NRX is employed to build a frame.
For each n channel, the data are arranged in a 2-Dmatrix with
slow time for the x-axis (raws) and fast time for the y-axis
(columns). For each frame, by frequency analysis using Fast
Fourier Transform (FFT), the Range-Doppler Image (RDI)
is first calculated. The AoA azimuth is then estimated using
the Capon algorithm to build the Range Angle Image (RAI).
Fig. 4 depicts the various preprocessing steps used to obtain
frame-wise RDI and RAI.

The first part of the preprocessing consists of the following
steps.

1) First the mean values, computed over the fast time are
subtracted along the slow time axis.

2) The data are then multiplied with a Hanning window
along the fast time to minimize spectral leakage effects
for frequency analysis.

3) The 1-D FFT along fast time is executed to extract the
range information.

4) Hanning windowing is applied along the slow time
axis.

5) The 1-D FFT along slow time is performed on data to
extract the velocity information.

6) The moving target indication (MTI) is next applied
to discriminate targets against unwanted background
information, aka clutter (5).

SIF (n) = α · SIF (n)+ (1− α) · SIF (n) (5)
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where α is a parameter in the range [0 – 1] set to 0.9,
and SIF (n) the updated moving average for each frame.

7) AConstant False AlarmRate (CFAR) algorithm is used
for each channel n to filter the frequency peaks and
increase the Signal-to-Noise Ratio (SNR).

To further increase the SNR for the RDI computation, the
absolute value of the average of SIF (n) over theNRX , as shown
in (6).

RDI =

∣∣∣∣∣ 1
NRX
·

NRX∑
n=0

SIF (n)

∣∣∣∣∣ (6)

After using CFAR, the SIF (n) associated with the two RX
channels placed in the horizontal plane is processed by Capon
beamforming for the AoA computation. The absolute value is
then calculated and the RAI is generated.

2) GESTURE SENSING AND TIME PROJECTION
Gesture sensing begins when an average SIF for the three RX
channels is higher than a defined threshold, which is com-
puted every time the sensor is turned on for a new recording
session (i.e. new environment or new user). The threshold
is determined as the average value of the last 20 collected
frames (2 s) and it is used for comparison at every timestamp
during operation. A gesture is considered gathered when
the threshold is not exceeded for 5 consecutive frames. The
recording window has a length of 3.1 s and therefore contains
up to 32 frames for every performed action.

The stored frames, are then preprocessed in the form of
RDI and RAI and mapped into a lower-dimensional space
to compute the RTM, DTM and ATM. For each RDI or
RAI, belonging to a sequence of matrices definable as A :
{1, . . . ,m} × {1, . . . ,m} × {1, . . . , t} → R, where t ≥ 1, the
goal is to find the index (x, y) corresponding to the maximum
value amaxx,y .

Am,n =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


where m × n represents the range and Doppler dimensions
for the RDI and range and angle dimensions for the RAI. The
information, corresponding to the distance and velocity of the
target from the sensor, is extracted by taking from the RDI
the Colx(A) and the Rowy(A) respectively. The AoA azimuth
is instead extracted from the RAI by taking the Rowy(A). The
concatenation of the obtained rows or columns for the whole
gesture duration leads to the generation of the RTM, DTM,
and ATM. Fig. 5 illustrates graphically the principle of range
information extraction given a sequence of frames. Each
hand pose is represented by 3-channel information (RTM,
DTM, and ATM). The gestures collected with fewer than
32 frames are expanded via zero padding at the end of the
time sequences. All instances are normalized channel-wise
in the [0 – 1] range.

FIGURE 5. Example of time projection for an RTM generation.

FIGURE 6. Recording setup for gestures sensing. (a) shows the
Raspberryr Pi4 employed for data recording. (b) depicts the BGT60TR13
radar board on the tripod. (c) shows an example of performed action for
the class ‘‘rubbing.’’

FIGURE 7. Recording setup for the offline proof-of-concept of the system
generalization capability at the edge. The Raspberryr Pi4 is used for data
preprocessing, model adaptation and script running. The NCS 2 enables
the deployment of the developed meta-learning model for a specific
setup.

E. RECORDING SETUP
In this work, we sensed gestures via radar for a total of twenty
classes. The recording setup for data collection consists of a
Raspberryr Pi4 and the BGT60TR13 board. The radar board
is mounted on a tripod through a 3D-printed case. With the
defined radar configuration, a maximum detection range of
40 cm implies the potential use as short-range application
only. Such setup is therefore meant for handheld or turnstile
gesture recognition interfaces. The setup in its components
is depicted in Fig. 6. The actions have been performed by a
total of five users and in three different environments (office,
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FIGURE 8. Gestures vocabulary for the meta-training (a) and meta-test (b) datasets. N, S, W and E represent the cardinal points.

FIGURE 9. 2-D components t-SNE representation of the twenty gestures
of the dataset. Classes belonging to Dm−train are represented with a cross
marker. Classes belonging to Dm−test are represented by a point marker.

hall, and outdoor). These specific environments have been
chosen among several possible, as they represent three con-
trasting application contexts. In the office, the presence of
static furniture and devices placed in the radar’s field of view
can result in added reflections and subsequent noise in the
preprocessed signals. The hall and outdoors instead, represent
two wide environments where, in first approximation, only
the arm and potentially the body of the subject performing
the gesture fall within the field of view of the radar. The data
were collected partly outdoors to avoid possible dependencies
from secondary reflections given by devices and metal ducts
placed in the hall environment. The consent has been obtained
from users prior to data collection and asmuch anonymity and
privacy as possibleweremaintained during the data collection
and processing phases. Individuals of varying height [1.60
– 1.85] m and age [25 – 40] years with no relevant motor
or visual impairments have been engaged in the experiment.
The only information given to the users before performing
the gestures were the radar orientation, and the maximum
duration of the gestures of 3.1 s. The data have not been saved
in online archives and/or published. The chosen gestures

FIGURE 10. Comparison of RTM, DTM and, ATM between (a) Pulling, and
(b) Pushing. In this example, the range information allows a clear
distinction between the two classes.

are those most commonly employed for HCI in touchless
applications.

Only in the final test phase, to demonstrate the offline
proof-of-concept of the system’s adaptability to new gestures,
the developed model is deployed on Raspberryr Pi4 and
NCS 2. This setup is shown in Fig. 7.

F. GESTURES DATASET
For the meta-learning approach, the gestures are split by
classes between a meta-training Dm−train and meta-test
Dm−test sets. Fig. 8 illustrates the twelve training and eight
test gestures, respectively. The division of gestures has
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FIGURE 11. Comparison of RTM, DTM and, ATM between (a) left swipe,
and (b) right swipe. In this example, the azimuth information allows a
clear distinction between the two classes.

been performed randomly, with the only constraint to keep,
in the two datasets, the sets of gestures that are opposite to
each other. A t-distributed Stochastic Neighbor Embedding
(t-SNE) representation of the gestures in two components is
shown in Fig. 9.
Extracting both range and azimuth information is cru-

cial for correctly distinguishing some gestures from others.
Examples where RTM and ATM clearly allow a distinc-
tion between two classes are shown in Fig. 10 and Fig. 11,
respectively. Velocity information can improve the separation
between classes, especially concerning the spatial plane in
which the gestures are performed. In addition, such informa-
tion can help distinguish actions characterized by local finger
oscillations, such as rubbing and tickling Fig. 12.

IV. PROPOSED METHOD
In this section, we propose our approach, which belongs
to the class of optimization-based meta-learning algorithms.
We first introduce some methods to increase the model’s
generalization capability in comparison to the state-of-the-
art. We then present the adopted CNN topology and the
benefits of using a pre-trained Conv-VAE as a backbone in
the meta-learning phase to reduce the number of parameters.

A. OPTIMIZATION-BASED META-LEARNING
In a conventional optimization-based meta-learning approach
for deep learning, the optimization consists of two iterative
steps performed over the distribution of tasks p(T ), to train a
model represented by a parametric function fθ with parame-
ters θ . The two optimization steps are the following:

FIGURE 12. Comparison of RTM, DTM and, ATM between (a) rubbing and
(b) tickling. Local oscillation caused by finger movement in the velocity
profile can be noted for both classes.

1) In base-learning, for a batch of N tasks, an inner learn-
ing model fθ ′n with parameters θ ′n, tries to solve each
task Tn, given a dataset DT n and a task related loss
function to minimize LT n(fθ ).

2) In meta-learning, an outer algorithm makes use of the
information obtained through back-propagation of the
gradient in the inner learning phase to update the inter-
nal algorithm. The model trained during base learning
also minimizes an outer loss function Lext (fθ ′n ).

If the loss function defined for the task is differentiable,
the internal optimization is often performed by Stochastic
Gradient Descent (SGD) in K batches of training examples
belonging to DT n. The θ ′ parameters are computed as:

θ ′n = θ − γ ·

K∑
k=1

∇θL(k)
T n(fθ ) (7)

where γ is the inner loop learning rate of the meta-
algorithm. In [45], Finn et al. present a very general method
called Model Agnostic Meta-Learning (MAML) where the
meta-optimization across tasks is also performed via SGD,
by minimizing the function fθ ′n with respect to θ , for each
single task or N tasks sampled from p(T ).

min
θ

1
N
·

N∑
n=1

L(n)
ext (fθ ′n )

=
1
N
·

N∑
n=1

L(n)
ext (fθ−γ ·∑K

k=1 ∇θL
(k)
T n(fθ )

) (8)
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θ ← θ − β ·
1
N
· ∇θ

N∑
n=1

L(n)
ext (fθ ′n ) (9)

where β in (9) is the outer loop learning rate. In MAML
for few-shot supervised learning, two different data sets are
defined for each task Tn. Support samples Dn for base learn-
ing and query D′n for the inter-tasks generalization step in
the meta-learning phase. As can be seen in (8), meta-gradient
involves a gradient through a gradient and can lead to insta-
bility during training as well as resulting computationally
expensive. Antoniou et al. [67] present various modifications
to the MAML to enhance the learning stability and also the
generalization capability.

In our work, we adopt MAML as the base algorithm,
with a task batch size N of 1 and, we exploit some of the
methods presented in [67] to improve the training stability.
Specifically, we leverage the following contributions:
• Multi-Step Loss Optimization (MSL): instead of min-
imizing the outer loss function after the completion of
all base learning steps for support set task Dn, we do
an update after each inner-epoch i ∈ I , composed of
K batches, using D′n. Specifically, we exploit a set of
importance weights vi that enables a higher loss contri-
bution for the latest i in I .

θ ← θ − β · ∇θ

I∑
i=1

vi
K∑
k=1

L(k)
ext (fθ ′k ) (10)

In addition, as the meta-iterations performed on the
distribution of tasks p(T ) progress, the relative weights
of early epochs are decreased and, those of the late
epochs are increased. This strengthens the ability to
learn from every individual Tn task without potentially
destabilizing learning. In comparison to the method
proposed in [67], where the update of the outer loss
is performed after each step towards the support set
task, we suggest an update after each inner-epoch. This
leads to a trade-off between intra-task learning steps and
computational complexity.

• Derivative-Order Annealing (DA): the use of the
second-order gradient involves some computational
expenses and can make the optimizer inefficient and
unstable during the early training phase of MAML.
To overcome these problems, we anneal the derivative
order in the first 50 meta-iterations by exploiting the
first-order gradient information only.

• Cosine Annealing of Meta-Optimizer Learning Rate
(CA): to fine-tune the optimization via the outer algo-
rithm as the meta-iterations progress, we apply a cosine
annealing scheduling on the optimizer. This yields an
increase in generalization performance without impact-
ing the per task computation Tn.

We besides propose some methods that can increase the
generalization capability of MAML without bringing any
increase in computational complexity in evaluation and test-
ing. Respectively, for this purpose, we present the Dynamic

Meta Class Weighting (DMCW), Task-Specific Gradient
Clipping (TSGC), and the Evaluation-based Gaussian Noise
Summation (EGNS).

1) DYNAMIC META CLASS WEIGHTING
In a task learning approach with only a few data, a model can
easily overfit the training instances leading to weak classifi-
cation performance on the testing instances. Few examples
per class may not be informative enough for the description
and lead to significant misclassifications in testing. One way
to counter this is to use in the inner loop, for each task Tn, a set
of class weights ∀ c ∈ C , where C represents the number of
ways. Specifically, we propose to compute after each inner-
epoch, for each c ∈ C , a weight vc which is inversely
proportional to the number of correct predictions. The idea
is to sample for each task Tn, a balanced set of examples
Dc 6= {Dn;D′n} on which each inner epoch performance can
be dynamically evaluated. For a given class c, with corre-
sponding M weighting examples xm, the normalized weight
vc in the range [0–1] is computed as follows:

vc =
1∑C
c=1 vc

·

M∑
m=1

(ŷm − ym) (11)

where ym represents each instance-associated label, ŷm the
predicted label after every inner-epoch and, vc the computed
weights before normalization. The resulting vc weights are
used both in the base learning and the meta-learning updates
after each batch k in K . Respectively:

θ ′n = θ − γ ·

K∑
k=1

v(k)c · ∇θL
(k)
T n(fθ ) (12)

and for the meta-learning update, through MSL:

θ ← θ − β · ∇θ

I∑
i=1

vi
K∑
k=1

v(k)c · L
(k)
ext (fθ ′k ) (13)

Each inner update improves intra-task classification perfor-
mance by bringing more attention to minimizing LT n on
classes whose examples have been poorly classified. In addi-
tion, the outer update allows inter-task propagation of the
information obtained with the weights vc to improve general-
ization performance.

2) TASK-SPECIFIC GRADIENT CLIPPING
Task training performed with little data for a given number
of epochs I brings benefits in some cases but can also lead
to gradient explosion and instability in others. The model can
so overfit on a given task, making generalization to others
less effective. One solution to this is performing gradient
clipping for the intra-task updates when the gradient exceeds
a threshold, as presented by Pascanu et al. [68]. In our case,
we suggest using clipping in the intra-task phase, for each
batch k in K on the when the gradient g computed for LT n

29750 VOLUME 10, 2022



G. Mauro et al.: Few-Shot User-Definable Radar-Based Hand Gesture Recognition at Edge

exceeds a certain threshold h:
g =

∂LT n(fθ )
∂θ

,

g←
g · h
‖g‖

, if ‖g‖ > h
(14)

where ‖g‖ represents the L2 norm computed on the gradi-
ents. We propose further not to use gradient clipping for the
intra-task update on queries via Lext . By doing so, the query
update grants a higher contribution to the whole optimization-
based procedure.

3) EVALUATION-BASED GAUSSIAN NOISE SUMMATION
Training on a sequence of tasks for a large number of
meta-iterations can make the algorithm too specific on
Dm−train and thus decreasing the generalization capability on
Dm−test leading to the so-called meta-overfitting. One way
to counteract such behavior on Dm−train is to increase the
complexity of the task when the performance becomes very
high. One way to make a task n more complex is to add
Gaussian noise to the examples xn inDn or to their embedded
representations as to the output of the hidden layers of the
model. Specifically, we propose to sum to the output of
various depths of the model, random Gaussian noise in the
interval [−σ ; σ ] from the distributionN (µ, σ 2) generated for
each batch k in K . This Gaussian noise is activated for a new
training task only when the validation accuracy, performed on
a sequence of tasks, sampled by Dm−train, exceeds a defined
threshold.

B. PROPOSED TOPOLOGIES
For the optimization-based meta-learning approach, we
propose the use of two topologies. First a traditional one,
consisting of sets of convolutional layers for features extrac-
tion. Then, a structure that uses part of a Conv-VAE as
a backbone to considerably reduce the number of parame-
ters in the overall topology. For both neural networks, the
goal is, given a task Tn, to map the sequence of RTMs,
DTMs, and ATMs belonging to a gesture to the respective
class.

1) CONVOLUTIONAL NEURAL NETWORK
The first topology consists of three convolutional layers with
the final dense layer. The convolutional layers use 128, 256,
and 512 filters respectively, with a kernel size 3 × 3 and
a stride of 2. Each of these layers is followed by batch
normalization, to increase the training stability for each batch
k , and by the ReLU activation function. A Flatten layer and
a Dense layer are attached to the last of the three convolution
blocks. The Dense layer output neurons correspond to the
number of classes in the experiment. The classification is
enabled through the Softmax activation function, which maps
the output vector into a classes probability distribution. The
topology is depicted in Fig. 13.

FIGURE 13. CNN topology. For each gesture, consisting of RTM, DTM, and
ATM information in-depth channels, features are extracted from three
blocks of convolutional layers. A final dense layer with Softmax activation
enables the classification. The number of filters per convolution is noted
above the respective blocks.

FIGURE 14. Conv-VAE and Dense topology. To significantly reduce the
number of parameters compared to the convolutional model, the
classification is done by exploiting the encoder of a Conv-VAE pre-trained
on Dm−train. For the categorical classification, three Dense layers
connected to the final layer of the encoder (latent space) are used. The
number of filters and neurons in the various layers is noted above the
respective blocks.

2) Conv-VAE AND DENSE
The second topology exploits part of a Conv-VAE, pre-
trained on Dm−train, to significantly squeeze the input size.
The Conv-VAE compresses the three-channel information
(RTM, DTM, and ATM) into a constrained multivariate
latent distribution of dimension 15. The Encoder part of the
Conv-VAE model is then extracted and concatenated to a
sequence of Dense layers for task training. The Dense layers
consist of 256, 128, and N output neurons respectively, cor-
responding to the number of ways for the experiment. Also
for this topology, the outputs of the last layer are mapped
in a classes probability distribution through Softmax. The
layers extracted from the Conv-VAE are also trained during
optimization-based meta-learning for the N-ways classifica-
tion objective. The topology is shown in Fig. 14.

V. EXPERIMENTAL SETUP
In this section, we present and analyze the performed
optimization-based meta-learning experiments. Specifically,
we conducted 1-shot 2-ways, 1-shot 5-ways, 3-shots 5-ways,
and 5-shots 5-ways experiments. The algorithm and methods
presented are mainly analyzed in the 5-ways setup, to depict
their advantages. The algorithm has been developed in the
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FIGURE 15. Example of latent space generation (heatmap representation)
and reconstruction using Conv-VAE, for train (a) and test (b). For better
visualization of the instances, the RTM, DTM, and ATM channels are
concatenated as a single image.

Python programming language through the TensorFlowr

module. The performance tests for the state-of-the-art com-
parison, have been performed on a eight generation Intelr

CoreTM i5 processor (4-cores). At the edge side, the
Raspberryr Pi4 and NCS 2 have been employed. Conse-
quently, the RaspbianOS operating system has been utilized.
To run the model on NCS 2 and optimize the inference
process, we used the OpenVino module on Python.

A. META-LEARNING EXPERIMENTS
All experiments have been performed in a similar setup for
the two topologies (CNN and Conv-VAE + Dense). For the
topology with the Conv-VAE, the network on the Dm−train

dataset is first pre-trained. The employed loss function and
optimizer are binary crossentropy and Adam respectively.
A learning rate of 1e-4 is used for Adam. The training is
conducted on 200 epochs with a latent dimension of 15, i.e.,
30 descriptive parameters of the set of multivariate Gaussian
distributions. Since Conv-VAE is part of the category of deep
generative networks, it can also partially reconstruct Dm−test

instances without further training. An example of reconstruc-
tion on sampled classes from both Dm−train and Dm−test is
displayed in Fig. 15.

For the 5 ways experiments, the task training is performed
through 4 inner epochs and an inner-batch of size 2 for
1-shot, and size 3 otherwise. For both base-learning and
meta-learning phases, the Adam optimizer is used with β1
and β2 equal to 0 and 0.5 respectively. The inner learning
rate is set to 8e-4, whereas the meta-learning rate has an
initial value of 7e-4 with a decay step of 2,000. The chosen
number of meta-iterations is 2,200, while the classes for each
task are randomly sampled by Dm−train. The loss function
chosen for the classification is categorical crossentropy. In the
evaluation phase, accuracy statistics are saved and processed
every 220 iterations in the shape of box plots. For experiments
with the EGNS, a task buffer of length 5 has been chosen,
with a Dm−train validation accuracy threshold of 89%, 95%
and 98% for 1-shot, 3-shots, and 5-shots, respectively. For the

TSGC experiments, the gradient is clipped when the L2 norm
exceeds 0.5. For the DMCW, a total of 10 samples per class
is used for the computation of the weights. The generated
models are finally tested on 1,000 tasks sampled by Dm−test .
For DMCW and EGNS, the final task training is performed
as a traditional single-task optimization approach. For TSGC,
gradient clipping is also executed on the training batches.
The EGNS and DMCW are exclusively used during meta-
iterations, to increase the model’s generalization capability
over one or a few new examples of unseen classes. The
achieved prediction accuracy, model size, adaptation time,
and latency are evaluated and compared with state-of-the-
art techniques. In both the evaluation and testing phases,
10 examples per class are used for testing. This means that
in the 5-ways experiments, 50 test examples per task are
utilized.

B. PERFORMANCE EVALUATION
We first present the results obtained on a single experi-
ment, showing the benefits achievable on unseen classes
thanks to an optimization-based meta-learning approach.
Then, we conduct an ablation study, by analyzing the con-
tributions of the individual proposed methods, for both pro-
posed topologies. Next, we compare our achieved results
with those of some existing techniques in terms of neural
network size, prediction accuracy, and latency. All the experi-
ments for the proposed methods and ablation study have been
performed on a 4-core eight generation Intelr CoreTM i5
processor. Regarding adaptation at the Edge, we display the
results of adaptation time to new tasks and model deployment
on Raspberryr Pi4 and NCS 2.

1) EXPERIMENT ANALYSIS
The metric used to evaluate the training performance of each
model is validation accuracy. This parameter is estimated
after each meta-iteration, by evaluating the model on new
sampled tasks. For each validation two tasks are sampled
by the Dm−train and Dm−test respectively. A box-plot of task
statistics is built every 220 meta-iterations. Generalization
ability can be assessed by observing the variation in the box
plots as meta-iterations progress. In a successful experiment,
we observe the increase of the median accuracy on the
sequence of box plots, as well as the reduction of the intervals
of percentiles and whiskers. The trend of box plots for the
experiment with EGNS for the CNN topology is shown in
Fig. 16. The contribution of EGNS is combined with the
basic MAML + MSL + DA + CA algorithm, which we
term +MAML. Another possible way of assessing the gener-
alization capability is to observe the distribution of validation
accuracy as meta-iterations increase. Usually, for the first
training tasks, the accuracy tends to assume a multimodal
shape due to different complexity in tasks resolution. In the
training time, the model learns to resolve better new tasks
thanks to the improved parameters’ initialization. This leads
the accuracy distribution to have a negatively skewed ten-
dency towards the 100% correct classification. The accuracy
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FIGURE 16. The trend of box plots generated on classification accuracy in
the validation phase for the EGNS experiment with CNN topology. In
red (a), are the box plots built on the tasks sampled from the meta-train
dataset, while in blue (b) are those built over the meta-test. The mean
and median values are represented for each box plot by a triangle and a
line, respectively.

FIGURE 17. Density histogram of validation accuracy on test for the EGNS
experiment with CNN topology. First (a) and last (b) meta iterations.
Values q1 and q3 on the Gaussian indicate first and third quartiles,
respectively. Percentages indicate the amount of data in the sections of
the distribution. The accuracy, which does not assume a Gaussian
distribution, exhibits a negative skew for the last 220 meta-iterations.

density histograms, generated for the first and last 220 meta-
iteration box-plots, are shown in Fig. 17 for the CNN - EGNS
experiment. The quartiles and range percentages are noted
in the middle plot on a Gaussian distribution that could be
associated with the box plot. Roughly by definition, 50% of
the values are contained between the first and third quartiles
of the box plots. The actual accuracy distribution, however,
as can be seen, does not assume a Gaussian shape.

TABLE 2. CNN topology. Average accuracy results of 5-ways experiments
with 95% confidence intervals, computed over 1,000 final test tasks of
Dm−test . Individual methods are implemented in each experiment to the
base algorithm.

TABLE 3. Conv-VAE+Dense topology. Average accuracy results of 5-ways
experiments with 95% confidence intervals, computed over 1,000 final
test tasks of Dm−test . Individual methods are implemented in each
experiment to the base algorithm.

The generalization outcome can even be observed on
the individual classes by generating a cumulative confusion
matrix for sets of meta-iterations. In Fig. 18 are depicted the
confusion matrices of the first and last 550 meta-iterations for
the EGNS with CNN topology experiment. As can be noticed
from the matrices, as the iterations progress, the model learns
to solve quicker new tasks thanks to the updated initialization.
This also applies to the unseen classes belonging to Dm−test .

Some actions are more complex to distinguish between
each other because of similarities in patterns, thus leading to
specific prediction errors. It can be noted, for example, the
misclassification between right swipe and diagonal nw-se in
the confusion matrix onDm−train and specularly that between
left-swipe and diagonal nw-sw for Dm−test .

2) RESULTS ANALYSIS
All the experiments have been performed for both the pro-
posed topologies, analyzing the combination of the presented
methods against the base algorithm +MAML. Each experi-
ment, tested on 1,000 final test tasks, has been repeated three
times. The average accuracy results for the 5-way experi-
ments are presented in Table 2 and Table 3, respectively.

For the CNN topology experiments, the total number of
trainable parameters in the model is 1,562,629. This large
number of parameters, as can be noticed through accuracy
results in Table 2, allows the model to generalize well, guar-
anteeing with fast-adaptation, excellent results on unseen
classes. For such a topology, the DMCW method brings
no performance benefit. The model size enables extracting
more features from each data while query update after each
epoch throughMSL reduces the possibility of overfitting. The
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FIGURE 18. Cumulative confusion matrices for the EGNS experiment with the CNN topology. Confusion matrices are obtained on the first (a) and last (b)
550 meta-iterations in the validation phase for both training and test classes.

DMCW is even more counterproductive as the number of
shots increases. In such a case, the model comprehends better
the differences among classes, thanks to the higher number
of examples. For 1 and 3 shots experiments, individual use
of EGNS and TSGC leads to the highest accuracy. These
techniques give less importance to single tasks, thus favor-
ing the meta-learning objective. In the 5-shot approach, the
+MAML algorithm, allows without additional contributions,
to achieve the highest accuracy. The information provided
by the training instances is then enough to compensate for
possible overfitting and exploding gradients. For the first
topology, none of the experiments where the contributions
are combined bring accuracy benefits. For a model with
high feature extraction capability, the use of both EGNS and
DMCW techniques can make each task locally complex and
misleading. Thus, decreasing the significance of the meta-
learning updates.

For simulations with the Conv-VAE+Dense topology, the
total number of trainable parameters in the model drops to
only 118,851. Due to input information mapping to small
size, individual tasks may be more affected by overfitting
phenomena. In this case, the DMCW introduces benefits
compared to the basic version of the algorithm. This con-
tribution is also beneficial with 3 and 5 shots, probably
supporting the classification of the compressed information
squeezed by the backbone. For this topology, the best results
are achieved by combining the DMCW and TSGC meth-
ods. The classification of low-dimensional representations is
aided by class weighting for individual tasks. The TSGC,
on the other hand, avoids exploding gradient and gives more
importance to the outer loop update at the end of each inner
epoch. The combination of the three methods brings equal
or less satisfactory results than combining two of them for
1 and 3 shot experiments. With the use of 5 shots, the single
techniques contributions do not lead to better results than
with +MAML. This is probably due to the higher amount
of data available, which leads to smoother task training. The
accuracy results for both topologies in the 1-shot 2-ways
approach are presented in Table 4.

TABLE 4. Average accuracy results of 1-shot 2-ways experiments with
95% confidence intervals, computed over 1,000 final test tasks of
Dm−test . Individual methods are applied in each experiment to the base
algorithm, for both topologies.

TABLE 5. Training times to adapt to new tasks for both topologies on the
4-core Intelr CPU. Times, given a number of ways and shots, are
calculated as the average of the adaptation time of all experiments, each
tested and averaged over 1,000 final test tasks of Dm−test .

For 1-shot 2-ways experiments, the greatest benefits are
achieved through TSGC for both the topologies. For a 2-
ways application, the DMCW contributions are counterpro-
ductive or not significant. Class weighting with only two
categories can easily skew the learning towards one of them,
especially with small input sizes as for the second topology.
For similar reasons, the model can learn to over-depend on
noise augmented inputs via EGNS and rank worse on the
test data. For CNN, the use of combined EGNS and TSGC
brings some benefits, mainly preventing overfitting in the
base-learning phase, given the higher simplicity of the tasks.
The accuracy reached with the three techniques combined
depicts how preventing over-dependence on the individual
tasks can favor the generalization aim.

The average adaptation times to new tasks on the 4-core
Intelr CPU for the two topologies are listed in Table 5.
As can be seen from the table, the model size of the Conv-

VAE topology, which is an order of magnitude smaller than
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TABLE 6. Best-in-class results compared to the state of the art. Average accuracy results of the experiments with 95% confidence intervals, computed
over 1,000 final test tasks of Dm−test . The various algorithms have been tested under similar evaluation conditions on the 20 gestures dataset.

the CNN, allows a reduction of the adaptation time by half
for the 1-shot experiments. The time required to adapt to a
new task is further reduced for Conv-VAE when more than
1 example per class is employed. Regardless of the method
used, the inference time onCPU to predict the class of a single
example is on average 64ms for both topologies in the 5-ways
approach.

3) COMPARISON WITH EXISTING TECHNIQUES
The best-achieved results, obtained through the various
experiments and topologies, are compared with both meta-
learning state-of-the-art and classical optimization-based
algorithms, trained on Dm−train and tested on Dm−test .
Respectively, the Reptile [69] and MAML algorithms for
the optimization-based class and Weighting Net and LGM-
Net, employed in the papers [61] and [62] are trained on
our proposed gestures dataset. For the comparison, similar
evaluation conditions are used. The Reptile and MAML (2nd
Order) algorithms are utilized to train the proposed CNN
topology for 2,200 meta-iterations. The topology presented
in [61], adapted to 3-channel gesture information, has been
employed for the LGM-Net. The Weighting Net, with a fea-
ture dimension of 64, has been adapted to the shape of the
gestures and, the relative embedding module has been trained
to extract features only from the support instances. The accu-
racy results for the state-of-the-art algorithms, averaged over
three repetitions, are presented in Table 6.
As can be noticed from Table 6, the proposed method

with CNN topology performs the best in the 1-shot 5-ways
experiment, leading to better results than the Weighting Net
by around 3 %. In all the other experiments, the proposed
method performs slightly less accurately only compared to
the Weighting Net. With more than one shot, the Weighting
Net has the advantage of being able to mediate the predictions
obtained thanks to a sequence of comparisons of the query
image with those of support. However, with the availability of
only one example per class, it lacks this great feature and loses
robustness. The proposed methods though, lead in all the
experiments to better results than all the other optimization-
based methods. For simple experiments (2-ways) or a higher
number of shots, the difference in accuracy obtained between
the methods gets narrower. In such conditions, even the sim-
plest algorithms can achieve high feature extraction from
samples. So, the resolution of the tasks becomes less depen-

TABLE 7. Best-in-class results compared to the state of the art. Number
of trainable parameters per topology and experiment, computed over
1,000 final test tasks of Dm−test . The various algorithms have been
tested under similar evaluation conditions.

dent on the initialization making the employed generalization
techniques less effective.

The comparison in terms of model size is presented in
Table 7.

In terms of the number of parameters, the Conv-
VAE+Dense approach enables the generation of an order
of magnitude smaller models compared to the CNN. Even
if in terms of accuracy the second topology performs a few
percentage points worse than the Weighting Net, it requires
about half as many parameters for tasks resolution. Further-
more, among the comparedmethods, the Conv-VAE topology
results in the one with the least number of required variables.

Table 8 presents the time required for adaptation to a
new task (Ta) and the single-sample inference (Ti) for the
considered algorithms. Reptile and MAML are tested using
the same methodology as the proposed optimization-based
models. As they are utilized on the CNN topology, they
lead to results very similar to those of the proposed methods
and are, therefore, excluded from this table. For LGM-Net,
the two values of Ta and Ti are summed, given the high
degree of interdependence between themodules (Embedding,
MetaNet, and TargetNet) in its structure. For the Weighting
Net, Ta is estimated as the required time to map the support
examples to a reduced size via the EmbeddingNet. In this
case, Ti is computed as the needed time to process and
classify a query example through the entire model pipeline
after the support adaptation. In terms of adaptation time (Ta),
the proposed models take longer than the Weighting Net.
On the other hand, the optimization-based models enable the
instance classification in a significantly short time (Ti) and in
a way that is independent of the number of training shots.
In the 5-shot experiment, the proposed topologies require
only a quarter of the time needed by the Weighting Net
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TABLE 8. Best-in-class results compared to the state of the art. Adaptation time (Ta) and latency of prediction on single sample (Ti) per topology and
experiment, computed over 1,000 final test tasks of Dm−test . The various algorithms have been tested under similar evaluation conditions on the 4-core
Intelr CPU.

TABLE 9. Training times to adapt to new tasks for both topologies on
Raspberryr Pi4 (without NCS 2). Times, given a number of ways and
shots, are calculated as the average of the adaptation time of all
experiments, each tested and averaged over 10 final test tasks of
Dm−test .

TABLE 10. Training times to adapt to new tasks for both topologies on
Raspberryr Pi4 plus deployment time on NCS 2. Times, given a number
of ways and shots, are calculated as the average of the adaptation time of
all experiments, each tested and averaged over 10 final test tasks of
Dm−test .

for prediction. This brings a huge advantage in real-time
applications or implementations at the edge.

4) EDGE IMPLEMENTATION
The topologies presented in this paper use only NCS 2 com-
patible layers and procedures. All models, pre-trained with
the optimization-based approach on the 4-cores CPU, are
adapted at the edge to single tasks generated by Dm−test

via Raspberryr Pi4. The models are first tested on the
Raspberryr Pi4 without connecting NCS 2, consequently
using only the 4 ARM cores, to estimate adaptation time and
inference on single sample. The computed task adaptation
time are presented in Table 9. The models are then deployed
on the NCS 2 and, prediction inference for each test sample
is conducted at the device level. For the various experiments,
the achieved results in terms of summation of task adaptation
time on Raspberryr Pi4 and deployment on NCS 2 are
presented in Table 10.

As can be noticed from the Table 9 and Table 10, as the
number of samples per class increases, the time to adapt to a
new task rises significantly for the CNN topology, requiring
up to more than 21 s for an adaptation and deployment on the
NCS 2. On the contrary, the Conv-VAE+Dense, given the
much smaller number of parameters, requires less than 7 s
for a 5-shots task. Conv-VAE+Dense can therefore lead to a

TABLE 11. Recording (Ts) and preprocessing (Tp) times computed for a
random example belonging to each class of gestures. The time Tp is
computed over an average of 10 preprocessing repetitions on Raspberryr
Pi4.

saving of up to about two-thirds of the time. The results from
Table 9 highlight generally longer adaptation times for both
topologies on the Raspberryr. This is mainly due to compu-
tation limits, especially for the CNN topology as the number
of shots increases. In addition, the models, once deployed on
the NCS 2, allowmuch shorter single inference times (Ti) and
therefore enable potential real-time applications with very
low latency. The needed time for a single prediction after
model adaptation is topology-dependent. For both 2-ways
and 5-ways experiments, the model on NCS 2 requires an
average of 5 ms and 4 ms for CNN and Conv-VAE+Dense,
respectively. These values are significantly lower than those
obtained only via Raspberryr Pi4 (Table 9), where the pre-
diction of a single example takes on average 351 and 333 ms
for CNN and Conv-VAE+Dense, respectively. The demon-
strated results underscore how deploying on the NCS 2 can
be a very advantageous strategy when very low latency is
required. Since the adaptation is performed offline, the single
inference time does not consider the time required for gesture
sampling (Ts) and preprocessing time (Tp). These times are
dependent on the type of gesture performed, its intrinsic
duration, and the number of recorded frames before applying
zero padding. Table 11 presents the computed Ts and Tp
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times for one example per class of each of the 20 gestures. The
Tp values are obtained over an average of 10 preprocessing
repetitions of the same example performed on Raspberryr

Pi4. Thus, the total (end-to-end) time consists of the sum of
Ts+Tp+Ti.

VI. CONCLUSION
In this paper we present a complete pipeline based on hand
gestures performed on an FMCW radar, to exhibit a proof-
of-concept of user-adaptability for novel unseen hand poses.
The system solution, based on data collected for twenty
different types of gestures, from five users in three different
environments, allows not only the extraction of useful fea-
tures of performed actions but also a fast adaptation to new
gestures. The pipeline is composed of a first preprocessing
phase, then a meta-learning approach to generate the best
possible model initialization, and an edge-suitable adaptation
to new tasks and classes never faced in the training phase. The
specific preprocessing employed, thanks to the combination
of techniques both in the frequency and time domain, allows
extracting the main information of the gestures only, thus
significantly reducing the size of the raw data collected by
radar. The information constructed for each gesture, in the
form of 3 channels, represents the hand distance from the
radar, the action velocity, and the azimuth angle of arrival.
A meta-learning optimization-based approach, trained on
twelve of the processed gestures, depicts how new never
faced tasks can be more easily solved, thanks to the con-
text information extracted in the training phase. Three tech-
niques, aiming at increasing the generalization ability of
the model in comparison to the state-of-the-art, are pre-
sented: dynamic meta-class weighting, task-specific gradient
clipping, and evaluation-based Gaussian noise summation
respectively. The introduced methods have the great advan-
tage of improving the model’s parameters initialization in the
training phase without directly affecting the final adaptation
setup on the eight test classes. This enables both a more ver-
satile implementation at the edge and a very fast prediction on
new samples, reducing remarkably the computation latency.
Further, compared to other state-of-the-art techniques, the
optimization-based approach doesn’t involve the comparison
of the query samples with the support ones in the test phase,
thus, bringing to an additional time latency reduction. Two
different topologies for task resolution are presented. A first
topology based on a series of convolution layers consents
feature extraction for each sample thanks to a large number
of defined parameters. A second topology instead, employs
the encoding part of a Conv-VAE as a backbone to effi-
ciently extract features, thus greatly reducing the number
of model parameters. For such a topology, a greater effect
of the presented optimization techniques is visible, thanks
to the various contributions that counteract the effects of
overfitting, exploding gradient, and meta-overfitting. Thanks
to these features, this topology enables the generation of
models that perform very well in terms of accuracy but with
half the variables required in comparison to state-of-the-art.

Moreover, the results obtained at the edge optimistically show
how these algorithms can be used for real-time applications,
aiding the adaptation to new users, gestures, and situations.
To the best of our knowledge, this is the first user-adaptable
model implemented at the edge for radar-based HCI.

On the other hand, the generated models lead to an accu-
racy that is lower than the state-of-the-art in several exper-
iments. Other meta-learning algorithms, based on the clas-
sification of relations among examples, have the inherent
advantage of leading to more robust predictions. Future work
will explore the application at the edge of relational algo-
rithms and potential methods of reducing themodel size with-
out harming generalization capabilities. Experiments with a
broader set of gestures and examples will also be conducted,
examining the generalization ability of the models across
various splits of users and environments. Adaptive interfac-
ing, based on an approach such as the one presented in this
paper may be exploitable for people with motor or visual
impairments, due to their inability to perform classic actions
in a conventional manner. Since individuals without disabili-
ties have been considered in this current work, direct studies
will be conducted on analyzing how much radar adaptive
interfacing can be used and relied on in these particular use
cases.
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