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Abstract: Technological progress and digital transformation, which began with Big Data and Artificial
Intelligence (AI), are currently transforming ways of working in all fields, to support decision-making,
particularly in multicenter research. This study analyzed a sample of 5178 hospital patients, suffering
from exacerbation of chronic obstructive pulmonary disease (eCOPD). Because of differences in
disease stages and progression, the clinical pathologies and characteristics of the patients were
extremely diverse. Our objective was thus to reduce dimensionality by projecting the data onto a
lower dimensional subspace. The results obtained show that principal component analysis (PCA)
is the most effective linear technique for dimensionality reduction. Four patient profile groups are
generated with similar affinity and characteristics. In conclusion, dimensionality reduction is found
to be an effective technique that permits the visualization of early indications of clinical patterns with
similar characteristics. This is valuable since the development of other pathologies (chronic diseases)
over any given time period influences clinical parameters. If healthcare professionals can have access
to such information beforehand, this can significantly improve the quality of patient care, since this
type of study is based on a multitude of data-variables that can be used to evaluate and monitor the
clinical status of the patient.
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1. Introduction

In recent years, technological progress and digital transformation, which began with
Big Data and Artificial Intelligence (AI), have transformed society. In a parallel way, the
current COVID-19 pandemic has had a devastating effect on the world population at all
socioeconomic levels and has significantly impacted healthcare and biomedical research.
This has led institutions to explore possible synergies between the fields of computational
statistics and healthcare with a view to analyze the large quantity of data in medical records.
The information in these databases could be effectively used to support decision-making
and thus improve the quality of patient care [1].

In this sense, computational statistics, a field currently in exponential growth, has
developed new statistical analysis tools and algorithms in an effort to deal with new
needs in all knowledge areas, but particularly in biomedicine [2]. However, innovative
technological methods that work with large data repositories have created new problems,
such as those related to dimensionality and missing data [3,4]. More specifically, this
study highlights the need to explore more effective ways of improving data searches in
clinical profiles.
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Missing data are a common problem in most research fields since they introduce an
element of ambiguity in data analyses. This ambiguity may occur for different reasons such
as sample mishandling, measurement errors, dropped outliers, or simply a lack of analysis.
It is well known that in healthcare, missing data [5] can significantly reduce the size of the
sample if the analysis only considers complete cases. When missing data are ignored, this
can result in biased parameter estimations.

For this reason, multiple imputation by chained equations (MICE) has emerged as
the leading strategy to replace missing epidemiological data because of its simplicity and
capacity to maintain unbiased effect estimates and valid inferences. According to the litera-
ture on the topic, non-parametric tree-based imputation methods outperform parametric
methods in terms of bias and coverage when there are interactions or other nonlinear
effects between variables. However, these studies do not provide a fair comparison, since
they do not follow the generally accepted recommendation that any effect on the final
analysis model (including interactions) should be included in the parametric imputation
model. In fact, simulation has been used to show that the incorporation of interactions in
the parametric imputation model leads to a much better performance.

This analysis used two different MICE techniques. The first technique was the sample
method that performs a simple random sample, based on the observed values, and returns
them as imputations under the assumption that the data are missing at random (MAR). The
second technique is predictive mean matching (PMM), which reduces the bias in a dataset
by drawing real values sampled from the data and building a small subset of observations
where the outcome variable matches the outcome of the observations with missing values.

In this sense, data applications in the context of functional data analysis (FDA) are
of particular importance since they provide a new access route for similar situations in
multicenter studies [6,7].

This study addresses the problem of dimensionality by contrasting results obtained
with different dimensionality reduction techniques. These include the principal components
analysis (PCA) [8] and the random forest (RF) [9] by the Gini index and information value
by weight of evidence (WOE) (RF&IV), [10,11]. It also used parallel analysis with simulated
data and data resampling (PA-RES) for optimal factor-variable selection and the reduction
of the analysis space in order to generate new profile groups with similar characteristics [12].

2. Materials and Methods

In order to deal with dimensionality and missing data and thus obtain optimal patient
profile grouping, clinical practice guidelines currently place great emphasis on improving
existing healthcare models. The objective is to coherently classify patients, based on an
accurate diagnosis and effective clinical and healthcare management. Evidently, the evolu-
tion of comorbidities in these patients is an important healthcare challenge that depends on
a wide range of factors, such as strict adherence to prescribed treatments, healthy lifestyle
habits, and the ability to recognize the signs and symptoms of COPD exacerbation with a
view their prevention and/or treatment by means of a self-management plan.

In this context, we selected 32 epidemiological, clinical, and outcome variables to
optimize dimensional reduction and obtain a coherent classification of patients. At the same
time, our study also focused on the search for clinical profiles with a set of characteristics
linked to the development of a chronic disease. This points the way to a new access route
for dealing with similar situations in multicenter studies.

To best achieve our objectives, multivariate imputation was used to solve the problem
of missing data. The MICE method [13] was thus implemented along with other techniques,
such as the sample method and predictive mean matching [14], which perform well with
the clinical data and reduce the bias in the feature selection process.

In this sense, missing values are the first obstacle to modeling when there is 5–20% or
more data loss. This problem can be solved with the use of imputation techniques. In fact,
the choice of technique greatly influences the predictive capacity of the model. In most
statistical analysis methods, listwise deletion is the default method used to impute missing
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data. Nevertheless, it does not always perform well since it tends to lead to information
loss, and sometimes these data are necessary since they make other less relevant factor
variables meaningful for the analysis.

Some software packages work better with continuous variables and others with
categorical ones. It is thus a question of selecting the method best suited to the research
data and objectives. In this case, the package chosen was Multiple Imputation by Chained
Equations (MICE) because it is one of the most widely used in R and also because it creates
multiple imputations. The use of multiple imputations helps to reduce bias and has the
advantage of increasing efficiency in comparison to a single imputation (e.g., the mean)
that deals with uncertainty in missing data.

In addition, one of the most important characteristics of MICE is that it assumes that
missing data are missing at random (MAR). This means that the probability of a missing
value only depends on observed values and can be predicted by using them. For these
particular data, we assume that the missing data are missing at random (MAR) because the
missing value is related to some of the observed data of these measured variables, which
was not completed due to lack of clinical follow-up. In addition, the observed and missing
data are visualized to see if they present any type of specific behavior. The missing value
shows a general pattern with scattered missing data randomly throughout the data matrix,
and that may be conditioned by the observations of other variables of the data set different
from the main one, so they can be estimated from these observations. Therefore, we assume
that the missing data are MAR.

Furthermore, one of the advantages of MICE is that it imputes data on a variable-by-
variable basis by specifying one imputation model per variable. It is also able to handle
different types of variables and can manage the imputation of variables defined on a subset
of the data.

However, depending on the type of variable, there are also other methods that can be
used for the imputation of missing data [15]. These include Amelia [16], missForest [17,18],
Hmisc [19], and mi [20]. Despite the advantages of the previously described methods, MICE
was still regarded as the best choice for our study because it is a very versatile and adaptable
technique for all types of clinical variables. It imputes data on a variable-by-variable basis
and then combines the results to reduce the uncertainty in the missing values.

It goes without saying that handling missing values is a crucial step in data prepro-
cessing with machine learning. It is a fact that most of the algorithms used for data in the
feature selection process and the classification or estimation process only analyze complete
datasets. For this reason, in many cases, the strategy used for missing values [21] only
consists of analyzing instances with complete data or of replacing missing values with a
mean, mode, median, or a constant value. Generally speaking, discarding missing samples
or replacing missing values often causes biases in subsequent analyses of the data sets. For
this reason, the decision was taken to apply multivariate imputation using MICE.

Similarly, different multivariate techniques were applied by means of principal com-
ponents analysis (PCA) to reduce dimensionality. RF&IV defined the selection of variable
importance with random forest methods [22,23] by the Gini index and information value by
weight of evidence (WOE). The objective was to contrast and, when possible, further reduce
the dimensional space of the data-variables. Also applied was parallel analysis with simu-
lated data and data resampling (PA-RES) based on the random correlation matrix. These
techniques help to reduce the selection of variable importance by simplifying the analysis
space and only saving and considering relevant and accurate information. Our aim was to
thus provide a better clinical solution that is a true reflection of the actual population, and
at the same time, generate patient profile groups with identical affinities. Our study shows
that this method was able to effectively deal with the reduction of dimensional space.

After these analytical phases, the objective was to improve the performance capacity
of the high dimensional clinical database by optimally extracting the results and specif-
ically focusing on the problem of dimensionality reduction. It was also a question of
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dealing with the problem of missing values in order to properly classify patients based on
shared characteristics.

In this sense, the calculations were performed with the statistical software R [24].
All hypothesis contrasts had a p-value of 0.05. The procedure was carried out in various
steps. Firstly, MICE was used to impute the missing values. Secondly, different techniques
were applied to reduce the dimensional space of the set of data-variables. Of the different
methods tested (i.e., PCA, RF&IV, and PA-RES), PCA was found to yield the best results.
The final step was the description of the preliminary classification of the profile groups.
Their shared characteristics highlight the clinical results obtained by means of optimal
dimensional reduction.

The source of information for this study was the original database of the AUDIPOC
Study [25]. The descriptive–exploratory analysis (Table 1) of the 5178 patients admitted
for exacerbation of chronic obstructive pulmonary disease (eCOPD) showed that (i) 87%
were men and 13% women (with a mean age 73 years); (ii) 83% were smokers; and (iii) only
68% had spirometry performed on admission or discharge. All of the patients presented
diverse characteristics and clinical pathologies, depending on the severity and progression
of the primary disease. More specifically, 35% of the patients had an average hospital stay
of 10 days; 11% required ventilation support; and 28% were readmitted for exacerbation of
COPD. Of these patients, almost all of them (27%) were readmitted after 90 days with a 5%
rate of positive exitus.

Table 1. DESCRIPTIVE. Summary of epidemiological–clinical results.

Variables Mean SD Variables n (%) (No/Yes)

AGE 73.39 10.08 SEX (Male/Female) 4526 (87.4) 652 (12.6)
DUR_ADM 9.96 7.82 SMOKING_HABIT 906 (17.5) 4272 (82.5)
HEIGHT 1.64 0.08 SPIROMETRY_PA 1644 (31.8) 3534 (68.2)
WKG 74.85 15.55 ADM 3343 (64.6) 1835 (35.4)
BMI 27.88 6.03 VS 4596 (88.8) 582 (11.2)
SBP 136.4 23.85 EXACER_90DAYS 3793 (73.2) 1385 (26.8)
DBP 75.04 13.84 ReADM_EXACER 3751 (72.4) 1427 (27.6)
TEMP 36.78 0.82 DEATH_90DAYS 4873 (94.1) 305 (5.90)
RR 24.26 6.62 EXITUS 4919 (95.0) 259 (5.00)
HR 94.44 18.50 CHF 4058 (78.4) 1120 (21.6)
FEV1P 45.02 16.82 CCVSDM 2961 (57.2) 2217 (42.8)
FVCP 64.88 19.21 DM 3844 (74.2) 1334 (25.8)
FEVFVC 72.67 28.48 VD 3588 (69.3) 1590 (30.7)

CVD 4620 (89.2) 558 (10.8)
PVD 4422 (85.4) 756 (14.6)
MI 4505 (87.0) 673 (13.0)
NEPH 4691 (90.6) 487 (9.40)
ST 4506 (87.0) 672 (13.0)
ME 3828 (73.9) 1350 (26.1)

3. Results

The statistical software R [24] (version 4.1.0) is used to perform the analysis because it
is able to compensate aspects of the imputation of missing values [26] in certain variables
of the dataset. This is achieved with various methods in the MICE package [27] (sample
and predictive mean matching), with a view to completing and improving the final results.
Similarly, R provides the platform for the application of the different multivariate analysis
techniques using PCA, RF&IV, and PA-RES in order to reduce and optimize the dimensional
space of the dataset.

Figure 1 shows the status of the missing values in the database after an imputation
process is performed on certain variables of this dataset, using the MICE package [28] to
complete the information and optimize the final results.
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Figure 1. MICE. Dataset situation with > 5–20% of missing data before imputation. Original Dataset.

Variables sorted by number of missings:

Variable Count
HEIGHT 0.6237930

WKG 0.6210892
RR 0.5264581

FVCP 0.4103901
FEV1P 0.3810351

HR 0.1568173
TEMP 0.1465817

SBP 0.1145230
DBP 0.1145230

The outputs confirm that the same original results are obtained with both procedures
and that existing information is not affected. The satisfactory solution of the problem
is followed by new exploratory analyses. The imputation ultimately obtained a more
complete, accurate and real dataset for the application of multivariate techniques. Proof of
this is the graphical display in Figure 2, where, in each variable, the percentage is zero in
the pattern of missing data. This is reflected in the coincidence in the scatterplot, where
information is free of missing values and identical to the original. This signifies that it is
possible to extrapolate these results to the general population.

Based on the results of the imputation procedures (Figure 1), the success of the
pre-post application results is assured with 100% of the completed data (Figure 2) re-
lated to the epidemiological–clinical variables (Table 1). Slightly altered average results
pertain to height, 1.64 m; weight in kilograms (WKG), 74.85 kg; and body mass index
(BMI), 27.88 kg/m2.

Systolic blood pressure (SBP), 136.4 mmHg, is above the normal range of 90–120 mmHg,
which indicated a possible risk of CVD. However, diastolic blood pressure (DBP), 75.04 mmHg,
is within the normal range (60–80 mmHg), as is temperature (TEMP), 36.78 ◦C. Respi-
ratory rate (RR), 24.26 resp./min, is outside the normal range with 12–18 breaths per
minute, though heart rate (HR), 94.44 beats/min, is within the normal range (60–100 beats
per minute).

In regard to spirometry, FEV1 spirometry in % of theoretical (FEV1P), 45.02%, showed
severe alteration since the forced expiratory volume in the first second in normal conditions
is around 80%; FVC spirometry in % of theoretical (FVCP), 64.88%, reflected severe symp-



Mathematics 2022, 10, 696 6 of 14

toms since the forced vital capacity % is considered normal when it is greater than 70%
though the percentage varies with age. The previous FEV1/FVC ratio or high spirometry
(FEVFVC), 72.67%, indicates the presence of an undefined alteration in terms of obstruction
when the reference range is between 70–85%.

Figure 2. MICE. Dataset situation with > 5–20% of missing data after imputation. Modified dataset.

Similarly, the percentage detected in each of the pathologies associated with the
development of the main disease are the following: congestive heart failure (CHF), 22%;
cardiovascular comorbidity (CCVSDM), 43%; diabetes mellitus (DM), 26%; vascular disease
(VD), 31%; cerebrovascular disease (CVD), 11%; peripheral vascular disease (PVD), 15%;
myocardial infarction (MI), 13%; nephropathy (NEPH), 9%; solid tumor (ST), 13%; and
malleolar edema (ME), 26%. In addition, the single presence of COPD is 32%, since the vast
majority of patients (68%) are also suffering from other pathologies, which, depending on
the progression and severity of the main disease, often coexisted with COPD.

The following sections describe the three procedures applied as well as the results
obtained with each. This evaluation highlighted which is the best technique and its
advantages for this type of analysis [29].

3.1. Principal Components Analysis

The choice of the principal components analysis (PCA) [30] is motivated by the fact
that the inertia of the first dimensions is an indicator of the possible existence of strong
relationships between variables, as well as of the number of dimensions to be studied.

In addition, the PCA method is designed to work with numerical variables, so we
convert the binary or dichotomous categorical variables to numeric. There is the analogous
procedure for categorical variables, which is multiple correspondence analysis (MCA),
which we will use in the extension of these analyzes to obtain better results.

Moreover, the first two dimensions express 19.24% (Table 2) of the total inertia of
the dataset. This means that the cloud total variability of the individuals (or variables) is
explained by the 1:2 plane.

Obviously, this is a very low percentage, and the first plane represents only a small
portion of the data variability. Nevertheless, this value is larger than the reference value
(7.19%), which is equivalent to the 0.95 quartile of the distribution of inertia percentages
obtained by simulating 501 data tables of equivalent size, based on a normal distribution.
For this reason, the variability explained by this plane is significant. For even better
results, dimensions greater than or equal to the third can also be interpreted for the sake
of completeness.
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Table 2. Dimensional reduction with PCA—Eigenvalues.

Eigenvalues Dim.1 . . . . . . . . . . . . . . . . . . . . . Dim.32

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9
Variance 3.246 2.911 1.981 1.744 1.601 1.472 1.387 1.281 1.235
% of var. 10.143 9.098 6.191 5.451 5.004 4.600 4.336 4.002 3.860

Cumulative% of var. 10.413 19.241 25.432 30.883 35.887 40.487 44.823 48.825 52.685
Dim.10 Dim.11 Dim.12 Dim.13 Dim.14 Dim.15 Dim.16 Dim.17 Dim.18

Variance 1.144 1.097 1.041 0.982 0.964 0.950 0.920 0.910 0.874
% of var. 3.574 3.427 3.254 3.069 3.012 2.970 2.867 2.843 2.731

Cumulative% of var. 56.259 59.687 62.941 66.010 69.022 71.992 74.868 77.711 80.442
Dim.19 Dim.20 Dim.21 Dim.22 Dim.23 Dim.24 Dim.25 Dim.26 Dim.27

Variance 0.846 0.830 0.806 0.793 0.734 0.720 0.597 0.407 0.218
% of var. 2.465 2.593 2.519 2.478 2.294 2.250 1.684 1.272 0.682

Cumulative% of var. 83.087 85.680 88.199 90.677 92.971 95.221 97.085 98.357 99.039
Dim.28 Dim.29 Dim.30 Dim.31 Dim.32

Variance 0.183 0.058 0.043 0.020 0.004
% of var. 0.571 0.183 0.133 0.061 0.013

Cumulative% of var. 99.610 99.792 99.925 99.987 100.000

Consequently, the results of the analysis show that the estimation of the number of
axes worth interpreting meant restricting the description to the first 12, which are the most
informative. In fact, they present an amount of inertia (62.94%) that is greater than those
obtained by the 0.95 quartile of random distributions (40.78%). Since these axes are the only
ones carrying real information, the relevant description is thus located in them, primarily
in the first two, which are the ones that most contributed to the total inertia (Figure 3).

Figure 3. Decomposition of the total inertia in percentage of the explained variance.

3.2. Parallel Analysis

Similarly, a second verification of existing data is performed by applying parallel anal-
ysis (Figure 4) with simulated and resampled data [31] (PA-RES). The function (fa.parallel)
is used to optimally confirm the number of final components.

This analysis is an alternative technique that compares the data display with that of a
random data matrix (or random correlation matrix) that is of the same size as the original.
The function plots the eigenvalues for a principal component and factor solution and does
the same for random matrices of the same size as the original data matrix. Furthermore, for
raw data, the random matrices have two functionalities: (i) a matrix of univariate normal
data and (ii) random samples (randomized across rows) of the original data [32].

In short, in view of the results obtained, this analysis also suggests that 12 components
should be studied, which confirms the same number of components as the PCA analysis.
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Figure 4. Parallel analysis with simulated and resampled data.

3.3. Analysis with Random Forest and Information Value

To further optimize the number of components, a third verification (Table 3) is per-
formed with random forest, [33] by Gini index and information value by weight of evidence
(WOE) [34,35] to ascertain whether it is possible to effectively reduce dimensional space by
calculating the importance of variables, based on the data-variables explored.

Table 3. Application of the RF&IV method (Gini index and WOE).

VARIABLE IMP_RF IMP_IV RANKING_RF RANKING_IV RANKING_TOT

1 WKG 224.86344 0.0244 3 5 8
2 FEV1P 206.09781 0.0487 6 3 9
3 AGE 171.82978 0.2186 10 2 12
4 ReADM_EXACER 242.19560 0.0000 1 12 13
5 FVCP 192.07075 0.0310 9 4 13
6 HEIGHT 158.79108 0.2265 13 1 14
7 ADM 196.81619 0.0000 7 9 16
8 CCVSDM 209.72344 0.0000 5 16 21
9 EXACER_90DAYS 164.83231 0.0000 12 11 23

10 DUR_ADM 140.31719 0.0000 16 7 23
11 VD 194.26879 0.0000 8 18 26
12 SMOKING_HABIT 36.84869 0.0000 25 6 31
13 SPIROMETRY_PA 39.30613 0.0000 24 8 32
14 FEVFVC 233.34052 0.0000 2 31 33
15 BMI 212.88434 0.0000 4 30 34
16 CHF 87.92548 0.0000 20 15 35
17 SBP 166.60532 0.0000 11 25 36
18 PVD 90.87474 0.0000 19 20 39
19 VS 23.62432 0.0000 30 10 40
20 DBP 157.85915 0.0000 15 26 41
21 CVD 78.67005 0.0000 22 19 41
22 MI 85.35488 0.0000 21 21 42
23 HR 158.19131 0.0000 14 29 43
24 DM 36.56857 0.0000 26 17 43
25 TEMP 129.89077 0.0000 17 27 44
26 DEATH_90DAYS 22.99425 0.0000 31 13 44
27 RR 128.07834 0.0000 18 28 46
28 EXITUS 22.95276 0.0000 32 14 46
29 ME 39.31523 0.0000 23 24 47
30 NEPH 25.97349 0.0000 28 22 50
31 ST 23.82815 0.0000 29 23 52
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Based on the outputs, the conclusion coincided with that of the PCA analysis. Variables
could be reduced to 11 or 12, as reflected in RF (Gini Index). This method for the selection
of the importance of final variables is the most widely used and least restrictive because it
is a random process. Each time it is executed, it can show different output variables. In
contrast, another more demanding reduction (only five variables) is that carried out with
IV (WOE). This method significantly restricts final selection because it involves a measure
that determines the predictive power of a certain characteristic. Nevertheless, it should
not be applied in cases such as ours, in which the results would suffer from the loss of
relevant information contained in the main variables of the dataset and where there is prior
knowledge that these data are vital to clinical patient profiles.

In this sense, the best solution is provided by the PCA analysis with 12 principal
components. Figure 5 shows a detailed visualization of the results described by the 1:2
plane on the two most relevant axes. As previously mentioned, these are the axes that can
provide the most significant data in the specification of patient profile groups and which
can be extended to other more specific classification methods for pattern grouping.

Figure 5. Description of the 1:2 plane (variables vs. patients).

Given these results, Dimension 1 shows individuals characterized by a strongly posi-
tive coordinate on the axis (to the right of the graph) versus a negative one (to the left of
the graph):

• Group 1 shows high values for the following variables ordered from strongest to
weakest: CCVSDM, EXACER_90DAYS, ReADM_EXACER, ADM, VD, CHF, PVD, MI,
DEATH_90DAYS, and CVD; and low values for these other variables: SEX, FVCP, DBP,
TEMP, HR, and SMOKING_HABIT.

• Group 2 has high values for the following variables: VD, CCVSDM, PVD, MI, CHF, CVD,
AGE, DM, NEPH and FEVFVC; in contrast, low values for these others: EXACER_90DAYS,
ReADM_EXACER, ADM, SPIROMETRY_PA, EXITUS, SMOKING_HABIT, HR, DBP,
DEATH_90DAYS, and SBP.

• Group 3 shows high values for the following variables listed by strength: DBP, SMOK-
ING_HABIT, FVCP, SEX, SPIROMETRY_PA, HR, EXITUS, SBP, and TEMP. It shows
low values for these others listed by weakness: EXACER_90DAYS, ReADM_EXACER,
ADM, CCVSDM, VD, CHF, PVD, AGE, ME, and DM.

• Group 4 shows high values for the following variables: EXACER_90DAYS, ReADM_EXACER,
ADM, HR, VS, SPIROMETRY_PA, DEATH_90DAYS, EXITUS, ST, and DUR_ADM;
and low values in these others: CCVSDM, VD, CHF, PVD, MI, CVD, FEV1P, NEPH,
FEVFVC, and DM.
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On the other hand, Dimension 2 contrasts individuals with a strongly positive coor-
dinate on the axis (top of the graph) against a negative one (bottom of the graph). The
results show that there is a high correlation between two variables (EXACER_90DAYS and
ReADM_EXACER), which could summarize this axis (correlation 0, 0).

Of all the methods considered, the PCA [36] is found to be the most suitable for our
study. It is used to generate four profile groups with the same affinity and characteristics.
These results highlighted the need to further analyze the context of the information so that
an optimal route could be selected. In many cases, there are relevant data that should not
be discarded because they are necessary to complete a certain parameter, given its direct
relation to the main research objective.

4. Discussion

The results of this research indicate that the best dimensionality reduction is obtained
with 12 main components of the 32 in the initial set. The first dimension is found to be the
most relevant. Various patient-profile groups are generated with similar characteristics,
each of which has closely associated variables.

This association hypothesis ensures the correct application of the PCA method, since
one of the requirements is that the correlation matrix between variables must be quite
high, otherwise its application would not make sense. In this sense, before proceeding to
the imputation, given that the correlation structure can be quite sensitive to the different
imputation techniques, it must be studied according to the type of variables in the dataset
so as not to lose the relational quality of the original, which is necessary for the application
of the PCA.

For this case, we know that the MICE method uses the chained equations in this process
of random imputation of each variable, and these are conditioned to the imputed variables,
applying a mechanism of dependent chains in the probability distribution. Therefore, we
assume that this dependency is preserved in the correlation structure of the imputation
algorithm used, when missing values are modified, maintaining the relational quality of
the original dataset.

This study also confirms that the reduction of the plane significantly helps to broadly
detect (with no need of further classification) the visualization of the first signs of different
clinical patterns with similar characteristics. It also indicates that the development of other
pathologies (i.e., chronic diseases) over a period of time negatively influenced clinical
parameters. This is reflected in the irregular increase of vital signs and frequent hospital
admissions caused by such episodes. Other factors included the severity of the disease
itself, the advanced age of the patients, unhealthy lifestyle habits, as well as the harm
caused by exacerbations of the disease. The general clinical picture of COPD patients
is poor because the disease leads to a progressive deterioration of health. Precisely for
this reason, previous knowledge of this information can help to improve the quality of
healthcare for these patients.

Likewise, this type of computational analysis requires learning sophisticated tech-
niques in order to reduce the complexity of multicenter studies, which are characterized
by a multitude of parameter variables of potential use in the analytical process. The num-
ber of variables can make the analysis extraordinarily complex. Still another issue is the
problem of missing data, which often occurs in high percentages, and which thus requires
considerable analytical–exploratory attention and specialized techniques to improve the
information stored in large multicenter clinical databases or cloud-based repositories of
medical records.

In addition, there are various ways to improve healthcare data extracted from medical
records, the poor quality of which often limits their use. As previously mentioned, missing
data [37] is an important problem since, for various reasons, private and local medical
facilities often choose not to or fail to report critical statistics to centralized healthcare
systems and agencies. This makes it extremely difficult to take preventive measures that
would greatly improve the daily collection of data [38].
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For future analyses, we want to mention other competitor procedures that can help to
obtain better results in the mentioned methods. There are other nonlinear methods devel-
oped to reduce the dimensionality of the data to a smaller space, which could be studied for
this study, such as these algorithms: t-SNE (t-distributed Stochastic Neighbor Embedding);
Sammon mapping; Isomap; LLE (Locally Linear Embedding); CCA (Canonical Correlation
Analysis); MVU (Maximum Variance Unfolding); LE (Laplacian Eigenmaps).

5. Conclusions

This research explored how computational methods can be used to reduce dimension-
ality, [39,40] in multicenter databases. In such repositories, dimensionality reduction is a
vital necessity because of the huge number of clinical variables, which makes it necessary
to select the ones that are most relevant to the research objective in order to better focus
on the results. At the same time, this study highlights the existence of various methods of
solving the problem of missing data in the medical databases and shows how they can be
implemented to obtain higher-quality information from healthcare data sources.
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Glossary

Definition of variables
AGE Age (years)
SEX (Male/Female) Sex (Male/Female)
SMOKING_HABIT Smoking habit
DUR_ADM Duration of admission to the hospital (days)
HEIGHT Height (meters)
WKG Weight in Kilograms
BMI Body Mass Index
SBP Systolic Blood Pressure (mmHg)
DBP Diastolic Blood Pressure (mmHg)
TEMP Temperature (◦C)
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RR Respiratory Rate (resp./min)
HR Heart Rate (beats/min)
FEV1 Forced Expiratory Volume in the first second
FEV1P FEV1 spirometry in % of theoretical
FVC Forced Vital Capacity
FVCP FVC spirometry in % of theoretical
FEVFVC FEV1/FVC ratio with spirometry performed on admission or discharge
SPIROMETRY_PA Spirometry performed on admission or discharge
ADM Admissions for any reason after 90 days
VS Ventilatory support at any time of admission
EXACER_90DAYS Exacerbation of COPD after 90 days
ReADM_EXACER Readmission for exacerbation of COPD
DEATH_90DAYS Death after 90 days
EXITUS Exitus throughout the admission period
CHF Congestive Heart Failure
CCVSDM Cardiovascular Comorbidity
DM Diabetes Mellitus
VD Vascular Disease
CVD Cerebrovascular Disease
PVD Peripheral Vascular Disease
MI Myocardial Infarction
NEPH Nephropathy
ST Solid Tumor
ME Malleolar Edema
Acronyms
AI Artificial Intelligence
COPD Chronic Obstructive Pulmonary Disease
eCOPD Exacerbation of Chronic Obstructive Pulmonary Disease
EMB Expectation-Maximization with Bootstrapping
FDA Functional Data Analysis
IV Information Value
MAR Missing at Random
MICE Multiple Imputation by Chained Equations
mi Multiple Imputation with Diagnostics
MVN Multivariate Normal distribution
PA-RES Parallel analysis with simulated data and data resampling
PCA Principal Component Analysis
PMM Predictive Mean Matching
RF Random Forest
RF&IV Random Forest by the Gini Index & Information Value by Weight of Evidence
WOE Weight of Evidence
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