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ABSTRACT This article presents a novel application of the t-distributed Stochastic Neighbor Embedding
(t-SNE) clustering algorithm to the telecommunication field. t-SNE is a dimensionality reduction algorithm
that allows the visualization of large dataset into a 2D plot. We present the applicability of this algorithm
in a communication channel dataset formed by several scenarios (anechoic, reverberation, indoor and
outdoor), and by using six channel features. Applying this artificial intelligence (AI) technique, we are
able to separate different environments into several clusters allowing a clear visualization of the scenarios.
Throughout the article, it is proved that t-SNE has the ability to cluster into several subclasses, obtaining
internal classifications within the scenarios themselves. t-SNE comparison with different dimensionality
reduction techniques (PCA, Isomap) is also provided throughout the paper. Furthermore, post-processing
techniques are used to modify communication scenarios, recreating a real communication scenario from
measurements acquired in an anechoic chamber. The dimensionality reduction and classification by using
t-SNE and Variational AutoEncoders show good performance distinguishing between the recreation and
the real communication scenario. The combination of these two techniques opens up the possibility for
new scenario recreations for future mobile communications. This work shows the potential of AI as a
powerful tool for clustering, classification and generation of new 5G propagation scenarios.

INDEX TERMS Artificial intelligence, clustering, dimensionality reduction, propagation, t-SNE, unsuper-
vised learning, wireless communications.

I. INTRODUCTION

THE GROWTH in wireless communication networks
in recent years has been exponential. An increas-

ingly interconnected world, together with technological
advances, makes this field one of the main topics in
the research community [1]–[3]. 5G emergence promises
multiple improvements at the user level, including improved
transmission rates, reduced end-to-end delay, reduced power
consumption, improved energy efficiency and ultra-densified
networks [4]–[6]. In order to provide all these benefits, a
deep analysis must be performed over the communication
channels considered for these wireless communications. As

user demands are increasing, the diversity of communication
scenarios do it as well. New environments are emerging, as
for example, Vehicle-to-Vehicle (V2V) [7], UAV-to-UAV [8],
Ship-to-Ship (S2S) [9], High Speed Train-to-High Speed
Train [10], or any combination of the above [11]. The
characterization of these environments will be fundamental
to determine the communication channels key performance
indicators (KPIs): data rate, reliability, latency or transmit
power.
Since the number of these new scenarios is increasing,

the complexity of their analysis is also escalating [12].
In order to solve this problem, Artificial Intelligence (AI)
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appears as a tool that can be applied in the telecom-
munication field. Several examples show the feasibil-
ity of its use in this field, such as deep learning for
microwave imaging [13] and inverse scattering [14], sup-
port vector regression for antenna design [15] or deep
neural networks for estimation of the Direction-of-Arrival
(DoA) [16]. The AI field includes Machine Learning
(ML), where classification, clustering and dimensionality
reduction (DR) algorithms are found. Multiple classifica-
tion algorithms have been developed over the last decade,
like Deep Convolutional Neural Networks (DCNN) [17]
or Variational AutoEncoders (VAEs) [18]. In the same
way, several clustering methods have been developed, for
instance, k-means [19] or Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [20]. Finally,
some examples of dimensionality reduction techniques
include Principal Component Analysis (PCA) [21], Isometric
feature mapping (Isomap) [22], t-distributed Stochastic
Neighbor Embedding (t-SNE) [23] or Uniform Manifold
Approximation and Projection (UMAP) [24].
Among the works that combine communication scenarios

and AI techniques, the following are worth mentioning:
• Zhou et al. [25] propose a deep neural network (DNN)
and a score fusion scheme for classification purposes.
Four scenarios related to high-speed railway channels
(Rural, Station, Suburban and Multi-link) are classified
by using four channel features (K Factor, RMS delay
spread, RMS Doppler power spectrum and RMS angular
spread).

• Zhang et al. [26] apply several classifiers and clustering
techniques [k-nearest neighbor (k-NN), support vector
machine (SVM), k-means, and Gaussian mixture model
(GMM)] to identify four simulated scenarios (Urban
Macrocell (UMa) and Rural Macrocell (RMa) for Line-
of-Sight and Non Line-of-Sight). In order to perform
this analysis, four features are taken into account: Path
loss, K Factor, RMS delay spread and RMS angular
spread.

• Thrane et al. [27] propose deep learning techniques
to predict the path loss in the propagation channel at
2.6 GHz. A DNN is able to learn from input as dis-
tances, positions and satellite images. The DNN output
infers the radio quality parameters, which estimate the
path loss of the communication channel.

• Yang et al. [28] classify four scenarios related to
vehicular communications, i.e., urban, highways, NLoS
channels and tunnels. They use a back-propagation neu-
ral network (BPNN) and a feature set formed by four
features: power delay spectrum, shadow fading, RMS
delay spread and K Factor.

This work combines communication scenarios with AI and
ML techniques to propose a tool for clustering, classification
and generation of new 5G communication channels. The
main contributions of the work are as follows:

• We evaluate the potential application of t-SNE, an unsu-
pervised algorithm for dimensionality reduction and

clustering, in the communication field. Although t-SNE
technique is well known as a clustering tool, it has
not been widely applied in this field. To demonstrate
its potential as a powerful and promising tool for the
scientific community in this field, the authors cluster
five different communication scenarios by using six
channel communication features. The DR allows to per-
form a rapid visual classification of the scenarios. These
scenarios, of diverse nature, include real wireless com-
munication scenarios and measurements acquired in an
anechoic and reverberation chamber.

• A fitness function that chooses the t-SNE hyperparam-
eters is analyzed. This metric gives those hyperparam-
eters which provide the best visualization of clusters
in a two-dimensional plane. The clustering of scenar-
ios is able to show the separation of environments in
a very visual way. Moreover, it has been found that
t-SNE is able to separate a certain scenario itself into
several subclasses, showing its potential as clustering
technique.

• The authors make use of post-processing techniques
for scenario modification and generation, studying the
effect of a modified scenario in the clustering. As
previously stated, the recreation of new scenarios arises
as one of the main challenges for future mobile commu-
nications. The application of a DR technique validates
the scenario emulation. If an emulated scenario is
embedded in the same cluster than a real scenario,
it indicates that the DR technique considers both real
and emulated scenario as similar. These post-processing
techniques, together with classification and clustering
algorithms open up the possibility of new scenario
recreations.

The paper is organized as follows. Section II explains
the measurement scenarios that are analyzed throughout the
study and the domains in which the communication channels
scenarios are presented. Section III presents the clustering
technique, t-SNE, for the dimensionality reduction and the
input propagation parameters for this algorithm. Section IV
analyzes the results obtained from the clustering technique
in several communication environments. Section V provides
a comparison among several DR techniques for the analyzed
environments. Section VI applies post-processing techniques
in order to recreate propagation channel scenarios. Finally,
Section VII summarizes the conclusions extracted in this
work.

II. MEASUREMENT SCENARIOS
This section describes the measurements and environments
that are studied and depicted throughout this work. A distinc-
tion must be made between two main types of measurements.
On the one hand, controlled measurements are acquired in
anechoic and reverberation environments, where the physi-
cal conditions of the propagation channel are managed. On
the other hand, real measurements are collected in scenarios
that could become part of real communications. Finally, this
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FIGURE 1. Scheme of the semi-anechoic and semi-reverberation chamber. The scheme shows an anechoic setup, where the transmitter points at the receiver in LoS. In a
reverberation setup, the transmitter is rotated 180◦ and it points at the metallic wall. The azimuth (φ) and roll (β) angles correspond to the rotation of the transmitter in the XY and
XZ planes, respectively. The receiver is free to move in the XZ plane.

section explains the two domains (time and frequency) in
which the propagation channel is analyzed.

A. ANECHOIC AND REVERBERATION CHAMBER
The first group of channel measurements has been acquired
in the facilities of the Smart Wireless Applications and
Technologies (SWAT) research group, located at the
University of Granada, Spain. The facilities consist of a half
anechoic and half reverberation chamber with dimensions
5 × 3.5 × 3.5 meters (61.25 m3). Fig. 1 shows a three-
dimensional view of the chamber. The semi-anechoic part
is fully covered with absorbers which avoid any reflec-
tions. Thus, a receiver (RX) located inside the anechoic
environment that is pointed by a transmitter (TX), receives
exclusively the electromagnetic wave from the Line-of-Sight
(LoS) path. The semi-reverberation part is composed of
metallic walls. The presence of the metallic walls provokes
that the incident wave is reflected and diffracted into several
multipath components (MPCs) that reach the RX at differ-
ent times. This chamber has been thoroughly described, used
and validated in previous works for antenna and propagation
measurements [29]–[34].
In this work, several communication channels are mea-

sured for both anechoic and reverberation environments to
create a dataset that allows the study of the clustering of sce-
narios. For that purpose, the measurement system can move
both the receiver and the transmitter. The first one can be
shifted in the XZ plane, while the transmitter can be moved
in y axis, azimuth (φ) and roll (β) angles (see Fig. 1). The
receiver, initially aligned with the transmitter, is moved in

4 cm steps in the XZ plane, for a total of 11 positions in
each axis, resulting in 121 positions that form a square of
dimensions 40 x 40 cm. The transmitter adopts three azimuth
positions (−30◦, 0◦ and 30◦) in order to modify the pointing
angle. In addition, three roll angles (−30◦, 0◦ and 30◦) are
measured to take into account the polarization effect. Zero
degrees in the azimuth angle stand for the LoS path between
the pair TX-RX, negative angles for counterclockwise rota-
tion and positive angles for clockwise rotation. Zero degrees
in the roll angle imply no depolarization losses between TX
and RX. The combination of all possible configurations of
the measurement system provides 1089 scenarios for both
anechoic and reverberation cases. For the anechoic measure-
ments, the distance between antennas has been set to 160 cm.
For the reverberation measurements, the distance between
antennas is 600 cm, corresponding to the LoS between the
transmitter and the metallic wall plus the return path to the
receiver. Note that TX-RX antenna range is different for
the anechoic and reverberation cases. This fact increases the
diversity of the measured communication channels due to
the different ToA (Time of Arrival). Real communication
scenarios consider several ToAs, which have high influence
on the channel response. Therefore, this can be a critical
parameter in scenario clustering. These measurements gen-
erate the first two environments that will be evaluated: (i)
anechoic and (ii) reverberation.
The acquisition for environments (i) and (ii) is performed

with a Vectorial Network Analyzer (VNA Rohde & Schwarz
ZVA67), which measures the scattering parameters in the
propagation channel and can operate up to 67 GHz. The
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FIGURE 2. Photographs of the (a) indoor, (b) rooftop and (c) auditorium scenarios that form the dataset. Indoor photograph is taken from the RX perspective. Rooftop [36] and
auditorium [37] scenarios have been acquired at the Fraunhofer-Heinrich-Hertz-Institut.

chosen antennas for the acquisition are standardized gain
horns fed with a WR-34 waveguide-to-coaxial transition
(Flann Kband antenna Model: #21240-20) for both trans-
mitter and receiver. Radiating patterns of these elements
can be found in [29]. Prior to the acquisition process, a
TOSM (Through — Open — Short — Match) calibration
is performed to eliminate the effect of the coaxial cable.
Therefore the scattering parameters are measured from the
aperture of the radiating elements. The transmit power is set
to 10 dBm in the VNA. The frequency range for these sce-
narios goes from 24.25 GHz to 27.5 GHz, for a total of 651
frequency samples. This provides 5 MHz frequency separa-
tion. This band, also called 3GPP n258 [35], is considered
fundamental for the deployment of 5G and millimeter wave
communications in the European Union.

B. INDOOR AND OUTDOOR SCENARIOS
In addition to the anechoic and reverberation scenarios, three
additional scenarios that could be part of real communication
environments will be evaluated.
(iii) The third one is an indoor scenario located in the same

facilities than those from Section II-A. In this case, the
transmitter points at a furnished laboratory through the
chamber door [see Fig. 2(a)]. The receiver, placed in a
measurement system similar to the one in the previous
section, has mobility in XZ plane. Therefore, we con-
sider 121 positions in a square of dimension 40 ×
40 cm. The transmitter moves in the azimuth (−30◦,
−15◦ and 0◦) and roll angles (−30◦, 0◦ and 30◦)
for a total combination of 1089 configurations. When
φ = −30◦, TX points through the window on the right
side in Fig. 2(a). When φ = −15◦, TX points towards
the chamber door frame. Finally, the case φ = 0◦
describes the angle where TX points directly at RX
through the chamber door in LoS. The measurement
configuration, i.e., radiating elements, calibration pro-
cess, transmitted power, frequency range and frequency
samples, is similar to the one shown in environments
(i) and (ii).

(iv) The fourth environment consists of a dataset from a
rooftop outdoor scenario located at the Fraunhofer-
Heinrich-Hertz-Institut in Berlin, Germany [36] [see
Fig. 2(b)]. Two antennas are aligned in LoS with a
separation of 800 cm. Both TX and RX are steered
in azimuth angle from −45◦ to 45◦ with 64 possible
positions for each antenna. Moreover, the dataset is
increased by acquiring measurements placing the TX
and RX misaligned between them and also switched. In
order to keep a balance in the number of measurements
of each type, 1089 of the total number of measure-
ments are selected. The signal acquisition technique is
based on real-time sampling, where the sampling rate
is 3.52 GHz. The transmitted signal is centered in the
millimeter wave band at 60.48 GHz.

(v) The fifth environment comes from a dataset measured
in an auditorium at the Fraunhofer-Heinrich-Hertz-
Institut [37]. Similar to the previous scenario, two
antennas are aligned in LoS and the distance between
them is chosen to be 700 cm and 800 cm. TX and
RX can point in the vertical axis from −45◦ to 45◦
degrees with 64 positions. 1089 measurements from
this dataset are selected. The acquisition properties
and operation frequencies are similar to those of the
rooftop scenario.

The (iv) rooftop and (v) auditorium communication sce-
narios have been acquired at the Fraunhofer-Heinrich-Hertz-
Institut in Berlin, Germany. The datasets have been made
public through the NextG Channel Model Alliance. Further
information about the dataset, i.e., the acquisition process,
the channel sounder architecture and the scenario physi-
cal parameters for environments (iv) and (v), is thoroughly
detailed in [36], [37].

C. PROPAGATION CHANNEL IN TEMPORAL AND
FREQUENCY DOMAIN
In order to perform the clustering that will be shown in
Section IV, we need to extract several properties from the
communication channels that allow the differentiation of the
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five proposed scenarios. For that purpose, the propagation
channels can be analyzed in two domains, the temporal
domain through the Channel Impulse Response (CIR) and the
frequency domain through the Channel Frequency Response
(CFR).
Traditionally, CIR is modeled as follows [38]:

h(tn) =
K−1∑

k=0

αkδ(tn − τk) (1)

where tn refers to the n-th time sample, k is the index of
considered sample, K is the number of samples in the time
domain, δ(·) stands for the Dirac delta function, τk shows the
delay of the arrival in the propagation channel between the
pair TX-RX and αk denotes the complex amplitude which
takes into account the attenuation and phase change due
to the physical phenomena (reflection, scattering, refraction,
diffraction) that occur during signal propagation.
The CIR has its equivalent in the frequency domain

through the CFR:

H(f ) =
K−1∑

k=0

bke
−j2π f τk (2)

where bk stands for the complex amplitude of the CFR, and
e−j2π f τk denotes the complex exponential that depends on
the frequency and the time of arrival.
Once a measurement in one of the two domains has

been acquired, Discrete Fourier Transform (DFT) and Inverse
Discrete Fourier Transform (IDFT) allow the calculation of
the CFR from the CIR [eq. (3)] and vice versa [eq. (4)].

H(f ) =
tmax
T∑

n=0

h(tn)e
−j2π ftl (3)

h(t) =
B
�f∑

l=0

H(fl)e
j2π flt (4)

In eq. (3), tmax is the time of the last sample acquired and
T is the sampling period. In eq. (4), B stands for the total
bandwidth of the measurement band and �f is the frequency
step. Therefore, tmax/T and B/�f factors are the total num-
ber of points acquired in the time and frequency domain,
respectively.
As previously explained, environments (i), (ii) and (iii)

are analyzed through the scattering parameters acquired in
the VNA. Therefore, these environments follow the nota-
tion of the eq. (2). On the other hand, environments (iv)
and (v) are acquired through a channel sounder in the time
domain. Consequently, the acquired data can be expressed
as eq. (1). Since all environments need to be expressed in
both domains to extract the propagation features that will
be shown in Section III, we apply eq. (4) to the environ-
ments (i), (ii) and (iii), and eq. (3) to the environments
(iv) and (v).

III. AI FOR PROPAGATION MEASUREMENTS
As stated in Section I, Artificial Intelligence is becoming one
of the main topics in several research fields [39], [40]. In
wireless communications, AI emerges as a potential tool for
scenario recreation and generation in future mobile com-
munications. This section shows the clustering algorithm
that is implemented, the hyperparameters involved in its
performance and the channel features that are considered
as the input of this algorithm.

A. AN OVERVIEW OF T-SNE
The t-distributed Stochastic Neighbor
Embedding [23], [41], [42] is an unsupervised learning
algorithm that reduces the dimensionality of a high-
dimensional dataset {x1, x2, . . . , xN} into a low-dimensional
(2D) dataset {y1, y2, . . . , yN}. The high-dimensional space
is defined by the matrix X ∈ R

N×F , where N is the number
of communication channel measurements and F is the
number of communication channel parameters contained in
the high-dimensional space. Each row of X contains the
channel parameters of the i-th observation; namely, xi is a
row vector that can be defined as

xi = [
Ki, τRMS,i, τmean,i, τvar,i,PLi, η̄i

]
(5)

These communication channel parameters will be identi-
fied later on Section III-B. Similarly, the low-dimensional
space is defined by the matrix Y ∈ R

N×2. The dimension
of this space is set to two due to the ease of visualization
in a two-dimensional plane.
t-SNE arises as an improvement to the Stochastic

Neighbor Embedding (SNE), where the distances between
datapoints in the high-dimensional dataset are modeled as
joint probability distributions pij, known as the similarity
between the datapoints. Therefore, the similarity for every
pair xi and xj is computed as the probability pij, calculated
as follows:

pj|i =
exp

(
−∥∥xi − xj

∥∥2
/2σ 2

i

)

∑
k �=i exp

(−‖xi − xk‖2/2σ 2
i

) (6)

pij = pj|i + pi|j
2N

(7)

where σ 2
i is the variance of a Gaussian probability density

function (PDF) for the normal distribution centered in the
datapoint xi, pj|i and pi|j are the conditional probabilities
between the datapoints xi and xj, and ‖ · ‖ stands for the
Euclidean norm.
For the low-dimensional dataset, t-SNE uses a Student’s

t-distribution in order to define a joint probability denoted
by qij and calculated as:

qij =
(

1 + ∥∥yi − yj
∥∥2

)−1

∑
k �=l

(
1 + ‖yk − yl‖2)−1

(8)

Once both joint probabilities pij and qij have been
defined, t-SNE minimizes the Kullback-Leibler divergence
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[KL(·)] between joint probability distributions in the high-
dimensional (P) and low-dimensional (Q) spaces. Intuitively,
large pij values [eq. (7)] indicate that xi and xj are closer
in the high-dimensional space. In the same way, large qij
values [eq. (8)] indicate that yi and yj are closer in the
low-dimensional space. If the dimensionality reduction per-
forms a proper mapping, the probability distributions P and
Q should resemble each other. In order to quantify the qual-
ity of the dimensionality reduction, a cost function is defined
as [23]:

C = KL(P‖Q) =
∑

i

∑

j

pij log2
pij
qij

(9)

The minimization of this function indicates an accurate
mapping between the high-dimensional (probability distri-
bution P) and low-dimensional (probability distribution Q)
spaces. The minimization is made by using a gradient
descend technique, where the gradient has the following
form [23, Appendix A]:

δC

δyi
= 4

∑

j

(
pij − qij

)(
yi − yj

)(
1 + ∥∥yi − yj

∥∥2
)−1

(10)

Through several iterations of the algorithm, the
dimensionality reduction of the high-dimensional
dataset {x1, x2, . . . , xN} into a low-dimensional dataset
{y1, y2, . . . , yN} is improved. A detailed explanation of the
whole technique can be found in [23].
One of the key features of this dimensionality reduc-

tion technique is its flexibility given a set of configuration
hyperparameters. Previous works made by the authors [43]
have shown the relevance of a correct choice of hyper-
parameters. Particularly, we detected three hyperparameters
which are crucial in order to find a proper dimensional-
ity reduction. These parameters are: the type of distance
between datapoints, the perplexity, and the learning rate.
A brief explanation, as well as its relation to the previous
formulation, is given below.

1) Distance: Previous equations [eqs. (6), (8), (10)] con-
sider the Euclidean distance between datapoints. When
the variance between different features in the high-
dimensional dataset {x1, x2, . . . , xN} is in a different
range (see Section III-B), the Euclidean distance does
not give the same importance to all the variables. In
order to avoid this fact, the Mahalanobis distance takes
into account the covariance matrix ξ . Therefore, this
distance is used throughout the work. It is defined as:

dm
(
xi, xj

) =
√(

xi − xj
)
ξ−1

(
xi − xj

)T (11)

where ξ is the sample covariance of matrix X with
dimensions F × F.

2) Perplexity: In eq. (6), the conditional probability
depends on the variance of a Gaussian PDF σi. This
value is chosen such that the joint probability for all
the datapoints is fixed to a certain perplexity, which

is defined as:

Perpi = 2ψi (12)

ψi = −
∑

j

pj|i log2
(
pj|i

)
(13)

where ψi stands for the Shannon entropy. Since there is
not a single perplexity value that provides the optimum
performance, Section IV shows a search for a proper
value of this parameter in terms of visualization for
our datasets.

3) Learning Rate: This value is related to the convergence
of the algorithm through several iterations. For each
iteration, the learning rate ρ multiplies the gradient
shown in eq. (10) [23]. On the one hand, if this value
is too small, the gradient descent could be slow. On
the other hand, if this value is too high the gradient
descent might not converge correctly. In Section IV,
a proper value of this parameter is discussed for the
presented datasets.

B. COMMUNICATION CHANNEL PARAMETERS FOR
T-SNE
In this paper, five datasets have been shown in Section II,
containing 1089 communication channel measurements each
one, for a total of 5445. This leads to a six-dimensional
dataset composed by 5445 observations {x1, x2, . . . , x5445}.
Each measurement is characterized by six communication
channel parameters:

1) K Factor: It represents the relation between the dom-
inant multipath component, usually the LoS, and the
rest of multipath components in the time domain. It
is approximated as the ratio between the maximum
power component |hi(tnmax)|2max and the sum power of
the remaining taps in the power delay profile (PDP).

Ki = 10 log10

( ∣∣hi
(
tnmax

)∣∣2
max∑

n=0,n �=nmax
|hi(tn)|2

)
(14)

2) τmean: The mean delay is defined as the first moment
of the PDP [44]. It shows the average delay of the
power measured in the communication channel.

τmean,i =
∑

n=0 tn · |hi(tn)|2∑
n=0|hi(tn)|2

(15)

3) τvar: The variance delay is obtained as the second
moment of the PDP and depicts how fast the PDP
power varies in short time intervals.

τvar,i =
∑

n=0 tn
2 · |hi(tn)|2∑

n=0|hi(tn)|2
(16)

4) τRMS: The root-mean-square delay spread is calcu-
lated as the second central moment root square of
the PDP [44] and presents the power deviation of the
communication channel. Large values indicate that the
power is divided into several MPCs. On the other hand,
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small values are representative of scenarios where
the power is concentrated on the main MPC, typi-
cally the Line-of-Sight. In other words, this feature
describes the power dispersion in the time domain of
the communication channel.

τRMS,i =
√√√√

∑
n=0

(
tn − τmean,i

)2 · |hi(tn)|2∑
n=0|hi(tn)|2

(17)

5) Path Loss (PL): This parameter shows the attenuation
between the pair TX-RX due to propagation losses
through the communication channel. For this study,
this value includes the contribution of the antenna gain
from the TX and RX antennas. This value is calculated
as the absolute value of the channel frequency response
averaged over the complete domain of the CFR, i.e.,
averaged over all frequencies (PLi).

PLi(f ) = 20 log10(|Hi(f )|) (18)

6) Spectral Efficiency (η): The spectral efficiency is
defined as the information rate that can be sent through
a communication system, i.e., a propagation channel. It
is measured in bps/Hz and calculated as follows [45]:

ηi(f ) = log2

(
1 + SNR · |Hi(f )|2

)
(19)

where SNR stands for the Signal-to-Noise Ratio. Then,
ηi(f ) is averaged over the whole frequency range of
the measurement. The average spectral efficiency is
noted as η̄i.

Notice that the former expressions [eqs. (14)-(19)] stand
for the i-th observation. Once every communication channel
feature has been calculated, they form the six-dimensional
space xi for the i-th observation.

IV. CLUSTERING RESULTS
Once the theoretical basis and t-SNE have been explained,
this section presents and discusses the results obtained for
several clustering of communication scenarios, where each
subsection shows the results for a specific data subset. Good
scenario separation using clustering techniques involves the
unambiguous identification of communication environments.
This fact can be crucial in the classification and generation
of future communication scenarios, such as UAV-to-UAV,
S2S or V2V systems.
As demonstrated in [43], the Mahalanobis distance is the

distance metric that provides the best dimensionality reduc-
tion. However, clusters are also altered by the learning rate
and perplexity. For these two hyperparameters, the choice
of a proper value in terms of visualization is not trivial.
In order to solve this fact, we define a fitness function F,
which measures the ratio between the inter class distance
and intra class distance. Intra class distance is described as
the sum of distances in the low-dimensional space between
datapoints belonging to the same class. On the other hand,
inter class distance is defined as the sum of distances in

FIGURE 3. Fitness function for the subset composed by the anechoic, reverberation
and indoor datasets (see Section IV-A).

the low-dimensional space between datapoints from differ-
ent classes. If we use this fitness function, we are able to
find those configuration parameters that provide the largest
separation between classes. By maximizing this metric, the
visualization of the figures is easier for the reader due to
the formation of clear clusters. Mathematically, this fitness
function can be defined as:

F(X) =
∑

i∈X
∑

∀j/∈X de(i, j)∑
i∈X

∑
k∈X de(i, k)

(20)

F = 1

(Nc − 1)

Nc∑

X=1

F(X) (21)

where de stands for the Euclidean distance, X is the consid-
ered class, i, j, k are indexes represented by natural numbers,
and Nc > 1 is the total number of classes.

For a better visualization of the results, it is intended that
the inter class distance becomes as large as possible and the
intra class distance becomes as small as possible. Therefore,
the main idea is to find those parameters that maximize F.
As an example of this fitness function, Fig. 3 shows results
for the dataset composed by the anechoic, reverberation and
indoor datasets for values of learning rate and perplexity in
the range [1, 750] ∈ N.
Two main conclusions can be drawn from Fig. 3. First,

the algorithm tends to converge for learning rate above 15.
Below this value, the gradient descent in eq. (10) is too
slow and the algorithm is not able to find a good solution.
Second, when the learning rate is in a good range, the critical
configuration parameter is the perplexity. Too small or too
large perplexity values do not find an optimal solution since
small values do not properly group the clusters and large val-
ues tend to group inter classes, which minimizes the inter
class distance. Therefore, the optimal solution lies some-
where in between. In this case, the maximum is found for

VOLUME 3, 2022 481



RAMÍREZ-ARROYO et al.: ARTIFICIAL INTELLIGENCE AND DIMENSIONALITY REDUCTION

FIGURE 4. Clustering of anechoic, reverberation and indoor scenarios. Learning
rate and perplexity are fixed to 600 and 440.

perplexity values around 420. Specifically, the fitness func-
tion maximum is F = 5.23 for learning rate and perplexity
values equal to 600 and 440. This value means that, in aver-
age, the distance between datapoints from different classes is
5.23 times higher than distances between datapoints from the
same class. Due to this fact, the visualization of the clusters
in the low-dimensional space is straightforward. These t-SNE
hyperparameters (learning rate and perplexity) are detailed
on the caption of subsequent figures throughout this Section.
In addition, a radar chart (see Fig. 10) with the numerical

results of the mean and standard deviation of the communi-
cation channel properties for each possible scenario is shown
at the end of this section. The channel features have a direct
impact on the KPIs, i.e., they directly influence the behavior
of the communication channel. As an example, the spectral
efficiency is related to the network data rate performance.
These results are discussed throughout this section to provide
a rational explanation for the clustering results.

A. ANECHOIC, REVERBERATION AND INDOOR
ENVIRONMENTS
As a proof of concept, the first clustering includes the ane-
choic, reverberation and indoor scenarios. These scenarios
are characterized by different propagation conditions so that
we expect a good separation between clusters. The anechoic
environment is typically identified by an unique MPC since
the reflections are attenuated by the absorbers. In the rever-
beration scenario, several MPCs following an exponential
decay in the time domain are expected. These MPCs reach
the RX at discrete times due to the presence of absorbers in
the semi-anechoic part of the chamber. Finally, the indoor
scenario presents several MPCs following a continuous expo-
nential decay due to the presence of furniture in the room.
The clustering presented in Fig. 4 shows an excellent separa-
tion in the low-dimensional space when t-SNE is applied for
the communication channel parameters previously explained.
Note that a cluster is defined as the two-dimensional area
where the datapoint density is high, thus generating a group-
ing of observations expected to have some common behavior.
Looking at the radar chart (see Fig. 10), this separation is

FIGURE 5. Clustering of anechoic, reverberation and indoor scenarios for several
values of the azimuth angle. Learning rate and perplexity are fixed to 600 and 440.

obtained due to the following reasons. τmean is significantly
lower in the anechoic case due to the proximity between
antennas (160 cm), compared to the reverberation and indoor
cases (600 cm), where multiple reflections enlarge this dis-
tance even further. The K Factor is substantially larger in the
anechoic scenario due to LoS previously stated. However,
in the reverberation and indoor scenarios, this number tends
to be below 0 dB, meaning that the signal is more spread
across multiple MPCs. τRMS and τvar also play a key role
since they are small for the anechoic and reverberation sce-
narios. This fact can be explained due to the presence of
absorbers inside the chamber, obtaining a smoothed PDP
that reduces these two values. In the anechoic case, there
is one dominant MPC since the NLoS paths are attenuated
by the absorbers. In the reverberation case, several MPCs
impinge the RX. However, these MPCs have short delay
offsets since large delay offsets MPCs are attenuated by the
absorbers. Therefore, the absence of these absorbers in the
indoor scenario induces higher τRMS and τvar.

Inspecting Fig. 4, it can be observed that classes present a
tendency towards internal separation. Actually, the azimuth
angle can be considered as a discriminating parameter, divid-
ing the main class into subclasses. This change leads to the
results shown in Fig. 5. Indoor scenario can be separated into
three subscenarios depending on the angle, and anechoic and
reverberation scenarios tend to separate the central azimuth
angle φ = 0◦ from the others two. Since clear differences
are noticeable within the clusters themselves, Section IV-B
goes one step beyond and analyzes these differences.

B. DEEP ANALYSIS OF ANECHOIC, REVERBERATION
AND INDOOR SCENARIOS
Since Fig. 5 shows that intra class differences exist, t-SNE
is computed for each scenario (1089 datapoints) in order to
find intrapopulation separation evidences. The first case is
displayed in Fig. 6, where the clustering of the anechoic sce-
nario for three azimuth angles is performed. Two conclusions
can be drawn. First, the measurements for φ = −30◦ and
φ = 30◦ are mixed on the right side of the figure. This fact
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FIGURE 6. Clustering of the anechoic scenario for three azimuth angles (−30◦ , 0◦
and 30◦). Learning rate and perplexity are fixed to 650 and 240.

FIGURE 7. Clustering of the reverberation scenario for three azimuth angles (−30◦ ,
0◦ and 30◦). Learning rate and perplexity are fixed to 700 and 90.

can be explained from the symmetry of the semi-anechoic
chamber in the YZ plane (see Fig. 1). Due to the presence
of absorbers, the MPCs are attenuated, and the main MPC
(LoS case) reaches the RX identically for a positive or neg-
ative azimuth angle. Since no information about the angle
of arrival (AoA) is included in xi [eq. (5)], it is reasonable
that both angles are mixed. Secondly, the measurements for
φ = 0◦ tend to be correctly separated from the two previous
angles. For this angle, the perfect alignment for the TX-RX
antennas causes lower values for the path loss, and therefore,
higher spectral efficiency values. These differences between
angles explain the large values of standard deviation for the
spectral efficiency in Fig. 10(a).
The clustering for the reverberation scenario with three φ

angles is shown in Fig. 7. Although the cases φ = −30◦ and
φ = 30◦ were mixed in Fig. 5, it can be observed a good
separation between both angles in Fig. 7. Considering the
symmetry of the semi-reverberation chamber, these results
may appear to be incorrect. However, the presence of the

FIGURE 8. Clustering of the indoor scenario for three azimuth angles (0◦ , −15◦ and
−30◦) and three roll angles (−30◦ , 0◦ and 30◦) for φ = 0◦ . Learning rate and perplexity
are fixed to 600 and 140.

chamber door for φ = 30◦ has to be taken into account,
as well as the measuring table [see Fig. 2(a)]. The door
and the measuring table break the symmetry of the semi-
reverberation scenario in the YZ plane, altering the MPCs.
This leads us to conclude that the global dataset tends to
discover global differences among classes (inter class), giv-
ing less importance to intra class differences. The input data
must be adjusted to the specific classes when intra class
differences are searched, as depicted in Fig. 7.
The third case is shown in Fig. 8, where three azimuth

angles are clustered for the indoor environment. As shown
by the trend in Fig. 5, the three subscenarios are separable
into clusters. It is important to note that these three angles
correspond to three completely different pointing angles:
φ = −30◦ (TX points at the window of the reverbera-
tion chamber), φ = −15◦ (TX points at the chamber door
frame), and φ = 0◦ (LoS through the chamber door). Another
interesting detail is the separation of the angle φ = 0◦ into
two subclusters. It has been found that the upper left clus-
ter corresponds to β = 30◦, while the lower left cluster
groups the datapoints corresponding to angles β = −30◦ and
β = 0◦. Therefore, it is proved that this clustering technique
can also separate measurements as a function of the polariza-
tion of the incident wave. Note that the clustering of this roll
angle implies that the datapoints have been previously sep-
arated according to scenario and azimuth angle. As a result,
Fig. 8 is the consequence of a clustering in several layers
since the roll angle is three-levels depth (scenario, φ and β).
This fact proves t-SNE’s potential to cluster communication
scenarios at several depth levels.

C. ANECHOIC, REVERBERATION, INDOOR, ROOFTOP
AND AUDITORIUM
The last example mixes the clustering of previously analyzed
environments (anechoic, reverberation and indoor) with real
communication scenarios (rooftop and auditorium). The clus-
tering from these five environments is shown in Fig. 9. From
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FIGURE 9. Clustering of the anechoic, reverberation, indoor, rooftop and auditorium
scenarios. Learning rate and perplexity are fixed to 650 and 400.

an analytical viewpoint, it is observed an excellent separa-
tion between the three previous scenarios and new (rooftop
and auditorium) scenarios. However, rooftop and auditorium
seem to be totally mixed. The frequency, the distance and
the antenna positions are identical in both scenarios, being
the environment surrounding the radiating elements the only
difference. In the rooftop scenario, it is expected to obtain a
single peak in the PDP due to the outdoor nature. In the audi-
torium scenario, we would expect to get the main MPC due
to the LoS and several reflections from the walls. However,
due to the frequency and the distance to the walls of the
antennas, the LoS is dominant over any reflection (that is
attenuated) and a single peak is seen on the PDP. Therefore,
the auditorium scenario behavior is identical to the rooftop
scenario. Actually, Figs. 10(d) and 10(e) show how close the
communication parameters are for both scenarios, affirming
the previous explanation. Therefore, both scenarios are sim-
ilar in terms of electromagnetic wave propagation. This fact
explains that both scenarios are grouped in the same cluster.
As a last note, it should be remarked how part of the

anechoic datapoints tends to approach the rooftop and audi-
torium data. This data subset represents the orange dots seen
earlier in Figs. 5 and 6. These dots, belonging to the case
φ = 0◦, are characterized by a single peak in the time domain
corresponding to the LoS path. Since the signal shape in the
time domain is similar to the rooftop and auditorium cases,
these dots tend to stay close. The difference between them
is mainly due to the power amplitude and delay of the sig-
nal. This fact opens a way to the rooftop and auditorium
recreation from a controlled scenario as the anechoic case.

V. COMPARING THE PERFORMANCE OF
DIMENSIONALITY REDUCTION TECHNIQUES
Throughout the present work, clustering and dimensionality
reduction of the communication channels have been per-
formed using the t-SNE technique. Now, the efficiency of
t-SNE is compared with other state-of-the-art techniques

in order to demonstrate that this technique shows the best
performance of the presented approaches.
Three datasets are considered in the comparison. The first

one (Fig. 4) is composed by the anechoic, reverberation
and indoor measurements. The second one (Fig. 5) includes
these three scenarios plus the φ angle differentiation, for a
total of 9 classes. The third one (Fig. 9) is formed by the
three original scenarios plus the measurements obtained in
the Fraunhofer HHI, for a total of 5 classes. With respect
to the DR techniques, three state-of-the-art techniques are
selected to perform this study: PCA [21], Kernel PCA [46]
and Isomap [22]. Principal Component Analysis is one of
the oldest techniques used for DR. In summary, this tech-
nique aims to reduce the dimensionality of a given dataset
by preserving the variance statistical information. For that
purpose, this technique calculates linear functions of the vari-
ables contained in the original dataset. These new variables,
known as Principal Components (PCs), are uncorrelated to
each other and contain the maximum possible variance from
the original dataset. Typically, the PCs are derived by solv-
ing a singular value decomposition (see Appendix A). The
analysis of the PCs in our dataset showed that the most
influential communication channel parameters for the sce-
nario discrimination are the path loss and the K-factor,
followed by the spectral efficiency, and the time param-
eters (τRMS, τmean, τvar). One step further, Kernel PCA is
a PCA extension which allows a nonlinear dimensionality
reduction. For that purpose, Kernel PCA applies a nonlinear
transformation to the original dataset variables. This is done
through the dataset projection with a kernel function, e.g.,
polynomial, Gaussian, Laplacian [47] (see Appendix A). If
the dataset has a structure that can not be separated into a
linear subspace, Kernel PCA tends to improve the dimen-
sionality reduction performed by standard PCA. Finally, a
technique based on isometric mapping (Isomap) is proposed.
The Isomap aim is to preserve the geodesic distance of the
dataset in the low-dimensional space. To this end, Isomap
generates a neighborhood graph with K neighbors. Therefore,
the geodesic distance is estimated as the shortest paths in the
graph where each datapoint is connected to K neighbors. In
the end, the dataset is embedded into a low-dimensional
space through a eigenvalue decomposition of the matrix
formed by geodesic distances (see Appendix B).
Fig. 11 shows the dimensionality reduction of the datasets

previously detailed for PCA, Kernel PCA and Isomap DR
techniques. Note that Kernel PCA utilizes a Laplacian kernel
with γ = 0.1 and Isomap uses K = 15 neighbors. Visually,
the three columns should be compared with the DRs in Figs.
4, 5 and 9, respectively. It can be seen that none of these new
proposed techniques improves the performance of t-SNE in
terms of visualization. There are several areas in the low-
dimensional embedding space where multiple classes are
mixed together. Although there is a tendency of separating
classes, it is not as evident as we saw in t-SNE.
In order to quantify the quality of these embed-

ding spaces, the fitness function proposed in Section IV
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FIGURE 10. Radar chart of the anechoic (a), reverberation (b), indoor (c), auditorium (d) and rooftop (e) scenarios. The average value for each one of the five datasets is shown
in a solid dot. The standard deviation is represented as the width of the lines.

[eqs. (20) and (21)] is applied to each low-dimensional
space illustrated in Fig. 11. Table 1 presents the fitness
function for several datasets and DR techniques. Note that
a higher value of the fitness function is directly related to
a better clustering visualization of the considered commu-
nication scenarios. Concerning the first and second dataset,
t-SNE fitness function outperforms the results obtained by
PCA, Kernel PCA and Isomap. For the third dataset, t-SNE
also obtains a slightly better value. The results provided
in Table 1 support the visual comparison made in Fig. 11.
Both studies show that the performance of t-SNE for com-
munication channel embedding is superior compared to other
techniques.
As a final study, a classification of the classes in the

low-dimensional space is carried out. If a trained classi-
fier is able to correctly classify the observations in the
low-dimensional space, it means that the DR technique
properly infers and separates the discriminative aspects
of each scenario. Therefore, those techniques where the
classifier provides the highest accuracy are the ones whose
low-dimensional space includes the most easily discriminable
classes. Five well-established classifier families are con-
sidered: k-Nearest Neighbors (k-NN) [48], Support Vector
Machine (SVM) [49], Naive Bayes [50], Bagging [51] and
Linear Discriminant Analysis (LDA) [52]. k-NN classifies a
given observation based on the class of its closest neighbors,

where k is the number of considered neighbors. SVM finds
a mapping such that the different classes of the dataset are
divided into subspaces separable by a hyperplane with the
largest possible margin. The support vectors (SVs) are those
observations that bound the hyperplane (see Appendix C).
Naive Bayes is a classifier based on Bayesian statistics where
the observation features are considered independent. Under
this assumption, Naive Bayes estimates that an observation
belongs to a given class with the maximum a posteriori
decision rule (see Appendix D). Bagging, also known as
bootstrap aggregation, replicates the original dataset into sev-
eral new learning datasets. These new datasets are trained
independently by using independent classifiers (e.g., k-NN
or decision trees). Finally, the classification of each indepen-
dent classifier is aggregated into a single estimation by the
majority of the classifier predictions. Linear Discriminant
Analysis assumes that each scenario is modeled by a multi-
variate Gaussian distribution (see Appendix E). This model
leads to a subspace formed by linear decision boundaries.
Therefore, each region includes the observations for a given
class.
In order to perform the classification with each of the five

classifiers, a 10-fold cross validation is carried out. Each
10-fold cross validation is iterated 10 times for statistical
validity purposes. Therefore, the accuracy is calculated as
the average accuracy over the ten iterations of the 10-fold
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FIGURE 11. 2D dimensionality reduction comparison for multiple techniques and datasets. The rows show the following techniques: PCA, Kernel PCA and Isomap. The
columns represent the three datasets used during the work. For comparison with t-SNE, the low-dimensionality spaces in the first, second and third column are equivalent to
Figs. 4, 5 and 9, respectively.

TABLE 1. Fitness function for several datasets and dimensionality reduction
techniques.

cross validation. This procedure avoids outliers due to a
non representative sample choice of the training set in the
classifiers. Each iteration of the 10-fold cross validation
is randomised by shuffling the rows of the matrices X
(6D space classification) and Y (2D space classification).
Concerning the configuration parameters for the classifiers:
k-NN classifier considers k = 10 neighbors. SVM classi-
fier uses (Nc2 −Nc)/2 binary learners, i.e., a one-versus-one
strategy. The kernel function is linear, which means that a

linear boundary separates the classes. For the Naive Bayes
classifier, the probabilities according to Bayes rule are dis-
tributed following a Gaussian distribution centered on a
feature average value given a class. It uses a one-versus-
one strategy, providing the same binary classifier number
than in SVM. Finally, the bootstrap aggregation classifier is
formed by 100 independent decision tree classifiers. Each
decision tree includes on average 63% of the observations,
which are randomly chosen from the original dataset.
Table 2 shows the classification accuracy for these five

classifiers and three datasets. The accuracy is defined as the
number of predicted scenarios that matches the true class
over the total number of predicted scenarios for each class,
and the considered accuracy is the average for all iterations.
For a given classification technique and dataset (columns in
Table 2), t-SNE generally obtains the best accuracy com-
pared with PCA, Kernel PCA and Isomap. This fact implies
that t-SNE exploits in a better way the discriminative aspects
of each scenario. Although the accuracy for some datasets
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TABLE 2. Classification accuracy (%) by using several classifiers for several datasets and dimensionality reduction techniques.

is almost identical, note that the cluster visualization in the
low-dimensional space throughout the work is more straight-
forward in t-SNE. This fact is supported by the proposed
fitness function in eqs. (20) and (21), and Table 1.
As a final comparison, the classification accuracy of the

original 6D space is shown in Table 2. Since no information
is lost due to the application of a DR technique, the
expected accuracy should be larger than cases where DR is
applied. However, if DR works properly over the dataset,
the classification accuracy with DR should be close to
the classification accuracy without DR. Particularly, t-SNE
for 3 classes dataset obtains similar accuracies than 6D
space. This implies that t-SNE preserves the information
from the 6D space into the two-dimensional space. For
9 and 5 classes datasets, t-SNE obtains a misclassifica-
tion due to DR of 8.4% and 2.3% in average, respectively.
In exchange for slightly decreasing classification accuracy,
the space complexity decreases from 6D to 2D. An unique
case is found for the Naive Bayes classifier, where t-SNE
gets better classification accuracies than 6D space for 3
and 5 classes datasets. This is explained by the fact that
Naive Bayes assumes independence between the communi-
cation channel parameters (see Appendix D). This is not
meet in the 6D space and it induces classification errors.
However, the large separation achieved by t-SNE in 2D (see
Figs. 4 and 9) increases the classification accuracy. Finally,
it should be remarked that the misclassification between
the 6D space and PCA, Kernel PCA and Isomap is larger
than in t-SNE, which implies increased information losses in
the DR.
This section has demonstrated by three different experi-

ments (visualization in Fig. 11, fitness function in Table 1
and accuracy in Table 2) that t-SNE provides the best
performance compared to other state-of-the-art dimensional-
ity reduction techniques.

VI. GENERATION OF SCENARIOS
In our previous works [29], [30], [53]–[55], we have applied
post-processing techniques in order to modify several sig-
nals in anechoic and reverberation chambers. For example, a
time-domain signal acquired in the semi-anechoic and semi-
reverberation chamber can be modified to emulate several
environments [29], [30]. These works illustrate that it is pos-
sible to recreate different types of communication scenarios

from measurements acquired in the chambers. Now, the com-
bination of post-processing techniques and clustering with
DR techniques allows the generation and comparison of new
communication environments.
In Section IV, it was explained that the anechoic scenario

behaves similarly as the rooftop and auditorium scenarios due
to similar PDP shapes. The main differences between both
and what keeps them apart, are the distances between TX-RX
antennas and the acquisition frequency. On the one hand, the
time of arrival is affected by the TX-RX distance, which is
160 cm for the anechoic case and 800 cm the distance for the
rooftop and auditorium. Therefore, for a propagation speed c,
the time of arrival is 5.33 ns and 26.66 ns respectively (see
Fig. 10). On the other hand, the attenuation is affected,
again, by the TX-RX distance and the acquisition frequency
(25.875 GHz in the anechoic dataset and 60.48 GHz in the
rooftop and auditorium). Since the distance and the frequency
are higher in real scenarios, it is logical to find higher path
losses in the rooftop and auditorium in Fig. 10.
Once the theoretical basis is set, we are able to apply

a certain delay and attenuation to the anechoic dataset to
obtain a modified version as close as possible to the rooftop
and auditorium scenarios. In order to do this, we apply in
the frequency domain an attenuation factor to the anechoic
dataset such that the average path loss is equal to the aver-
age path loss in the rooftop and auditorium, i.e., −93 dB.
This attenuation factor is directly applied to the scattering
parameters acquired in the CFR. In the time domain, 21.33
ns delay is applied in the anechoic dataset, corresponding
to the time difference between the time of arrival of both
datasets. This value is also the time that a signal needs to
travel the distance difference between scenarios, i.e., 640 cm.
Once these changes have been implemented, t-SNE is exe-
cuted with the original datasets together with the anechoic
modified version. The results, presented in Fig. 12, show the
formation of a large cluster in the upper left corner. This
cluster is formed by the anechoic, rooftop and auditorium
datapoints, confirming that the modified anechoic datapoints
have joined the real scenarios. The fact that t-SNE can-
not separate those three scenarios proves that measurements
taken in controlled scenarios can recreate measurements from
real scenarios when post-processing techniques are applied.
To confirm this statement from another perspective, a

Variational AutoEncoder (VAE) [18] is applied as classifier
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FIGURE 12. Clustering of the modified anechoic, reverberation, indoor, rooftop and
auditorium scenarios. Learning rate and perplexity are fixed to 650 and 400.

FIGURE 13. Classification of communication scenarios by using a Variational
AutoEncoder.

to the parameters that constitute the communication chan-
nel. VAEs are composed by two neural networks, encoder
and decoder, respectively. On the one hand, the encoder
decreases the dimensionality of the inputs into a latent space.
On the other hand, the decoder learns how to reconstruct
the inputs from the latent space. Therefore, VAEs can be
proposed for two different purposes: classification [56]–[58]
and generation [59]–[61]. For classification purposes, the
Variational AutoEncoder minimizes the reconstruction error
for each class given the latent space. For generation pur-
poses, the encoder provides a set of latent space parameters
that characterizes the scenario, and the decoder generates
an estimation x̂i, which should be similar to the original
input xi. In this section, the VAE is set as a classifier
that assigns one of the five possible classes to each vec-
tor xi. Half of the data from each dataset is chosen to train
the VAE, 25% for validation and 25% for test. Therefore,
545 datapoints from each class are the input for the train-
ing process and 272 datapoints are for validation and test
purposes. Fig. 13 shows the classification accuracy of the

communication scenarios for the test data once the VAE is
trained. As discussed above, indoor and reverberation sce-
narios are well predicted with accuracy values above 97.5%.
However, the classification of anechoic, rooftop and audi-
torium scenarios shows poor results with accuracies below
47.1%. The average combined accuracy of these three sce-
narios is 44.24%. Considering that the classification of the
reverberation and indoor cases is good, a random classifi-
cation between these three scenarios would imply a 33%
accuracy, not far from the accuracy obtained with the VAE.
Results in Fig. 13 also confirm that the VAE is not able
to optimally separate the modified anechoic environment
from the rooftop and auditorium environments. Therefore,
the use of post-processing techniques to recreate real sce-
narios from anechoic measurements is satisfactory. As future
research, we intend to emulate communication scenarios by
using the VAEs generator function. Together with the time-
gating technique, we expect it to be a powerful generation
tool. This fact, together with the use of generative models
and deep reinforcement learning, opens up new possibilities
for the generation of future mobile communication scenar-
ios as Vehicle-to-Vehicle, UAV-to-UAV, Ship-to-Ship or High
Speed Train-to-High Speed Train.

VII. CONCLUSION
This work presents a deep analysis of the t-SNE technique
to cluster several communication channel scenarios. t-SNE
is a well-known technique in the AI and machine learning
fields. However, this technique has not been widely exploited
in the telecommunication field.
Six channel features have been extracted from 5089 mea-

surements of five types of communication scenarios: (i)
anechoic, (ii) reverberation, (iii) indoor, (iv) rooftop and
(v) auditorium. A deep study on the configuration param-
eters (learning rate and perplexity) has been performed for
the six-dimensional space formed by the communication
channel features. For fitting configuration values, t-SNE
exhibits outstanding performance in the ability to separate
communication channel scenarios. Moreover, it has been
seen how t-SNE is able to cluster at multiple sublevels,
performing a deep clustering. The case shown in Section
IV separates the scenario itself and the azimuth and roll
angles into subclasses, reaching three-levels depth. In fact,
Section V has proved the best performance of t-SNE as
DR technique compared with other techniques of the state-
of-the-art. Future research work includes the comparison of
t-SNE performance with others non-linear techniques which
preserve the data local structure, e.g., Uniform Manifold
Approximation and Projection (UMAP).
Finally, we have modified, by applying suitable post-

processing techniques, one of the controlled scenarios in
order to recreate another of the real scenarios. The mod-
ification of the delay and attenuation of a dataset formed
by an anechoic scenario has led to a scenario with similar
propagation conditions. The application of the t-SNE tech-
nique as a clustering algorithm and a VAE as a classifier has

488 VOLUME 3, 2022



proved that the modified version of the anechoic scenario
is confused with the real scenarios. This fact demon-
strates that the modification of communication scenarios
with post-processing techniques is feasible to recreate new
communication environments.
As stated in Section V, although VAEs are used for clas-

sification in this work, they have a much bigger potential
as generative models once the probability distribution of
known scenarios is well modeled. Therefore, future work
will include the generation of new scenarios based on the
knowledge acquired by the VAEs through the clustering
and classification analysis. The generation of new com-
munication scenarios seems fundamental from a technology
perspective due to the exponential growth of the users and
devices in the world. New mobile communication paradigms
need a deep understanding of the propagation environments
where the communications are held. The clustering technique
for communication scenarios and the recreation of scenarios
shown throughout this work arise as powerful tools to sim-
plify the understanding of a telecommunication deployment
in terms of the channels through which communications can
take place for future mobile communications. These tools
are able to provide a simple visualization of channel simi-
larities which at first sight may appear to be different and
thus increase the knowledge of the communication channels
in a telecommunication deployment.

APPENDIX A
PRINCIPAL COMPONENT ANALYSIS
Let X ∈ R

N×F be the matrix that represents the high-
dimensional space dataset, where X is centralized as X →
X − X̄. The single value decomposition (SVD) of X is:

X = P�QT (22)

where P ∈ R
N×L contains the eigenvectors of the matrix

XXT and Q ∈ R
F×L contains the eigenvectors of XTX.

�2 = �, where � is the diagonal matrix that includes the
eigenvalues of the matrix XXT (and XTX). Note that L is
the rank of X. We can define F ∈ R

N×L as:

F = P� (23)

where the rows of F include the principal components
into the low-dimensional space, also called projections. By
combining eqs. (22) and (23), it can be seen that

F = XQ (24)

Therefore, Q can be denoted as the projection matrix, since
it provides the linear combination needed to obtain the low-
dimensional space.
For the Kernel PCA technique, we have used a Laplacian

transformation as kernel function:

K
(
xi, xj

) = exp
(−γ ∥∥xi − xj

∥∥)
(25)

K ∈ R
N×N is the kernel matrix and xi, xj ∈ R

1×F are
the rows i and j of X. By using this kernel matrix K

together with the kernel trick [46], it is possible to obtain
the low-dimensional space of KPCA without an explicit
mapping. This problem could by solved by applying the
Laplacian transformation X → �(X), followed by standard
PCA [eqs. (22), (23) and (24)]. However, this is not usually
performed for computational reasons.

APPENDIX B
ISOMAP
Let X ∈ R

N×F be the high-dimensional space of our dataset
and xi, xj ∈ R

1×F be the rows of X. In the first step,
through k-NN, a graph G is created by connecting the node
i with the node j if it is one of its closest K neighbors.
In the second step, the Dijkstra’s algorithm is applied to
G in order to find the shortest path between observations i
and j. These distances are saved in the matrix D ∈ R

N×N .
In the last step, the low-dimensional space is created by
applying multidimensional scaling (MDS) [62] to the graph
distances D.

APPENDIX C
SUPPORT VECTOR MACHINE
SVM binary classifier is a supervised learning algorithm
which looks for a hyperplane that optimally separates a
dataset into two classes. The hyperplane is also intended
to maximize the margin between both classes. Two types of
classes can take place: separable classes, where the margin
between the hyperplanes is not crossed by any observations,
and inseparable classes, where the hyperplane can not sepa-
rate both classes and a penalty is applied for the observations
which cross the boundary. Under the inseparable classes
assumption, the hyperplane function is given by:

f (xi) = xiβ + b = 0 (26)

where β ∈ R
F×1 and b ∈ R

1 are the coefficients that define
a hyperplane orthogonal vector and a bias term, respectively.
The optimal hyperplane is found by minimizing:

min

(
1

2
‖β‖2 +

∑

i

κi

)
(27a)

subject to: yif (xi) ≥ 1 − κi (27b)

κi ≥ 0 (27c)

where κi is a penalty score applied to the i-th observation if
it crosses the boundary decision defined by the hyperplane.
yi = {1,−1} stands for the class of the observation.

This optimization problem is typically solved with
the method of Lagrange multipliers. The solution defines
the coefficients of β and the bias term b, which form the
boundary decision.

APPENDIX D
NAIVE BAYES
Naive Bayes is a supervised learning algorithm that learns
the data distribution through a training set. This algorithm
takes advantage of the Bayes rule and uses density estimation
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in a certain test set. The key point for this classifier is to
assume the features (communication channel parameters) to
be independent given a class. Therefore, in a binary learner
classifier, 2F independent predictors are created during the
training process. Let Zj|k ∼ N(μj|k, σj|k2) for j = 1, . . . ,F
and k = 1,−1 be a normal distribution with μj|k mean and
σj|k standard deviation for feature j and class k. Mean and
standard deviation are calculated as:

μj|k = 1

Nk

∑

{i:yi=k}
xij (28)

σj|k =
√√√√ 1

Nk − 1

∑

{i:yi=k}

(
xij − μj|k

)2 (29)

where Nk indicates the number of observations of the class
k in the training set, and

∑
{i:yi=k} is the summation only

including the observations that belong to the class k.
Once the predictors are trained, the probability that an

observation i belongs to the class k given F features is
calculated as:

P̂(Yi = k|Z1, . . . ,ZF)

= Pprior(Yi = k)
∏F

j=1 P
(
Zj|Yi = k

)

∑
k=1 Pprior(Yi = k)

∏F
j=1 P

(
Zj|Yi = k

) (30)

Pprior(Yi = k) is the prior probability that an observation i
belongs to the class k, calculated as the density of each
class in the training set. Note that

∏F
j=1 P(Zj|Yi = k) can be

performed due to the feature independence assumption.
Finally, the i-th observation is assigned to the class that

generates the maximum a posteriori probability.

APPENDIX E
LINEAR DISCRIMINANT ANALYSIS
Discriminant Analysis is a supervised learning algorithm
that divides a feature space into regions. LDA implies
that these regions are linearly separated, where each region
includes an observation set which belongs to a certain class
k. Mathematically, the observation xi is assigned to the
class k according to the classifier yi, where ŷi estimation
is calculated as:

ŷi = arg min
yi=1,...,K

K∑

k=1,k �=yi
P̂(k|xi) (31)

P̂(k|xi) is the estimated probability of belonging to class k,
given the observation xi. It is calculated as:

P̂(k|xi) = P(k)

P(xi)
P(xi|k) (32)

where P(xi|k) is a F−dimensional multivariate normal
density function for the observation xi given the class k:

P(xi|k) = 1√
(2π)F|ξ |e

(
− 1

2 (xi−μk)ξ−1(xi−μk)T
)

(33)

ξ ∈ R
F×F is the covariance matrix of X and μk ∈ R

1×F is
the mean for each feature given the class k. Both are com-
puted through the training dataset. Finally, P(k) is the class
distribution on the training set and P(xi) is a normalization
factor calculated as

∑
k P(xi|k) · P(k).

The i-th observation is assigned to the class k that
minimizes the expected cost in eq. (31).
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