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NUMERICAL SEMIGROUPS WITH CONCENTRATION

TWO

JOSÉ C. ROSALES, MANUEL B. BRANCO, AND MÁRCIO A. TRAESEL

Abstract. We define the concentration of a numerical semigroup
S as C(S) = max {nextS(s)− s | s ∈ S\{0}} wherein nextS(s) =
min {x ∈ S | s < x}. In this paper, we study the class of numerical
semigroups with concentration 2. We give algorithms to calculate the
whole set of this class of semigroups with given multiplicity, genus or
Frobenius number. Separately, we prove that this class of semigroups
verifies the Wilf’s conjecture.

1. Introduction

Let Z be the set of integers an let N = {n ∈ Z | n ≥ 0} the set of nonneg-
ative integers. A submonoid of (N,+) is a subset of N closed addition and
containing 0. A numerical semigroup is a submonoid S of (N,+) such that
N\S = {n ∈ N | n 6∈ S} is finite.

If S numerical semigroup and s an element in S, we denote by nextS(s) =
min {x ∈ S | s < x}. We define the concentration of a numerical semigroup
S as C(S) = max {nextS(s)− s | s ∈ S\{0}}. The least nonnegative integer
belonging to S is called the multiplicity, denoted by m(S). Clearly, we
have that if S is a numerical semigroup with concentration 1 then S =
{0,m(S),→}. If m is a positive integer, then the semigroup {0,m,→} is
denoted here by △(m) and it is called half-line or ordinary.

Our aim in this paper is the study the numerical semigroups with con-
centration 2.

If X is a nonempty subset of N, we denote by 〈X 〉 the submonoid of (N,+)
generated by X , that is,

〈X 〉 =

{

n
∑

i=1

λi xi | n ∈ N\ {0} , x1, . . . , xn ∈ X , and λ1, . . . , λn ∈ N

}

,

which is a numerical semigroup if and only if gcd(X ) = 1 (see [12]).
If M is a submonoid of (N,+) and M = 〈X 〉 then we say that X is a

system of generators of M . Moreover, if M 6= 〈Y〉 for all Y  X , then we
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2 JOSÉ C. ROSALES, MANUEL B. BRANCO, AND MÁRCIO A. TRAESEL

say that X is a minimal system of generators of S. In [12, Corollary 2.8]
it is shown that every submonoid of (N,+) has a unique minimal system
of generators, which is finite. We denote by msg(M) the minimal systemm
of generators of M , its cardinality is called the embedding dimension of M
and it is denoted by e(M).

This paper is organized as follows. In Section 2 we give a characterization
of numerical semigroups with concentration 2 in terms of its minimal system
of generators. If m ∈ N\{0, 1} we denote by C2[m] the set of all numerical
semigroups with concentration 2 and multiplicity m, that is,

C2[m] = {S | S is a numerical semigroup,C(S) = 2 and m(S) = m}.

In this section we will order the elements C2[m] making a rooted tree.
This ordering will provide us an algorithmic procedure that allows us to
recurrently build the elements C2[m].

Let S be a numerical semigroup. As N\S is finite, there exist integers
F(S) = max {z ∈ Z | z 6∈ S} and the cardinality of N\S denoted by g(S),
which are two important invariants of S called Frobenius number and genus
of S, respectively. See for instance [8] and [1] to understand the importance
of the study of these invariants.

We started section 3 by seeing that C2[m] is a finite set if and only if m
is odd. Besides we give an algorithm that allows us compute all elements of
C2[m] with a given genus.

Given S a numerical semigroup, we denote by N(S) = {s ∈ S | s < F(S)}
and its cardinality is denoted by n(S).

In 1978, Wilf conjectured (see [14]) that if S is a numerical semigroup
then g(S) ≤ (e(S)− 1)n(S). This question is still widely open and it is one
of the most important problems in numerical semigroups theory. A very
good source of the state of the art of this problem is [4]. Our aim in section
4 will be to prove that numerical semigroups with concentration 2 verify the
Wilf’s conjecture.

By using the terminology of [10], a numerical semigroup is irreducible if it
cannot be expressed as the intersection of two numerical semigroups properly
containing it. A numerical semigroup is a symmetric numerical semigroup
(pseudo-symmetric, resp.) if is irreducible and its Frobenius number is odd
(even, resp). This class of numerical semigroups are probably the numerical
semigroups that have been more studied in the literature (see [7] and [1]).

Given a positive integer F , denote by

C2(F ) = {S | S is a numerical semigroup,C(S) = 2 and F(S) = F}

and I
(

C2(F )
)

= {S ∈ C2(F ) | S is a irreducible numerical semigroup}.

In section 5 we define an equivalence relation ∼ over C2(F ) such that
C2(F )/ ∼=

{

[S] | S ∈ I
(

C2(F )
)}

where [S] denotes the equivalence class
of S with respect to ∼. Hence, to compute all the elements in C2(F ) it is
enough to determine all elements in I

(

C2(F )
)

and, for each S ∈ I
(

C2(F )
)

, to
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compute the class [S]. As a consequence of this study we give an algorithm
that allows us to calculate the whole set of C2(F ).

2. The tree associated to C2[m]

We started this section by presenting several characterizations for the
numerical semigroups with concentration 2.

Proposition 1. Let S be a numerical semigroup such that S is not half-line.

The following conditions are equivalent:

(1) C(S) = 2.
(2) h+ 1 ∈ S for all h ∈ N\S such that h > m(S).
(3) {s+ 1, s+ 2} ∩ S 6= ∅ for all s ∈ S\{0}.
(4) {x+ 1, x+ 2} ∩ S 6= ∅ for all x ∈ msg(S).

Proof. 1) implies 2). Let s ∈ S such that s < h < nextS(s). Since s 6= 0,
we have that that h > m(S) and thus nextS(s) − s ≤ 2. Hence h + 1 =
nextS(s) ∈ S.

2) implies 3). If s+ 1 ∈ N\S and s+ 1 > m(S), then by 2), we conclude
that s+ 2 ∈ S.

3) implies 4). Trivial.
4) implies 1). Suppose that msg(S) = {n1, n2, . . . , ne}. If s ∈ S\{0}, then

there exists (λ1, . . . , λe) ∈ N
e\{(0, . . . , 0)} such that s = λ1n1 + · · · + λene.

Let λi 6= 0 with i ∈ {1, . . . , e}. As by hypothesis {ni + 1, ni + 2} ∩ S 6= ∅, if
ni + 1 ∈ S then s + 1 = λ1n1 + · · · + (λi − 1)ni + · · · + λene + ni + 1 and
thus s + 1 ∈ S. In the same way, if ni + 2 ∈ S we obtain that s + 2 ∈ S.
Hence nextS(s)− s ≤ 2, that is, C(S) = 2.

�

Example 2. Using the previous proposition we deduce that S = 〈5, 7, 9〉 is
a numerical semigroup with C(S) = 2, because {5 + 2, 7 + 2, 9 + 1} ⊆ S.

Given m belongs to N\{0, 1}, we denote by
C2[m] = {S | S is a numerical semigroup,C(S) = 2 and m(S) = m} and

C2[m] = {S | S is a numerical semigroup,C(S) ≤ 2 and m(S) = m},

The next result characterize the set C2[m] and it has an immediate prove.

Proposition 3. If m ∈ N\{0, 1}, then C2[m] = C2[m] ∪ {△(m)}.

From this result it is easy to prove.

Lemma 4. If m ∈ N\{0, 1} and S ∈ C2[m], then S ∪ {F (S)} ∈ C2[m].

The previous result enable us, given an element S ∈ C2[m], to define

recursively the following sequence of elements in C2[m]:

• S0 = S,

• Sn+1 =

{

Sn ∪ {F(Sn)} if Sn 6= △(m)
△(m) otherwise.

The next result can be easily proved.
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Proposition 5. If m ∈ N\{0, 1}, S ∈ C2[m] and {Sn | n ∈ N} is the pre-

vious sequence of numerical semigroups, then there exists k ∈ N such that

Sk = △(m).

A graph G = (V,E) consists of a set denoted by V and a collection E
of ordered pairs (v,w) of distinct elements from V . Each element of V is
called a vertex and each element of E is called an edge. A path of length n
connecting the vertices u and v of G is a sequence of distinct edges of the
form (v0, v1), (v1, v2), . . . , (vs−1, vs) with v0 = u and vs = v.

A graph G is a tree if there exists a vertex r (known as the root of G)
such that for every other vertex v of G, there exists a path connecting v and
r. If (u, v) is a edge of the tree then we say that u is a son of v.

We define the graph G(C2[m]) as graph whose vertices are the elements

of C2[m] and (S, T ) ∈ C2[m] × C2[m] is an edge if T = S ∪ {F(S)}. As a
consequence of Proposition 5, we deduce the following.

Theorem 6. If m ∈ N\{0, 1}, then the graph G(C2[m]) is a tree rooted in

△(m).

The previous results allows us to construct recursively the elements of the
set C2[m]. From the root △(m) in each step we are connecting each of the
vertex with its sons. We will characterize the sons of an arbitrary vertex of
this tree, for that we need the following result.

Lemma 7. [9, Lemma 1.7] Let S be a numerical semigroup and x ∈ S.
Then S\{x} is a numerical semigroup if and only if x ∈ msg(S).

Proposition 8. Let m ∈ N\{0, 1} and S ∈ C2[m]. Then the set of sons of

S in the tree G(C2[m] is equal to {S\{x} | x ∈ msg(S), x ≥ F(S) + 2} ,

Proof. If x ∈ msg(S) and x ≥ F(S)+ 2, then by applying Proposition 1 and
Lemma 7 we have that S\{x} ∈ C2[m]. Hence S\{x} is a son of S with
F (S\{x}) = x.

Conversely, if T is a son of S, then T ∈ C2[m] and S = T ∪ {F (T )}.
Hence we deduce that T = S\{F (T )}). By Lemma 7, we have that F (T ) ∈

msg(S) and F (S) < F (T ). Since T ∈ C2[m] then, by Proposition 1, we
obtain that F (T ) − 1 ∈ T . Therefore, F (T ) − 1 ∈ S and consequently
F (T ) ≥ F (S) + 2. �

Example 9. Let us construct the tree G(C2[3]).
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〈3, 4, 5〉

〈3, 5, 7〉 〈3, 4〉

〈3, 5〉

54

7

The number that appears on either side of the edges is the element that
we remove from the semigroup to obtain its corresponding son. Note that,
this number coincide with the Frobenius number of the new son.

3. The genus of the elements in C2[m]

It is clear that, in the tree G(C2[m]), the elements of C2[m] with minimum
genus are the sons of △(m). Consequently, we obtain the following result.

Proposition 10. If m ∈ N\{0, 1} and S ∈ C2[m], then g(S) ≥ m.

Furthermore, we have the following equality {S ∈ C2[m] | g(S) = m} =
{△(m)\{m+ i} | i ∈ {1, . . . ,m− 1}.

From the previous characterization it is natural to ask which are the
elements of C2[m] with maximum genus. As a consequence of the next
proposition, we will see that if m is even then C2[m] contains elements of
any genus greater than or equal to m.

If S is a numerical semigroup, then N\S is a finite set and thus it is to
deduce our next result.

Lemma 11. If S is a numerical semigroup, then the set

{T | T is a numerical semigroup and S ⊆ T} is finite.

Proposition 12. Let m ∈ N\{0, 1}. Then C2[m] is finite if and only if m
is odd.

Proof. Necessity. Given m is even and n ∈ N denote by S(n) = 〈{m} +
{2.k | k ∈ N}⌋〉 ∪ {n,→}. Clearly, we have that S(n) is an element of C2[m]
for all n ≥ m+ 2 and so C2[m] is an infinite set.

Sufficiency. If S ∈ C2[m], then by Proposition 1, we deduce
that {m+ 1,m+ 2} ∩ S 6= ∅. Hence, either 〈m,m + 1〉 ⊆ S
or 〈m,m + 2〉 ⊆ S. Since m is odd we have that 〈m,m + 1〉
and 〈m,m + 2〉 are numerical semigroups. Therefore, we can con-
clude that C2[m] ⊆ {T | T is a numerical semigroup and 〈m,m+ 1〉 ⊆ T}∪
{T | T is a numerical semigroup and 〈m,m+ 2〉 ⊆ T}. By applying now
Lemma 11 we get that C2[m] is a finite set. �

As a consequence of the previous proposition, we obtain that following
result.
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Corollary 13. If m ∈ N\{0, 1} such that m is even, then the set of the

genus of the elements in C2[m]) is equal to {m,→}.

Now our aim is to give an algorithm to compute all elements in the set
C2[m] with fixed genus. To this end, we need to introduce some concepts
and results.

Let G be a rooted tree and v one of its vertices. We define the depth
of the vertex v as the length of the path that connects v to the root of G,
denoted by d(v). If k ∈ N, we denote by

N(G, k) = {v | d(v) = k} .

We define the height of the tree G by h(G) = max {k ∈ N | N(G, k) 6= ∅}.
The next result is easy to prove.

Proposition 14. Let m ∈ N\{0, 1} and k ∈ N. Then the following condi-

tions hold.

(1) N
(

G(C2[m]
)

, k) =
{

S ∈ C2[m] | g(S) = m− 1 + k
}

.

(2) N
(

G(C2[m]), k+1
)

=
{

S | S is a son of an element in N
(

G(C2[m]), k)
)

}

.

(3) If m is odd, then

{g(S) | S ∈ C2[m]} =
{

m,m+ 1 . . . m+ h
(

G(C2[m])
)

− 1
}

.

We are already in conditions to present the announced algorithm jointly
with an example.

Algorithm 15.

Input: Integers m, g such that 1 ≤ m− 1 ≤ g.

Output: The set
{

S ∈ C2[m] | g(S) = g
}

(1) A = {〈m,m+ 1, . . . 2m− 1〉}, i = m− 1.
(2) If i = g then return A.

(3) For each S ∈ A compute BS =
{

T | T is a son of S ∈ G(C2[m])
}

.

(4) If
⋃

S∈ABS = ∅, then return ∅.
(5) A :=

⋃

S∈ABS, i = i+ 1 and go to step 2.

Example 16. Let us compute the set
{

S ∈ C2[4] | g(S) = 5
}

.

(1) Start with A = 〈4, 5, 6, 7〉, i = 3.
(2) the first loop constructs B〈4,5,6,7〉 = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉}

then A = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉}, i = 4.
(3) the second loop constructs B〈4,6,7,9〉 = {〈4, 6, 9, 11〉, 〈4, 6, 7〉},

B〈4,5,7〉 = ∅ and B〈4,5,6〉 = ∅ then A = {〈4, 6, 9, 11〉, 〈4, 6, 7〉}, i = 5.

Hence
{

S ∈ C2[4] | g(S) = 5
}

= {〈4, 6, 9, 11〉, 〈4, 6, 7〉}.

We finished this section by putting two problems :

(1) What is the cardinality of C2[m] if m is odd belongs to N\{0, 1}?

(2) What is the height of the tree G(C2[m]) if m is odd belongs to
N\{0, 1}?
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4. Wilf’s conjecture

Wilf’s conjecture is one of combinatorial problems related to numerical
semigroups and despite substantial progress remains open in the general
case. Our first aim in this section is to prove that every numerical semigroup
with concentration 2 satisfies Wilf’s conjecture.

Using the terminology introduced in [11] a numerical semigroup S is el-
ementary if F (S) < 2m(S). Let us start by recall the following result of
Kaplan in [6, Proposition 26].

Lemma 17. Every elementary numerical semigroup satisfies Wilf ’s conjec-

ture.

As a consequence of [13] and [5] we have the following result.

Lemma 18. If S is a numerical semigroup with e(S) ∈ {2, 3}, then S
satisfies Wilf ’s conjecture.

For any finite set X, #X denotes the cardinal of X.

Lemma 19. If S ∈ C2[m] and F(S) > 2m, then n(S) ≥ m
2
+ 2.

Proof. Let A = {m = a1 < a2 < · · · < 2m = ak} =
{s | s ∈ S and m ≤ s ≤ 2m}. Since A ⊆ N(S)\{0} we get that
n(S) ≥ #A + 1. On the other hand, as S ∈ C2[m] then
ai+1 − ai ≤ 2 for all i ∈ {1, . . . , k − 1}. Then we have that
m = (ak − ak−1) + (ak−1 − ak−2) + · · · + (a2 − a1) ≤ 2(k − 1). Therefore
#A = k ≥ m

2
+ 1 and thus n(S) ≥ m

2
+ 2. �

Theorem 20. Every numerical semigroup with concentration 2 satisfies

Wilf ’s conjecture.

Proof. Taking into account Lemmas 17 and 18, we assume that F(S) > 2m
and e(S) ≥ 4. We need to show that if S ∈ C2[m] then g(S) ≤ (e(S)−1)n(S).
By Proposition 1 we have that, if h ∈ N\S and h ≥ m then h + 1 ∈ S.
Therefore, the correspondence

f : {h ∈ N\S | h ≥ m} → N(S)\{0},

defined by f(h) = h + 1 if h 6= F(S) and f
(

F(S)
)

= m is an injective
map. Hence g(S) ≤ m + n(S) − 2. As by Lemma 19 n(S) ≥ m

2
+ 2 this

forces 2n(S) ≥ m+4 ≥ m− 2. Then we obtain that g(S) ≤ m+n(S)− 2 ≤
3n(S) ≤ (e(S)−1)n(S), because e(S) ≥ 4. This proves that S verifies Wilf’s
Conjecture. �

Taking advantage of the introduction of elementary numerical semigroups,
in this section, we give an algorithm to compute the set all elementary
numerical semigroups with concentration 2 and multiplicity m, that is,

EC2[m] = {S | S ∈ C2[m] and S is an elementary numerical semigroup}.

The next result is easy to prove and it can be deducted of [[15], Proposition
2.1].
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Lemma 21. Let m ∈ N\{0, 1} and let A ⊆ {m+ 1, . . . , 2m− 1}. Then

{0,m}∪A∪{2m,→} is an elementary numerical semigroup with multiplicity

m. Furthermore, every elementary numerical semigroup with multiplicity m
is of this form.

Given m ∈ N\{0, 1}, we denote by

EC2[m] = {S | S is elementary semigroup, C(S) ≤ 2 and m(S) = m}.

It is easy to prove our next result.

Lemma 22. Let m ∈ N\{0, 1}. Then the following conditions hold:

(1) EC2[m] = EC2[m] ∪ {△(m)}.

(2) S ∈ EC2[m], then S ∪ {F (S)} ∈ EC2[m].

Given S ∈ EC2[m], by using Lemma 22, we can define recursively the

following sequence of elements in EC2[m].

• S0 = S,

• Sn+1 =

{

Sn ∪ {F(Sn)} if Sn 6= △(m)
△(m) otherwise.

The next result has an immediate prove.

Lemma 23. If m ∈ N\{0, 1}, S ∈ EC2[m] and {Sn | n ∈ N} is the previous

sequence of numerical semigroups, then there exists k ∈ N such that Sk =
△(m).

We can define a new graph G(EC2[m]) as graph whose vertices are the

elements of EC2[m] and (S, T ) ∈ EC2[m] × EC2[m] is an edge if T = S ∪
{F(S)}.

As a consequence of Lemma 23 and Proposition 8 we have the following
result.

Proposition 24. If m ∈ N\{0, 1}, then the graph G(EC2[m]) is a tree rooted

in △(m). Moreover, the set of sons of the vertice S in the tree is the set

{S\{x} | x ∈ msg(S), F(T ) + 2 ≤ x ≤ 2m− 1}.

Example 25. Let us construct the tree G(EC2[4]).

〈4, 5, 6, 7〉

〈4, 6, 7, 9〉 〈4, 5, 7〉 〈4, 5, 6〉

〈4, 6, 9, 11〉

75
6

7
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On the same line as the previous section, we finished this section by
putting two problems :

(1) What is the cardinality of EC2[m] if m belongs to N\{0, 1}?

(2) What is the height of the tree G(EC2[m]) if m belongs to N\{0, 1}?

5. The Frobenius number

Our aim in this section is to give an algorithm to compute the whole
set of numerical semigroups with concentration 2 and with fixed Frobenius
number.

Proposition 26. [2, Lemma 4 ] Let S be a numerical semigroup with Frobe-

nius number F . Then:

(1) S is irreducible if and only if S is maximal in the set of all the

numerical semigroups with Frobenius number F .

(2) If h = max
{

x ∈ N\S | F − x 6∈ S and x 6= F
2

}

, then S ∪ {h} is a

numerical semigroups with Frobenius number F .

(3) S is irreducible if and only if
{

x ∈ N\S | F − x 6∈ S and x 6= F
2

}

=
∅.

The following result has immediate prove.

Lemma 27. Let S be a numerical semigroup with concentration 2, x ∈ N\S,
x 6= F(S) and S∪{x} is a numerical semigroup, then S∪{x} is a numerical

semigroup with concentration 2 and Frobenius number F(S).

Given F ∈ N\{0, 1}, we denote by

C2(F ) = {S | S is a numerical semigroup,C(S) = 2 and F(S) = F}.

Let S be non-irreducible numerical semigroup. Denote by

α(S) = max

{

x ∈ N\S | F(S) − x 6∈ S and x 6=
F(S)

2

}

.

As a consequence of Lemma 27 and 2) of Proposition 26, we can define
recurrently the following sequence of elements of C2(F ):

• S0 = S,

• Sn+1 =

{

Sn ∪ {α(Sn)} if Sn is non-irreducible
Sn otherwise.

Taking into account the previous results the next result it easy to prove.

Proposition 28. Let F ∈ N\{0, 1}, S ∈ C2(F ) and let {Sn | n ∈ N} be the

previous sequence. Then there exists a positive integer k such that Sk is an

irreducible numerical semigroup.

We will call Sk the irreducible numerical semigroup associated to S and
it will be denoted by V (S).

We define the following equivalence relation over C2(F ):

S ∼ T if and only if V (S) = V (T ).
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We denote the equivalence class of S ∈ C2(F ) modulo ∼ by [S] =
{T ∈ C2(F ) | S ∼ T} and the quotient set C2(F )/∼= {[S] | S ∈ C2(F )}.

Denote by I
(

C2(F )
)

= {S ∈ C2(F ) | S is irreducible}.
As a consequence of Proposition 28 we have the following result.

Theorem 29. If F ∈ N\{0, 1}, then the quotient set C2(F )/ ∼=
{

[S] | S ∈ I
(

C2(F )
)}

. Moreover, if {S, T} ⊆ I
(

C2(F )
)

and S 6= T then

[S] ∩ [T ] = ∅.

In view of Theorem 29, in order to determine explicitly the elements in
the set C2(F ) we need:

1) an algorithm to compute the set I
(

C2(F )
)

;

2) an algorithm to compute the class [S], for each S ∈ I
(

C2(F )
)

.

In [3] it is given an efficient procedure to compute the set of irreducible
numerical semigroups with Frobenius number F . Using Proposition 1, we
obtain that a numerical semigroup is or is not of concentration 2. Therefore
we have solved 1).

Now we will focus on solving 2). Let △ ∈ I
(

C2(F )
)

. We define the graph
G([△]) whose vertices are the elements of [△] and (S, T ) ∈ [△] × [△] is an
edge if and only if T = S ∪ {α(S)}.

By definition, when S is irreducible we say that α(S) = +∞, because in
this case α(S) does not exist.

Proposition 30. If F ∈ N\{0, 1} and △ ∈ I
(

C2(F )
)

, then G([△]) is a tree

rooted in △. Moreover, the set of sons of vertex T is equal to
{

T\{x} | x ∈ msg(T ), F
2
< x < F, α(T ) < x and

{x− 1, x+ 1} ⊆ T or x = m(T )}.

Proof. If S is a son T , then T = S ∪ {α(S)} and thus S = T\{α(S)}. By
Lemma 7, we have that α(S) ∈ msg(T ). It is clear that F

2
< α(S) < F and

α(S) = m(T ) or {α(S)− 1, α(S) + 1} ⊆ T . Also we have that α(T ) < α(S).
Conversely, if x ∈ msg(T ), F

2
< x < F and {x− 1, x+ 1} ⊆ T or x =

m(T ) then T\{x} ∈ C2(F ). If α(T ) < x then α(T\{x}) = x. Hence
T = (T\{x}) ∪ (α(T\{x}) and so T\{x} is a son of T . �

Example 31. Applying Proposition 26, we have that △ = 〈5, 6, 7, 8〉 ∈
I(C2(9))

)

. Now by applying Proposition 30, let us construct G([△]).
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〈5, 6, 7, 8〉

〈6, 7, 8, 10, 11〉 〈5, 7, 8, 11〉 〈5, 6, 8〉

〈7, 8, 10, 11, 12, 13〉 〈6, 8, 10, 11, 13, 15〉

〈8, 10, 11, 12, 13, 14, 15, 17〉

5
6

7

6 7

7

The numbers that appears on either side of the edges is the elements that
we remove from the semigroup to obtain its son.
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[12] J. C. Rosales and P. A. Garćıa-Sánchez, Numerical semigroups. Developments in
Mathematics, vol.20, Springer, New York, (2009).
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