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Abstract. We study new examples of translating solitons of the mean
curvature flow, especially in Minkowski space. We consider for this pur-
pose manifolds admitting submersions and cohomegeneity one actions
by isometries on suitable open subsets. This general setting also covers
the classical Euclidean examples. As an application, we completely clas-
sify time-like, invariant translating solitons by rotations and boosts in
Minkowski space.

Mathematics Subject Classification. Primary 53C44, Secondary 53C21,
53C42, 53C50.

Keywords. Time-like translating soliton, submersions, pseudo-Riemannian
manifolds, Lie group, cohomogeneity one action.

1. Introduction

The evolution by mean curvature flow is classically studied for hypersurfaces
in the Euclidean space R

n+1. One of the approaches is to consider particular
solutions, the so-called translating solitons or translators, which are invariant
by a subgroup of translations of the ambient space. It is well-known that they
admit a forever flow, characterized by a constant (unit) vector v ∈ R

n+1,
n ≥ 1, in such a way that the mean curvature flow equation simplifies to

H = v⊥.

Translators have been widely studied in literature ([2,5,11,13],. . ., and refer-
ences therein). For instance, they naturally appear in the study of solutions of
the mean curvature flow with a certain type of singularities (see for example
[7]) and are equivalent to minimal surfaces for a conformally modified metric
[8]. There are other studies for translators in other ambients spaces, such as
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R× M [12], in H
2 ×R [4], a solvable group [15], the Heisenberg 3-group [16],

etc.
One of the first analytical point of view was to see which of them were

rotationally invariant [5]. This approach can be revisited from a geometrical
point of view, in the sense that they are invariant by the Lie group SO(n−1).
Thus, the PDE is rapidly reduced to an ODE, which is simpler to study.
Translating solitons were studied from an analytical point of view in the
Lorentz–Minkowski space, [10], focusing on the rotationally invariant case and
only for space-like hypersurfaces. Again, the underlying geometrical structure
is the use of the Lie group SO(n) as a subgroup of isometries.

In this paper, we are interested in studying graphical translating solitons
in Minkowski space by the action of some subgroups of isometries. From a
pure analytical point of view, we seek to simplify the PDE to an ODE by
a group of transformations. However, adding a geometrical sauce provides
an extra layer of flavour. To do so, we wished to use quotients, although we
realized that suitable tools are submersions, for almost the same effort. Those
who wish to stick to the analytical taste can jump directly to Sects. 5 and 6.

Typical examples are cohomogeneity one actions by Lie groups. If the
action of a group Σ is proper and free, the orbit space becomes a smooth
manifold (with boundary), and the natural projection is a submersion. This
holds when M is Riemannian and Σ is compact, acting by isometries. How-
ever, the situation becomes much more complicated when the action is not
proper. Fortunately, it is still possible to work on some good open subsets Ω
of M quite often, because the orbit space Ω/Σ is diffeomorphic to an open
interval, even when M/Σ is not Hausdorff.

Since our starting point was to study translators in Lorentz–Minkowski
space, the base manifolds of the quotients have to be either Riemannian
or Lorentzian. To unify the notations, we are forced to consider pseudo-
Riemannian submersions. The advantage is that we can make a quite more
general study, although we will return to our origins in the last sections.

We will mainly focus on graphical translating solitons. Namely, given
u ∈ C2(M), we construct its graph map F : M → M × R, F (x) = (x, u(x)),
and we assume that its induced metric is not degenerate. Let ν be the upward
normal vector along F with ε = 〈ν, ν〉 = ±1. We recall that ε = −1 when
F (M) is space-like, and ε = +1 if time-like. In Sect. 2, we show that the mean
curvature flow is characterized by the following partial differential equation,
which is similar to the one obtained in the classical case (see [5])

div

⎛
⎝ ∇u√

ε
(
ε′ + |∇u|2g

)

⎞
⎠ =

1√
ε
(
ε′ + |∇u|2g

) = H.

As in [4,5,12], we show in Sect. 3 that it is possible to simplify this PDE
to an ODE under reasonable assumptions on the geometry of the manifold
M , namely when M admits a submersion π : (M, g) → (I, ε̃ds2) whose fibers
π−1(s) have constant mean curvature h(s), where I is an interval, ε̃ = ±1.
In Theorem 3.5, we prove that a function f ∈ C2(M) is solution to the ODE
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f ′′(s) = (ε̃ + ε′f ′(s)2)(1 − f ′(s)h(s)),

if, and only if, the graph map F : M → M × R, F (x) = (x, (f ◦ π)(x)), is
a translating soliton. Next, we will give some results about the behavior of
translating solitons within this context. Corollary 3.7 generalizes the well-
known Wing-like translating soliton in R

m+1, [5], whose tangent planes at
some points are vertical, and thus, they are not graphical at such points. The
standard idea is to rewrite the ODE by putting f as the inverse function of
a given α. Corollary 3.9 is an existence result for globally defined graphical
solutions.

Section 4 is devoted to analytical computations, which are necessary for
the final sections.

Section 5 is devoted to applying all these ideas to rotationally invariant
translating solitons in Minkowski space L

n+1, n ≥ 2, that is to say, those
invariant by the action of SO(n) as a subgroup of isometries of Ln+1. Also,
in Sect. 6, we consider the Lie group SO↑(n − 1, 1) acting on L

n+1, n ≥ 2.
We focus on the time-like cases, because the space-like cases were already
considered in [10] (although without the Geometrical topping). Probably,
the most surprising result is the fact that there is an example which crosses
more than one fundamental region. Or in other words, we need more than
one profile curve to obtain the whole surface, by gluing up four pieces lying
in continuous open subsets. Probably, this unusual and slippery technique
seems to prevent many people from studying time-like examples, but makes
the Lorentzian setting surprisingly different from the classical Euclidean case.

2. Setup

Let (M, g) be a connected pseudo-Riemannian manifold. We consider u ∈
C2(M,R), let F : M → M ×R =: M̄ , F (p) = (p, u(p)) be its graph map. We
denote (p, t) ∈ M × R. We denote by |w|2g = g(w,w) the squared g-norm of
any tangent vector w to M . Assume that F : (M,γ = F ∗ 〈, 〉) → (M̄, 〈, 〉 =
g + ε′dt2) is a non-degenerate hypersurface, where ε′ = ±1. Under the usual
identifications, for each X ∈ TM , we have

dF (X) = (X, du(X)) = (X, g(∇u,X)),

where ∇u is the g-gradient of u. We consider the metric γ = F ∗ 〈, 〉 on M .
By assumption, γ is non-degenerate. The upward normal vector field is

ν =
1
W

(−ε′∇u, 1), W = +
√

ε
(
ε′ + |∇u|2g

)
, (2.1)

where we are assuming that ε := sign
(
ε′ + |∇u|2g

)
= ±1 is a constant function

on the whole M . Note that 〈ν, ν〉 = ε. It is important to remark our definitions
of the mean curvature vector and function. In our setting, if IIF is the second
fundamental form, the mean curvature vector is

�HF = tracegM
(IIF ) = εHνF ,

where H is the mean curvature function. Similar notations will be used for
other hypersurfaces along the paper.
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The following proposition is well-known in the Euclidean setting (see for
example [11]). The proof is similar in the pseudo-Riemannian context, but
we include it for completeness and discuss the necessary modifications.

Proposition 2.1. Under the previous setting, F is a (vertical) translating soli-
ton if, and only if, function u satisfies

div

⎛
⎝ ∇u√

ε
(
ε′ + |∇u|2g

)

⎞
⎠ =

1√
ε
(
ε′ + |∇u|2g

) = H. (2.2)

Take a local g-orthonormal frame B = (e1, . . . , en) on M , such that
g(ei, ej) = εiδij for any i, j = 1, . . . n, with εi = ±1 depending on the signa-
ture of g. We denote ui = du(ei), i = 1, . . . , n. For this frame, we compute
the induced metric γ = F ∗ 〈, 〉, so that the coefficients of the Gram matrix
and of its inverse are

γij = γ(ei, ej) = εiδij + ε′uiuj , γij = εiδij − ε

W 2
εiεjuiuj .

Let ∇̄ the Levi-Civita connection of (M̄, 〈, 〉). We recall O’Neill’s book [14],
and its equations for the Levi-Civita connection of a (warped) product. Then,

H =
〈 �HF , ν

〉
=

〈
∂⊥

t , ν
〉

= 〈∂t, ν〉 = 〈ν, trγ(IIF )〉
=

∑
i,j

γij
〈
ν, ∇̄dF (ei)dF (ej)

〉

=
∑
i,j

γij
〈
ν,

(∇ei
ej , 0

)
+ ei(uj)∂t

〉
=

∑
i,j

γijei(uj) 〈ν, ∂t〉 ,

so that

1 =
∑
i,j

γijei(uj) =
∑
i,j

(
εiδij − εiεjuiuj

εW 2

)
ei(uj)

= div(∇u) − ε

W 2

∑
i,j

εiεjuiujei(uj).

By recalling that W 2 = ε(ε′ + g(∇u,∇u)), we compute

2W 〈∇W,∇u〉 =
〈∇(W 2),∇u

〉
= ε

∑
i

εiuiei (g(∇u,∇u))

= ε
∑

i

εiui

∑
j

εjei(u2
j ) = 2ε

∑
i,j

εiεjuiujei(uj).

Coming back

1 = div(∇u) − 1
W

〈∇W,∇u〉 ,

1
W

=
div(∇u)

W
− 1

W 2
〈∇W,∇u〉 = div

(∇u

W

)
.

�
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Corollary 2.2. Let (M, g) be a compact orientable manifold without bound-
ary. Then, M does not admit any globally defined, non-degenerate, graphical,
space-like Translating Soliton F : M → (M × R, g + ε′dt2).

Proof. Assume that there exists a globally defined graphical Translating Soli-
ton on M . Then, for some function u ∈ C2(M), Eq. (2.2) holds true. By using
the volume form dμg, we obtain

0 =
∫

M

div

⎛
⎝ ∇u√

ε(ε′ + |∇u|2g)

⎞
⎠ dμg =

∫

M

1√
ε(ε′ + |∇u|2g)

dμg > 0.

This is a contradiction. �

3. Submersions and Lie Groups

Our next target consists of studying when the equation of the mean curvature
flow can be reduced to a particular ODE. The main geometrical technique
consists of using a Lie group acting by isomorphisms whose orbits are codi-
mension one sumbanifolds, namely cohomogenity one actions. We choose the
case when the image of the natural projection is going to be identified with
an open interval. This is not a big deal, since one can remove the non-regular
orbits, but later it might be necessary to see the possible extension. Before
starting, we need the following technical lemma.

Lemma 3.1. Take ε′, ε̃ ∈ {±1}, I an open interval and π : (M, g
M

) →
(I, ε̃ds2) a pseudo-Riemannian submersion such that each fiber π−1(s) has
constant mean curvature h(s) w.r.t. −∇π. Given f ∈ C2(I), define u =
f ◦ π ∈ C2(M). Assume that ε = sign(ε′ + ε̃(f ′ ◦ π)2) = ±1 is a constant
function.

1. h : I → R is a smooth function, and such that div(∇π) = h ◦ π.
2. ∇u = (f ′◦π)∇π, |∇u|2g = ε̃(f ′◦π)2, div(∇u) = ε̃(f ′′◦π)+(f ′◦π)(h◦π).

3. If W = +
√

ε
(
ε′ + ε̃(f ′(π))2

)
> 0, then ∇W =

εε̃f ′(π)f ′′(π)
W

∇π.

Proof. First, given a local orthonormal frame (e1, . . . , en) such that en = ∇π
and the vector fields {ei}n−1

i=1 are tangent to the fibers, with εi = g(ei, ei),
then

div(∇π) =
n∑

i=1

εig(∇ei
∇π, ei) =

n−1∑
i=1

εig(∇ei
∇π, ei) = h ◦ π.

For simpleness, we write f ◦ π = f(π), etc. For the second statement, given
p ∈ M and X ∈ TpM , we compute

gp(∇(f ◦ π),X) = d(f ◦ π)pX = dfπ(p)(dπp(X)) = f ′(π(p))gp(∇π,X),

and we point out that |∇π|2g = ε̃. Next,

div(∇u) = div(f ′(π)∇π) = g(∇(f ′ ◦ π),∇π) + f ′(π)div(∇π)
= ε̃f ′′(π) + f ′(π)h(π).

Finally, 2W∇W = ∇(W 2) = 2ε̃εf ′(π)f ′′(π)∇π. �
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Proposition 3.2. Let (M, g) be a connected pseudo-Riemannianmanifold and
I an open interval. Let Σ be a Lie group acting by isometries on M and
π : M → I be a submersion such that the fibers of π are orbits of the action,
and ∇π is never zero or light-like. Then, there exist a constant ε̃ = ±1 and a
smooth bijective map v : I → J ⊂ R, J an interval, such that v ◦π : (M, g) →
(J, ε̃ds2) is a pseudo-Riemannian submersion with constant mean curvature
fibers.

Proof. Since π is a submersion, and |∇π|2g 
= 0, there exists a smooth func-
tion z : I → R\{0} such that (z ◦ π)2 = ε̃|∇π|2g, for a constant ε̃ = ±1.
Next, we consider a function v : I → R such that v′ = 1/z. As v′ has con-
stant sign, v is injective, and we restrict it to its image, v : I → J . By
Lemma 3.1, |∇(v ◦ π)|2g = ε̃. In particular, v ◦ π : (M, g) → (J, ε̃ds2) is a
pseudo-Riemannian submersion. Note that the fibers of v ◦ π are the same as
the fibers of π, which are the orbits of Σ. As it acts by isometries, they have
constant mean curvature w.r.t. −∇(v ◦ π). �

From now on, we assume that the action of the Lie group Σ on (M, g)
by isometries is proper, and that at least one of the orbits is of codimension
one. These are the well-known cohomogeneity one Σ-manifolds. According
to [1] (and references therein), there is another Riemannian metric gR such
that Σ acts on (M, gR) by isometries, and the quotient M/Σ is diffeomorphic
to an interval or to S

1 ≡ R/Z. By removing the possible singular orbits (if
any, up to two), we can assume that M/Σ =: I is (diffeomorphic to) an open
interval. This works at differentiable level, so we can return to our original
metric g, and the quotient is still an open interval. Let π : M → I ≡ M/Σ
be the projection. We need ∇π not to be zero or light-like. By Lemma 3.2,
we can assume that g

M
(∇π,∇π) = ±1 =: ε̃, making π a pseudo-Riemannian

submersion. Each fiber of π will be an orbit of Σ. And because it acts by
isometries, then each orbit π−1{s} will be of constant mean curvature h(s)
w.r.t −∇π. Thus, we have an associated smooth function h : I → R. We need
to bear in mind all this setting, so that we introduce the following definition.

Definition 3.3. Under the previous setting, let Σo one of the stabilizers of Σ.
Let β : I → M be a unit curve orthogonal to all orbits of Σ, such that the
map

φ : I × (Σ/Σo) → M, φ(s, [σ]) = σ · β(s), (3.1)

is a diffeomorphism and π◦φ(s, [σ]) = s. We will say that (3.1) is a decompo-
sition of M by Σ, or that M is decomposable by Σ, with associated function
h : I → R. We cannot forget the submersion π : (M, g) → (I, ε̃ds2).

Remark 3.4. For the sake of simpleness, sometimes is it better to use φ :
I×Σ → M . But then, φ(s,−) : Σ → M might not be an immersion, although
the image is again an orbit.

We recall that a function u : M → R is called invariant by the Lie
group Σ, or also Σ-invariant, if it satisfies

u : M → R, u(x) = u(σ · x), ∀x ∈ M, ∀σ ∈ Σ. (3.2)
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Accordingly, we say that a graphical translating soliton is invariant by the
Lie group Σ, or also Σ-invariant, when its graph map is invariant by Σ.
Similarly, a translating soliton F : Ω ⊂ M → M × R is called Σ-invariant
when σ · F (x) ∈ F (Ω) for each x ∈ Ω and each σ ∈ Σ.

Theorem 3.5. Let (M, g) be a pseudo-Riemannian manifold, decomposable
by Σ, as in Definition 3.3. Given ε′ = ±1, f : I → R a smooth function,
construct the graph map F : M → (M×R, 〈, 〉 = g

M
+ε′dt2), F (x) = (x, u(x)),

u = f ◦ π. Then, F is a Σ-invariant translating soliton if, and only if, f is a
solution to

f ′′(s) =
(
ε̃ + ε′(f ′(s))2

)(
1 − f ′(s)h(s)

)
. (3.3)

Proof of Theorem 3.5. We denote u = f ◦π. Using Lemma 3.1 we get directly
from Eq. (2.1),

1
W

= div
(∇u

W

)
=

div(∇u)
W

− g(∇W,∇u)
W 2

=
ε̃f ′′(π) + f ′(π)h(π)

W
− 1

W 2
g

(
ε̃εf ′(π)f ′′(π)

W
∇π, f ′(π)∇π

)

=
ε̃f ′′(π) + f ′(π)h(π)

W
− ε̃εf ′(π)2f ′′(π)

W 3
g (∇π,∇π)

=
1
W

(
f ′(π)h(π) + f ′′(π)

ε′ε̃
ε′ + ε̃f ′(π)2

)
.

Therefore, we conclude that (2.2) reduces to

f ′(π)h(π) +
1

ε̃ + ε′f ′(π)2
f ′′(π) = 1.

In other words, function f is a solution to (3.3). �

Remark 3.6. Another approach is to start with a Σ-invariant function u :
M → R. But then, we immediately obtain another function f : I → R such
that u = f ◦ π.

On the other hand, we can extend the action of Σ to M ×R as follows:

M̄ = M × R, 〈 , 〉 = g + εdt2, ε = ±1, Σ × M̄ → M̄, (σ, (x, t)) 
→ (σ · x, t).

In fact, given any curve δ : J ⊂ I → I × R, δ = (δ1, δ2), we can construct a
map whose image is Σ-invariant, namely

F : J × (Σ/Σo) → M × R, F (s, [σ]) =
(
φ(δ1(s), [σ]), δ2(s)

)
. (3.4)

We will now give some general results about the behavior of solutions. This
next result states the existence of the so-called wing-like solutions.

Corollary 3.7. Assume there M is decomposable as in Definition 3.3, where
h is the mean curvature of the orbits of the action. Consider so ∈ I such that
either h(so) 
= 0, or so is an isolated zero of h. Then, for each yo ∈ R, there
exist a real number ρ > 0 and a translating soliton F : (yo − ρ, yo + ρ) ×
(Σ/Σo) → M̄ such that it is the union of two graphical translating solitons.
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Proof. Choose yo ∈ R. We consider the following IVP:

α′′(y) =
(
ε′ + ε̃α′(y)2

)
(h(α(y)) − α′(y)) , α′(yo) = 0, α(yo) = so ∈ I.

As usual, there exists a smooth solution α : (yo − ρ, yo + ρ) → R. Note that
yo is a critical point of α and α′′(yo) = ε′h(so).
Case h(so) 
= 0: Then, yo is an extremum of α. The restrictions α+ =
α|(yo,yo+ρ) and α− = α|(yo−ρ,yo) will be injective, by reducing ρ if neces-
sary. Construct their inverse functions f+ = α−1

+ and f− = α−1
− . We just

have to show that f+ and f− satisfy (3.3). To do so, we put f+(α(y)) = y,
and therefore

1 = f ′
+(α(y))α′(y), 0 = f ′′

+(α(y))α′(y)2 + f ′
+(α(y))α′′(y),

f ′′
+(α(y))α′(y)2 = −f ′

+(α(y))
(
ε′ + ε̃α′(y)2

)(
h(α(y) − α′(y)

)
.

Next, we change s = α(y), and then α′(y) = 1/f ′
+(s), so that

f ′′
+(s)

f ′
+(s)2

= −f ′
+(s)

(
ε′ +

ε̃

f ′
+(s)2

)(
h(s) − 1

f ′
+(s)

)

=
1

f ′
+(s)2

(
ε̃ + ε′f+(s)2

)(
1 − h(s)f+(s)

)
.

A similar computation holds for f−. The union of the corresponding graphical
translating solitons and their common boundary provide a smooth translating
soliton, because α is a smooth map and f+, f− are tools to reparametrize its
graph.
Case so is an isolated zero of h: By shrinking ρ if necessary, then α′′(y) 
= 0
for any y 
= yo, y ∈ (yo−ρ, yo+ρ). The restriction α′|[yo,yo+ρ) will be injective,
and therefore, α′(y) 
= 0 for any y ∈ (yo, yo + ρ). This makes α|(yo,yo+ρ) also
injective. Similarly, α|(yo−ρ,yo) is injective. We continue as in the previous
case (h(so) 
= 0).

In either case, it is possible to obtain a smooth curve τ : (yo−ρ, yo+ρ) →
I × R, τ = (τ1, τ2), which is the union of both graphs. Then, our translating
soliton is constructed by using (3.4). �

Remark 3.8. By (3.1), M̄ is diffeomorphic to I × (Σ/Σo) × R, so the profile
curve τ of Corollary 3.7 can be embedded into I × {[σ]} × R for some [σ] ∈
(Σ/Σo). At a certain point, ∂t (t ∈ R) will be tangent to the image of τ (as
in the proof of previous lemma). The causal character of the product will
therefore influence the causal character of the translating soliton. Moreover
the causal character of the submersion (i.e. the sign of ε̃) as well as the
sign of ε′ + ε̃f ′2 will determine the causal character of the winglike soliton.
For example, when M is Riemannian, the product M × R is Lorentzian (i.e.
ε′ = −1), and the submersion is Riemannian (as in the rotationally invariant
example of Sect. 5), the wing-like translating solitons have to be time-like,
since for space-like solitons, α′(y0) cannot be 0 for any y0.

Corollary 3.9. Assume that M is decomposable as in Definition 3.3. Take
ε̃, ε′ ∈ {±1} such that ε̃ε′ = −1. Given f a local solution to (3.3) and so ∈ I,
such that (f ′(so))2 < 1, then f can be globally extended to f : I → R. In
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particular, the associated Σ-invariant translating soliton is graphical and it
can be globally defined on M .

Proof. By Theorem 3.5, any Σ-invariant translating soliton will be obtained
by a solution f to (3.3). We make the change w = f ′, so it reduces to
w′(s) = (ε̃ + ε′w(s)2)(1 − w(s)h(s)). Since ε̃ε′ = −1, the constant functions
w(s) = ±1 are solutions to this differential equation. Then, given an initial
condition (so, f1) ∈ I × (−1, 1), there exists a local solution w : (so − ρ, so +
ρ) → R such that w(so) = f1 and |w| < 1. By the uniqueness of solutions to
IVP, w cannot reach the values ±1, and so, it can be globally extended to
w : I → (−1, 1). We define f(s) = fo +

∫ s

so
w(x)dx for some fo ∈ R. By using

the curve δ : I → I ×R, δ(s) = (s, f(s)), we can (re)construct our Σ-invariant
translating soliton by (3.4). �

Remark 3.10. This section generalizes several classical results in a general
geometric context. A well-known example is the case of a rotationally in-
variant translating soliton in R

n+1. We consider the Lie group SO(n) act-
ing by isometries on R

n which gives rise to the Riemannian submersion
π : R

n\{0} → R, π(x) = ‖x‖, and the Riemannian product M̄ = (Rn ×
R, gR

n

+ dt2). An easy computation shows that the mean curvature of the
fiber π−1(s) is h(s) = (n−1)/s. Using Theorem 3.5, we recover the well-known
ODE for rotationally invariant translating solitons f ′′ = (1+ f2)(1− n−1

s f ′),
studied in [5], where such solitons are classified. In that paper, it is shown that
there exist only two types: a globally defined graphical soliton, the so-called
bowl soliton or translating paraboloid, which can be seen as a particular ap-
plication of our Corollary 3.9, and a family of non-graphical wing-like trans-
lators or translating catenoids, obtained by gluing two graphical solutions,
which are a special case of Corollary 3.7.

4. All Solutions to an ODE

In this section, we will need some tools which can be found in the book [18].
Our targent is to find all local solutions to the following equation, for s > 0,

f ′′(s) =
(
1 − f ′(s)2

)(
1 − n − 1

s
f ′(s)

)
. (4.1)

or rather

w = f ′, w′ =
(
1 − w2

)(
1 − n − 1

s
w

)
. (4.2)

where n ≥ 2 is a natural number. Clearly, there are two degenerate examples,
namely, f̂± : (0,∞) → R, f̂±(s) = ±s + fo, fo ∈ R, that is, ŵ±(s) = ±1.

4.1. The case when |x| < 1
The following particular example was studied in [9].

Lemma 4.1. There exists a unique function fB : R → R such that f is even,
analytical, and such that its derivative wB = f ′ is the unique solution to the
boundary problem
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w′ =
(
1 − w2

)(
1 − n − 1

s
w

)
, w(0) = 0.

We consider the following open domains

Ω =
{
(s, x) ∈ R

2 : s > 0, |x| < 1
}

,

Ω1 = {(s, x) ∈ Ω : wB(s) > x} , Ω2 = {(s, x) ∈ Ω : wB(s) < x} .

Lemma 4.2. Any unextendable solution w inside Ω is globally defined, w :
(0,∞) → R, and it is one of the following:
Case I The solution wB = f ′ : [0,∞) → R of Lemma 4.1;
Case II w > wB everywhere, with one critical point s1 > 0, such that

w(s1) = s1/(n − 1), and lims→0 w(s) = 1.
Case III w < wB everywhere, without critical points, strictly increasing, with

no critical points, and lims→0 w(s) = −1.
In addition, all of them (also wB) satisfy lims→∞ w(s) = 1.

Proof. Take (so, wo) ∈ Ω initial conditions for (4.2), w(so) = wo, and let w be
the solution. By the solutions ŵ±, it will be globally defined w : (0,∞) → R

and its graph will remain inside Ω. Then, w′(s) = 0 for some point s ∈ (0,∞)
if, and only if, either w(s) = ±1 (excluded) or w(s) = s/(n − 1), at some
point s ∈ (0,∞). In other words, w will admit a critical point if its graph
intersects the line r of equation x = s/(n − 1) horizontally. As the line r is a
monotonic curve, the solution can only intersects it at most once due to our
ODE.
Case I. We already know the solution wB = f ′ : [0,∞) → R of Lemma 4.1.
Case II. Take initial conditions (so, wo) ∈ Ω1. The associated solution w :
(0,∞) → R will remain in Ω1, due to the uniqueness of solutions to IVP. As
w(s) < wB(s) < s/(n − 1) for any s > 0, then w has no critical points, and
w′(so) > 0, so it is strictly increasing for any s > 0.

Since, w(s) < 1 for any s > 0, there exists lims→+∞ w(s) = w1 ∈
(−1, 1] and lims→+∞ w′(s) = 0. However, 0 = lims→+∞ w′(s) = lims→+∞(1−
w(s)2)(1 − (n − 1)w(s)/s) = 1 − w2

1. Therefore, lims→+∞ w(s) = 1.
As wB(0) = 0, and w(s) < wB(s), there exists s1 > 0 such that w(s1) =

0. We want to compute the limit of w(s) and of w′(s) when s → 0. As
−1 < w(s) and w is strictly increasing, then lims→0 w(s) = w2 ∈ [−1, 0).
Define now z : R → R, z(t) = w(et). Then, z is still strictly increasing,
and z′(t) = (1 − z(t)2)(et − (n − 1)z(t)). Clearly, w2 = limt→−∞ z(t) and
this implies 0 = limt→−∞ z′(t) = limt→−∞(1 − z(t)2)(et − (n − 1)z(t)) =
−(n − 1)(1 − w2

2)w2. This means that w2 = −1. To summarize,

lim
s→0

w(s) = −1, lim
s→0

w′(s) = 0.

Again, by the uniqueness of solutions to IVP, we can parametrize this
family by considering the initial values, (0,+∞) � s0, that is (s0, 0) ∈ Ω1,
and the union of all the graphs of the solutions will foliate Ω1.
Case III. Take initial conditions (so, wo) ∈ Ω2. The associated solution w :
(0,∞) → R will remain in Ω2, similarly to Case II. If w′(s) 
= 0 for all s, its
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graph cannot cross the line r of equation x = s/(n−1) and it is strictly above
the graph of wB = f ′

B . But then, either w(s) > s/(n−1) for any s > 0, which
is impossible since w is bounded by 1 and defined for all s > 0, and the line
r crosses the horizontal line x = +1; or s/(n − 1) > w(s) > wB(s) for any
s > 0, which shows that lims→0 w(s) = 0. Then, we found a second solution
to the problem (4.2) with boundary value w(0) = 0. By the uniqueness of
the solution to this boundary problem, we get to a contradiction. Thus, there
exists a unique s1 > 0 such that w(s1) = s1/(n−1), which is the only critical
point. In this way, we parametrize this family by the open segment r ∩Ω2. It
is easy to compute that

w′′(s1) =
−1
s1

(
1 − s21

(n − 1)2

)
< 0.

Therefore, s1 is a absolute minimum of w. This means that w is strictly
decreasing when 0 < s < s1 and strictly increasing when s > s1. For big
s > 0, we know wB(s) < w(s) < 1, which shows lims→+∞ w(s) = 1. By
similar computations to Case II, lims→0 w(s) = 1. �

The following picture illustrates the solutions to (4.2) such that −1 <
w = f ′ < 1, for n = 3, made with wxMaxima c©.

4.2. The case when |x| > 1
For the following study, we define the open domains

Γ− = {(s, x) ∈ R
2 : s > 0, x < −1}, Γ+ = {(s, x) ∈ R

2 : s > 0, x > 1}.

Lemma 4.3. (Case IV) Any unextendable solution w contained in Γ− is de-
fined on w : (0, s1) → R, for some s1 > 0, it is strictly increasing, with
lims→0 w(s) = 1 and having a finite time blow-up at s1.
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Proof. Let (s0, wo) ∈ Γ− initial solutions for (4.2), w(so) = wo < −1. A local
solution w : (so − δ, so + δ) → R stays inside of Γ−. Since the line r does not
intersects Γ−, w cannot have any critical point. And due to

w′(so) = (1 − w2
o)

(
1 − (n − 1)wo

so

)
< 0,

then w is always strictly decreasing. As it is bounded by the constant solution
ŵ−1(s) = −1, w can be extended to (0, so + δ). Also, a simple computation
shows lims→0 w(s) = −1. Next, since 1 − (n − 1)wo/so > 1, for any s ≥ so

we have,

(1 − w(s)2)
(

1 − (n − 1)w(s)
s

)
≤ 1 − w(s)2 < 0.

Therefore, the ODE (4.2) is dominated by the ODE z′(s) = 1 − z(s)2, whose
general solution is z(s) = coth(s + ρ) = e2(s+ρ)+1

e2(s+ρ)−1
, ρ ∈ R. We choose ρ such

that z(so) = wo = w(so) < −1. From here, e2(so+ρ) − 1 < 0 and ρ < 0, so
that z can be extended at most to (0,−ρ). But as w′(s) ≤ z′(s) < 0, then w
has a finite-time blow-up at some s1 < −ρ. �

Lemma 4.4. Any unextandable solution to (4.2) included in Γ+ is one of the
following:
Case V There exists a unique w : (0,+∞) → R which is strictly increasing,

asymptotic to the line r of equation x = s/(n − 1) at infinity, and
w(s) > s/(n − 1) for any s > 0.

Case VI w : (0,+∞) → R is globally defined, with just one critical point
s1 > so, lims→+∞ w(s) = 1, w(s) < w(s) for any s > 0.

Case VII w : (0, s1) → R has a finite time blow up at certain s1 > so, without
critical points, and w(s) > w(s) for any s < s1.

In addition, all of them satisfy (also w), lims→0 w(s) = 1 and lims→0 w′(s)=0.

Proof. Take (so, wo) ∈ Γ+ initial conditions for (4.2), and let w be the so-
lution such that w(so) = wo. Its graph will remain inside Γ+. Also, w will
have a critical point if its graph intersects the line r horizontally (w′(s1) = 0
for some s1 > 0), i. e, w(s1) = s1/(n − 1). For any point s > s1, w′(s) < 0,
whereas for any s < s1, w′(s) > 0 holds. In such case, s1 will be the only
critical point, and its absolute maximum.

Step 1: Consider (so, wo) ∈ Γ+ such that wo = so/(n − 1), and a
solution to (4.2) around so, namely w : (so − δ, so + δ) → R, with w(so) =
wo = so/(n − 1). By (4.2), w′

o(s0) = 0, and it is its unique critical point.
Then, w will always be decreasing for s > s0. By the barrier solu-

tion w1(s) = +1, w can be extended to w : (so − δ,+∞) → R, with
lims→+∞ w(s) = w1 ≥ 1, so that 0 = lims→+∞ w′(s) = lims→+∞(1 −
w(s)2)

(
1 − (n − 1)w(s)/s

)
= 1 − w2

1. This means

lim
s→+∞ w(s) = +1.

On the other hand, w will always be increasing for s < so. Hence we can
extend w : (0,+∞) → R, w increasing on (0, so), and w(0) = w2 ≥ 1.
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As in Case II, by the change of variable s = et, we get immediately that
lims→0 w(s) = +1.

Step 2: As in Corollary 3.7, we get for each s0 > 0 a solution w = f ′
−

such that lims→s0 w(s) = +∞, i.e. with finite time blow up in s0. As in step
1, w can be extended to (0, s0) and similarly lims→0 w(s) = +1.

Step 3: We want to obtain the first type solution as explained above.
We fix now so = n − 1. Define

J = {wo ∈ R : wo > 1, ∃w : (0,+∞) → R, solution to (4.2), w(n − 1) = wo}.

By step 1, J 
= ∅. By step 2 we have a solution wn : (0, n) → R, such that
lims→n wn(s) = +∞. Then, we have that j ≤ wn(n − 1) for all j ∈ J . Thus,
we can define A := supJ < wn(n − 1).

Now define w : (0, n − 1 + δ) → R the solution to (4.2) such that
w(n − 1) = A. Assume that lims→s1 w = +∞ for some s1 > n − 1. But
then let s2 = s1 + �, � > 0. By step 2, there exists a blow up solution w2,
such that lims→s2 w2(s) = ∞. Therefore w > w2 for all s ∈ (0, s1]. This is a
contradiction with A = supJ . This means that w is globally defined.

Moreover, w has no critical points. Indeed, assume that there is a sc > 0,
such that w′(sc) = 0. As before , (sc, w(sc)) ∈ r. Then, by step 1 there exists
another globally defined solution w, such that w′(sc + 1) = 0, but then by
uniqueness of solutions w > w for all s, which is a contraction to A = supJ .
Therefore w is strictly increasing and bounded below by the line r, so that

lim
s→+∞w(s) = +∞.

We are going to show that w is asymptotic to the line r. Let K > 1.
Suppose that for large enough s1 > 0, w′(s) > K/(n−1) for any s ≥ s1. Then,
there exists c ∈ R such that for all s ≥ s1, w(s) > Ks/(n − 1) + c. But now,
there exists co > 0 such that (n−1)w(s)

s − 1 > n−1
s

(
Ks
n−1 + c

)
− 1 = K − 1 +

(n−1)c
s > c0 > 0 for large enough s ≥ s2 ≥ s1. And so, w′(s) > co

(
w(s)2 − 1

)
for any s ≥ s2. Then, (4.2) dominates the ODE g′ = co(g2 − 1). The solution
to this equation such that g(s2) = wo is given by

g(s) =
e−2co(s−s2) + a

e−2co(s−s2) − a
, a =

wo − 1
wo + 1

< 1.

Since 0 < a < 1, g is well defined and positive. Therefore, for any s ≥ s2, it
holds w(s) ≥ g(s). However, g has a blow up at s3 = s2 − ln(a)/(2co). This
shows that w has a blow up at s4 < s3. This is a contradiction. Therefore,
since w cannot cross r, we get using L’Hospital that

lim
s→+∞w′(s) =

1
n − 1

.

Now we notice that since w > 1, (4.2) is equivalent to the expression

(n − 1)w(s) − s =
sw′(s)

w(s)2 − 1
.
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But now, as w is defined until +∞, and without critical points,

lim
s→+∞[(n − 1)w(s) − s] = lim

s→+∞
sw′(s)

w(s)2 − 1
=

1
n − 1

lim
s→∞

s

w(s)2 − 1

=
1

n − 1
lim

s→+∞
1

2w(s)w′(s)
= 0.

Summing up, the solution w is asymptotic to the line r.
Since A = sup J , take another globally defined solution wB : (0,+∞) →

R such that wB(n − 1) < w(n − 1) and wB < w everywhere. Assume that
wB has no critical points. By similar computations as above, wB will also be
asymptotic to the line r. Then, the difference h = w − wB will satisfy h > 0
and lims→+∞ h(s) = 0. By (4.2), w′ > w′

B everywhere. But then, h′ > 0,
that is to say, h is strictly increasing everywhere. This is a contradition with
lims→+∞ h(s) = 0.

In other words, there is a unique solution w globally defined on (0,+∞),
with no critical points. We will keep this notation for the rest of the paper.

Finally, given (so, wo) ∈ Γ+, such that w(so) < wo, consider the solution
to (4.2) such that w(so) = w0. As before, there exists w : (0, so + δ) → R

for some (small) δ. Assume that w is globally defined on (0,+∞). Then,
w(n − 1) > w(n − 1) = A. This is a contradiction. Therefore, any other
solution over w admits a finite-time blow-up. �

The following picture illustrates this lemma, for n = 3, made with
wxMaxima c©.

5. The Action of the Group SO(n)

We consider Rn with usual coordinates x = (x1, . . . , xn). To obtain a smooth
Riemannian submersion, we restrict it to π : M = R

n\{0} → (0,+∞),
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π(x) =
√∑

i x2
i . Then,

∇π(x) =
∑

i

xi

π(x)
∂i|x, |∇π(x)|2 =

∑
i

x2
i

π(x)2
= 1, div(∇π)(x) =

n − 1
π(x)

,

for any x ∈ M . Note that our map π is invariant by the standard action
of SO(n) on R

n. Consider now the Minkowski space L
n+1 = R

n × R �
(x1, . . . , xn+1) with standard flat metric g =

∑n
i=1 dx2

i − dx2
n+1. In order to

obtain a graphical SO(n)-invariant translating soliton, we consider u = f ◦π :
M → R, where f : I ⊂ (0,+∞) → R is the desired function, which will be a
solution to the ODE (3.3), which turns out to be

f ′′(s) =
(
1 − f ′(s)2

)(
1 − n − 1

s
f ′(s)

)
. (5.1)

Then, we resort to Sect. 4, and make a geometrical interpretation. Clearly,
the submersion π is Riemannian, hence ε̃ = 1; the product is Lorentzian, and
therefore ε′ = −1. Moreover, ε = sign(−1 + |∇u|2) = sign(−1 + (f ′(π))2) =
±1. If ε = −1, the rotational surface is space-like, whereas ε = +1 gives rise
to a time-like surface. The space-like examples are characterized by (f ′)2 < 1,
since ε = −1, but the time-like examples are those coming from (f ′)2 > 1.

Example 1. From the above section, from each (inextendible) solution w to
(3.3), we consider a primitive f =

∫
w, which will be a solution to (4.1).

Then, the hypersurface

Σf : Ω ⊂ R
n → L

n+1, φ(x) = (x, f(π(x)))

is a SO(n)-invariant translating soliton. We are extending continously π to
the rotation axis such that π(x) = 0 when x is a point of the axis. By the
limits of w at 0 (Lemmatta 4.3 and 4.4 ), all these solutions f are asymptotic
at the axis to a light-like straight line of equation x = ±s + s2. Thus, all Σf

will be asymptotic at the axis of rotation to a light-like cone.
• The Ogival Paraboloid: Ω = R

n. Case V in Lemma 4.4, the function
f =

∫
w is asymptotic at infinity to an Euclidean parabola.

• Timelike Calyx: Ω = R
n. Case VI of Lemma 4.4, since w satisfies 1 =

lims→0 w(s) = lims→∞ w(s), then Σf will be asymptotic to two upper
light-like cones, one at the origin and one at infinity.

Example 2. The spindle: We consider an example of Lemma 4.3, Case IV,
w and f− =

∫
w. Since w < −1, then f− is injective, so we can consider

its inverse α = f−1
− . Both functions are strictly decreasing. As f− is de-

fined on (0, so), there exists α : (a, b) → R such that limy→a α(y) = so and
limy→b α(y) = 0. We are going to use the proof of Corollary 3.7. Then, α is
a solution to the ODE

α′′(y) =
(−1 + α′(y)2

) (
n − 1
α(y)

− α′(y)
)

.

Assume a = −∞. Since lims→so
w′(s) = −∞, then limy→−∞ α′(y) = 0,

so that it also holds limy→−∞ α′′(y) = 0. By inserting this in the ODE,
0 = limy→−∞ α′′(y) = (1 − n)/so. This is a contradiction.
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Therefore, a ∈ R. Thus, we can extend α a little, α : (a − ε, b) → R.
But at a, α′(a) = 0, and α(a) = s1 ∈ (0, so). By the proof of Corollary 3.7,
α can be split in two inverse functions, one after a (which is the original
f−) and one before a, which we call f+. Now, it is quite clear that w+ =
f ′
+ > 1 provides an example of Case VII in Lemma 4.4. This means that the

union of these two examples make a new type of translating soliton. This
hypersurface is a (topological) sphere with two light-like-conic singularities,
namely, asymptotic to two different light-like cones, one in the upper half and
one in the lower half, with both vertices on the rotation axis. We will call it
a fusiform hypersurface or a spindle. A similar symmetric reasoning holds if
we start with an example of Case VII in Lemma 4.4, arriving to an example
of Lemma 4.3.

Theorem 5.1. Up to isometries, any time-like, SO(n)-invariant translating
soliton in L

n+1, n ≥ 2, is an open subset of either an Ogival Paraboloid, or
a Timelike Calyx, or a Spindle.

The wing-like technique used in the previous theorem makes no sense
for space-like hypersurfaces, because at some point, the hypersurfase would
be parallel to the time-like rotation axis.

Remark 5.2. In [10], independently, the author obtained the space-like ex-
amples, obtaining three types. In Proposition 3.2, the profile curve of type
2 gives rise to the Bowl. However, from our point of view, the geometrical
reconstruction of the two new surfaces can be slightly improved. Indeed, a
profile curve of type 1 in Proposition 3.2 will hit the axis by a −π/4 angle.
However, if one tries to extend it beyond the axis, by rotating the curve, we
must arrive again to one of the three cases of Proposition 3.2. But now, the
angle will be π/4, so this extension has to be a profile curve of type 3. This
reasoning can be reversed, starting from a profile curve of type 3, and ending
up with a profile curve of type 1. Moreover, the time-like examples were not
considered in this paper.

Theorem 5.3. Up to isometries, any SO(n)-invariant, space-like, translating
soliton in L

n+1, n ≥ 2, is an open subset of a hypersurface generated by the
graph of any of the three cases in Lemma 4.2.

Similarly to the Euclidean case, we call the hypersurface generated by
case I, the Bowl.

Corollary 5.4. The bowl is the only entire, SO(n)-invariant, graphical trans-
lating soliton in L

n+1, n ≥ 2, up to isometries.

The following pictures were made with wxMaxima c© and Gnuplot c© [6,
19].
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Spacelike examples

The bowl (Case I.) Case II. Case III.

Timelike examples

A Timelike Calyx The Ogival Paraboloid A Spindle

Remark 5.5. Timelike translating solitons do not satisfy a tangency principle.
Indeed, we consider two different spindles. At the points where the distance
to the axis is maximal, the tangent planes contain directions parallel to the
rotation axis. Due to the rotation action of SO(n − 1), the study of the
relative position of the hypersurfaces will reduce to the study of the curves
from Corollary 3.7. We recall that the differential equation is

α′′(y) =
(−1 + α′(y)2

) (
n − 1
α(y)

− α′(y)
)

,

with initial conditions αi(y0) = si, α′(y0) = 0, for i = 1, 2. We can assume
0 < s1 < s2. Then,

α′′
1(yo) =

1 − n

s1
<

1 − n

s2
= α′′

2(yo) < 0.

To compare their graphs, we use β = α1 + α2(yo) − α1(yo). Clearly, β′ = α′
1

and β′′ = α′′
1 . But now, β(y0) = α2(yo), β′(yo) = 0 = α′

2(yo) and β′′(yo) <
α′′
2(yo). Therefore, β(y) < α2(y) holds for any y 
= yo in a neighborhood of

yo. Geometrically, this is the same as moving one of the spindles in such a
way that their tangent planes coincide (parallel to the rotation axis), but one
spindle is at one side of the other spindle.

6. The Action of the Group SO↑ (n − 1, 1)

Let L
n, n ≥ 2, be the Minkowski (linear) space with the standard met-

ric g(X,Y ) = X1Y1 + · · · + Xn−1Yn−1 − XnYn, X = (X1, . . . , Xn)t, Y =
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(Y1, . . . , Yn)t ∈ L
n. We consider the important subgroup of linear isometries

SO↑(n − 1, 1) =
{
A ∈ Mn(R) : det(A) = +1, AtIn−1,1A = In−1,

A preserves the time orientation},

where In−1,1 = Diagonal(1, . . . , 1,−1), At is the transpose of A. The light
cone C = {p ∈ L

n : g(p, p) = 0} can be split into the zero, the future
part and the past part, C↑ = {p ∈ C : pn > 0}, C↓ = {p ∈ C : pn < 0}.
We call T↑ the open subset of all future pointing time-like vectors, whereas
T↓ is the open subset of all past pointing time-like vectors. Let S be the
open subset of all space-like vectors, which is connected when n ≥ 3, and it
has two connected components when n = 2. Then, we have the disjoint union
L

n = {0}∪C↑ ∪C↓ ∪T↑ ∪T↓ ∪S. Each of them are invariant by SO↑(n−1, 1).
Firstly, we study the case n = 2. Take the Minkowski plane L

2 with
standard flat metric g = dx2−dy2. The Boost Lie group is the set of matrices

SO↑(1, 1) = B =
{

Aθ =
(

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

)
: θ ∈ R

}
,

which acts on L
2 by isometries. If we remove the origin (0, 0), the action

is free, but it is not proper, because the quotient space (L2\{0})/B is not
Haussdorf. Indeed, the light cone projects to four points if n = 1 which cannot
be separated by neighbourhoods. We split the plane in four regions whose
boundaries are made of two light-like geodesics, namely

Ω1 =
{
(x, y) ∈ L

2 : y2 < x2, 0 < x
}

, Ω2 =
{
(x, y) ∈ L

2 : y2 > x2, 0 < y
}

,

Ω3 =
{
(x, y) ∈ L

2 : y2 < x2, 0 > x
}

, Ω4 =
{
(x, y) ∈ L

2 : y2 > x2, 0 > y
}

.

We will use the globally defined orthonormal frame {∂x, ∂y}. The action of B
works very well on each Ωk, k = 1, 2, 3, 4, because they admit decompositions
as in (3.1) (see below). According to [3], first we will obtain the fundamental
examples included in the fundamental regions Ωk × R ⊂ L

3, k = 1, 2, 3, 4. In
Ω1 ∪ Ω3, the orbits of B are time-like. In Ω2 ∪ Ω4, the orbits are space-like.
When n = 2, S = Ω1 ∪ Ω3, T↑ = Ω2, T↓ = Ω4.

We come back to the general case. To simplify computations and nota-
tions, we call χ : Ω ⊂ R

k → R
k the position vector. Define the continuous

map

π : Ln → [0,+∞), π(x) =
√

|g(x, x)|, also π =
√

|g(χ, χ)|.
Outside the light cone, π is smooth. Given x ∈ L

n\C, we put ε̃ = sign(g(x, x))
= ±1,

∇π(x) = ε̃
χ(x)
π(x)

, |∇π(x)|2 = ε̃, div(∇π)(x) =
ε̃(n − 1)

π(x)
. (6.1)

This projection can be restricted to Ωi, S, T↑, T↓, obtaining the necessary
pseudo-Riemannian submersions onto (0,+∞). We explain the curves and
diffeomorphisms of (3.1) in some cases, and the other ones are left to the
reader.
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� Decomposition of T↑. The curve is β : (0,+∞) → T↑, β(s) = (0, . . . , 0, s),
and the map is φ : (0,+∞) × SO(n − 1, 1) → C↑, φ(s,A) = β(s)A. Also,
ε̃ = −1.
� Decomposition of S. The curve is now β : (0,+∞) → S, β(s) = (s, 0, . . . , 0),
and the map is φ : (0,+∞) × SO(n − 1, 1) → C↑, φ(s,A) = β(s)A. Also,
ε̃ = +1.

Remark 6.1. Given a domain (open and connected) Ω ⊂ L
n\C, such that any

of the above decompositions make sense, then π : Ω → (0,+∞). By (6.1),
function h : (0,+∞) → R is h(s) = ε̃/s.

It is important to remember that we are studying L
n+1 = L

n × R, so
that ε′ = +1. Therefore, with our previous considerations, equation (3.3)
reduces to

f ′′(s) =
(
ε̃ + f ′(s)2

) (
1 − ε̃(n − 1)

s
f ′(s)

)
. (6.2)

where ε̃ depends of the type of the orbits of B, i.e. of the region we are
considering

Example 3. Assume ε̃ = 1, i.e. we consider solutions in the domain S. Then
(3.3) becomes

f ′′(s) =
(
1 + f ′(s)2

) (
1 − n − 1

s
f ′(s)

)
. (6.3)

This is the very same ODE as in the rotationally symmetric case in R
n+1.

By [5], there are two types of solutions.
• Type Z: Firstly, we recall the only solution f1 such that f1(0) = 0 and

f ′
1(0) = 0. The translating soliton will be the corresponding graph

Φ : Ω → Ω × R ⊂ L
n+1, Φ(x) =

(
x, f(π(x))

)
.

When n = 2, there will be two twin surfaces constructed like this, one
in Ω1 and one in Ω3. For n ≥ 3, since Ω = S is connected, there is just
one hypersurface.

• Wing-like: Secondly, as in [5], (also, recall Corollary 3.7), there is a
family of unextendable, space-like profile curves α : R → {(x, y, t) ∈
L
3 : y = 0, x > 0}. By denoting the 3 × 3 matrix Âθ =

(
Aθ 0
0 1

)
, the

translating soliton is then

Φ : R2 → L
3, Φ(θ, s) = α(s)Âθ.

Example 4. For ε′ = 1 and ε̃ = −1, (3.3) becomes

f ′′(s) =
( − 1 + f ′(s)2

) (
1 +

n − 1
s

f ′(s)
)

. (6.4)

By the easy change q(s) = −f(s), we transform this problem in

q′′(s) =
(
1 − q′(s)2

) (
1 − n − 1

s
q′(s)

)
.
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By Sect. 4, there are 7 types of solutions to this differential equation. Once we
have a solution (f = −q), we construct our profile curve and the associated
translating soliton. As f ′ = −q′, the solutions producing time-like translating
solitons are those satisfying |f ′(s)| < 1. So, for each solution as in Lemma 4.2,
we construct a time-like translating soliton.

Example 5. The Hybrid Translator:
• Case n = 2. We call f1 the solution to (6.3) in R, and f2 the solution to

(6.4) in R such that fi(0) = 0 and f ′
i(0) = 0, i = 1, 2. Recall that they

are even functions and analytical. As such, their derivatives of odd order

are f
(2k−1)
i (0) = 0, k ≥ 1. As a result, f1(s) =

∑∞
k=1

f
(2k)
1 (0)
(2k)! s2k. Then,

it makes sense to define f̂ : R → R, f̂(s) = f1(is), where i =
√−1. By

simple computations,

f̂ ′′(s) = −(
1 − (f̂ ′(s))2

)(
1 +

f̂ ′(s)
s

)
.

Hence, f̂ is a solution to equation (6.4), and consequently f̂ = f2. By
comparing the derivatives of f1 and f2, f

(k)
1 (0) = f

(k)
2 (0) = 0, if k

is odd, since f1 and f2 are even, and f
(4k+2)
1 (0) = −f

(4k+2)
2 (0) and

f
(4k)
1 (0) = f

(4k)
2 (0) for all k ≥ 0. Next, we can define

u : R2 → R, u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

f1

(√
x2 − y2

)
, (x, y) ∈ Ω1 ∪ Ω3,

0, (x, y) ∈ ∂Ωi, i = 1, 2, 3, 4,

f2

(√
y2 − x2

)
, (x, y) ∈ Ω2 ∪ Ω4.

Note that we get immediately u ∈ C0(R2) ∩ C∞(
⋃4

k=1 Ωk). We want to
prove that u ∈ C∞(R2). To do so, we now just need to prove the following

Lemma 6.2. Let f1, f2 be functions in C2m(R), such that f
(k)
1 (0) = f

(k)
2 (0) =

0, if k is odd, f
(k)
1 (0) = (−1)

k
2 f

(k)
2 (0), if k is even. Then the function u defined

as above is in Cm(R2).

Proof. We prove the statement by induction over m. The case m = 0 is
trivially satisfied, since f1(0) = f2(0). Moreover let g1(z) = f ′

1(z)
z , g2(z) =

f ′
2(z)
z . We have

∂xf1(
√

x2 − y2) = xg1(
√

x2 − y2), ∂xf2(
√

y2 − x2) = −xg2(
√

y2 − x2),

∂yf1(
√

x2 − y2) = −yg1(
√

x2 − y2), ∂yf2(
√

y2 − x2) = yg2(
√

y2 − x2).

Since f ′
1(0) = f ′

2(0) = 0, and g
(4k+2)
1 (0) = −g

(4k+2)
2 (0) and g

(4k)
1 (0) = g

(4k)
2 (0)

for all k ≥ 0, obviously g1, g2 ∈ C2m−2 . Then by the induction hypothesis,
the function

v : R2 → R, v(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

g1

(√
x2 − y2

)
, (x, y) ∈ Ω1 ∪ Ω3,

0, (x, y) ∈ ∂Ωi, i = 1, 2, 3, 4,

g2

(√
y2 − x2

)
, (x, y) ∈ Ω2 ∪ Ω4.
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is in Cm−1(R2). Hence ∂xu and ∂yu extend to Cm−1(R2), and finally u ∈
Cm(R2). �

We point out that the curve joining each two adjacent pieces is a light-
like straight line. Thus, it is possible to consider two or three contiguous
pieces, and their gluing straight lines. We cannot consider the other straight
half-lines, since the boundary would be light-like. In other words, we can
choose to glue either two, three or four adjacent pieces, to obtain translating
solitons.

• Case n ≥ 3. L
n is isometric to the Lorentzian product R

n−1 ×−1 R,
n ≥ 3, with the standard metric as at the beginning of this section.
If we call go the standard Riemannian metric on R

n−1, its norm is
‖x‖ =

√
go(x, x), for any x ∈ R

n−1. The function u of the Hybrid
Translator can be easily extended to L

n as follows:

ũ : Rn−1 ×−1 R = L
n → L

n+1, (x, y) 
→ ũ(x, y) := u(‖x‖, y).

There is no confusion if we also call its graph the Hybrid Translator.

In addition, take A ∈ SO↑(n − 1, 1), and decompose it as A =
(

B dt

c a

)
for suitable B ∈ Mn−1(R), c, d ∈ R

n−1, a ∈ R. With this, given (x, y) ∈
R

n−1 ×−1 R = L
n, taking (z, t) = (z, y)A, then ‖z‖2 − t2 = ‖x‖2 − y2. This

means that ũ is invariant by SO↑(n − 1, 1).
Sprunk and Xiao [17], proved that any entire translating soliton in R

3

must be convex, but this is not the case for our hybrid example, because
f1f2 < 0.

Theorem 6.3. Let M be a SO↑(n−1, 1) invariant, time-like, translating soli-
ton in L

n+1, n ≥ 2. Then, up to isometries, M is an open subset of one of
the following examples:

1. A translating soliton of type Z or Wing-like.
2. Given w any of the three types of solutions in Lemma 4.2, take f =

− ∫
w.

3. The Hybrid Translator.

Proof. We will use Theorem 3.5. As we regard L
n+1 = L

n × R, we need
ε′ = +1. Recall Ln = C ∪ S ∪ T↑ ∪ C↓, and each subset is invariant by the
action of SO↑(n − 1, 1) by isometries. Only on S ∪ T↑ ∪ C↓ the action is
proper, and we can obtain decompositions as in (3.1). The value of ε̃ depends
on the chosen domain. The orbits of the action are well-known. First, one
finds the lightcone. For n = 2, they are (Euclidean) hyperbolas. For n ≥ 3,
they are hypersurfaces with non-zero constant sectional curvature (namely,
real hyperbolic spaces for any n ≥ 3 and Anti-de Sitter spaces for n ≥ 4).

• For T↑ (resp. T↓), the curve β : (0,+∞) → T↑, β(s) = (0, . . . , 0, s) is
time-like (resp. β(s) = (0, . . . , 0,−s)). Then, ε̃ = −1 and therefore we
recall Example 4, obtaining another 3 time-like translating solitons.

• For Ω = S, the curve β : (0,+∞) → S, β(s) = (s, 0, . . . , 0) is space-like.
Then, ε̃ = +1. The differential equation (3.3) becomes

f ′′(s) =
(
1 + f ′(s)2

) (
1 − n − 1

s
f ′(s)

)
. (6.5)
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Now, we recall Examples 3. One should bear in mind that for n = 2,
there will two twin surfaces, in Ω1 × R and in Ω3 × R, since S is not
connected.

• It remains to study whether the solutions touching the lightcone can be
extended smoothly. Since the lightcone has a degenerate metric, it has
to be strictly contained in the hypersurface. In other words, we wonder if
it is possible to glue two solutions, one in T↑ and one in S (alternatively,
in T↓). By regarding the extended action of SO↑(n − 1, 1) on L

n+1, if
any, the tangent plane at the origing must be {x ∈ L

n+1 = L
n × R :

xn+1 = 0}. This means that the derivatives of the functions must be
zero. Then, we finish the proof by recalling the Hybrid Translator. �

By another method, in [10], the author obtained (essentially) the three
space-like types, but not the time-like cases. Again, we also recover the fol-
lowing result from [10].

Theorem 6.4. Up to isometries, any SO↑(n−1, 1) invariant, space-like, trans-
lating soliton in L

n+1, n ≥ 2, is an open subset of a hypersurface generated
by the graph of any of Cases V, VI or VII in Lemma 4.4.

Remark 6.5. As in the proof of Theorem 5.1, Type IV from Lemma 4.3 and
Type VII can be joined to provide a single profile curve.

Corollary 6.6. The only SO↑(n−1, 1)-invariant, entire translating soliton in
L

n+1, n ≥ 2, is the hybrid translator.
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