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Abstract Widespread overprinting of early high-pressure/low-temperature (HP/LT) subduction stages

due to subsequent collisional or late-orogenic tectono-metamorphic events is a common feature affecting

the interpretation of geochronologic data from HP/LT orogens. The Betic-Rif orogen is exemplary in this
connection as a great majority of published radiometric ages are found to cluster around 20 Ma. This clustering
is commonly interpreted as reflecting a short, yet complex, succession of tectono-metamorphic events spanning
only over a few Myr, including back-arc extension and overthrusting of the Internal Zones on the External
Zones. An alternative explanation consists in the poor preservation of a much earlier HP/LT metamorphic
event, presumably Eocene, coeval with subduction and crustal thickening in the Internal Zones, and particularly
the Alpujarride Complex. However, this age is vividly debated due to widespread resetting by the Early
Miocene HT/LP overprint. In this study, we provide new “°Ar/**Ar evidence from white micas selected along
an E-W section of the Internal Betics, from the central to the eastern Alpujarride Complex. Our new data show
(a) that exceptionally well-preserved HP/LT parageneses in this unit retain a well-defined Eocene age around
38 Ma, and (b) that widespread 20 Ma ages recorded all along the section correspond to a regional stage of
exhumation, coeval with a major change in the kinematics of back-arc extension. Our study provides conclusive
evidence that “*Ar/*°Ar dating of carefully targeted HP/LT associations can overcome the problem of extensive
late-orogenic overprinting, testifying for an Eocene HP event around 38 Ma in the Betic-Rif orogen.

1. Introduction

How the dynamics of subducting lithospheric slabs interferes with crustal deformation in the upper plates of con-
vergence zones is a major question in plate-kinematic and crustal-scale restorations. This question is particularly
well illustrated in the Betic-Rif orogen (western Mediterranean) which results from complex interactions between
the Africa and Iberia plates during their convergence and deep-seated slab dynamics (Dewey et al., 1989; Fac-
cenna et al., 2004, 2014; Jolivet et al., 2003; Lonergan & White, 1997; Mancilla et al., 2015; Platt et al., 2003;
Spakman & Wortel, 2004). The arcuate bending of the orogen and drastic kinematic changes (Crespo-Blanc
et al., 2016; Faccenna et al., 2014; Jolivet & Faccenna, 2000; Jolivet et al., 2003; Platt et al., 1998, 2013; Platt
& Vissers, 1989; Vergés & Fernandez, 2012) during the Miocene have led to a complex 3-D organisation and
pressure-temperature-time (P-7-t) evolution that are important to decipher in order to understand the dynamics of
such a complex system. Central to this question is the age of the high-pressure/low-temperature (HP-LT) event
marking the subduction of large portions of the Internal Zones and the timing of the transition toward shallower
crustal conditions during exhumation of the HP units.

Deciphering such dynamics is complex because early (deep-seated) metamorphic stages can be partially or even
wholly overprinted during exhumation, obscuring the sequence of tectono-metamorphic events contributing to
the finite structure of the exhumed crustal stack like in, for example, Himalayan, Aegean, the Alps, Alpine Cor-
sica, the Zagros or the Menderes massif. To address this issue, several thermo-chronological methods (e.g., U/
Pb on zircon, “°Ar/**Ar on white mica, fission-tracks in both zircon and apatite) are usually required in combina-
tion with detailed petrochronology, thermochronometers and structural data to properly constrain the timing of
peak-metamorphic events and subsequent exhumation (e.g., Beaudoin et al., 2020; Dragovic et al., 2020; Kohn
et al., 2017; Kurzawa et al., 2017; Laurent et al., 2021; Plunder et al., 2016).
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The Betic-Rif Cordillera (Figure 1) is a young and well-exposed orogen with a major, regional-scale, meta-
morphic event massively overprinting earlier HP/LT tectono-metamorphic events that, thus, remain poorly con-
strained. The tight curvature of the orogen and the presence of a steeply dipping slab below the Alboran basin
formed in the back-arc region have been explained by slab retreat and tearing (Faccenna et al., 2004; Jolivet
et al., 2008; Lonergan & White, 1997; Spakman & Wortel, 2004). Several metamorphic and tectonic stages
have long been recognized, with contrasting kinematics, but their respective timing remains unclear (Augier,
Agard et al., 2005; Azafién & Crespo-Blanc, 2000; Homonnay et al., 2018; Lépez Sdnchez-Vizcaino et al., 2001;
Michard et al., 2006; Monié et al., 1991, 1994; Platt et al., 2005, 2006; Sanchez-Rodriguez & Gebauer, 2000;
Tubia & Gil Ibarguchi, 1991). A majority of published ages is found to cluster around 20 Ma both for the
HP/LT event linked to the initial subduction phase, and the high-temperature/low-pressure (H7/LP) event due
to subsequent slab roll-back and back-arc lithospheric extension. This clustering suggests that the HP/LT and
HT/LP metamorphic events and associated exhumation history occurred in a very short time span (Homonnay
et al., 2018; Lopez Sanchez-Vizcaino et al., 2001; Michard et al., 2006; Platt et al., 2006; Sanchez-Rodriguez &
Gebauer, 2000; Tubia & Gil Ibarguchi, 1991). Thus, fast cooling rates >70-90°C/Ma (up to ~350°C/Ma during
the 20—18 Ma period) have been proposed for the different metamorphic units of the Betic-Rif Cordillera with
exhumation rates of 3—12 mm/yr (Lépez Sanchez-Vizcaino et al., 2001; Monié et al., 1994; Platt et al., 2006;
Sanchez-Rodriguez & Gebauer, 2000). Peak-pressure conditions range from ~8-10 kbar to ~20-22 kbar and
peak-temperatures from ~350°C to ~580°C (Augier, Agard et al., 2005; Azafién, 1992; Azaifién et al., 1998;
Azafién & Gofté, 1997a, 1997b; Booth-Rea et al., 2002; Bouybaouene et al., 1995; Chalouan et al., 2008; de
Jong, 2003; Goffé et al., 1989; Li & Massonne, 2018; Lopez Sanchez-Vizcaino et al., 2001; Martinez-Martinez &
Azafién, 1997; Michard et al., 1997; Nijhuis, 1964; Santamaria-Lopez et al., 2019; Tubia & Gil Ibarguchi, 1991).
The HT/LP event is mainly characterized by a fast and large decompression and a moderate temperature in-
crease leading to a low P/T gradient about ~4 kbar for 400-600°C (Augier, Agard et al., 2005; Azafién & Cre-
spo-Blanc, 2000; Azafi6én et al., 1993, 1997, 1998; Balanya et al., 1997; Jabaloy et al., 1993; Nijhuis, 1964;
Soto & Azaifi6én, 1994). Notably, the first unconformably overlying sediments found mostly in the central and
eastern part of the region are dated at ~20.5 Ma (Serrano et al., 2006, 2007) indicating that a substantial amount
of exhumation had already occurred by that time, at odds with the timing of the HP/LT metamorphic event
estimated between 25 Ma and 18 Ma (Sanchez-Rodriguez & Gebauer, 2000; Tubia & Gil Ibarguchi, 1991).
Others argue for a partial to total resetting of the early HP/LT record during later back-arc extension or delami-
nation at ~20 Ma (Augier, Agard et al., 2005; Jolivet et al., 2003; Michard et al., 2006; Monié et al., 1994; Platt
et al., 2005, 2013). A few studies have documented an Eocene age for the HP/LT event in the Alpujarride Com-
plex (Monié et al., 1991; Platt et al., 2005), consistent with unconformably overlying Oligocene conglomerates on
top of deformed Eocene sediments in Sierra Espuiia in the Malaguide Complex further north (Lonergan, 1993).
However, the lack of accurate structural and metamorphic information on the setting and evolution of the dated
samples precluded any definite conclusion. “°Ar/*’Ar Eocene ages were also obtained on micas, mainly white
micas, from the deeper nappe of the Nevado-Filabride Complex (Augier, Agard et al., 2005; Monié et al., 1991).
These ages have been regarded as suspiciously old due to possible excess argon and discarded in favor of Early
Miocene Lu/Hf ages on garnets and U/Pb ages on zircons thought to date the peak of pressure (de Jong, 2003;
Lépez Sanchez-Vizcaino et al., 2001; Platt et al., 2006). Using in situ dating of monazite with electron micro-
probe, Li and Massonne (2018) recently obtained Eocene ages from the same unit, shedding a new light on this
question and reopening the debate.

We build on these past studies to reevaluate the age of the HP-LT event in the Alpujarride Complex based on a
fresh sampling strategy. If the 20 Ma is related to a late tectonic event and the age of the HP-LT metamorphism
is indeed Eocene, then only the well-preserved HP-LT parageneses are likely to preserve the isotopic record
of this early event. Finding such parageneses is challenging in the Alpujarride Complex where Fe-Mg carpho-
lite is generally the only relic phase, in the form of needles inclusions in quartz lenses. To test this model and
provide new constraints on the timing of the different Alpine metamorphic events recorded in the Alpujarride
Complex (Azafién & Crespo-Blanc, 2000; Booth-Rea et al., 2005; Goffé et al., 1989), we undertook a search
for new *°Ar/*Ar targets fulfilling this goal, that is, the best-preserved paragenesis for both HP-LT and LP-HT
tectono-metamorphic events. We report new “°Ar/**Ar ages from white micas confirming (a) the occurrence of an
Eocene HP/LT metamorphic event in post-Variscan Permian-Triassic micaschists displaying well-preserved HP/
LT metamorphic parageneses associated with a syn-orogenic exhumation, and documenting (b) the effects of ex-
tensive overprinting at 20 Ma due to tectonic denudation and exhumation under H7/LP post-orogenic conditions.
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Figure 1. Geological and metamorphic map of the Betic Cordillera. Location of the Betic Cordillera belt within the Gibraltar arc. Detailed geological and tectono-
metamorphic map of the Internal Zones of the Betic Cordillera, with the location of the studied area, and the location of the cross-sections. Regional cross-sections
(A-A’ and B-B’) show the large-scale tectonic features of the study area. Position of the dated samples are projected, as well as the smaller-scale sections presented in

Figures 5-12.

2. Geological Setting: Geodynamic Evolution of the Betic-Rif Orogen

The Betic-Rif Cordillera (western Mediterranean region) results from the Late Cretaceous-Eocene closure of the
westernmost branch of the Neo-Tethys Ocean by subduction and collision of several crustal domains intercalated
between Africa and Iberia. From the Oligocene to the Quaternary, slab dynamics including roll-back and tearing
(Faccenna et al., 2004; Jolivet et al., 2008; Lonergan & White, 1997; Spakman & Wortel, 2004) formed a series
of back-arc basins involving highly extended continental crust (e.g., the Alboran or the Aegean domains), vol-
canic material (Eastern Alboran basin), and juvenile oceanic crust (Tyrrhenian, Liguro-Provencal and Algerian
basins; Faccenna et al., 2014; Jolivet et al., 2003; Menant et al., 2016; Michard et al., 2006; Prada et al., 2018).
Later, compression took over after cessation of retreat of the Gibraltar subduction (Augier et al., 2013; Faccenna
et al., 2004; Jolivet et al., 2006; Spakman et al., 2018). Accumulation of incremental tectono-metamorphic events
is responsible for the highly arcuate finite shape of the belt, displaying a particularly high internal complexity
(Augier, Agard et al., 2005; Booth-Rea et al., 2005; Esteban et al., 2011; de Jong, 1992; Li & Massonne, 2018;
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Lépez Sanchez-Vizcaino et al., 2001; Monié et al., 1991, 1994; Platt et al., 2005, 2006, 2013; Sanchez-Rodriguez
& Gebauer, 2000).

The northern branch of the arc (Betic Cordillera) is classically divided into unmetamorphosed External Zones
and metamorphic Internal Zones (Egeler & Simon, 1969), separated by the internal-external boundary zone
(IEBZ) where the Flyschs Complex is sandwiched (Figure 1; Durand-Delga, 1980; Vissers et al., 1995). A de-
tailed exposition of the geology of the External Zones is provided by Vissers et al. (1995), Azafién and Cre-
spo-Blanc (2000) or Platt et al. (2013).

The Internal Zones correspond to a stack of large-scale metamorphic complexes characterized by a poly-phased
tectono-metamorphic record and are currently dominated by several sets of large-scale extensional shear zones
(Agard et al., 2011; Augier, Booth-Rea et al., 2005; Augier, Jolivet, & Robin, 2005; Crespo-Blanc et al., 1994;
Jabaloy et al., 1993; Martinez-Martinez et al., 2002; Platt, 1986; Vissers et al., 1995). Three main metamorphic
complexes are usually recognized, from top to bottom (i.e., from the most external to the most internal): (a) the
Malaguide, (b) the Alpujarride and (c) the Nevado-Filabride Complexes (Torres-Roldan, 1979), each separated
by crustal-scale low-angle ductile, then brittle, extensional shear zones (Figure 1; Augier, Jolivet, & Robin, 2005;
Martinez-Martinez et al., 2002; Platt et al., 2005, 2013; Vissers et al., 1995). Except for the Nevado-Filabride
Complex, which is only observed on the Betic side, the other two complexes crop out on either side of the Alb-
oran Sea, including the Rif. Our focus here is on the Alpujarride Complex for which we now provide the main
geological, tectonic and metamorphic characteristics. The reader is referred to the Supporting Information S1 for
a more detailed description of the Internal Zones.

2.1. The Alpujarride Complex

The Alpujarride Complex is a stack of several nappes including a Variscan basement and a Permian-Triassic
metasedimentary cover of micaschists and marbles metamorphosed to various grades along different P/T ra-
tios, and later dissected by low-angle normal faults (Azafién & Crespo-Blanc, 2000; Crespo-Blanc et al., 1994).
This complex is affected by two main tectono-metamorphic events. The first one, coeval with subduction HP/
LT metamorphic conditions (M1), is characterized by the development of a fabric (S1-L1) acquired during the
first deformation phase (D1). Most Alpujarride Complex units indeed recorded HP/LT metamorphic imprint, as
illustrated by the widespread occurrence of variably preserved carpholite and aragonite in veins associated with
K white micas, pyrophyllite, chloritoid and chlorite (Azafién, 1994; Azafién & Crespo-Blanc, 2000; Booth-Rea
et al., 2002, 2005; Figure 1). Peak-metamorphic conditions mostly cluster around a 10°C/km subduction gradient
along which they reached variable HP/LT conditions at ca. 10 + 2 kbar and 400 + 100°C (Figure 2; Azafién &
Crespo-Blanc, 2000; Platt et al., 2013). The second deformation stage (D2) is associated to an important exten-
sional event, related to the polyphased exhumation of the complex during both syn- and late-orogenic stages,
leading to the development of the main regional gently dipping planar-linear fabric (S2-L2) across the whole
metamorphic complex (Figure 2; Azafién, 1994; Azafién & Crespo-Blanc, 2000; Azafién et al., 1997; Booth-Rea
et al., 2005). During D2, the S1 fabrics is pervasively crenulated while the M1 HP/LT metamorphic paragenesis
appear only and often partially preserved within veins (Figure 2). Metamorphic conditions (M2) are characterized
by low pressures around 3—4 kbar for similar ca. 400°C temperatures (Azafién et al., 1993, 1997, 1998; Azaiién &
Crespo-Blanc, 2000; Bakker et al., 1989; Monié et al., 1994). Exhumation to near surface conditions was almost
complete when a third deformation stage (D3) occurred. This event, associated to a renewal of crustal contraction,
is characterized by new nappe stacking event and large-scale folding (Azafién & Crespo-Blanc, 2000). Finally,
the fourth stage (D4) corresponds to the segmentation of the exhumed metamorphic rocks by the extensive devel-
opment of regional-scale high-angle normal faults affecting the whole complex (Azafién & Crespo-Blanc, 2000;
Tubfia et al., 1992).

2.2. Alpine P-T Evolution of the Alpujarride Complex

One puzzling feature of the Alpujarride Complex is the metamorphic contrast between the western and central-east-
ern parts. The central and eastern Alpujarride Complex units show widespread HP-LT relics that are completely
lacking in the western part, except for the retrogressed Ojén eclogites (Azafién & Crespo-Blanc, 2000; Azafién
et al., 1992, 1997; Bakker et al., 1989; Booth-Rea et al., 2002; Goffé et al., 1989; Tubia & Gil Ibarguchi, 1991).

BESSIERE ET AL.

4 of 35



A2 | .
€ 19 Tectonics 10.1029/2021TC006889

ADVANCING EARTH
AND SPACE SCIENCE

kl1usar / Permian-Triassic @. l;_r: Alpujarride Complex
, Paleozoic N Western part
14
B -
. K4
J“B“‘?"e Partially
12 45 nit retrogressed
, eclogites (Ojén)
" |40 Yunquera
Unit
10 .
35 Alboran Basin
A
L4
|30 Site 976
Central part
|25 // l
| 20 Adra Unit Salobrefia
Unit
15 / 7
B Herradura Escalate
Unit Unit
10 /
Lujar-Gador Unit
» 60°C / - Eastern part
d
o S /7 /
1200 1300 l400 I500 l600 1700 800  Almanzoraand  Alhamilla
ﬂ T°C Variegato group Unit

Intense S2/L2 fabric

Paired vein/host rock
(ex: ALP1601, ALP1602,
ALP1712, ALP1713)

HP/LT carrying relics
of M1 assemblages

Figure 2.

BESSIERE ET AL.

5 of 35



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Tectonics 10.1029/2021TC006889

Mineralogical assemblages related to this HP/LT event, M1, include carpholite, kyanite, chloritoid and aragonite,
which developed during the subduction of continental slivers, particularly within the Permian-Triassic meta-
sediments (Azafion & Crespo-Blanc, 2000; Azaifién et al., 1992, 1997, 1998; Azafiéon & Gofté, 1997a, 1997b;
Balanya et al., 1997; Booth-Rea et al., 2002; de Jong, 1991; Goffé et al., 1989; Jolivet et al., 2003). In contrast,
the Paleozoic dark metasediments displays mostly high-temperature parageneses with garnet, staurolite, biotite,
andalusite and locally sillimanite (Figure 2; Azafién & Crespo-Blanc, 2000; Azafién et al., 1992, 1997; Azafién
& Goffé, 1997a, 1997b; Booth-Rea et al., 2005; Goffé et al., 1989; Jolivet et al., 2003). Similar observations
can be made in the Paleozoic dark metasediments of the western part of the Alpujarride Complex and the Per-
mian-Triassic metasediments. Both either lack evidence for HP/LT metamorphism, or display only HP-mineral
relics, with a dominant H7-LP metamorphic record (Acosta-Vigil et al., 2016, 2014; Balanya et al., 1997; Barich
et al., 2014; Bartoli et al., 2013, 2016; Esteban et al., 2005, 2008; Massonne, 2014; Ruiz-Cruz & Sanz de, 2014;
Tubia et al., 1997). The Permian-Triassic metasediments from the central and eastern Alpujarride units, which
have not recorded any pre-Alpine metamorphic event, show peak-pressure conditions between 10 and 12 kbar
at temperatures mostly ranging from 300°C to 450°C, and only locally 550°C in the Herradura unit (Figure 2;
Azafion et al., 1998; Azafion & Goffé, 1997a, 1997b; Booth-Rea et al., 2005). Some tectonic units recorded lower
pressure conditions, mostly around 7-8 kbar, at temperatures between ~280°C and ~400°C (Figure 2; Azafién
et al., 1992, 1998; Azaiién & Goffé, 1997a, 1997b).

Two main P-T evolutions can be distinguished with, (a) a retrograde path along a cold gradient around 10°C/km,
typical of syn-orogenic exhumation in the subduction complex, and (b) a nearly isothermal decompression char-
acteristic of post-orogenic exhumation (Figure 2). The first type of retrograde P/T evolution is characterized by
the good preservation of HP/LT metamorphic assemblages (involving the Escalate and Alhamilla units only; see
Figure 1; Azafi6n et al., 1992, 1997, 1998; Azaiiéon & Gofté, 1997a, 1997b; Goffé et al., 1989, 1996). The second
type of retrograde P/T evolution occurred at amphibolite-facies to upper-greenschist-facies, until pressure condi-
tions near ~3—4 kbar and temperature conditions between 300 and 420°C, or 500°C for the Herradura unit (Fig-
ure 2; Azafén & Crespo-Blanc, 2000; Azafién et al., 1993, 1997, 1998; Bakker et al., 1989; Monié et al., 1994).
These led to extensive overprinting of HP/LT parageneses, locally leaving only scattered relics or pseudomorphs
(Azaiién et al., 1992, 1998; Azaiidon & Goffé, 1997a, 1997b; Booth-Rea et al., 2005; Goffé et al., 1989, 1996).

2.3. Previous Geochronology for Alpine Evolution of the Alpujarride Complex

Available ages for M1, the HP/LT metamorphic event related to the first deformation phase (D1) are scarce and
correspond only to “°Ar/*°Ar on barroisite and white micas. Age data range between Eocene and Oligocene, that
is, from ~48 Ma (no spectra shown), to less than 23 Ma (Figure 3; Monié et al., 1991; Platt et al., 2005). The
D2 event, responsible for a strong metamorphic overprint (M2), has also been dated using “°Ar/*°Ar on white
micas yielding early Miocene ages, mostly clustered around the Aquitanian-Burdigalian boundary around 20 Ma
(Figure 3; Monié et al., 1991, 1994; Platt et al., 2005). Many other ages (obtained using both “°Ar/**Ar and U/
Pb methods; see Figure 3) provided in other studies discussing the succession of tectono-metamorphic events,
especially those post-dating the D1 phase and the M1 conditions, were obtained on pre-Alpine metamorphic
rocks potentially affected by inherited, mixed, ages (Esteban et al., 2011; Frasca et al., 2017; Loomis, 1975; Platt
et al., 2003, 2005; Platt & Whitehouse, 1999; Priem et al., 1979; Sanchez-Rodriguez & Gebauer, 2000; Sosson
et al., 1998; Whitehouse & Platt, 2003; Zeck & Williams, 2001). The need to work on fresh samples obviating
such shortcomings appears thus essential to clear up this issue, as we next discuss.

Figure 2. Synthesis of P-T paths and main tectono-metamorphic events in the Alpujarride Complex and sampling strategy. (a) Synthesis of retrograde P-T paths
recorded by each unit from the Alpujarride Complex, with the distinction between the Paleozoic and Permian-Triassic lithostratigraphic units (large and pastel lines vs.
thin and dark lines). Data are from (1) Tubia and Gil Ibarguchi (1991); (2) Azaiidn et al. (1992); (3) Goffé et al. (1994); (4) Azaidn et al. (1995); (5) Garcia-Casco and
Torres-Roldan (1996); (6) Balanya et al. (1997); (7) Azafién et al. (1998); (8) Soto and Platt (1999); (9) Azafién and Crespo-Blanc (2000); (10) Booth-Rea et al. (2005)
and (11) Esteban et al. (2005). (b) Synthetic 3D sketch derived from field observation and illustrating the two main metamorphic events observed in the Alpujarride
Complex, that is, the high-pressure/low-temperature (HP/LT) metamorphic event (M1) and the H7/LP metamorphism (M2). The almost transposition of the S1 by the
S2 is highlighted by the penetrative foliation developed during the D2 phase under warmer temperature conditions due to the post-orogenic extensional exhumation,
allowing the folding and the partial overprint of the HP/LT markers. Also shown are relationships between quartz-veins and the host micaschist parts which can be
typically observed for paired samples: ALP1601, ALP1602 and ALP1712/ALP1713.
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Figure 3. Synthesis of the available geochronological data for the Internal Zones of the Betic-Rif Cordillera. Summarize of the available tectono-metamorphic dating
in the studied area, that is, the Internal Zones of the Betic-Rif Cordillera. Results from the Sebtide Complex (the Rifan twin of the Alpujarride Complex) are given for
comparison. Black boxes are dating from this study. Numbers refer to the references as follow: (1) Loomis (1975); (2) Priem et al. (1979); (3) Monié et al. (1991, 1994);
(4) de Jong (1992); (5) Johnson et al. (1997); (6) Platt et al. (1998); (7) Sosson et al. (1998); (8) Blichert-Toft (1999); (9) Platt and Whitehouse (1999); (10) Zeck and
Whitehouse (1999); (11) Montel et al. (2000); (12) Sanchez-Rodriguez and Gebauer (2000); (13) Lopez Sanchez-Vizcaino et al. (2001); (14) Zeck and Williams (2001);
(15) Zeck and Whitehouse (2002); (16) Platt et al. (2003); (17) Whitehouse and Platt (2003); (18) Esteban et al. (2004); (19) Pearson and Nowell (2004); (20) Augier,
Agard et al. (2005); Augier, Booth-Rea et al. (2005); (21) Esteban et al. (2005); (22) Platt et al. (2005); (23) Janots et al. (2006); (24) Michard et al. (2006); (25) Platt

et al. (2006); (26) Serrano et al. (2006); (27) Rossetti et al. (2010); (28) Esteban et al. (2011); (29) Gémez-Pugnaire et al. (2012); (30) Acosta-Vigil et al. (2014); (31)
Massonne (2014); (32) Ruiz-Cruz and Sanz de Galdeano (2014); (33) Frasca et al. (2017); (34) Homonnay et al. (2018); (35) Li and Massonne (2018).

3. Sampling Strategy and Sample Description
3.1. Sampling Strategy

The main question motivating this work is whether an Eocene M1, the HP/LT event, affected the whole Alpu-
jarride subduction complex and, if so, what is the timing of this event and the subsequent H7/LP overprint that
can be deduced from “°Ar/*°Ar dating on white micas (Monié et al., 1991; Platt et al., 2005). Despite the late M2
HT overprint, early diagnostic HP/LT parageneses are locally preserved in the central and eastern parts of the
complex that did not experience temperatures exceeding 350-400°C (Figures 2—4; Azafién, 1994; Booth-Rea
et al., 2005; Goffé et al., 1989, 1996). Such rare HP/LT relics occur associated with HP/LT metamorphic as-
semblages including aragonite, Fe-Mg-carpholite, saliotite and sudoite carried by the D1 (S1/L1) fabrics and the
veins (Azafidn, 1992; Azafién et al., 1997; Goffé et al., 1989, 1994, 1996, Figures 2 and 4).
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Figure 4. Diversity of the retrograde P-T paths for the Alpujarride tectonics units dated in this study. Units were distinguished and ordered upon the type of their
retrograde P-T paths, including cooling, sub-isothermal decompression or heating. Sampling focused on the Permian-Triassic metasedimentary succession of the
Alpujarride Complex; P-T paths of the Paleozoic lithostratigraphic formations are given for comparison.

To achieve this goal, 10 samples were selected based on the spatial distribution of such index mineral associa-
tions and by applying the following guidelines (see location map in Figure 1). First, the sampling was primarily
focused on Permian-Triassic formations to avoid possible complications due to a Variscan isotopic inheritance
(Figures 2 and 4; Booth-Rea et al., 2005; Goffé et al., 1989; Puga et al., 2011; Tubia & Gil Ibarguchi, 1991). The
only exception is sample ALP1702 from the Paleozoic graphitic schists of the Sierra Alhamilla where kyanite
veins are clearly associated with the Alpine M1 event. Besides, the Permian-Triassic formations above never
experienced temperatures over 300°C (Figures 2 and 4; Goffé et al., 1989, 1994, 1996) and thus escaped the late
Miocene M2 metamorphic event, suggesting that the whole sequence from the Paleozoic graphitic schists to the
Triassic carbonates also escaped the M2 event. Next, to check this inference, different structural levels were sam-
pled through a same unit (Salobrefia unit) where P-T estimates are available (Azafidn, 1994; Azafi6n et al., 1997;
Booth-Rea et al., 2002, 2005; Gofté et al., 1989, 1996; Platt et al., 2005), from the top of the sequence, where
Permian-Triassic series record an Alpine maximum temperature around 430°C, to the base where the Paleozoic
metasediments have possibly recorded the late Oligo-Miocene thermal event. Finally, we sampled schists and
associated veins with preserved M1 mineralogical assemblages. The veins are undeformed but found included in
host rocks affected by ductile deformation. Both the host rocks and the veins were sampled to evaluate the mica
isotopic response according to textural setting (Figure 2b).

It is worth to mentioning that samples were selected from the same outcrops previously used for P-T calibration in
Azafién (1992), Azafién et al. (1997, 1998), Azafién and Goffé (1997a, 1997b), Azaiién and Crespo-Blanc (2000)
and Platt et al. (2005).
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3.2. Samples Description

Sample locations are shown on the geological map of Figure 1 and their specific setting (cross-sections) is
described in the following figures (Table 1, Figures 1 and 3). All samples were taken from areas where P-T es-
timates are available (Azafién et al., 1992, 1997, 1998; Azafién & Goffé, 1997a, 1997b; Booth-Rea et al., 2005;
Goffé et al., 1989, 1996).

ALP1603 consists of a meta-quartzite of the Herradura unit, showing a garnet-kyanite-plagioclase assemblage
recording peak-pressure conditions of 11 + 1 kbar and peak-temperature conditions around 580 + 40°C (Fig-
ures 1, 5a and 5b; Azafién et al., 1997). Samples ALP1601 and ALP1602 were collected in the lower part
of the metapelites of Salobrefia Unit, containing Fe-Mg-carpholite + kyanite or chloritoid + kyanite + chlorite
assemblages in veins (Table 1, Figures 1 and 6a—6c), yielding a pressure of 10 + 2 kbar and a temperature of
450 + 30°C (Table 1, Figures 1, 2 and 4). Pyrophyllite-bearing micaschist TREV.1 belongs to the upper part
of the Salobrefia unit, very close to the major tectonic contact with the Nevado-Filabride Complex, at Treven-
que Pass (Figures 1 and 7a). Rocks of this unit are characterized by Fe-Mg-carpholite + chlorite preserved in
quartz-veins, with occasional kyanite and aragonite (Table 1, Figure 1). Estimated metamorphic conditions are
9 + 2 kbar and 420 + 30°C (Azaiién et al., 1992) and the good preservation of the M1 minerals, that is, carpholite
and aragonite, testifies for the absence of significant M2 metamorphic overprint (Table 1 and Figures 2 and 4).
Betw3b is a light-colored carpholite + pyrophyllite 4+ quartz schist of the Escalate unit, close to the tectonic con-
tact with the Nevado-Filabride Complex and comprising metapelites, metacarbonates and metaquartzites (Fig-
ures 1 and 8a). Occasional chloritoid is present along with fibers of Fe- or Mg-carpholite (Azafién et al., 1992;
Azafién & Goffé, 1997a, 1997b; Goffé et al., 1989). Metamorphic peak-pressure conditions are estimated around
7-9 kbar and peak-temperature conditions between 380 and 430°C. ALP1706 is a low-grade phyllite from Esca-
late unit (Rio Grande area) showing the mineralogical assemblage white mica + paragonite + chlorite + albite
with local carpholite relics, which yields peak-pressure conditions of 7.5 + 1.0 kbar for temperatures <420°C
(Figures 1 and 9; Azaiién et al., 1997; Platt et al., 2005). Sample ALP1702 was selected in the pre-Permian Pale-
ozoic graphitic metasediments exposed in the southern parts of the Sierra Alhamilla displaying spectacular kyan-
ite-bearing quartz-veins associated with white micas formed during the Alpine retrograde metamorphic event
(Table 1, Figures 1, 10a—10c). The host rock of these veins is a medium-grade micaschist characterized by gar-
net + staurolite + kyanite + muscovite + biotite + rutile formed/equilibrated at around 10 kbar and 540-600°C.
These metamorphic conditions are probably related to the Variscan orogeny. The veins only recorded the Alpine
retrograde metamorphic event with an estimated peak pressure around 8 kbar with an associated temperature
higher than 380°C (Table 1, Figures 2 and 4; Azafién & Goffé, 1997a, 1997b; Goffé et al., 1994). ALP1712 was
sampled in the Triassic phyllites of Sierra Cabrera, and ALP1713 in the Triassic phyllites of Sierra Almagrera
(Figures 1 and 11). These last two samples belong to the Variegato unit located close to the contact with the
Nevado-Filabride Complex. They are Mg-carpholite + pyrophyllite chlorite-schists with pyrophyllite quartz-
veins, giving metamorphic peak conditions of 9 + 1 kbar and 380 + 30°C (Booth-Rea et al., 2005). EST1610
was collected in the Permian meta-conglomerate cropping out in the northern parts of the Sierra de las Estancias,
around 7 km east of Vélez-Rubio (Figures 1 and 12). These metamorphic rocks contain muscovite, chlorite and
locally chloritoid + kyanite + carpholite relics that returned pressure estimates of ~7 kbar for temperature close
to 450°C (Platt et al., 2005).

4. Texture, Microstructure, and Mineral Composition

Macroscopic and microscopic observations and chemical compositions of the “°Ar/*Ar samples are described
below in connection with their Alpine tectono-metamorphic record (Figures 5-12).

ALP1603 (Figure 5) corresponds to a garnet-kyanite quartz-rich quartzite displaying a strong D2 (S2/L.2) fabrics.
Large white mica grains reaching 2-3 mm are mostly secant to the main foliation (S2) and grown in pressure
shadows around deformed garnet or kyanite or in between fragments of stretched and truncated kyanite parallel
to L2 (Figures Sc and 5d). Quartz locally shows an important grain-size reduction. White micas display slightly
scattered compositions, with some Fe-rich to Fe-poor core-to-rim variations (Figure Se). In addition, X, shows
a wide dispersion from c. 0.14 to c. 0.55, while the Si** content is comprised between c. 3.0 and c. 3.22 (Fig-
ure 5f). ALP1601 and ALP1602 samples (Figure 6), collected a few meters apart, are associated to metamorphic
veins hosted in deformed chlorite-bearing light-gray micaschists (ALP1601h, Figures 6b and 6c) as described
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Figure 5. Summary of the structure, petrography and chemical composition for the sample ALP1603. (a) Geological and
tectonic cross-section of the sampled area and location of the sample, modified after Alonso-Chaves and Orozco (2007).
(b) Detailed view of the outcrop where the ALP1603 sample was selected. (c and d) Thin-section observations of the dated
sample (polarized light). (¢) Ternary composition plot for white micas. (f) Variation of X,,, versus Si'V contents in white
micas.

in Figure 2. These latter are mainly composed of fine-grained white micas, quartz and chlorite defining a very
fine-grained S1 foliation mainly marked by the alignment of white micas deformed by D2 microfolds. Slightly
coarser grained white micas occur in cleavage domains where S2 is best expressed (Figure 6d). In contrast,
the metamorphic vein (i.e., ALP1601v) is undeformed and coarse-grained with kyanite + white mica + calcite
(Figure 6e). White mica composition shows large differences between the host rock and the vein, with a greater
paragonite content in the host rock and higher muscovite content in the vein (Table 2 and Figure 6f). X, is also
variable with values ranging from 0.25 and 0.5 with a clustering around 0.3 (host rock, unfilled orange squares
Figure 6g), and from 0.27 to 0.43 with a strong clustering between 0.32 and 0.37 (quartz vein, filled orange
squares Figure 6g). White mica Si content is comprised between 3.0 and 3.12 in the host and between 3.02
and 3.23 in the veins (respectively unfilled and filled orange squares Figure 6g). Micaschist TREV.1 (Figure 7)
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Figure 6. Summary of the structure, petrography and chemical composition for the samples ALP1601 and ALP1602. (a) Geological and tectonic cross-section of the
sampled area and location of the samples, modified after Azafién et al. (1998). (b and c) Detailed view of the outcrop where the ALP1601 and ALP1602 samples were
selected. (d and e) Thin-section observations of the dated samples (polarized light) including (d) the host rock part and (e) the vein part. (f) Ternary composition plot for
white micas. (G) Variation of X, versus Si'V contents in white micas.

BESSIERE ET AL. 12 of 35



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Tectonics 10.1029/2021TC006889

TREV.1
H P ESE
\d

1 km

2 km

Nevado-Filabride Complex

Bedar-Macael

Salobrefia Unit Lujar Unit
—_— Calar-Alto

Quaternary Permian-Triassic Permian-Triassic (Tahal schists)

E

3.4

4 Cel
100 80 60 40 20 0

Si [pfu]

80 3.2

Cel
3.0

|E| 0.1 0.5 1
XMg

Figure 7. Summary of the structure, petrography and chemical composition for the sample TREV.1. (a) Geological and tectonic cross-section of the sampled area and
location of the TREV.1 sample, modified after Sanz de Galdeano and Lopez Garrido (1999). (b and c¢) Thin-section observations of the dated sample (polarized light).
(d) Ternary composition plot for white micas. (e) Variation of Xy, Versus Si'V contents in white micas.

contains Fe-Mg carpholite, quartz, white micas and chlorite, associated with a single well-developed S1 planar
fabric. White micas appear undeformed and are sometimes oblique to the main foliation (S1, Figures 7b and 7c).
In addition, chlorite shows a weak deformation while quartz grains do not seem deformed (Figure 7c). White
mica composition is homogeneous with relatively constant Xy, and Si content from ca. 0.29 to ca. 0.40 and ca.
3.1 and ca. 3.18, respectively (Table 2 and Figures 7d and 7¢). Betw3b (Figure 8) is a light-colored micaschist
composed of alternating quartz-rich and mica-rich layers. Mineralogy includes quartz, biotite, kyanite and white
micas and characterized by a locally well-developed S1 foliation and a locally heterogeneous quartz grain-size
(Figures 8b and 8c). Mica-rich layers show spaced microfolds and the weak development of S2 carrying white
mica and biotite (Figure 8c). Micas also occur as post-tectonic porphyroblasts indicating that they grew at least
at the end of the D2 deformation episode (Figure 8c). The composition of white mica falls dominantly close to
the muscovite endmember (Figure 8d). The observed XMg shows variations from ca. 0.31 to ca. 0.55 and for the
Si content, which is comprised between ca. 3.10 and ca. 3.19 (Figure 8e). ALP1706 (Figure 9) is an extremely
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Figure 8. Summary of the structure, petrography and chemical composition for the sample Betw3b. (a) Geological and tectonic cross-section of the sampled area and
location of the sample, modified after Azafion et al. (1998). (b and c¢) Thin-section observations of the dated sample (polarized light). (d) Ternary composition plot for
white micas. (e) Variation of Xy Versus Si'V contents in white micas.

fine-grained schist displaying few identifiable minerals, including white micas that are in average smaller than
15 pm (Figures 9b-9d). While the outcrop shows the heterogeneous development of a low angle S2 foliation that
marks the main macroscopic cleavage, the main planar fabric observable in the thin section still corresponds to
the S1 foliation weakly overprinted by a zonal crenulation cleavage (Figures 9b—9d). Unfortunately, the small
grain-size precluded precise chemical analysis (Figure 9d). The vein ALP1702 (Figure 10) contains white mi-
cas + quartz + chlorite + kyanite (Figures 10b and 10d-10f). White micas and quartz grains are in textural
equilibrium without substantial deformation (Figures 10d—-10f), implying growth at least partly after crenulation
or folding. The white mica compositions do not show any substantial variability (Figure 10g). X, in mica ranges
from 0.55 to 0.78, with a clustering around 0.69-0.7 (Table 2 and Figure 10h). Si contents range from 3.10 to
3.33, with a maximum density between 3.18 and 3.26 (Figure 10h). Meta-conglomerates ALP1712 and ALP1713
(Figure 11) are characterized by chlorite + Mg-carpholite + pyrophyllite + quartz in host rock, and quartz + py-
rophyllite in veins (Figures 11b and 11c). The host rock is characterized by quartz-rich and mica-rich layers.
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Figure 9. Summary of the structure and petrography observations for the sample ALP1706. (a) Geological and tectonic cross-section of the sampled area and location
of the sample, modified after Azaiién et al. (1995). (b and c¢) Outcrop pictures showing the weak development of the S2 and the local preservation of S0. Indicated on
the picture c is the location of the sample ALP1706. (d) Thin-section observations of the dated sample (polarized light).

Mica-rich layers present a dominant S1 foliation involved in complex D2 folds with quite large variations in terms
of grain-size (Figure 11b). The white micas selected from the vein appear not deformed, similarly to the coarse-
grained quartz and pyrophyllite (Figure 11c). Despite the limited number of analyses, white mica composition
in veins (i.e., sample ALP1712v) appears homogeneous (Figure 11d), with a Si content between ca. 3.15 and ca.
3.21 and a X,,, varying from ca. 0.28 to ca. 0.35 (Figure 11e). EST1610 sample (Figure 12) also corresponds
to a metaconglomerate sample. Mineralogy is mainly limited to quartz, kyanite and white micas (Figures 12b
and 12c; Platt et al., 2005) defining the S1 foliation. Quartz and white micas show a quite homogeneous grain-
size around 75 pm. White mica composition appears scattered (Figure 12d), X, evolving from ca. 0.5 to ca. 0.93
with a homogeneous Si content bracketed between ca. 3.03 and ca. 3.18 (Figure 12e).
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Figure 10. Summary of the structure, petrography and chemical composition for the sample ALP1702. (a) Geological and tectonic cross-section of the sampled area
and location of the sample, modified after Platt et al. (1983). (b and c) Outcrop pictures showing a kyanite vein wrapped by the S2 within the host rock. (d—f) Thin
section observations of the dated sample (polarized light). (g) Ternary composition plot for white micas. (h) Variation of Xy, Versus Si'V contents in white micas.
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Figure 11. Summary of the structure, petrography and chemical composition for the sample EST1610. (a) Geological and tectonic cross-section of the sampled area
and location of the sample, modified after Platt et al. (2005). (b and c) Thin section observations of the dated sample (polarized light). (d) Ternary composition plot for
white micas. (e) Variation of Xy Versus Si'V contents in white micas.

5. YAr/°Ar Age Results

White micas were dated as single grains (size permitting), or mica populations (aggregates) by “°Ar/**Ar CO2-la-
ser based step-heating. Aggregates are composed of several coalescing mica flakes extracted directly from the
rock by gentle crushing (i.e., as small chips, <100 pg), with their internal textural association preserved. These
are single-phase, small-sized populations containing a range of mica crystals in terms of size and, possibly, spe-
cific “*Ar/**Ar composition or reservoirs. These were collectively degassed as such in vacuo. These aggregates
or clusters differ from standard mineral concentrates in that they represent very minute (<<mm?), coherent,
parcels of sample rather than a collection of individual crystals scattered over several dozens of cm?® (and possibly
originating from texturally distinct sites). Details about the procedures of the sample preparation and dating are
exposed in the Supporting Information.
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Figure 12. Summary of the structure, petrography and chemical composition for the samples ALP1712 and ALP1713. (a) Geological and tectonic cross-section of the
sampled area and location of the samples, modified after Booth-Rea et al. (2005). (b and c) Thin section observations of the dated sample (polarized light). (d) Ternary
composition plot for white micas. (¢) Variation of Xy, versus Si'¥ contents in white micas.

Weighted mean ages (WMA) are calculated as integrated (inverse-variance weighted) mean ages over the cor-
responding steps, and total-gas ages (TGA) by individually summing the Ar isotopes of all steps (equivalent to
a K-Ar age). These are quoted at +1c. The samples were irradiated for 5 hr in the CLICIT position of the OSU
irradiation facility at Corvallis, with the irradiation monitor Fish Canyon sanidine: 28.02 + 0.28 Ma (Renne
et al., 1998), and calculated using interference correction ratios published for this facility (reported in the Sup-
porting Information) along with the isotope decay constants in Steiger and Jager (1977).

40Ar/*Ar age results are shown in Table 1, summarized in Figures 13 and 14, and presented according to location
in Figure 1. Total Gas Ages from the central and eastern part of the chain are scattered between 18.1 + 0.2 Ma
(sample ALP1712v) and 38.2 + 0.4 Ma (sample TREV.1).

Aggregate TREV.1 was dated twice and provided two concordant total-gas ages of 37.9 + 0.4 Ma and
38.2 + 0.4 Ma with rather similar weighted mean age and flat patterns in both spectra. In addition, total fusions
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Chemical Composition of Several White Micas From the Most Representative Samples (wt %)
TREV.1 ALP1601h ALP1601v ALP1702

Mus Mus Mus Mus Mica Mica Mica Mica Mus Mus Mus Mus Mus Mus Mus
SiO, 46.99 47.28 47.81 48.03 45.30 46.55 44.96 46.41 48.02 4791 47.44 48.12 47.71 48.58  47.99
TiO, 0.05 0.12 0.05 0.08 0.14 0.11 0.04 0.12 0.10 0.15 0.02 0.46 0.52 0.56 0.63
ALO, 35.48 35.02 35.02 35.31 39.09 39.87 37.88 39.05 35.17 35.11 35.54 32.99 33.14 3322  33.46
FeO 2.35 2.19 2.35 2.07 1.20 1.14 1.37 0.99 1.94 2.07 1.83 1.28 1.04 1.32 1.22
MnO 0.01 0.05 —-0.01 —0.01 —0.04 —-0.01 0.02 0.00 —-0.03 —-0.03 —0.02 0.01 0.05 0.00 0.00
MgO 0.57 0.62 0.68 0.69 0.30 0.27 0.44 0.25 0.57 0.61 0.58 1.66 1.47 1.79 1.27
CaO 0.00 0.02 0.02 0.00 0.99 0.92 0.44 0.46 0.08 0.05 0.34 0.02 0.03 0.03 0.05
Na,O 0.87 0.63 0.72 0.74 4.27 4.64 4.45 5.66 1.66 1.48 1.73 1.01 1.13 1.06 0.95
K,0 9.75 9.35 9.63 9.48 3.37 3.15 2.71 2.12 8.22 8.19 7.74 7.97 7.87 7.98 8.14
Total 96.08 95.29 96.27 96.39 94.60 96.64 92.32 95.06 95.73 95.55 95.20 93.51 92.95 94.54  93.71
Atom site distribution (110x)
Si 3.10 3.13 3.14 3.14 2.95 2.97 2.99 2.99 3.15 3.15 3.12 3.21 3.20 3.21 3.20
Al 2.76 2.73 2.71 2.72 3.00 3.00 2.97 2.97 2.72 2.72 2.76 2.59 2.62 2.58 2.63
FeMg 0.19 0.18 0.20 0.18 0.09 0.09 0.12 0.08 0.16 0.17 0.16 0.24 0.20 0.25 0.19
K 0.82 0.79 0.81 0.79 0.28 0.26 0.23 0.17 0.69 0.69 0.65 0.68 0.67 0.67 0.69
Na 0.11 0.08 0.09 0.09 0.54 0.57 0.57 0.71 0.21 0.19 0.22 0.13 0.15 0.14 0.12
XMg 0.30 0.33 0.34 0.37 0.32 0.30 0.36 0.31 0.35 0.35 0.36 0.70 0.71 0.71 0.65

Note. Analyses have been realized with a SX Five Cameca microprobe.

were performed on isolated single grains and small mica populations. These define a homogenous (linear) array
in a Gauss-plot (Table 1 and Figure 13a, right insert) with a concordant mean age of 36.8 + 0.4 Ma, consistent
with the step-heating ages. Aggregate ALP1601h was dated twice and provided two similarly discordant spectra
with consistent total-gas ages of 30.2 + 0.3 Ma and 29.8 + 0.3 Ma (Table 1 and Figure 13b). The first experi-
ment shows step ages from c. 18 to c. 51 Ma. The second spectrum shows step ages also evolving from c. 19 Ma
to 42 Ma. Both experiments provided two flat-like portions, around 19-20 Ma and 3640 Ma (Figure 13b).
Mica population ALP1601v yielded a total-gas age of 20.3 + 0.2 Ma (Table 1 and Figure 13b). Aggregate
ALP1602h was dated twice, yielding two consistently discordant spectra with a total-gas age of 21.2 + 0.2 Ma
and 21.9 + 0.2 Ma (Table 1 and Figure 13b). The apparent age increases throughout from 18 to 23 Ma in both
cases. Aggregate ALP1602v yielded a total-gas age of 19.6 + 0.2 Ma (Table 1 and Figure 13b). Two single grains
from ALP1702v yielded two mutually discordant spectra with a total-gas age of 15.7 + 0.4 Ma and 19.5 + 0.2 Ma
(Table 1 and Figure 13c). One is concordant with a WMA age at 19.52 + 0.04 Ma over 100% of the total ¥Ar
released. The other yielded an internally discordant spectrum with a broadly concave-upward shape with signif-
icantly younger final ages.

Aggregate ALP1603 provided a discordant spectrum with a total-gas age of 20.4 + 0.2 Ma (Table 1 and Fig-
ure 14a). Mica Aggregate Betw3b gave a relatively flat age spectrum with a total-gas age of 18.9 + 0.2 Ma with
an associated WMA of 18.9 + 0.03 Ma, corresponding to 62% of the total 3*Ar released (Table 1 and Figure 14a).
Aggregate ALP1706 has been dated twice and provided two broadly similar spectra gradually increasing from 14
to 75-85 with two distinct total-gas age of 41.6 + 0.5 Ma and 52.7 + 0.6 Ma (Table 1 and Figure 14b). Two mica
aggregates from EST1610 show two different age spectra (Table 1 and Figure 14c), one progressively increasing
from 20 Ma to more than 40 Ma (total-gas age = 24.1 + 0.3 Ma), the second much flatter with a total-gas age of
22.5 + 0.3 Ma. Two mica aggregates from ALP1713h also provided two discordant spectra with a total-gas age
of 22.3 + 0.3 Ma and 20.4 + 0.3 Ma (Table 1 and Figure 14d). As for the other discordant spectra of this series,
these spectra share a common initial age (around 15 Ma here) and progressively deviate from the initial value as
gas extraction proceeds (up to around 25-30 Ma). Aggregate ALP1712v shows a much more regular pattern with
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Figure 14. “°Ar/**Ar age results for the other samples. Results include spectra from ALP1603, Betw3b, ALP1706, EST1610, ALP1713 and ALP1712 samples.

a flat segment at 18.1 = 0.2 Ma, corresponding to 88% of the total *’Ar released, with a concordant total-gas age
of 17.7 + 0.3 Ma (Table 1 and Figure 14d).

6. Discussion

Considering the data as a whole, our “°Ar/**Ar experiments, combined to those from Monié et al. (1994), reveal
two markedly contrasted situations. While age spectra from the westernmost samples show reasonably flat pat-
terns collectively converging to 20 Ma, the easternmost samples from the central and eastern Alpujarride Com-
plex are generally discordant with variably older apparent ages progressively increasing throughout gas release
till values up to 50 Ma (i.e., ALP1601h) or higher (80 Ma, ALP1706; Figures 13 and 14).

Most notable is the preservation of homogeneous near-plateau ages around 38 Ma for the sample with the
best-preserved HP-LT parageneses related to the M1 metamorphic conditions (Figure 13a), a component that is
also partly preserved in other samples featuring less well-preserved HP-LT assemblages. Such contrasting pat-
terns may either reflect regional variations in cooling/closure history imposed by the thermal-structural evolution
of the host tectonic unit, or crystal-structure plus Ar inheritance effects controlled by the mineralogy, the host
lithology and the sample P-7-¢ path.

Both spectra types (plateau-dominated in the western part, and variably discordant in the central and eastern
samples) also differ in their specific regional context. Samples showing WMA around 20 Ma in the western
Alpujarride Complex display parageneses diagnostic of the late H7/LP M2 metamorphic overprint, including
post-kinematic andalusite growth in the Paleozoic rocks. Those showing variably discordant spectra are associ-
ated with early M1 relics that partially escaped M2 overprinting during post-orogenic exhumation (Figure 15;
Azafién, 1994; Azafién & Crespo-Blanc, 2000; Booth-Rea et al., 2005; Goffé et al., 1989; Simancas, 2018). The
best-preserved HP/LT paragenesis found in sample TREV.1 provides two concordant Eocene total-gas ages with
near-plateau release patterns in addition to fairly concordant total fusion ages (Figure 13). Such an Eocene age
has been suspected for a long time—but never fully documented—for the M1 HP/LT metamorphic event (Monié
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et al., 1991; Platt et al., 2005). Here and for the first time, it is recorded by concordant “°Ar/*Ar systematics
directly associated to a diagnostic HP/LT mineralogy. This component appears to have been erased in the less
well-preserved HP-LT parageneses due to the regional HT/LP overprint. The origin of these general “°Ar/*Ar
relationships are discussed in the next section in connection with the petrography and structural significance of
the samples across the mapped regional trends.

6.1. Significance of “*Ar/*Ar and Deformation-Metamorphic Relationships

As stated in Section 5, three main deformation stages (D1, D2, D3) are recognized in the Alpujarride Complex in
connection with its P-T evolution. HP/LT metamorphic relics, developed during M1 metamorphic conditions, are
associated with a D1 fabric at conditions symptomatic of syn-orogenic exhumation within a P/T gradient typical
of subduction without wholesale thermal reheating. A D2 fabric is associated with post-orogenic (extensional)
nearly isothermal decompression, characteristic of M2 metamorphic conditions, including a local and limit-
ed reheating under greenschist- to amphibolite-facies conditions, as testified by the widespread crystallization
of sillimanite + staurolite and then andalusite during exhumation (Figure 2; Azafién & Crespo-Blanc, 2000;
Azafién et al., 1997; Booth-Rea et al., 2005). A D3 folding phase occurred, corresponding to a crustal con-
traction due to nappe stacking, responsible for the crenulation and regional folding of D2 fabrics (Azafién &
Crespo-Blanc, 2000).

Among the syn- to post-M2 white micas sampled for dating, ALP1603 (Herradura unit) provides a relatively
flat age spectrum of c. 20 Ma (Figures 14a and 15), broadly consistent with the muscovite “°Ar/*’Ar WMA of
18.3 + 0.3 Ma obtained by Monié et al. (1994) in the same area from the same tectonic unit. Syn- to post-D2
white micas taken from veins ALP1601v and ALP1602v (Salobrefia unit) also give more internally discordant
spectra fluctuating around 20 Ma (Figures 13b and 15). The best-behaved white mica Betw.3b (Escalate unit)
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gives a statistically acceptable and similar WMA at 18.90 + 0.03 Ma (Figures 14a and 15) that is consistent with
the phengite WMA of 19.5 + 0.5 Ma obtained by Monié et al. (1991) in the same area. Overall, similar young
ages between 19.52 + 0.04 Ma (ALP1702v vein, Sierra Alhamilla; Figures 13c and 15) and 18.1 + 0.2 Ma
(ALP1712yv, Sierra Cabrera; Figures 14d and 15) are characteristic of those reasonably flat spectra we have ob-
tained for the eastern Alpujarride Complex units. Noteworthy, the most discordant spectra of the entire sample
suite always share with the other samples a similar initial age around 18-20 Ma (occasionally younger, 15 Ma,
for ALP1713h and ALP 1706).

In terms of internal isotopic disturbance, we note a systematic trend of steadily increasing apparent ages as the
degree of discordance and extent of degassing increase in these samples. The resulting staircase pattern is rem-
iniscent of partial “°Ar loss/retention or slow cooling (Beaudoin et al., 2020; Harrison & Lovera, 2014). Slow
cooling in the Ar-muscovite closure interval over more than 20 Myr (e.g., ALP1601h; Figure 13b) can be safely
discarded given the documented P-T paths and the tectonic context. We interpret this pattern as reflecting partial
retention/resetting of a primary radiogenic component (first closure age or inherited pre-metamorphic compo-
nent) that was variably to almost completely reset through the D2 stage because of the M2 H7/LP metamorphic
conditions. The extent of resetting was variable according to the starting protolith, mineralogy and, most impor-
tantly, structural setting.

The case for partial Ar resetting does make sense in the context of the HP samples that experienced crystalliza-
tion conditions just within - or in a range slightly above - the nominal closure interval for Ar retention in white
mica near 400°C (Harrison et al., 2009). At M1 HP/LT metamorphic conditions, pressure effects can come
into play to reduce diffusivity and enhance retentivity, as shown by static residence-time modeling by Warren
et al. (2012). Such theoretical calculations predict more than 95% retention of initial (pre- or syn-HP) radiogenic
40Ar at peak-temperature conditions of 420 + 30°C and peak-pressure conditions of 9 + 2 kbar and grain-sizes
pertinent to TREV.1 white micas (1.0-0.5 mm), even for static holding times in excess of 10 Myr. In contrast,
the highest grade sample (ALP1603: 11 + 1 kbar, 580 + 40°C) would have endured more extensive equilibration
equivalent to a loss greater than 95% for the same grain-size and holding time at HP. No matter how crude, these
estimates serve to illustrate that M1 HP/LT metamorphic conditions in the Alpujarride Complex were critically
close to closed-system behavior of Ar in white mica already at peak metamorphic conditions. Above all, they ar-
gue in support of potential retention of early (syn-HP) “°Ar/*Ar closure ages, as presumably recorded by TREV.1
white micas.

The case for enhanced retentivity due to moderate peak-7" Alpine conditions is also supported by the data from
ALP1706 white micas. This sample displays two reproducible staircase age spectra (Figure 14b) with initial
low-T ages around 15 Ma in line with most of the samples. However, the two spectra differ by reaching much
older final ages in excess of 80 Ma. This is well above what is commonly recorded by “°Ar/*Ar dating elsewhere
in the Betics. Primary (pre-resetting) closure ages of such an antiquity are difficult to fit into the realm of the Al-
pine HP/LT evolution. This calls for an alternative explanation invoking either pre-metamorphic *°Ar inheritance
(e.g., de Jong, 2003) or excess “°Ar (e.g., de Jong et al., 2001). While we have no independent evidence to prefer
one over the other, the first option is consistent with the host unit being made of very low-grade phyllites from the
Rio Grande (Sierra de Gador, see Figure 9). These stayed below <420°C, and show only very fine-grained small
white micas (Figures 2 and 9). We thus interpret these spectra as recording partial resetting of a pre-metamorphic
(i.e., detrital) component in the same way as Platt et al. (2005) concluded that partial resetting of detrital grains
prevailed in samples from the same low-grade phyllites. Note that these authors interpreted in situ “°Ar/*°Ar ages
in a similar low-grade phyllite from the Sierra Alhamilla as the age of the HP/LT event around 48 Ma. These low-
grade phyllites experienced peak-temperature conditions around 300°C (Martinez-Martinez & Azafién, 1997,
Platt et al., 2005), too low to permit substantial growth of new white micas from former mica precursors (Akker
etal., 2021; Hueck et al., 2020; Sanchez et al., 2011). Also, fission-tracks ages from zircon with admittedly lower
opening/closure temperature than the “°Ar/*’Ar system (Fission-tracks Tc zircon is comprised between 260 and
360°C; Bernet, 2009; Guedes et al., 2013; Tagami & Shimada, 1996) appear largely unreset in the same area.
Together with the heterogeneous spatial distribution of in situ ages (Platt et al., 2005), this indicates that these
phyllites behaved like those with old ages from the Rio Grande area, and that they recorded a partial resetting of
an older (detrital) component (that is indeed described in their sample).

Along with TREV.1 results, these observations thus argue in support of partial to complete retention of pre- and
peak-metamorphic “°Ar/*°Ar ages due to subdued diffusion at the relatively low temperatures reached during
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Figure 16. Time-chart compiling the “°’Ar/3°Ar ages results obtained in this
study. Proposed are the climax periods for both the M1 high-pressure/low-
temperature (HP/LT) and the M2 H7/LP metamorphic events recorded by the

whole Alpujarride Complex.

the early (peak-pressure) Alpine event and we attribute the staircase spec-
trum pattern obtained on the other disturbed samples to a subsequent reset-
ting of this primary component. Most probably, such resetting was not purely
thermal-diffusion driven, however. In keeping with recent UV-laser probe
YOAr/°Ar studies documenting subgrain-scale “°Ar disequilibrium patterns
developed in dynamically exhumed and overprinted peak-pressure phengites
(Beaudoin et al., 2020; Laurent et al., 2021), our data show that resetting
occurred in a way locally combining deformation along with thermal-decom-
pression effects regionally defining a major event at 20 Ma.

ALP1601h is particularly relevant in this regard. This sample texturally re-
cords only one white mica generation post-dating M1, but pre-dating M2
(Figures 6d and 13b) and provides two very similar duplicate spectra (Fig-
ure 13b). In contrast, the companion white mica ALP1601v sampled from
a secondary (undeformed) vein nearby in the same outcrop (Figures 6e
and 13b) records much younger and more homogeneous apparent ages at
20.3 + 0.2 Ma (Figure 13b). These age-geometry relationships are fully con-
sistent with the structural setting of these two texturally distinct samples.
They suggest that the syn- to late-D2 emplacement of the vein near 20 Ma
was associated with partial resetting of the M1 white micas in the host mi-
caschists, and that the latter crystallized and went through closure between
M1 and M2, presumably round 38 Ma (Figures 13, 16 and 17).

The consistent old/young relationships between the host/vein pairs of sam-
ples ALP1713h/ALP1712v (Figure 14d) and ALP1602h/ALP1602v (Fig-
ure 13b) illustrate the same trend and mechanism. The staircase spectra of
ALP1602h, ALP1713h, and EST1610 can be interpreted similarly as par-
tial and variable resetting. This is more pronounced for ALP1602h than for
ALP1601h with a primary (i.e., relic) age depressed to a residual component
as young as 24 Ma, similar to ALP1713h and EST1610 (compare Figure 13b
and Figures 14c and 14d). This common feature demonstrates that the extent
of resetting was variable at the sample scale since the duplicates are within
~ mm of each other in each sample. This implies the combination, at least
locally, of several mechanisms involving volume diffusion, deformation,
grain-size, and fluid transfer to explain the variable extent of resetting as
extensively discussed elsewhere and further below (Beaudoin et al., 2020;
Laurent et al., 2021, and references therein). Platt et al. (2005) previously not-
ed similar age relationships in the phyllites from the Sierra de las Estancias,
with old ages around 45 Ma and younger ages around 19 Ma that they related
to the proximity to an extensional detachment possibly responsible for the
rejuvenation of the isotopic system.

6.2. Retention Kinetics During Overprinting: P-T and Structural
Effects

As discussed in Section 6.1, we do not rely on nominal or tailored closure tem-
peratures to explain the **Ar/*°Ar ages in a Dodsonian sense (Dodson, 1973).
We rather refer to the concept of critical “°Ar retention P-T fields calibrated in
terms of grain-size and static residence time (Warren et al., 2012). Integrating
the residence time in the net Ar loss/retention balance is much more inform-

ative and relevant than prescribing a cooling rate to compute a theoretical closure-7. The Dodsonian formalism

strictly assumes cooling linear in ! from infinitely high - hence unrealistic - temperatures to force zero initial

40Ar and cooling-only retention kinetics. In contrast, static-isothermal retention kinetics predicted at peak P-T
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conditions provides a maximum bound to be placed on the permissible age retained at those conditions based
on the range in mica grain-size (250-500 um, on average, for most samples) and the P-T condition of interest
(Figure 3).

In such a context whether the dated micas crystallized below or above a nominal or Dodsonian-type closure-7 is
not pertinent. In particular, we refrain from ascribing a definite 7-meaning (and a "closure" vs. "crystallization"
status) to the corresponding ages because the retention process governed by residence time is fuzzy and poten-
tially affected by other processes controlled by widely varying kinetics and thresholds during dynamic (re)crys-
tallization across the M1-M2 transition (e.g., changing pressure, stress, and transient fluid-rock interactions). A
more useful concept to use here is that of dynamic closure whereby different mica generations potentially record
the timing of growth/replacement by dissolution-precipitation and stress-induced recrystallization superimposed
on first-order thermal effects (Beaudoin et al., 2020). Protracted or episodic mineral (re)crystallization during
progressive exhumation and overprinting of HP/LT metamorphic rocks may result in a mozaic of texturally
and isotopically complex crystals often bearing no apparent relationship to mineral chemical composition, mi-
crostructure, or overprinting textures (Laurent et al., 2021). Such systematics may be revealed through coupled
in situ and step-heating dating only (e.g., Kellett et al., 2017; Scaillet, 1996; Scaillet et al., 1992; Wiederkehr
et al., 2009), and requires exhaustive in situ coverage to permit identification of mixed age reservoirs and their
potential end-members (Beaudoin et al., 2020; Laurent et al., 2021; Simon-Labric et al., 2009; and references
therein).

Although the fine to medium-grained size of our samples precluded such a systematic approach here, these
are texturally and geochemically well characterized in terms of their P-T and structural evolutions to permit an
evaluation of the “°Ar/*°Ar record in connection with the D1-D2-D3 deformation sequence identified through the
belt-building process. In our case, syn to post-M1 to -M2 white micas are sometimes clearly texturally decoupled
(e.g., post-kinematic veins), each recording different P-7-¢ snapshots according to location, lithology, and host
unit. In particular, we infer variable extent from none-to-complete “’Ar resetting to have occurred due to locally
overlapping M1-M2 relationships in combination with exhumation effects in the critical range for Ar retention in
white mica. The exhumation path of the different units occurred close to the kinetic transition from fully closed
to partially open-system behavior, with TREV.1 traveling back to the surface along a decompression P-T path
mostly parallel to (but on the low-T side, <400°C, Figure 17) of the 95% Ar retention isopleth inferred for such
conditions (Warren et al., 2012, their Figures 3 and 4). In contrast, the other pre- to syn-M2 samples under-
went variable (re)opening or synkinematic rejuvenation by traveling on the high-T side (probably no more than
~100°C warmer)—or cutting across—such “°Ar retention isopleth, with local effects (grain-size, static-dynamic
overprinting, syn-M1 inheritance) producing the full array of **Ar/**Ar ages we observe today.

The lack of systematic correspondence of “°Ar/3®Ar with texture is a clear manifestation of such effects. The com-
posite fabric seen in ALP1601h (Figure 6) correlates with clear-cut differences in bulk “°Ar/**Ar record relative to
ALP1601v (Figure 13b; see also ALP1713h, Figures 11b and 14d). This is also reflected by the inheritance effect
also correlating with the crenulation fabric of sample ALP1706 (Figures 9 and 14b). The same cannot be said,
however, of the texturally composite sample Betw3b (Figure 8¢) which is also one providing the flattest “°Ar/*°Ar
release pattern (Figure 14a). Likewise, EST1610 shows a discordant “°Ar/*Ar pattern (Figure 14¢) but no com-
posite fabric (Figure 12c¢). Mica composition is sufficiently contrasted in the case of the post-kinematic veins to
distinguish different mica generations (Figure 6f), but the grain-size is otherwise too small to document com-
positional shifts or internal deformation features indicating texturally distinct “°Ar/*Ar subdomains due to, for
example, passive rotation/realignment versus intracrystalline kinking + subgrain rotation/recrystallization + seg-
mentation (Figures 6 and 9). The fabric-forming (matrix) micas could not be mechanically separated from this
sample to resolve specific “*Ar/*Ar reservoirs, suggesting that the locally discordant ages are potentially mixed
ages combining partial resetting with neocrystallization. Taken collectively, the *“*Ar/*°Ar results suggest that
inheritance and partial resetting effects are locally variable and best accounted for by a mechanism of recrystalli-
zation in a context of dynamic closure and re-opening controlled by deformation =+ fluids in addition to diffusion,
collectively resulting in relicts + totally reset ages coexisting at the scale of a single specimen.

The finding of Eocene ages in the sample best preserving the HP/LT parageneses (TREV.1, Figures 13a, 15,
16 and 17) is a major result in this perspective. This primary age is argued to record syn-to-post-M1 dynamic
cooling/closure, thereby putting the first robust constraint on the HP/LT metamorphic event. In contrast, M2 was
associated with a major and much later mechanical destabilization of the HP/LT prism via a switch to back-arc
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extension with exhumation through a dominantly nearly isothermal decompression of the Alpujarride Complex
unit (Jolivet et al., 2003). As we next discuss, this tectonic switch forced the white mica system well into the “°Ar
open-behavior P-T field to produce the general “*Ar/*°Ar resetting pattern at 20 Ma documented across the whole
belt.

6.3. Geodynamic Reconstruction and Implications

The different tectonic units composing the Alpujarride Complex have undergone various peak-pressure condi-
tions along a quite steady subduction P/T gradient, as well as different retrograde P-T paths during exhumation
(Figure 2; Azafién, 1994; Balanya et al., 1997; Booth-Rea et al., 2005; Goffé et al., 1989; Jolivet et al., 2003;
Tubia & Gil Ibarguchi, 1991).

The main crustal thickening phase during subduction is recorded by the first deformation phase D1 (Azafién &
Crespo-Blanc, 2000; Balanya et al., 1997; de Jong, 1991; Goffé et al., 1989; Jolivet et al., 2003; Platt et al., 2005).
Despite variable peak P/T conditions, almost all Alpujarride Complex units were affected by a nearly isothermal
decompression including sometimes limited heating at low pressures (i.e., M2 metamorphic conditions), coeval
with the development of the main foliation, S2 (Figures 2 and 6). In some cases, however, for example, the Salo-
brefia and Escalate units near Trevenque Pass, preservation of aragonite testifies for cold temperature conditions
during exhumation, hence syn-orogenic exhumation, under HP/LT conditions (Figures 2 and 4; Azafién, 1994;
Azafién et al., 1997), without substantial overprint by later metamorphic events. Our new age-results thus con-
firm the Eocene ages suspected in earlier studies and clearly link them with the HP-LT M1 metamorphic event.
They reflect the end of the HP/LT metamorphic event around 38 Ma (Figures 13a, 15, 16 and 17), which can
be considered a minimum age for the HP/LT event. D2 is associated with intense crustal thinning, with crustal
unroofing up to 23 km (Azafidn, 1994; Azafién et al., 1997). Metamorphic zones indeed appear drastically con-
densed sub-parallel to S2, which is interpreted as intense shortening perpendicular to the main foliation (i.e., flat-
tening; Azafién, 1994; Balanya et al., 1997; Platt et al., 2013; Tubia et al., 1997). The development of S2 marks
the breakdown of the M1 high-pressure assemblages, associated with the formation of chlorite and a second
generation of white micas and pyrophyllite. The second stacking event, D3, occurred soon after late stages of the
D2 phase, with the final structuration of the Alpujarride Complex units (Azafién & Crespo-Blanc, 2000). D2 and
D3 are associated to slab retreat initiated around 30-35 Ma leading to back-arc extension and exhumation of the
Alpujarride Complex unit (Jolivet et al., 2003).

Thus, the exhumation during D2 and under M2 metamorphic conditions occurred through a dominantly nearly
isothermal decompression (Jolivet et al., 2003) with recrystallization in the greenschist-facies or amphibolite-fa-
cies, or even partial melting, depending on the tectonic units (Acosta-Vigil et al., 2014; Azafién, 1994; Azafién
& Crespo-Blanc, 2000; Duggen et al., 2004; Esteban et al., 2011; Jolivet et al., 2003; Monié et al., 1991; Negro
et al., 2006; Platt et al., 2005, 2013; Tubia, 1994; Tubia et al., 1997). The clustering of ages at ~20 Ma suggests
that all units were finally exhumed roughly coevaly over a portion of crust as wide as 220 km in map view, and
possibly over 300 km considering available dating from the western part of the Alpujarride Complex and their
equivalent in the Rif (Morocco; Bessiére et al., 2021; Janots et al., 2006; Michard et al., 2006; Monié et al., 1994).
The clustering of ages around 20 Ma with well-defined weighted mean ages suggests that post-decompression
dynamic cooling/closure must have been fast with minimal second-order effects such as structural inheritance
and deformation. According to the recorded P-T paths (Figure 17), wholesale syn- to post-exhumation dynamic
cooling/closure at 350—-400°C occurred across the temperature range of the brittle-ductile transition, indicating
coeval fast exhumation into the brittle field at the regional scale. Our “°Ar/*Ar data show that the extent of re-
setting (up to full rejuvenation then closure) at 20 Ma is locally variable but prevalent across the whole central
Alpujarride Complex (Figure 15) indicating this was a major, regional, event associated to the D2 phase. This was
recognized earlier by Monié et al. (1994) on samples taken further west (Figure 15). Coeval exhumation of the
central and eastern part of the Alpujarride Complex at ~20 Ma should be put in line with the end of the high-tem-
perature metamorphism in the western part. There, white and black micas were systematically found to provide
flat age spectra ranging in the tight interval 21.6-18.7 Ma (weighted mean ages; Figure 15; Monié et al., 1994).
Taken collectively, these data argue in favor of a relatively fast and common dynamic cooling/closure through
300—400°C at around 20 Ma across the entire area.

The c. 20 Ma age is also ascribed to thrusting and final emplacement of the Internal Zones, that is, the basement
and cover units, on top of the external units (Acosta-Vigil et al., 2014; Do Couto et al., 2016; Duggen et al., 2004;
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Jolivet et al., 2003; Mancilla et al., 2015; Negro et al., 2006; Platt et al., 2013; Santamaria-Lopez et al., 2019).
This implies that the main cause for this fast regional exhumation is kinematically linked to both back-arc exten-
sion and emplacement onto the Iberian margin by thrusting (transported in the hanging-wall of the main struc-
ture). Exhumation of the entire region in a short time during the Early Miocene readily explains the collective
freezing of the “°Ar/**Ar isotopic system at this period for most tectonic units (Bessiére et al., 2021). It is a major
thermal-kinematic signature that is consistent with fission-tracks ages on zircons and apatites showing that the
Alpujarride Complex was almost entirely exhumed to sub-surface conditions around 20 Ma (Figure 3; Esteban
et al., 2004; Platt et al., 2005, 2013; Sanchez-Rodriguez & Gebauer, 2000; Tagami & Shimada, 1996). Such a
scenario is further consistent with the first sediments unconformably overlying the Alpujarride Complex meta-
morphic rocks between the Aquitanian and Burdigalian, that is, around 20.5 Ma (Figure 3; Serrano et al., 2007).
Only those units exhumed earlier show either WMA-like Eocene ages (e.g., sample TREV.1, Figures 13a, 13d,
15, and 17) or partially reset ages.

As noted Section 6.2, time-residence analysis predicts survival of near peak-P *°Ar/3°Ar retention ages for over
~10 Myr residence at conditions endured by TREV.1 white micas (Warren et al., 2012), making it difficult to
place a precise temporal bound between the effective exhumation of this sample and the subsequent mechanical
destabilization of the entire HP/LT subduction wedge later on. These data imply that the HP/LT orogenic wedge
structure could have survived until at least ca. 28 Ma (=38-10 Myr) to allow full preservation of this age by
syn-orogenic exhumation. On the other hand, the relatively cold range of isothermal exhumation paths recorded
throughout the eastern-central Alpujarride Complex (Figures 2 and 3) does not allow for any late thermal drive
to explain the massive eradication of early (syn-HP) ages, suggesting instead a continuum in P-T changes. As
argued before, both observations are not mutually exclusive and rather imply that resetting was largely driven by
a sudden and fast, en-masse, tectonic decompression (+recrystallization) into the “°Ar open-system behavior P-T
field close to the Aquitanian-Burdigalian boundary producing the general “°Ar/*Ar resetting pattern converging
at 20 Ma throughout the whole belt.

Thus, in terms of crustal-scale kinematics, the 20 Ma event does not just record a major thermal event but the
thermal-kinematic response of a tectonic event far outpacing the rate of conductive cooling by thermal relaxation
alone. We relate this major event to back-arc extension in the Internal Zones and transportation in the hang-
ing-wall of the main thrust on top of the External Zones. This is in line with the idea that 20 Ma is approximately
the time when the slab started its delamination and tearing with fast westward migration (Jolivet et al., 2006;
Mancilla et al., 2015).

7. Conclusion
Our new “°Ar/**Ar age data from the Alpujarride Complex lead to the main following conclusions:

1. The well-preserved HP/LT parageneses, related to the M1 metamorphic event, coeval with the growth of
Fe-Mg-carpholite yield weighted mean ages around 38 Ma. These are the first internally consistent ages ever
produced for index HP mineral associations assigned to the M1 HP/LT metamorphic event, the early stages
of retrogression and syn-orogenic exhumation in these units. The 38 Ma age establishes a younger limit to the
M1 metamorphic event when these tectonic units were decoupled from the subducting lithosphere and started
their exhumation.

2. A clear regional trend is identified in the magnitude of the syn-extensional reworking and resetting of the
white mica “°Ar/*°Ar systematics, the more easterly samples preserving a blurred signature of their first
(post-M1) closure age while a partial to complete eradication of this radiogenic component is progressively
established further west in the Ronda massif (Bessiere et al., 2021). Along this trend, mixed-type age spectra
(plateau-like to staircase-shaped) coexist as the result of sample-scale variations in deformation magnitude
and textural overprint; these locally result in variable inheritance of (early to pre-) metamorphic ages. Such a
patchy preservation of early (syn-M1) ages due to isotopic mixing/overprinting with syn- to late-M2 resetting
ages near 18-20 Ma has for long precluded temporal discrimination of both events.

3. At the scale of the Betic orogen, the resetting pattern merges into a regionally defined “freezing” event cul-
minating around 20 Ma, consistent with previously published ages. The ca. 20 Ma age recorded all over the
Betic-Rif orogen corresponds to a major tectonic switch to fast regional exhumation, associated with back-arc
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extension and overthrusting of the Internal Zones on the External Zones and the Iberian margin, probably in
connection with the inception of slab tearing and westward motion of the arc.

The Eocene age for the M1 HP/LT metamorphic event had been postulated for a long time (Michard et al., 2006;
Monié et al., 1991, 1994; Platt et al., 2005), but never properly dated due to the difficulty of finding well-pre-
served HP relics untouched by the M1 H7/LP tectono-metamorphic event. Such an Eocene age for the HP event
awaits further confirmation by dating similar, exceptionally preserved, HP relics throughout the Alpujarride
complex and their equivalent in the Rif side of the Gibraltar arc. Determination of the age for the HP event for the
Nevado-Filabride complex remains also a challenge.
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