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Abstract: The constant phase element (CPE) is found in most battery and supercapacitor equivalent
circuit models proposed to interpret data in the frequency domain. When these models are used
in the time domain, the initial conditions in the fractional differential equations must be correctly
imposed. The initial state problem remains controversial and has been analyzed by various authors
in the last two decades. This article attempts to clarify this problem by proposing a procedure to
prepare the initial state and defining a decay function that reveals the effect of the initial state in
several illustrative examples. This decay function depends on the previous history, which is reflected
in the time needed to prepare the initial state and on the current profile assumed for this purpose.
This effect of the initial state is difficult to separate and can lead to the misinterpretation of the CPE
parameter values.

Keywords: constant phase element (CPE); fractional calculus; time domain; initial conditions; ZARC;
supercapacitor and battery modeling

1. Introduction

Fractional equivalent circuit models are widely used to represent the behavior of
batteries and supercapacitors, both in the frequency and time domains [1–5], as they
offer better accuracy with a lesser number of elements. These equivalent circuits include
constant phase elements (CPEs), which are unequivocally observed in the experimental
results obtained with electrochemical impedance spectroscopy (EIS) [6]. The phase of the
impedance of a CPE is constant since it depends on the fractional exponent α, but does not
depend on the frequency, as shown in (1) [1,7]:

ZCPE(jω) =
1

Q · (jω)α
=

1
Q ωα

e−jα π
2 (1)

In addition, the phase is negative, so that this element is sometimes referred to as a
fractional capacitor. The impedance of the CPE in the Laplace domain is:

ZCPE(s) =
1

Qsα
. (2)

There is interest in applying these models in the time domain [2,3,8–10] where the
impedance (2) corresponds to a fractional derivative, as shown in (3), which is discussed in
the next section.

i(t) = Q
dαv(t)

dtα
(3)

To solve differential equations that include fractional derivatives, the initial conditions
must be handled appropriately. However, the initial state problem remains controversial
and has been discussed by various authors in the last two decades. Lorenzo and Hartley
first recognized that a time-varying initialization is actually required for the fractional-order
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derivative [11]. Some other authors also indicated that initial histories rather than initial
values at a point should be considered [12–14]. The term “aberration” has been introduced
in relation to this phenomenon [15] and has been used by other authors [16]. One procedure
to deal with this problem is to define an initialized operator, related to the history, to be
imposed in the fractional derivative at the initial point [17,18]. An alternative proposal
is the diffusive representation introduced by Sabatier [19] and the continuous-frequency-
distributed model proposed by Trigeassou and Maamri [20], which were merged in the
construction of a partial differential equation, where the initial state is a vector of infinite
dimensions [20–22]. The equivalence and compatibility of the above two initialization
theories have been demonstrated [18,23].

We focus the analysis of this work on a fractional element with impedance given
by (2), with 0 < α < 1, which is the particular case of greatest interest in battery and
supercapacitor models. One example of it corresponds to α = 0.5, which is often called
Warburg impedance [24,25].

In this paper, we bring this problem to the attention of the battery and supercapacitor
modeling community. Our main goal is to provide a detailed study of how the previous
history, i.e., how the initial voltage -v(0)- is reached, affects the subsequent behavior of
the system. To do this, we hypothesized that the initial voltage of a CPE with 0 < α < 1
may be written as v(0)g(t), where g(t) is a decay function between zero and one, with in-
termediate values and behavior between that of the resistor and that of the non-fractional
capacitor. This decay function, closely related to the general initial function defined by
other authors [17,18,26], is derived and analyzed for the CPE, ZARC (composed of the CPE
in parallel with a resistor), and RC networks. In the paper, we also highlight the error tow
which some definitions of the fractional derivative can lead.

A brief review of the basic definitions of fractional derivatives is provided in Section 2.
Next, the decay function is calculated and discussed in Section 3 for a CPE, analyzing how
the previous history of the CPE influences the time dependence of the function. The case
of a ZARC element is discussed in Section 4, and the approximation of a CPE by a series
RC network is considered in Section 5. Finally, a discussion of the results is presented in
Section 6, and some conclusions and possible future work are provided in Section 7.

2. Fractional Derivatives

The most commonly used definitions of fractional derivatives start from the Riemann–
Liouville fractional integral of order α, given by [27]:

0 Iα
t f (t) = 0D−α

t f (t) =
1

Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ (4)

where Γ(α) is the Gamma function [27].
Using Definition (4), the Riemann–Liouville fractional derivative is defined as [27]:

RL
0 Dα

t f (t) = 0Dm
t 0Dα−m

t f (t), (5)

with m− 1 ≤ α < m, m a positive integer, so that:

RL
0 Dα

t f (t) =
1

Γ(m− α)

dm

dtm

∫ t

0

f (τ)

(t− τ)1−m+α
dτ. (6)

Applying the Laplace transformation to (5), the following equation is obtained [27]:

L[RL
0 Dα

t f (t)] = sαL[ f (t)]−
m−1

∑
k=0

sk[RL
0 Dα−k−1

t f (t)]t=0 (7)
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This expression depends on fractional derivatives at the initial time. This is a drawback
of the Riemann–Liouville definition and motivates the use of an alternative definition
known as the Caputo fractional derivative:

C
0 Dα

t f (t) = 0Dα−m
t 0Dm

t f (t), (8)

or:
C
0 Dα

t f (t) =
1

Γ(m− α)

∫ t

0

1

(t− τ)1−m+α

dm f (τ)
dτm dτ , m− 1 ≤ α < m, (9)

whose Laplace transform is:

L[C0 Dα
t f (t)] = sαL[ f (t)]−

m−1

∑
k=0

sα−k−1 f (k)(0) (10)

Equation (10) only uses integer derivatives at the initial time, so it is easier to apply in
practice. However, the inability of the Caputo definition to provide a satisfactory solution
to the initial condition problem has been pointed out [13,15], and we comment on it below.

3. Initialization of the CPE

The CPE, or fractional capacitor, with 0 < α < 1, can be considered as an interme-
diate case between a resistor (α = 0) and an ideal non-fractional capacitor (α = 1). It is
reasonable to think that it also behaves as an intermediate case in relation to the initial
conditions. Allagui et al. [28] recently claimed that the weight of the voltage memory
trace that results from the contribution of past voltage activity depends on the fractional
exponent α, and therefore, the measured response of the device at any time is increasingly
correlated with its past, while ideal capacitors do not exhibit such behavior and are memo-
ryless devices. We interpret this same result in another way. If this two-terminal element
supports an initial voltage drop, v(0), at time t = 0, and we apply a current i(t) for time
t > 0, the behavior in the two extreme cases is quite different. In the case of a resistor with
resistance R, the voltage at time t > 0 is:

v(t) = Ri(t), (11)

and the initial voltage is immediately forgotten. In the opposite case of a non-fractional
capacitor of capacitance C, the voltage is given by:

v(t) = v(0) +
1
C

∫ t

0
i(τ)dτ, (12)

and the initial voltage is always remembered, although its later effects do not depend on
the previous history.

Let us apply (10) to (3), in the particular case of 0 < α < 1, to obtain:

I(s) = Q{sαV(s)− sα−1v(0)}, (13)

or:

V(s) =
I(s)
Qsα

+
v(0)

s
, (14)

which in the time domain, for t > 0, corresponds to:

v(t) = v(0) +
1

QΓ(α)

∫ t

0

i(τ)

(t− τ)1−α
dτ. (15)

Time-domain models for predicting the voltage–current characteristics of lithium-
ion batteries under arbitrary charging and discharging current profiles have been re-
ported, showing a higher accuracy than the traditional models with multiple parallel
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RC units [29,30]. The initial voltage has been considered in an equation similar to (14).
With this way of initialization, v(0) acts as an integration constant and is always remem-
bered, as we would expect in the case of an ideal non-fractional capacitor, that it is not what
we should obtain in the limit α→ 0. Instead, we would expect to obtain:

v(t) = v(0)g(t) +
1

QΓ(α)

∫ t

0

i(τ)

(t− τ)1−α
dτ (16)

so that the Caputo definition does not seem to produce the correct results. The meaning of
g(t) is discussed in the next section.

An alternative to the Riemann–Liouville and Caputo definitions of the fractional
derivative is to use the discretized and truncated Grünwald–Letnikov derivative with
a short and fixed memory length [5]. However, the voltage values during this memory
interval, before the initial time, must also be known, so that the initialization problem is
not solved by this approach.

4. The Decay Function

To obtain the value of g(t), which we call the decay function, we propose to prepare
an initial state starting from a state with zero initial conditions. The idea of preparing
an initial state is not actually new [19]. It was applied in [13] and [14] to compute the
internal force of an axially loaded viscoelastic bar, where an initial state was defined over
an interval, and the initial condition was called the initial history [13]. The initialization
function is a time-varying function and can be viewed as a generalization of the constant
of integration required for the order-one integral [31]. Zhao et al. [26] also applied this
procedure to the case of the internal force of an axially loaded viscoelastic bar and showed
that the influence caused by the pre-initial process varies in time and reflects the memory
of the whole pre-initial process, which explains the origin of the long memory property of
fractional-order systems [26].

We distinguish the initialization interval, [0, t0], and the observation interval, (t0, ∞),
and assume that the initial state has been achieved at t0 with an initialization current i0
while the current applied during the observation phase is i1, according to the next equation.

i(t) =

{
i0(t) 0 ≤ t < t0

i1(t− t0) t ≥ t0
(17)

We also assumed zero initial conditions prior to the initialization phase. With zero
initial conditions, the two definitions of fractional derivative (6) and (9) lead to the same
Laplace transform and the ambiguity is avoided.

To obtain the initial voltage v0, we can apply a suitable constant current i0(t) = I0.
With this current, the voltage can be obtained by:

v(t) =
I0

QΓ(α)

∫ t

0

dτ

(t− τ)1−α
=

I0tα

QΓ(α + 1)
, (18)

If I0 is held for a time interval of length t0,

v(t0) =
I0tα

0
QΓ(α + 1)

≡ v0. (19)

After t0, an arbitrary current i(t) flows through the CPE. The voltage is then ob-
tained as:

v(t) =
I0

QΓ(α)

∫ t0

0

dτ

(t− τ)1−α
+

1
QΓ(α)

∫ t

t0

i(τ)

(t− τ)1−α
dτ. (20)
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The first term in (20) is:

I0

QΓ(α)

∫ t0

0

dτ

(t− τ)1−α
=

I0

QΓ(α + 1)
[tα − (t− t0)

α], (21)

which can be rewritten, by using (19), as:

I0

QΓ(α)

∫ t0

0

dτ

(t− τ)1−α
= v0

[(
t
t0

)α

−
(

t− t0

t0

)α]
. (22)

By defining the observation time, t′, after t0,

t′ ≡ t− t0, (23)

the final result has the form expected in (16):

v(t′) = v0g1(t0; t′) +
1

QΓ(α)

∫ t′

0

i(τ + t0)

(t′ − τ)1−α
dτ

= v0g1(t0; t′) +
1

QΓ(α)

∫ t′

0

i1(τ)

(t′ − τ)1−α
dτ,

(24)

with:

g1(t0; t′) =
(

1 +
t′

t0

)α

−
(

t′

t0

)α

. (25)

Function g1 verifies g1(t0; 0) = 1 and limt′→∞g1(t0; t′) = 0, so that the initial voltage,
v0, is eventually forgotten, which justified the name “decay function” we used for it.
However, although this procedure gives a method to prepare an initial state, the function
g1 depends on the time t0, which highlights the importance of taking into account the
previous history since the same initial voltage can be obtained with different combinations
of I0 and t0 values, and different decay rates of the initial voltage are therefore obtained.

The result also depends on the current profile used to prepare the initial state. To illus-
trate this, we can use a ramp current instead of a constant current for the same purpose. Let
us assume a current i0(t) = a · t for 0 ≤ t < t0. The voltage for this time interval is then:

v(t) =
a

QΓ(α)

∫ t

0

τ · dτ

(t− τ)1−α
=

atα+1

QΓ(α + 2)
(26)

and:

v(t0) =
atα+1

0
QΓ(α + 2)

≡ v0. (27)

If an arbitrary current i(t) is applied after t0,

v(t) =
a

QΓ(α)

∫ t0

0

τdτ

(t− τ)1−α
+

1
QΓ(α)

∫ t

t0

i(τ)

(t− τ)1−α
dτ, (28)

where:

a
QΓ(α)

∫ t0

0

τdτ

(t− τ)1−α
=

a
QΓ(α + 2)

[tα+1 − (t− t0)
α+1 − (α + 1)t0(t− t0)

α]. (29)

Using (27),

a
QΓ(α)

∫ t0

0

τdτ

(t− τ)1−α
= v0

[(
t
t0

)α+1
−
(

t− t0

t0

)α+1
− (α + 1)

(
t− t0

t0

)α
]

(30)
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With t′ ≡ t− t0, the final result is obtained as:

v(t′) = v0g2(t0; t′) +
1

QΓ(α)

∫ t′

0

i(τ)

(t′ − τ)1−α
dτ, (31)

where:

g2(t0; t′) =
(

1 +
t′

t0

)α+1

−
(

1 + α +
t′

t0

)(
t′

t0

)α

(32)

Again, g2(t0; 0) = 1 and limt′→∞g2(t0; t′) = 0, so that g2 is another form of the decay
function obtained for a different initialization current profile. The decay functions g1 and
g2 are shown in Figure 1 for α = 0.5 and two different values of t0. The decay rates are
slow for long times and are different in the four cases, thus proving the influence of the
previous history.

Figure 1. Decay functions of the initial voltage obtained for a CPE with α = 0.5 by applying a constant
current (lines) or a ramp current (symbols) for a time t0.

5. Initialization of ZARC

The CPE included in battery and supercapacitor models is often connected with a
resistor in parallel, as shown in Figure 2. For this connection, the name ZARC was proposed
earlier [32] and has been widely used ever since [1,2,10]. Its impedance in the Laplace
domain is:

Z =
R

1 + RQsα
(33)

Figure 2. ZARC composed by a resistor and a CPE connected in parallel.

Instead of parameter Q, we can use a time constant, which can be used as a time

reference, by defining τ ≡ (RQ)
1
α , so that:

Z =
R

1 + (τs)α
(34)

and:
[1 + (τs)α]V(s) = I(s)R. (35)
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We apply now the same initialization procedure used above with a constant current,
I0, to prepare the initial state. An arbitrary current i1 is subsequently applied for t ≥ t0:

i(t) =

{
I0 0 ≤ t < t0

i1(t− t0) t ≥ t0
(36)

Equation (36) can be rewritten as:

i(t) = I0[u(t)− u(t− t0)] + i1(t− t0)u(t− t0), (37)

where u(t) is the unit step function. Its Laplace transform is [29]:

I(s) = I0
1− e−st0

s
+ I1(s)e−st0 . (38)

so that:

V(s) = I0R
1− e−st0

s[1 + (τs)α]
+ I1(s)R

e−st0

1 + (τs)α
. (39)

For t ≥ t0, or t′ ≥ 0, where t′ = t− t0, we obtain:

v(t′) = vini(t0; t′) + v1(t′) (40)

where:

v1(t′) = L−1
[

I1(s)R
1 + (τs)α

]
(41)

is the voltage that we would obtain in response to i1 with zero initial conditions, and:

vini(t0; t′) = L−1
[

I0R(1− e−st0)

s[1 + (τs)α]

]
. (42)

is the response to the initial voltage in the observation phase. By using [27]:

L−1
[

1
s[1 + (τs)α]

]
= 1− Eα

[
−
(

t
τ

)α]
(43)

where Eα(x) is the one-parameter Mittag–Leffler function [27], defined according to:

Eα(x) =
∞

∑
n=0

xn

Γ(nα + 1)
(44)

the result, with t′ = t− t0, is:

vini(t0; t′) = I0R
{[

1− Eα

(
−
(

t′ + t0

τ

)α)]
−
[

1− Eα

(
−
(

t′

τ

)α)]}
(45)

The initial voltage can be written as:

v0 ≡ vini(t0; 0) = I0R
[

1− Eα

(
−
(

t0

τ

)α)]
, (46)

so that the final result is:
vini(t0; t′) = v0g3(t0; t′), (47)

where a new decay function g3 is defined in this case according to:

g3(t0; t′) =
Eα

(
−
(

t′
τ

)α)
− Eα

(
−
(

t′+t0
τ

)α)
1− Eα

(
−
(

t0
τ

)α) . (48)
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In the case of a non-fractional ZARC, which is obtained in the limit α = 1, in which
the CPE is substituted by a non-fractional capacitor, and taking into account that the
Mittag–Leffler function reduces to the exponential function in this limit:

lim
α→1

Eα

[
−
(

t′

τ

)α]
= e−

(
t′
τ

)
, (49)

and the decay function is also an exponential function:

lim
α→1

g3(t0; t′) = e−
(

t′
τ

)
. (50)

This is the well-known result in the case of the parallel RC network, in which the effect
of the initial voltage decays exponentially.

Therefore, both in the fractional ZARC and in the parallel RC network, the effect of
the initial voltage decays and eventually vanishes, but while in the case of the parallel
RC network, the exponential decay only depends on the initial voltage, in the case of the
fractional ZARC, the decay rate is smoother and depends on the previous history. This
behavior is compared in Figure 3, for the case of α = 0.5. The decay function g3 decays
rapidly at first, but the decay rate is quite slower than the exponential for long times.

Figure 3. Decay function of the initial voltage obtained for a ZARC with α = 0.5 by applying a
constant current (lines), for different values of t0, compared to the exponential decay function of a
parallel RC element (dots).

6. Approximation of the CPR by an RC Network

To avoid the problems associated with the fractional derivatives, the fractional impedances
are often approximated by functions with a finite number of poles and zeros. One possibility
is that proposed by [33], and used by other authors [8], in which the fractional-order transfer
function is approximated with a high-degree integer-order system. Another option is to
approximate the CPE (or the ZARC) by a network composed by a series of RC branches [6,34],
as shown in Figure 4. The approximation of the ZARC using finite and infinitely serially
connected RC circuits was analyzed in detail in [35]. We consider the approximation of a CPE
by a series RC network in this section.
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Figure 4. Approximation of a CPE by the series connection of N RC elements.

We could think that by using non-fractional RC elements, in which the effect of the
initial voltage does not depend on the previous history, the problem of the initial conditions
that we discussed above can be avoided. However, this is not true, since given an initial
voltage v0 in the network, how this voltage is distributed among the initial voltages of the
different elements actually depends on the previous history.

The voltage of the RC network, with N parallel RC elements connected in series, can
be obtained as follows [24],

v(t) = v0g(t) +
N

∑
n=1

1
Cn

∫ t

0
i(ξ)e−

t−ξ
τn dξ, (51)

with:

g(t) = ∑N
n=1 vn,0e−

t
τn

∑N
n=1 vn,0

, (52)

where vn,0 is the initial voltage in the n-th element, and:

v0 =
N

∑
n=1

vn,0 (53)

We prepare the initial state again by starting from the zero initial condition and
applying a constant current, I0, for a time t0. The initial voltage in the n-th element in the
observation phase, at the end of this period, is obtained as:

vn,0 = I0Rn

(
1− e−

t0
τn

)
(54)

and the decay function is also obtained in this case:

g(t) = g4(t0; t) =
∑N

n=1 Rn

(
1− e−

t0
τn

)
e−

t
τn

∑N
n=1 Rn

(
1− e−

t0
τn

) , (55)

where time t is measured after the initialization period. The new decay function also has
the expected limits limt→∞g4(t0; t) = 0 and limt→0g4(t0; t) = 1.

The behavior of the decay function g4 can be compared with the decay function g1 of
the CPE that the RC network approximates. To do so, we considered a Warburg-type CPE,
with α = 0.5, and approximated it by an RC network with five elements (N = 5). We used
typical parameter values of a Warburg impedance for a Li-ion battery [8,34]: (1) The values
of Rn and τn = RnCn were obtained by a least-square fit to the real and imaginary parts of
the CPE impedance in the range fmin = 1 MHz to fmax ' 1 Hz. (2) The real part of the CPE
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impedance at 1 MHz is 20 mΩ. The values of the RC network components are provided in
Table 1.

Table 1. Values of the parameters for the RC elements.

n 1 2 3 4 5

Rn (mΩ) 1.0407 1.9991 4.5240 10.5239 71.3679
τn (s) 0.1352 1.8012 12.3951 70.7794 686.9286

Figure 5 shows a comparison of the real and imaginary parts of the impedances of
the CPE (solid line) and the RC network (symbols). Since we chose α = 0.5, the real
and imaginary parts of the CPE match. A good fit was obtained within the frequency
range used for the adjustment, but deviations were observed outside this range. The two
decay functions g1 and g4, given in (25) and (55), respectively, are compared in Figure 6 in
logarithmic scales for two different values of t0. A good agreement was observed for times
less than tmax ' 1

2π fmin
, but a deviation was produced for longer times, in which the initial

voltage for the CPE decayed at a lower rate.

Figure 5. Absolute values of the real part (resistance) and imaginary part (reactance) of a CPE with
α = 0.5 of an approximation with a five-element RC network.

Figure 6. Decay function of the initial voltage obtained by applying a constant current to a CPE with
α = 0.5 and to an approximation with a five-element RC network.
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7. Discussion

Although the problem of the initialization of fractional differential equations has been
studied in the last two decades, it has not received sufficient consideration in some practical
applications. The case considered here is the use of constant-phase elements in battery and
supercapacitor modeling. When equivalent circuits containing fractional elements are used
to predict the evolution of voltage and current in the time domain, the correct treatment of
the initial conditions poses considerable difficulties, since many times, the previous history
is not well known and its influence has been clearly demonstrated. The response to an
applied current has been shown to be superimposed on the initial voltage multiplied by a
decay function that depends on the previous current profile and the time for which it has
been applied. There are several possibilities. The simplest one is to be sure that we start
from a state with zero initial conditions, but this requires long relaxation times and is not
always applicable. Another option is to wait for a long period after which the effect of the
initial conditions has decayed and has a negligible effect on the element voltage, but this
is even more difficult with fractional elements since the decay rates can be quite slow.
A third possibility is to try to adjust the decay function from the data actually measured
by separating it from the response to the post-initial current. Du et al. mentioned the
difficulties of obtaining the initialization function in practical situations [15], although an
algorithm to accomplish this task has been recently proposed [36]. In fact, this is not an
easy task, as we show in the example below.

Let us prepare an initial voltage of 50 mV in a CPE of the Warburg type according
to (1) with α = 0.5 and Q = 446 Ω−1s

1
2 (such that its real part is 20 mΩ for a frequency

of 1 MHz). We then apply a constant current I1 = 1 A. Measuring the time t after the
initialization period and using (24) we find:

v(t) = v0g1(t0; t) +
I1tα

QΓ(α + 1)
, (56)

where function g1 is given in (25). The result, for three different values of t0, namely
100 s, 500 s, and 3600 s, respectively, is shown in Figure 7. The curve corresponding to
t0 = 100 s initially decreases and then shows a turnaround behavior. This is a consequence
of a high current in the initialization phase, since to obtain the initial value of 50 mV in
t0 = 100 s, a high initialization current, I0 = 1.98 A, is needed. If the CPE is assumed to
reflect, for example, a diffusion mechanism in a Li-ion battery [37], such a high current
would have produced a highly nonuniform Li concentration in its particles [38], and the
observed rebound is justified. However, in the other two cases, it is possible to misinterpret
the data by assuming the wrong Equation (15) that corresponds to (56) with g1 = 1 and
different values of Q and α. A good fit, shown with symbols in Figure 7, was obtained with
α = 0.77 and Q = 4730 Ω−1sα for the t0 = 500 s case and α = 0.53 and Q = 718 Ω−1sα

for the t0 = 3600 s case, different from those used in (56). In the slower initialization
case (I0 = 0.33 A during 3600 s), the error in Q and α is lower, but still important. The
good fit obtained in some cases, such as those considered here with t0 equal to 500 s and
3600 s, justifies the good result obtained by the authors, who used a non-decaying initial
voltage [29,30]. However, the CPE parameter values obtained to represent the experimental
results would have been different if a suitable decay function had been included. In other
cases, such as the one shown here for t0 = 100 s, it would have been much more difficult to
obtain a good fit to the experimental results.
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Figure 7. Voltage for a CPE with α = 0.5 and Q = 446 Ω−1Hz−
1
2 , measured after initializing at 50 mV.

Approximation with g1 = 1 by fitting the values of α = 0.5 and Q with the voltage data.

8. Conclusions and Future Research

To conclude, careful attention should be paid to the initialization of fractional elements,
such as the CPE, in battery and supercapacitor models. The effect of the initial value decays
with time and eventually vanishes, and it can be written as an initial function obtained as
the product of the initial value and a decay function, but the initial function may be very
difficult to separate from the rest of the response and may be misinterpreted by different
values of the CPE parameters.

In many practical cases, the initial voltage can be measured or deduced if the open
circuit voltage of the battery cell is known, but the previous history is usually not known,
so it is not possible to obtain an accurate initialization function. However, in cases where
the experiment cannot be designed starting from zero initial conditions, the decay functions
proposed in this work can be used with an equivalent or effective t0 parameter. This
might not be totally accurate, but it would lead to better results than simply assuming an
initial voltage that does not decay. We believe that this subject warrants further research.
In those experimental works that seek to adjust the transient experimental results in the
time domain with models that include the CPE, in addition to the CPE parameters, a new
parameter defining the decay function can be included, and its effects on the accuracy or
theoretical validity of the obtained results can be analyzed.
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