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Abstract: Neurological disorders, including neurodegenerative diseases, are often characterized by
neuroinflammation, which is largely driven by microglia, the resident immune cells of the central
nervous system (CNS). Under these conditions, microglia are able to secrete neurotoxic substances,
provoking neuronal cell death. However, microglia in the healthy brain carry out CNS-supporting
functions. This is due to the ability of microglia to acquire different phenotypes that can play a
neuroprotective role under physiological conditions or a pro-inflammatory, damaging one during
disease. Therefore, therapeutic strategies focus on the downregulation of these neuroinflammatory
processes and try to re-activate the neuroprotective features of microglia. Mesenchymal stem cells
(MSC) of different origins have been shown to exert such effects, due to their immunomodulatory
properties. In recent years, MSC derived from adipose tissue have been made the center of attention
because of their easy availability and extraction methods. These cells induce a neuroprotective
phenotype in microglia and downregulate neuroinflammation, resulting in an improvement of
clinical symptoms in a variety of animal models for neurological pathologies, e.g., Alzheimer’s
disease, traumatic brain injury and ischemic stroke. In this review, we will discuss the application
of adipose tissue-derived MSC and their conditioned medium, including extracellular vesicles, in
neurological disorders, their beneficial effect on microglia and the signaling pathways involved.

Keywords: adipose tissue-derived mesenchymal stem cells; extracellular vesicles; microglia; neu-
rodegenerative diseases; neuroinflammation; neuroprotection

1. Introduction

Many neuropathologies, including neurodegenerative diseases such as Alzheimer´s
disease (AD) and Parkinson´s disease (PD), traumatic brain injury (TBI), spinal cord injury
(SCI) and ischemic stroke, among others, are characterized by neuroinflammation. All these
pathologies have in common a disturbance in brain homeostasis that frequently results
in neuronal cell death, although the initiator of this imbalance is different in each case.
They range from the formation of extra- or intracellular protein aggregates, in the case of
AD and PD, to lesions in TBI and SCI, and to alteration of the blood supply in ischemic
stroke. Moreover, the various brain areas can be differentially affected. Thus, while AD
patients exhibit β-amyloid (Aβ) senile plaques and intraneuronal neurofibrillary tangles
of hyper-phosphorylated tau in the entorhinal cortex and hippocampus [1], PD is instead
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characterized by α-synuclein aggregations and the cell death of dopaminergic neurons in
the substantia nigra (SN) [2]. In contrast, lesions provoked by ischemic stroke can affect
any brain region. In spite of different locations and lesion types, all these neuropathological
insults share a similar outcome, namely the pro-inflammatory activation of microglia,
which represent the immune cells of the central nervous system (CNS) and are its first line
of defense [3]. This activation leads to the microglial secretion of a variety of neurotoxic
factors, such as pro-inflammatory cytokines and chemokines, as well as reactive oxygen
species (ROS) or nitric oxide (NO) [4]. In addition, the blood-brain barrier becomes leaky
and immune cells from the periphery can infiltrate the CNS, enhancing the inflammatory
environment [5].

From a therapeutic point of view, this neuroinflammation has to be mitigated to
prevent further neuronal loss and cognitive disorders. To this end, mesenchymal stem
cells (MSC) as anti-inflammatory agents have been applied in a variety of pre-clinical and
clinical studies with promising results [6–11]. MSC are adult stem cells with the potential to
differentiate into cells of the mesenchymal lineage [12]. However, their use in inflammatory
diseases is rather based on their immunomodulating properties.

Since MSC were first isolated from bone marrow [13], many studies so far rely on
bone marrow MSC (BM-MSC). However, MSC can also be obtained from different adult
tissues, such as adipose tissue, liver, dental pulp, endometrium, muscle, amniotic fluid,
placenta and umbilical cord blood [12]. In particular, MSC from adipose tissue (ASC)
have become a valuable therapeutic tool, due to their availability and easy extraction
methods. Recently, their use in neurological disorders with underlying neuroinflammation
by chronic microglial activation has emerged as a powerful treatment in animal models.
Therefore, in this timely review, we would like to provide an overview of the positive
effect of ASC on microglia functions, among others on the activation of the neuroprotective
PI3K/Akt/RhoGTPase signaling pathway. Consequently, microglia can play a beneficial
role in a wide spectrum of neuropathologies.

2. Role of Microglia in Health and Disease

In the healthy brain, microglia are continuously surveilling their environment [14],
maintaining CNS homeostasis. They can secrete neurotrophic factors and clear up cellular
debris in response to brain alterations, thus playing an active CNS-supporting role [15,16].
However, upon injury, stroke or certain chronic stimuli in the brain, they can become
excessively reactive and change toward a detrimental inflammatory phenotype. This
plastic nature of microglia has led to the identification of many different activity states of
these cells [15,17,18], supported later by gene expression data [19]. As this review will not
focus on the different phenotypes of microglia, for simplification we will use the terms
“pro-inflammatory” and “neuroprotective” herein in order to distinguish between the two
main activity states, which is essential to understand the effects of ASC on microglia.

Figure 1 schematically depicts the induction of these phenotypes under different
stimuli in vitro. The possibility of switching from pro-inflammatory to neuroprotective
microglia actually makes these cells an attractive therapeutic target in neuroinflammatory
diseases, as it is a way to influence their inflammatory state, trying to keep them in a
neuroprotective, CNS-supporting role. Very interestingly, this change can be followed
morphologically in vitro (Figure 1), as the neuroprotective phenotype has a predominant
elongated cell shape with some ramifications, while the pro-inflammatory phenotype is
mostly associated with a rounded morphology [16]. The pro-inflammatory state can be
provoked by different triggers, e.g., by lipopolysaccharide (LPS), but also by Aβ (a hallmark
of AD) or α-synuclein (a hallmark of PD) [1,4]. This phenotype is associated with the secre-
tion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin
(IL)-1β, IL-6, and ROS, as well as NO, leading ultimately to neuronal cell death [4]. The
switch toward the neuroprotective phenotype has been less extensively studied and can
be induced, for example, by IL-4 [20] and MSC [10,21,22]. The upregulation of neuropro-
tective molecules, such as brain-derived neurotrophic factor (BDNF), activity-dependent
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neurotrophic protein (ADNP) and the fractalkine receptor CX3CR1, characterizes this phe-
notype [21,22], as well as the expression of arginase-1 [10,22], a marker for alternatively
activated macrophages [23] and for anti-inflammatory microglia [24].
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Figure 1. Simplified view of microglia phenotypes modulated by adipose tissue-derived mesenchy-
mal stem cells (ASC) or their conditioned medium (ASC-CM) in vitro. Non-stimulated microglia
cultured in growth medium under standard conditions (grey) can switch to a pro-inflammatory
(red) or neuroprotective (green) phenotype, depending on their stimulatory triggers. In general,
the pro-inflammatory phenotype is characterized by a more amoeboid cell shape and the secretion
of neurotoxic substances, such as inflammatory cytokines, nitric oxide (NO) and reactive oxygen
species (ROS). ASC or ASC-CM can also revert a pro-inflammatory microglial phenotype into a
neuroprotective one, acquiring a ramified morphology, decreasing the expression of inflammatory
cytokines and secreting neuroprotective factors.

Nowadays, the aim of treatment in many neuropathological events with microglial
involvement is to reduce the pro-inflammatory phenotype, shifting the balance toward
a neuroprotective one in order to reduce neuronal cell death. Indeed, in the last decade,
ASC administration both in vitro and in vivo has been shown to reach this goal, as will be
summarized below.

3. Origin and Characteristics of Adipose Tissue-Derived Mesenchymal Stem
Cells (ASC)

ASC are considered a heterogeneous cell population from the stromal fraction of
adipose tissue (such as abdominal fat, infrapatellar fat pad, and buccal fat pad) that can be
easily obtained by collagenase digestion of the isolated tissue and shows strong adherence
to plastic under culture conditions. They express specific cell surface markers, including
CD29, CD44, CD73, CD90, CD105, CD146 and CD166, while lacking the expression of
CD11b, CD14, CD19, CD31, CD34, CD45 and CD79a [25]. Moreover, the fact that ASC
express low levels of human leukocyte antigen (HLA) class I molecules, and do not express
HLA class II molecules or co-stimulatory molecules, such as CD40, CD40L, CD80 and
CD86, confers them an “immune-privileged” state that allows them to escape from the
cytotoxic effects of lymphocytic T cells, B cells and natural killer (NK) cells. As other
MSC, ASC show self-renewal and multi-differentiation potential, with the capacity to
generate chondrocytes, osteoblasts and adipocytes [25]. Besides their regenerative capacity,
ASC possess immunomodulatory and anti-inflammatory effects, making them attractive
candidates for therapeutic use in various diseases involving immune dysregulation and
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extensive tissue damage, including graft-versus-host disease, rheumatoid arthritis, Crohn’s
disease, sepsis and COVID-19, among others [26,27]. Preclinical experimental models
indicate that ASC exert their immunoregulatory activity by various non-exclusive and
redundant mechanisms that involve the secretion of a plethora of anti-inflammatory me-
diators, the suppression of T cell-mediated self-reactive responses and the induction of
immune tolerance by re-educating immune cells, i.e., regulatory T cells, tolerogenic den-
dritic cells, alternatively activated macrophages and microglia [6,28–31]. Some of these
effects require cell-to-cell contact, while others are mediated in a paracrine manner through
soluble mediators. These findings have opened up the discussion about the convenience
of therapies based on ASC or their cell products, such as their conditioned medium (CM)
or extracellular vesicles (EV). At this moment, therapies that use ASC have adequately
progressed to clinical practice; however, the appropriateness of treatments that are based on
their products are still under debate until the nature of their components are fully defined
and the methods for their isolation are standardized [32–34]. In this sense, it exists a wide
variety of mediators that have been identified by different research groups in ASC-derived
CM, with critical regulatory factors that are present in some studies but absent in others;
undoubtedly, this is a research area of high interest.

4. Effect of ASC on Microglia Phenotype In Vitro

MSC in general exert immune-modulatory and anti-inflammatory effects on a variety
of cell types [12,35,36]. This was also demonstrated for microglia, using MSC of different
origins, including ASC [7–10,21,22,37–39].

One of the first studies incubating ASC with primary mouse microglia in transwell in-
serts in vitro has shown that primary mouse microglia drastically change their morphology
into an elongated cell shape ([22]; Figure 2A, middle panel). As these inserts preclude direct
cell-to-cell contact, soluble factors must be responsible for this morphology change. Indeed,
the conditioned medium from ASC (ASC-CM) also induces this cell shape (Figure 2A right
panel and C and Supplementary Video S1), indicating that the soluble factors of ASC induce
microglia ramification. In fact, after 2 h of incubation with ASC-CM, the microglia started
to elongate, reaching a high degree of elongation after 8 h (Figure 2C and Supplementary
Video S1). As the ASC-CM is routinely filtered with a pore size of 0.2 µm prior to its
incubation with microglia, the involvement of exosomes, which are about 30–120 nm in
size [35], or other small-sized EV cannot be excluded in the induction of this phenotype
(see Section 6.2. “Application of ASC-Generated Extracellular Vesicles (EV) In Vivo”).

As mentioned above, primary microglia in vitro acquire a rather round cell shape
under inflammatory conditions, e.g., when stimulated with LPS (Figure 2B left panel),
while in vivo, in pathological events of the CNS, an amoeboid microglial morphology
and sometimes a large soma with several processes are observed [16,40]. The anti-
inflammatory effect of ASC in transwell inserts or of ASC-CM is easily detectable by
microscopy, as rounded pro-inflammatory cells acquire an elongated shape in the presence
of ASC in transwell inserts or ASC-CM (Figure 2B, middle and right panel, respectively).
More strikingly, ASC-CM also reverts an inflammatory phenotype, induced by 24 h pre-
incubation with LPS prior to ASC-CM addition, to a neuroprotective phenotype [22]. The
latter observation is of special importance, as this might be extrapolated to the in vivo
studies using ASC, when mice already suffering a neurological disease are injected with
ASC and recover at least partially from their symptoms (see Section 6. “Application of
ASC In Vivo”).

This morphological change of microglia in vitro goes along with changes in the expres-
sion levels of pro-inflammatory cytokines and neuroprotective factors. The expression of the
LPS-induced pro-inflammatory cytokines TNF-α and IL-6 are reduced by ASC-CM, while
neuroprotective factors, such as BDNF, ADNP and fibroblast-growth factor (FGF)-2, are in-
creased [22]. In addition, arginase-1, a marker for alternatively activated macrophages [23],
and phagocytosis, which is another feature of neuroprotective microglia [24], are increased
by ASC or their ASC-CM [22]. Remarkably, a phagocytic event executed by the upper-left
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cell was imaged in Supplementary Video S2. The phagosome, identified as a white spot
inside the cell, remains visible until nearly the end of the video. The increase in the phago-
cytic rate is of special therapeutic interest since a decrease in phagocytosis was associated
with increasing Aβ plaques in a mouse model for AD [41].
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Figure 2. Microglia ramification upon incubation with adipose tissue-derived mesenchymal stem cells
(ASC) or their conditioned medium (ASC-CM). (a) Mouse ASC were seeded in transwell plates and
subsequently transferred to wells containing murine primary microglia. After 48 h, the microglia were
fixed, immunostained for CD11b and pictures were taken on a Zeiss Axiophot fluorescence micro-
scope with a 40× objective. Alternatively, microglia were incubated for 48 h with ASC-CM and then
treated as described before. In both conditions, they acquired an elongated morphology, compared
with microglia incubated only with growth medium. (b) Even in the presence of lipopolysaccharide
(LPS), which provoked an amoeboid cell shape, ASC and ASC-CM induced microglial ramification.
A detailed description of all materials and methods used for these experiments can be found in [22].
White scale bars = 10 µm. (c) Primary murine microglia were plated in a 12-well plate in microglia
growth medium, as described in [22]. After three days, they were subjected to live-cell imaging on a
Leica DM IRB HC FLUO widefield microscope equipped with a digital camera (DFC 300 FX) and a
plate incubation system with a temperature (37 ◦C) and CO2 control (5% CO2), using a 20× objective
suitable for contrast-phase microscopy. Immediately after the 0 h time point, ASC-CM was added to
the cells and pictures were taken every 10 min from the same field of view. After 2 h, the microglia
started to elongate and were ramified by the 8 h time point. The time-lapse video is available in the
supplementary material as Supplementary Video S1. Black scale bars = 100 µm. Images from data
not shown and replicates from [22].
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Later on, these neuroprotective effects of ASC were also observed in the microglial
murine cell line BV-2 [7,8,42]. However, the authors of these studies used slightly modi-
fied ASC or ASC-CM: BV-2 cells were incubated with an ASC-concentrated conditioned
medium (ASC-CCM) from cells pre-stimulated with inflammatory cytokines [8]. This
pre-stimulation with TNFα and IL-1β led to the expression and secretion of the anti-
inflammatory TNF-stimulated gene 6 protein (TSG-6), as shown previously with BM-
MSC [37]. Subsequently, the anti-inflammatory properties of non-pre-stimulated ASC-CCM
were compared to those of pre-stimulated ASC-CCM by measuring the nitrite concentra-
tion in the microglia supernatant. While both media, ASC-CM and ASC-CCM, decreased
the LPS-induced NO production, the pre-stimulated ASC-CCM was more effective. Sim-
ilarly, LPS and the interferon-γ (IFN-γ)-induced expression of CD86 and IL-1β, both
pro-inflammatory markers of microglia, were reduced when treated with pre-stimulated
ASC-CCM, while arginase-1 expression was increased. At the same time, Iba-1 staining,
which is increased upon LPS stimulation [43], was reduced by ASC-CCM. In addition,
BV-2 cells changed from a rounded morphology when treated with LPS and IFN-γ, to an
elongated morphology upon ASC-CCM addition [8], although this conversion is not as
prominent as that observed with primary microglia (Figure 2). All these anti-inflammatory
effects were reverted, when TSG-6 in ASC and, subsequently, in their CCM, was efficiently
downregulated by siRNA, indicating a key role for this protein in the ASC secretome and
its anti-inflammatory features [42].

Similarly, Huang and colleagues downregulated the transcription factor Nrf2 by
siRNA in ASC, leading to a decrease of heme oxygenase-1 (HO-1) expression levels, a
protein involved in redox homeostasis in cells that is known for its important antioxidant
activity [44]. Subsequently, the authors co-cultured these modified cells with BV2-cells
and showed that the ASC-induced anti-inflammatory effect on BV-2 cells was diminished
by this modification, pointing towards a crucial role of Nrf2/HO-1 signaling in the anti-
inflammatory properties of ASC [7].

In summary, ASC and their CM cause a switch in microglia toward a neuroprotec-
tive phenotype, identified by cell elongation in vitro, a decrease in the release of pro-
inflammatory cytokines, and the induction of neuroprotective and anti-inflammatory
factors. Nrf2/HO-1 and TSG-6 expression in ASC seem to play a key role in acquiring this
microglial phenotype.

5. ASC-Induced Activation of the PI3K/Akt/RhoGTPase Signaling Pathway
in Microglia

As we have seen in the previous section, there is no doubt that ASC are capable
of inducing a neuroprotective phenotype in microglia. This conclusion, however, opens
up the question of which signaling pathways in microglia are involved in acquiring this
phenotype. Proteins taking part in these pathways might represent novel drug targets, as
by activating or inhibiting them they could shift microglia from a pro-inflammatory to an
anti-inflammatory neuroprotective state.

Interestingly, CSF-1 has been detected in the ASC-CM (unpublished data from M.D.)
and the loss of its receptor (CSF-1R) in mice results in the ablation of nearly all microglia [45],
representing an important initiator of microglia survival pathways. In line with these
observations, ASC-CM containing anti-CSF-1 antibodies inhibited microglia ramification
in vitro [22]. This result excludes the possibility of IL-34 as a CSF-1R ligand in the CM in
these experiments, although IL-34, by binding to CSF-1R, plays a similar role as CSF-1R in
microglial survival in vivo. [46].

Downstream targets of the CSF1-R in macrophages are, for example, phosphoinositol-
3-kinase (PI3K) and protein kinase B (PKB)/Akt and have been reviewed on many occa-
sions [47,48]. In primary microglia, this survival pathway is very likely to be implicated
in microglia ramification induced by ASC-CM, as (i) Akt is strongly phosphorylated by
ASC-CM, and (ii) the PI3K inhibitor LY 294002 reverses the ASC-CM-induced ramifica-
tion [22]. On the contrary, although the extracellular-signal-regulated kinase 1/2 (Erk1/2),
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as CSF1-R downstream target, is strongly phosphorylated in microglia stimulated by ASC-
CM, its inhibition by the MEK inhibitor PD 98059 does not counteract ASC-CM-induced
microglial ramification [22].

Once PI3K is activated, it generates phosphoinositol-3-phosphate (PIP3), to which
pleckstrin-homology (PH) domains possess a strong affinity [49]. In the Dbl-family of
Rho guanine nucleotide exchange factors (RhoGEFs), Dbl homology (DH) domains are
associated with PH domains, which assist in RhoGTPase activation [50]. Among the
latter ones are the small RhoGTPases, RhoA, Rac1 and Cdc42, the main regulators of the
actin cytoskeleton, which is ultimately responsible for morphological changes in any cell
type. Similar to macrophages, where CSF-1R signaling has previously been linked to
Rac1 activation [51], the transfection of dominant-negative mutants of Rac1 and Cdc42 in
primary microglia efficiently inhibits ASC-CM-induced ramification. Furthermore, ASC-
CM strongly activates Rac1 and Cdc42 in microglia [22] (Figure 3A). As described on many
occasions, Rac1 induces the formation of lamellipodia [52,53], the mesh-like polymerization
of F-actin. These structures are easily detectable by contrast-phase microscopy as a rim
along the cell edges. As observed by live-cell imaging, lamellipodia are formed in primary
microglia (arrows in Figure 3B and Supplementary Video S2) at the same time points of
major Rac1 activation, namely, at 2 min and 5 min, as confirmed by biochemistry (Figure 3A).
After 60 min, Rac1 activation and lamellipodia formation completely diminish (Figure 3).
In line with these results, Rac1 downregulation by siRNA reduces ASC-CM-induced
microglial ramification, indicating an essential role of Rac1 in this process [54].
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Figure 3. Rac1 activation and lamellipodia formation upon the administration of conditioned medium
from adipose tissue-derived mesenchymal stem cells (ASC-CM). (a) Primary murine microglia were
incubated with ASC-CM until the indicated time points, then they were harvested and subjected to a
Rac1 activation assay (see [22] for a detailed description of the materials and methods). At the 2 min
and 5 min time points, Rac1 was detected in its GTP-bound activated form. Western blot republished
with permission of JOHN/WILEY & SONS, INC., from [22]; permission conveyed through Copyright
Clearance Center, Inc. (b) Primary murine microglia were plated in a 12-well plate in microglia
growth medium and subjected to live-cell imaging as described in Figure 2C. Immediately after the
0 min time point, ASC-CM was added to the cells and pictures were taken every min from the same
field of view. At the 2 min and 5 min time points, lamellipodia formation was clearly visible at the
edges of the cells (arrows). After 60 min, Rac1 activation (a) and lamellipodia formation (b) had
stopped. Scale bars = 20 µm. Images from data not shown and replicates from [22].
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But not only ASC use the PI3K/Akt/RhoGTPase pathway in order to induce a neu-
roprotective phenotype, also human umbilical MSC exert anti-inflammatory effects on
microglia, such as the reduction of inflammatory markers and microglia ramification, and
activate Akt, Rac1 and Cdc42. In fact, the MSC-induced increase in phagocytosis is inhibited
by the PI3K inhibitor, LY 294002 [55].

Because ASC-CM contains a mixture of many different components (unpublished data
from M.D.) [56,57], there might also be other signaling molecules and pathways involved
in the switch to a neuroprotective microglial phenotype, leading to synergistic effects with
the pathway described above. In order to shed light on genes implicated in these pathways,
Neubrand and colleagues performed an siRNA screen of primary microglia stimulated
with ASC-CM to induce microglial ramification [54]. The siRNA-downregulated expression
of certain genes significantly inhibits microglial ramification. Consequently, these genes
might play a relevant role in conversion to a neuroprotective phenotype. Out of these
45 hits, seven genes were validated (RhoE/Rnd3, Tiam1, p38β/Mapk11, GM-CSFR/Csf2ra,
Map3k2, Creb1 and IκBα/Nfkbia) that are all potentially involved in ASC-CM-induced
neuroprotective signaling. For example, GM-CSFR, the receptor for GM-CSF, might initiate
the signaling cascade. In line with this, GM-CSF, when administrated to a PD mouse model,
decreases microglial activation and increases dopaminergic neuron survival [58], indicating
a neuroprotective role for its receptor. Further downstream might act the MAP kinase p38β
and the transcription factor Creb1; interestingly, the downregulation of either one also
inhibits ASC-CM-induced BDNF production [54]. As changes in microglial morphology are
related to rearrangements of the cytoskeleton, the RhoGEF Tiam1 and the small RhoGTPase
RhoE might be implicated in the cell shape change. Indeed, the downregulation of both of
them enhances microglial cell migration [54], a process strongly dependent on the actin
cytoskeleton. Interestingly, Tiam1 possesses two PH domains [59] that can bind to PIP3
generated by PI3K and might take part in the PI3K/Akt pathway described above.

While the latter findings are rather speculative, the PI3K/Akt/RhoGTPase pathway
in microglia upon MSC stimulation is more established [22,55] but is likely not to be the
only one.

6. Application of ASC In Vivo

Because of the immunomodulatory properties of MSC, their easy generation and
availability, the lack of ethical concerns and of immune rejections, they are the ideal tools to
downregulate neuroinflammation in a variety of neurodegenerative diseases. Therefore,
their application has been tested in diverse pre-clinical animal models with encouraging
results. In this section, we will concentrate on the findings of the beneficial actions of
ASC, while the effect of MSC from other sources, e.g., of bone marrow or umbilical origin,
are described elsewhere [11,35,60]. There are three ways to administrate ASC in vivo:
(i) transplantation of cells, (ii) injection of ASC-CM, or (iii) injection of ASC-EV.

When initial animal studies with ASC were conducted, it was not entirely clear
whether the neuroprotective effects were derived from the engrafted ASC themselves, their
differentiation into neuronal cells, or a paracrine effect by secreting anti-inflammatory
and neuroprotective factors. From experiments comparing in vitro expanded naïve and
differentiated ASC, which were transplanted into the 6-hydroxydopamine mouse model for
PD, it was concluded that the differentiation of ASC into neuronal cells was not necessary
to exert neuroprotective effects, which were instead achieved by the secretion of trophic
factors [61]; this was in agreement with the in vitro data using ASC-CM, as described in
above. Thus, we decided to summarize the data from (i) cell transplantation and (ii) the
injection of ASC-CM in one section, although in both administration methods, we cannot
exclude the possibility that the therapeutic effect might be achieved by secreted biologically
active EVs. As the administration of ASC-EV (iii) is an upcoming therapeutic strategy and
requires detailed explanations, we dedicated an entire section to this topic.
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6.1. Application of ASC In Vivo by Cell Transplantation and ASC-CM Injection

In general, microglia in vivo acquire a neuroprotective phenotype upon ASC or ASC-
CM administration, with the result of lowering damage-inducing neuroinflammation in a
variety of animal models and ameliorating disease-associated symptoms [7,8,42,57,62]. For
example, Ma and co-workers transplanted ASC into the hippocampus of the Alzheimer
Aβ precursor protein (APP)/Presilin1 (PS1) mice [62], a double transgenic model for AD
with mutations in APP and PS1. These mice present cerebral Aβ plaques, which increase
with age and are surrounded by glial inflammation. Interestingly, the Aβ burden in ASC-
transplanted mice is significantly reduced, associated with the fact that microglia found
in the vicinity of Aβ plaques in ASC-transplanted animals are labeled with IL-4, which
induces alternatively activated macrophages [63] and a neuroprotective phenotype in
microglia [64]. In addition, in ASC-transplanted APP/PS1 mice, more microglial cells
are present around these plaques and an increase of microglia-secreted Aβ degrading
enzymes, such as IDE, NEP and MMP-9, is measured, compared with HBSS-treated control
APP/PS1 mice. The switch in the microglial phenotype also causes a downregulation of
the pro-inflammatory cytokines TNF-α and IL-1β, as well as an upregulation of arginase-1.
This reduced neuroinflammation ultimately leads to improved cognitive abilities in ASC-
transplanted mice, as measured by the Morris water maze task, a hippocampus-dependent
test for spatial/memory brain functions [62].

ASC also significantly reduce neuroinflammation and ameliorate disease symptoms
in PD [61,65]. Even six months after PD induction by LPS injection into SN and ASC trans-
plantation, the number of pro-inflammatory microglia, marked by Ox-6, is significantly
reduced in the SN, compared with LPS-injected animals without ASC transplantation, indi-
cating the long-term beneficial effects of ASC. Moreover, dopaminergic neurons, detected
with tyrosine hydroxylase (TH) staining and that die during the course of the disease, are
recovered after ASC treatment [65].

Likewise, a beneficial impact of ASC is detected in other neurological pathologies,
for example, in chronic mild stress (CMS), traumatic brain injury (TBI), ischemic stroke
and spinal cord injury (SCI) (see Table 1). Similar to AD and PD, CMS is also charac-
terized by microglial activation and the secretion of pro-inflammatory cytokines, such
as TNF-α, IL-1β and IL-6 [7]. The intravenous injection of ASC into mice 3 weeks after
CMS induction reduces the production of these cytokines. Furthermore, CMS-induced
microglial pro-inflammatory activation, measured by the increase in Iba1-positive cells,
is also downregulated. To demonstrate the neuroprotective effect of ASC, the authors
measured the expression of BDNF and its receptor TrkB. While CMS reduces the expression
of both proteins, treatment with ASC recovers their expression levels. Consequently, ASC
administration reverses the depressive-like behavior induced by CMS [7], indicating that
ASC exert their neuroprotective effects via microglia and that these molecular findings
translate into the clinical improvement of this pathology.

For the treatment of TBI, three different reports used ASC-CM or ASC-CCM to amelio-
rate its clinical symptoms. While Xu and colleagues used a Morris water maze to demon-
strate that ASC-CM-treated animals recover more quickly from TBI [57], Jha et al. measured
visual acuity and contrast sensitivity, which were reduced as sequelae of mild TBI (mTBI)
but posteriorly improved in mice treated with ASC-CCM [8,42]. In addition, these authors
showed that the protein TSG-6, which is present in both ASC-CM and ASC-CCM [57], was
at least partially responsible for this ameliorating effect [42]. Both groups also demonstrated
that ASC-CM and ASC-CCM are able to downregulate neuroinflammation and microglial
activation in vivo [8,42,57] as well as to recover neuronal survival [8,57].

Taken together, ASC and their CM are also able to induce a neuroprotective microglial
phenotype in vivo. This provokes the downregulation of numerous neuroinflammatory
indicators, improving clinical symptoms in animal models for a variety of neurological
pathologies, as summarized in Table 1.
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Table 1. List of in vitro and in vivo studies using ASC to modulate microglia phenotypes and/or to
ameliorate neurodegenerative diseases.

Disease Experimental Model ASC Administration Publication Title References

AD APP/PS1
transgenic mouse

Intracerebral
transplantation

(hippocampus) of ASC

Intracerebral transplantation of adipose-derived
mesenchymal stem cells alternatively activates
microglia and ameliorates neuropathological

deficits in Alzheimer’s disease mice

[62]

AD APP/PS1
transgenic mouse

Intranasal administration
of ASC-EV

ADSCs-derived extracellular vesicles alleviate
neuronal damage, promote neurogenesis and

rescue memory loss in mice with
Alzheimer’s disease

[66]

AD Intra-hippocampal
injections of Aβ in rats

Intraperitoneal injections of
ASC-CM

Hypoxic-conditioned medium from adipose tissue
mesenchymal stem cells T improved

neuroinflammation through alternation of toll-like
receptor (TLR) 2 and TLR4 expression in a model of

Alzheimer’s disease rats

[67]

CMS CMS induction in mice
Intravenous injection of

murine ASC 3 weeks after
CMS induction

Adipose-derived mesenchymal stem cells protect
against CMS-induced depression-like behaviors in

mice via regulatingthe Nrf2/HO-1 and
TLR4/NF-κB signaling pathways

[7]

Ischemic stroke Acute ischemic stroke
(AIS) model in rats

Intravenous injection of pig
ASC and exosomes 3 h after

AIS induction

Intravenous administration of xenogenic
adipose-derived mesenchymal stem cells (ADMSC)
and ADMSC-derived exosomes markedly reduced
brain infarct volume and preserved neurological

function in rats after acute ischemic stroke

[68]

Ischemic stroke
Transient global cerebral

ischemia (GCI) model
in rats

Intravenous injection of
human ASC directly after

induction of GCI

Adipose-derived mesenchymal stem cells reduce
neuronal death after transient global cerebral

ischemia through prevention of blood-brain barrier
disruption and endothelial damage 1

[69]

Ischemic stroke Transient GCI model
in rats

Intravenous injection of
human ASC

Effect of adipose-derived mesenchymal stem cell
administration and mild hypothermia induction on

delayed neuronal death after transient global
cerebral ischemia

[70]

Ischemic stroke
Intracerebral injection of
endothelin-1 to induce

subcortical ischemic stroke

Intravenous injection of rat
EV 24 h after

stroke induction

White matter repair after extracellular vesicles
administration in an experimental animal model of

subcortical stroke 1
[71]

Ischemic stroke Middle cerebral artery
occlusion in rats

Intracerebral
transplantation of rat ASC

8 days after
ischemia induction

Immunological effects of the intraparenchymal
administration of allogeneic and autologous

adipose-derived mesenchymal stem cells after the
acute phase of middle cerebral artery occlusion

in rats 1

[72]

MS EAE mouse model Intraperitoneal injection of
human allogenic ASC

Allogeneic adipose-derived mesenchymal stromal
cells ameliorate experimental autoimmune

encephalomyelitis by regulating self-reactive T cell
responses and dendritic cell function

[6]

MS EAE mouse model

Intraperitoneal
administration of human
allogenic ASC expressing

IL-4 at disease onset

Early intervention with gene-modified
mesenchymal stem cells overexpressing

interleukin-4 enhances anti-inflammatory
responses and functional recovery in experimental

autoimmune demyelination

[73]

MS EAE mouse model

Intraperitoneal
administration of mouse
allogenic ASC expressing
VIP at the peak of disease

Mesenchymal stem cells expressing vasoactive
intestinal peptides ameliorate symptoms in a model

of chronic multiple sclerosis.
[74]

MS EAE mouse model
Intravenous administration

of ASC before and after
disease onset

Adipose-derived mesenchymal stem cells
ameliorate chronic experimental
autoimmune encephalomyelitis 1

[56]
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Table 1. Cont.

Disease Experimental Model ASC Administration Publication Title References

MS
MS model of Theiler’s

murine encephalomyelitis
virus (TMEV)

Intravenous injection of
ASC-EV on day
60 postinfection

Therapeutic potential of extracellular vesicles
derived from human mesenchymal stem cells in a

model of progressive multiple sclerosis
[75]

Neuro-
inflammation BV2 cells ASC-BV2 cells co-culture

Adipose-derived mesenchymal stem cells protect
against CMS-induced depression-like behaviors in

mice via regulating the Nrf2/HO-1 and
TLR4/NF-κB signaling pathways

[7]

Neuro-
inflammation BV2 cells Microglia incubated

with ASC-CCM

Concentrated conditioned media from adipose
tissue-derived mesenchymal stem cells mitigates
visual deficits and retinal inflammation following

mild traumatic brain injury

[8]

Neuro-
inflammation BV2 cells Microglia incubated

with ASC-CCM

TSG-6 in conditioned media from adipose
mesenchymal stem cells protects against visual

deficits in mild traumatic brain injury model
through neurovascular modulation

[42]

Neuro-
inflammation Primary mouse microglia

Microglia with ASC plated
in transwells, microglia

incubated with ASC-CM

Mesenchymal stem cells induce the ramification of
microglia via the small RhoGTPases

Cdc42 and Rac1
[22]

Neuro-
inflammation Primary mouse microglia Microglia incubated

with ASC-CM

The atypical RhoGTPase RhoE/Rnd3 is a key
molecule to acquire a neuroprotective phenotype

in microglia
[54]

Niemann-Pick
disease type C

Niemann–Pick disease
type C model mice

Transplantation of ASC in
mouse cerebellum

Adipose tissue-derived stem cells rescue Purkinje
neurons and alleviate inflammatory responses in

Niemann-Pick disease type C mice 1
[76]

PD
Intrastriatal

6-hydroxydopamine
injections of rats

Intracerebral
transplantation (SN) of

human ASC

Human adipose-derived mesenchymal stem cells
improve motor functions and are neuroprotective

in the 6-hydroxydopamine-rat model for
Parkinson’s disease when cultured in monolayer
cultures but suppress hippocampal neurogenesis

and hippocampal memory function when cultured
in spheroids 1

[77]

PD
Intrastriatal

6-hydroxydopamine
injections of mice

Intracerebral
transplantation (SN) of
ASC one week after the

6-hydroxydopamine
injections

Autologous transplants of adipose-derived adult
stromal (ADAS) afford dopaminergic

neuroprotection in a model of Parkinson’s disease 1
[61]

PD LPS-injection into SN

Intracerebral
transplantation (SN) of

ASC at the same time as
LPS injection

Adipose-derived stem cells decreased microglial
activation and protected dopaminergic loss in a rat

lipopolysaccharide model
[65]

PD
Intrastriatal

6-hydroxydopamine
injections of rats

Intracerebral
transplantation (SN) of

human ASC

Human adipose-derived mesenchymal stromal
cells increase endogenous neurogenesis in the rat

subventricular zone acutely after
6-hydroxydopamine lesioning 1

[78]

Retinal
inflammation

following mTBI
mTBI mouse model Intravitreal injections

of ASC-CCM

Concentrated conditioned media from adipose
tissue-derived mesenchymal stem cells mitigates
visual deficits and retinal inflammation following

mild traumatic brain injury

[8]

Retinal
inflammation

following mTBI
mTBI mouse model Intravitreal injections

of ASC-CCM

TSG-6 in conditioned media from adipose
mesenchymal stem cells protects against visual

deficits in mild traumatic brain injury model
through neurovascular modulation

[42]

SCI SCI model in mice
Intravenous injection of

ASC-EV immediately after
SCI induction

Exosomes from long noncoding
RNA-Gm37494-ADSCs repair spinal cord injury via

shifting microglial M1/M2 polarization
[79]

SCI Moderate contusion injury
of the spinal cord in mice

Injection of ASC into SCI
epicenter directly after

SCI induction

Adipose mesenchymal stem cell transplantation
alleviates spinal cord injury-induced

neuroinflammation partly by suppressing the
Jagged1/Notch pathway 1

[80]
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Table 1. Cont.

Disease Experimental Model ASC Administration Publication Title References

TBI TBI rat model Intra-cerebroventricular
injection of human ASC-EV

MSC-derived exosomes promote recovery from
traumatic brain injury via microglia/macrophages

in rat
[81]

TBI TBI rat model
Intravenous injection of
CM from human ASC

after TBI

Intravenously infusing the secretome of
adipose-derived mesenchymal stem cells

ameliorates neuroinflammation and neurological
functioning after traumatic brain injury

[57]

1 No experimental data with microglia included in this article. Abbreviations used in the table: AD, Alzheimer´s
disease; ASC, adipose tissue-derived mesenchymal stem cells; AIS, acute ischemic stroke; ASC-CM, Conditioned
medium from ASC; ASC-CCM, concentrated ASC-CM; CMS, chronic mild stress; EAE, experimental autoimmune
encephalomyelitis; ASC-EV, extracellular vesicles from ASC; GCI, global cerebral ischemia; MS, multiple sclerosis;
mTBI, mild traumatic brain injury; PD, Parkinson´s disease; SCI, spinal cord injury; SN, Substantia Nigra; TBI,
traumatic brain injury; TMEV, MS model of Theiler’s murine encephalomyelitis virus.

6.2. Application of ASC-Generated Extracellular Vesicles (EV) In Vivo

ASC transplantation has shown respectable results in certain animal models of neu-
ropathologies, but the fact that just a small proportion of injected cells seems to differentiate
into neurons suggests that the main protective effects are related to their paracrine activ-
ity [82]. In this sense, in addition to the factors present in the ASC secretome, the existence
of EV should be taken into account. The release of these EV from different cell types has
emerged as a new type of intercellular communication and it is proposed that they are
responsible for the beneficial effects observed in stem cell therapy.

Mainly based on their size, cargo and route of release, EV are classified into different
types, one of them being exosomes, approximately 30 to 120 nm-sized vesicles containing
different proteins, lipids and nucleic acids [31]. The specific cargo can act locally or be trans-
ferred to recipient cells to mediate the functional effects on them [83]. In the brain, EV have
been associated with neuron-glia crosstalk in order to preserve brain homeostasis, although
they have also been related to the spreading of certain neurodegenerative diseases [84,85].

In the context of microglia, recent studies using exosomes released from neuropro-
tective microglia have revealed that they can modify the gene expression profile toward
a neuroprotective phenotype in dysfunctional microglia and promote neural survival in
different neuropathologies [86–88]. In addition, microglial EV also affect other cell types,
e.g., EV from pro-regenerative microglia have been shown to promote oligodendrocyte
differentiation [40,89], while EV released by microglia transduced with IL-4 ameliorate the
disease outcome in experimental autoimmune encephalomyelitis (EAE), a mouse model for
multiple sclerosis (MS) [90]. However, limitations to obtaining microglia-released exosomes
diminish their direct application in the clinic.

On the contrary, ASC-derived exosomes can easily be isolated and stored in large
amounts at a relatively low cost. The optimal administration for effective treatment is still
controversial since only a small proportion of exosomes seems to pass the blood-brain
barrier by classical intravenous injection [91], while they can reach the brain rapidly and
efficiently via intranasal administration [66]. Proteomic and RNAseq analysis revealed that
these exosomes are enriched in proteins and nucleic acids that promote neuroprotection and
neurogenesis, as well as reducing inflammation [66,92]. Indeed, ASC-derived exosomes
act in neurite remodeling and functional recovery after ischemic stroke [71] and TBI in
rats [81]. They even reversed memory loss in AD mouse models [66]. These effects are
similar to those induced by microglia-derived exosomes in recipient microglial cells [93];
accordingly, ASC- and BM-MSC-derived exosomes are mainly accumulated in microglia
and, to a lesser extent, in astrocytes and neurons [81,94]. This points toward a microglia-
mediated reduction of neuroinflammatory parameters, supported by studies that show
that ASC-EV provoke a decrease in pro-inflammatory markers, such as CD68, inducible
nitric oxide synthase (iNOS) and a variety of pro-inflammatory cytokines, and an increase
in arginase-1 expression, switching microglia toward a neuroprotective phenotype with a
more ramified cell shape [75,79,81].
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In summary, ASC-derived exosomes alter the morphological characteristics of mi-
croglia, reduce significantly their pro-inflammatory activation during brain injury, and,
consequently, decrease neuroinflammation to facilitate functional recovery. Therefore,
ASC-derived exosomes may represent a cell-free therapy whose effect is mediated via
communication with microglia, with a clear therapeutic potential for the treatment of a
variety of neuropathologies in the future.

7. Conclusions and Outlook

In March 2018, the European Medicines Agency (EMA) authorized the first ASC-based
therapy (called Alofisel, the only authorized medicament based on MSC so far) for the
treatment of a complication related to an immune disorder, such as Crohn’s disease, due
to the immunoregulatory and tissue-regenerative properties of these cells. This milestone
verified several facts. First, it was the proof of concept of clinical translation of the safety
and efficacy of ASC-based therapies found in preclinical models, and it opened the door
to translating their use to other medical-clinical conditions with dysregulated immune
responses and tissue damage, including various neuroinflammatory disorders. In this
sense, it is evident that the use of a cell-based medicament that consists of a factory of
several multi-modal immunomodulatory components, which might act synergistically, is
an advantage versus therapies that are directed against a single mediator. Second, this
authorization of the first ASC-based therapy confirmed the use of allogeneic ASC as a
preferential source of MSC for future therapies. The “immune-privileged” status of ASC
switched the previous syngeneic scenario of cell-based therapies, contingent on using
autologous cells, to an allogeneic scenario that allows an off-the-shelf therapy, which is
tremendously attractive for pharmaceutical companies and highly accessible for most health
systems. This strategy solves a critical clinical problem of cell-based therapies, such as the
necessity of isolating and expanding the MSC of the patient in good manufacturing practices
(GMP) conditions to obtain a sufficient number of cells for immediate administration.
Moreover, this aspect is especially important when treating patients with age-related
disorders, such as neurodegenerative diseases, because the age of the donors is a major
negative factor determining the lifespan and quality of MSC [95,96]. Especially in the
case of older patients suffering neurodegeneration, allogeneic MSC from healthy young
donors are clearly preferable to autologous MSC. Third, ASC show several advantages over
other traditionally used types of MSC, like BM-MSC, as adipose tissue is more accessible,
abundant and easier to obtain, e.g., by liposuction, than bone marrow. Further evidence
indicates that, in comparison to BM-MSC, ASC show reduced susceptibility to NK cell-
mediated lysis and perform improved immunomodulatory activities [97–99].

Future studies will also reveal if genetically modified MSC, secreting anti-inflammatory
factors, will be even more effective than non-modified MSC [100]. For example, ASC trans-
duced either with IL-4 [73] or the immunomodulatory neuropeptide vasoactive intestinal
peptide (VIP) [74] show a higher efficacy in ameliorating the disease symptoms of the EAE
mouse model for MS than non-modified ASC [73,74].

Finally, in our opinion, we will witness a significant growth of ASC-based therapies
(either ASC themselves, their secretome or EV) in the next decade. Neurodegenerative
disorders are very likely to benefit from this development, as ASC-based treatment of a
variety of these pathologies is currently being examined in clinical trials due to their clear
advantages, as stated above.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom12020219/s1, Video S1: Ramification of microglia upon administration of conditioned
medium from adipose tissue-derived mesenchymal stem cells (ASC-CM); Video S2: Lamellipodia
formation upon administration of conditioned medium from adipose tissue-derived mesenchymal
stem cells (ASC-CM). Supplementary File S3: Supplementary legends to Video S1 and Video S2.
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Abbreviations

ADNP activity-dependent neurotrophic protein
Aβ β-amyloid peptide
AD Alzheimer´s disease
AIS acute ischemic stroke
APP Alzheimer Aβ precursor protein
ASC adipose tissue-derived mesenchymal stem cells
ASC-CCM concentrated conditioned medium from ASC
ASC-CM conditioned medium from ASC
ASC-EV extracellular vesicles from ASC
BDNF brain-derived neurotrophic factor
BM-MSC bone marrow-derived MSC
CM conditioned medium
CMS chronic mild stress
CNS central nervous system
EAE experimental autoimmune encephalomyelitis
EMA European Medicines Agency
EV extracellular vesicles
FGF-2 fibroblast-growth factor-2
GCI global cerebral ischemia
GMP good manufacturing practices
HLA human leucocyte antigen
HO-1 heme oxygenase-1
IFN-γ interferon-γ
IL Interleukin
iNOS inducible nitric oxide synthase
LPS lipopolysaccharide
MS multiple sclerosis
MSC mesenchymal stem cells
mTBI mild traumatic brain injury
NK natural killer cells
NO nitric oxide
PD Parkinson´s disease
PS1 Presilin1
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PI3K phosphoinositol-3-kinase
PKB protein kinase B/Akt
PIP3 phophoinositol-3-phosphate
SCI spinal cord injury
SN substantia nigra
TBI traumatic brain injury
TH tyrosine hydroxylase
TMEV MS model of Theiler’s murine encephalomyelitis virus
TNF-α tumor necrosis factor-α
RhoGEF Rho guanine nucleotide exchange factor
VIP vasoactive intestinal peptide
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