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Abstract: Pseudomonas aeruginosa is a common, opportunistic bacterial pathogen among patients
with cystic fibrosis, asthma, and chronic obstructive pulmonary disease. During the course of these
diseases, L-ornithine, a non-proteinogenic amino acid, becomes more abundant. P. aeruginosa is
chemotactic towards other proteinogenic amino acids. Here, we evaluated the chemotaxis response
of P. aeruginosa towards L-ornithine. Our results show that L-ornithine serves as a chemoattractant
for several strains of P. aeruginosa, including clinical isolates, and that the chemoreceptors involved
in P. aeruginosa PAO1 are PctA and PctB. It seems likely that P. aeruginosa’s chemotactic response
to L-ornithine might be a common feature and thus could potentially contribute to pathogenesis
processes during colonization and infection scenarios.

Keywords: chemotaxis; L-ornithine; Pseudomonas aeruginosa; chemoreceptor

1. Introduction

Pseudomonas aeruginosa (Pa) is a widely occurring Gram-negative bacterial pathogen
which can cause a variety of opportunistic infections in humans worldwide [1–3]. For
example, Pa is the leading cause of nosocomial infections in immunocompromised, cystic
fibrosis (CF), cancer and burn patients [1,4–8]. Pa is known to be naturally resistant to many
antimicrobial agents making its eradication increasingly challenging [9].

The success of a bacterial infection relies, in part, on organism’s management of
and adaptation to the host environment. One mechanism utilized by some bacteria is an
ability to move towards or away from chemical gradients using their chemosensing and
motility apparatuses which may increase their access to desired substances or avoid hostile
environments [10,11]. Several studies have revealed that chemotaxis behaviors play an
important role in Pa infections [12,13]. Pa strain PAO1 (PAO1) and by analogy, other strains
of Pa, has 26 putative methyl-accepting chemotaxis proteins (MCPs) that feed into four
chemosensory pathways (Che, Che2, Chp, Wsp) [13]. The MCPs linked to chemosensing of
the 20 natural, proteinogenic L-amino acids, are PctA, PctB, and PctC [14,15].

Arginine is one of the most versatile amino acids in human body [16]. Arginine is
the precursor to L-ornithine, polyamines, proline, agmatine, and creatinine. Arginine
is converted to L-ornithine in the presence of arginase [16–18]. Heightened production
of arginase in persons with CF, asthma, chronic obstructive pulmonary disease (COPD),
pulmonary hypertension and idiopathic pulmonary fibrosis is thought to lead to the
presence of more L-ornithine in lung environment [19]. L-ornithine is also known to
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promote Pa biofilm formation in vitro [20]. We hypothesize that L-ornithine serves as a
chemoattractant to the opportunistic pathogen Pa.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

The strains used in this study are listed in Table 1 and Supplementary Table S1. PAO1
and the 24 MCP single mutants of PAO1 were obtained from Dr. Junichi Kato (Hiroshima
University, Japan). The clinical isolates of Pa from acute infections and one environmental
strain were kindly provided by Dr. Joseph D. Schwartzman and Dr. Michael Zegans (Geisel
School of Medicine, Dartmouth College). Prior to being used in chemotaxis assays, all
strains were incubated overnight at 37 ◦C in minimal salts medium (MSB) [21] supple-
mented with 0.5% (w/v) casamino acids (Amresco, Solon, OH, USA) and 27.5 mM glucose.

Table 1. Bacterial Strains and plasmids.

Strain or Plasmid Characteristics Reference or Source

Strains

Pseudomona aeruginosa PAO1 Prototroph, FP (sex factor minus) [22]

PCT2 PAO1 derivative, ∆pctC, ∆pctA, ∆orfl,
∆pctB::Km [14]

PCTA1 PAO1 derivative, ∆pctA::Kmr [23]
PCTB1 PAO1 derivative, ∆pctB::Kmr [14]
PCTC1 PAO1 derivative, ∆pctC::Kmr [14]

PCT2pMAI18-1(pctA) PAO1 derivative, ∆pctB, ∆pctC::Cbr This study
PCT2pMAI18-1(pctB) PAO1 derivative, ∆pctA, ∆pctC::Cbr This study
PCT2pMAI18-1(pctC) PAO1 derivative, ∆pctA, ∆pctB::Cbr This study

P. aeruginosa 577 Clinical isolate from peritoneal fluid PA8 §

P. aeruginosa 581 Clinical isolate from toe PA1 §

P. aeruginosa 590 Clinical isolate from leg PA2 §

P. aeruginosa 627 Clinical isolate from trachea PA42 §

P. aeruginosa 738 Clinical isolate from eye [24]
P. aeruginosa 595 Clinical isolate from throat PA6 §

P. aeruginosa 617 Clinical isolate from abdominal fluid PA36 §

P. aeruginosa MSH3 Environmental strain [25]

Plasmids

pUCP18 Broad-host-range cloning vector; Cbr [26]
pMAI18-1 pUCP18 with pctA(2.1 kb), Cbr [27]
pMAI18-2 pUCP18 with pctB2.1 kb); Cbr [27]
pMAI18-3 pUCP18 with pctC(2.1 kb), Cbr [27]

Km, kanamycin; Cb, carbenicillin. § Culture collections obtained from Dr. Schwartzman (Geisel School of
Medicine, Dartmouth).

2.2. DNA Manipulation and Electroporation

Standard procedures were followed for the manipulation of plasmid DNA as described
previously [28]. To generate PCT2 pMAI18-1(pctA), PCT2 pMAI18-1(pctB), and PCT2
pMAI18-1(pctC), PCT2 was transformed by electroporation [29] with the vector pMAI18-1
(carrying pctA), pMAI18-2 (carrying pctB), and pMAI18-3 (carrying pctC) [27], respectively.

2.3. L-ornithine Purity Analysis

We checked the purity of L-ornithine used for chemotaxis assays by LC/MS/MS
analysis (without chemical derivatization) on a Waters Quattro micro-mass spectrometer
coupled to Shimadzu high performance liquid chromatography (HPLC), as described
previously [30]. The purity analysis of L-ornithine with HPLC revealed that it has low
percentage (0.1%) of arginine contamination. Statistical analysis clearly shows that PAO1
chemotaxis response to L-ornithine is not the consequence of arginine contamination
(ANOVA test (p ≤ 0.05), p = 0.034).
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2.4. Chemotaxis Assays

Three L-ornithine, L-arginine, and casamino acids used for the study were obtained
from Amresco (Solon, OH, USA) at the highest purity commercially available. All the test
compounds for chemotaxis assays were prepared in chemotaxis buffer (CB) containing
50 mM sodium phosphate buffer (pH 7.0), 10 mM disodium EDTA and 0.05% (w/v) glycerol.

The qualitative capillary assays were carried out as described previously [31,32].
Briefly, bacterial cells were harvested in mid-exponential phase (OD660 0.3–0.4) by centrifu-
gation at 4600 revolutions per min (rpm) for 5 min and washed once with CB. Washed cells
were suspended in CB and diluted to OD660 0.1 and then placed in a chemotaxis chamber
formed by a coverslip and a glass U-tube. Microcapillaries (1 µL) were filled with 10 mM of
each test compounds in a gel of 2% (w/v) low-melting-temperature agarose (Nusieve GTG;
Lonza, Switzerland) in CB and inserted into the pool of bacterial cells. The amino acids
L-ornithine and L-arginine were tested at 0.001, 0.01, 0.1, 1 and 10 mM. In all experiments,
negative controls (CB) and positive controls (0.2%, w/v, casamino acids) were included. The
responses were visualized at 0 and 5 min via an Olympus IX73 inverted microscope with an
Olympus TH4-100 halogen illuminator and photographed using an Olympus DP73 CCD
camera with Olympus cellSens standard version 1.8 software. The dark-field illumination
was generated using a Ph2 ring in the long-working distance condenser NA 0.55 with a
UPlanFLN 4X NA. 0.13 objective. Images were processed (contrast and brightness) as well
as centered using Adobe Photoshop Lightroom. The data were normalized by subtracting
the response seen at 0 min from response seen at 5 min using the Matlab R2013a program
to obtain a heat map of bacterial chemotactic responses. Two independent replicates and
two technical repeats of assays were performed per test samples.

Quantitative capillary assays were carried out as described previously [31,33]. Briefly,
bacterial cells were harvested in mid-exponential phase (OD660 0.3–0.4) by centrifugation
(4600 rpm) for 5 min and washed once with CB. Cells were then resuspended and diluted
to an OD660 of 0.1. The capillary tubes consisted of 1µL disposable micropipettes with
one end sealed via flame and filled with the chemoattractant resuspended in CB. After
incubation in the pool of cells for 30 min at room temperature, the capillary was removed,
the exterior was rinsed with sterile chemotaxis buffer, and the contents of the capillaries
were transferred to tubes of CB via centrifugation (8000 rpm). Dilution in CB and then
plating allowed for determination of the number of colony forming units per capillary
(CFUs/capillary). The amino acids L-ornithine and L-arginine were tested at 0.001, 0.01,
0.1, 1 and 10 mM. In all experiments, negative controls (CB) and positive controls (0.2%,
w/v, casamino acids) were used. Data are represented as the mean ± SEM of at least
four independent experiments with two technical replicates each. The results have been
normalized with CB.

3. Results
3.1. PAO1 Chemotaxis towards L-ornithine

We evaluated the chemotaxis potential of PAO1 and L-ornithine using standard qual-
itative (Figure 1a) and quantitative (Figure 1b) capillary chemotaxis assays. PAO1 cells
formed clearly visible clouds of turbidity because of their accumulation around the open end
of capillaries containing 0.1, 1 and 10 mM ornithine (Figure 1a and Supplementary Figure S1).
The observations were further confirmed by quantitative assays carried out in the same
range of ornithine concentrations (Figure 1b). We observed the maximum chemotaxis re-
sponse at 1 mM concentration. The chemotaxis response of PAO1 to arginine was included
for direct comparison (Figure 1b).
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Figure 1. Capillary chemotaxis assays of PAO1 towards different L-ornithine concentrations.
(a) Dark-field images of cells gathered at the mouth of capillaries containing attractants. All pho-
tographs were taken after 5 min. A normalization of the response visualized at 5 min with respect to
the time 0 min for each treatment is represented with a jet Colormap (MATLAB R2013b version 8.2)
in Supplementary Figure S1. (b) Quantitative chemotaxis response of PAO1 towards different
L-ornithine and L-arginine concentrations. Results are averages of at least 12 capillaries from five
independent experiments; the results have been normalized with CB as the negative control; error
bars indicate standard errors, * p < 0.05 (by Tukey’s test).

3.2. L-ornithine Chemotaxis Is Mediated by PctA and PctB Receptors in PAO1

Chemotaxis receptors PctA, PctB, and PctC mediate chemotaxis towards proteinogenic
amino acids, some non-proteinogenic amino acids, and some intermediates of amino acids
metabolism for PAO1 [14,15]. L-ornithine is a non-proteinogenic amino acid derived from
metabolism of arginine, thus, we hypothesized that it might serve as an attractant for PAO1,
mediated by some or all of these three receptors. In order to identify the chemoreceptors in-
volved in L-ornithine chemotaxis, we screened mutants in the presence of 1mM L-ornithine
in which single chemoreceptor genes (pctA, pctB, pctC), and all three chemoreceptor genes
(triple mutant with all three pctA, pctB, and pctC) had been deleted (Table 1). The PctABC
triple mutant (PCT2) almost completely abolished chemoattraction towards L-ornithine
compared to the wild-type strain (Figure 2). The single mutant strains PctA and PctB
also showed strongly reduced chemoattraction to L-ornithine (Figure 2), indicating the
involvement of both chemoreceptors in L-ornithine chemotaxis for PAO1. The chemore-
ceptors PctA, PctB, and PctC were reconstituted in the PctABC triple mutant strain to
effectively generate double knockout mutants PctBC, PctAC, and PctAB, respectively. The
quantitative capillary assays of PctAC and PctBC mutant strains to L-ornithine resulted
in significant chemotaxis, whereas PctAB abolished chemotaxis (Figure 2). This confirms
that mutation in both PctA and PctB receptors are necessary to completely abolish chemo-
taxis of PAO1 towards L-ornithine. Additionally, to rule out the involvement of other
receptors, we performed qualitative capillary assays with other 21 MCP single mutants
(Supplementary Table S1). All MCP mutants showed chemotaxis response to L-ornithine
at 1 mM (Supplementary Figure S2), suggesting that these receptors are not involved in
L-ornithine chemotaxis.
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Figure 2. Capillary chemotaxis assays of wild-type PAO1, its mutant PAO1 ∆pctA (PctA), PAO1 ∆pctB
(PctB), PAO1 ∆pctC (PctC), PAO1 ∆pctABC (PctABC), PAO1 ∆pctAB (PctAB), PAO1 ∆pctAC (PctAC)
and PAO1 ∆pctBC (PctBC) towards 1 mM L-ornithine. (a) Dark-field images of cells gathered at the
mouth of capillaries containing attractants. All photographs were taken after 5 min. A normalization
of the response visualized at 5 min with respect to the time 0 min for each treatment is represented
with a jet Colormap (MATLAB R2013b version 8.2) in Supplementary Figure S3. Chemotaxis buffer
(CB) and casamino acids (CA) were used as negative and positive control, respectively. (b) Quantita-
tive comparison of L-ornithine chemotaxis response between the wild-type strain and its mutants
indicated by Dunn’s test (* p < 0.05). The graph shows CFU in capillaries normalized by the negative
control (CB). Results are averages of at least four independent experiments; error bars indicate
standard errors.

3.3. Diverse Pa Isolates Are Attracted to L-ornithine

To evaluate if this phenomenon of L-ornithine chemotaxis might be generalizable
to other Pa strains, we conducted qualitative chemotaxis assays on diverse eight, motile
Pa strains (seven clinical isolates and one environmental strain) (Table 1). These clinical
strains were isolated from patients with acute peritoneal fluid, toe, leg, trachea, eye, ab-
dominal fluid and throat infections. Three strains, originating from peritoneal fluid, toe
and abdominal fluid infections, exhibited putative chemotaxis to L-ornithine (Figure 3).
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Figure 3. Qualitative capillary chemotaxis assays comparing responses of PAO1 and other P. aerugi-
nosa strains (seven clinical isolates and one environmental strain) to 1 mM L-ornithine. Dark-field
images of cells gathered at the mouth of capillaries containing attractants. All photographs were taken
after 5 min. A normalization of the response visualized at 5 min with respect to the time 0 min for
each treatment is represented with a jet Colormap (MATLAB R2013b version 8.2) in Supplementary
Figure S4.

4. Discussion

The chemoreceptors PctA, PctB, and PctC are known to mediate PAO1 chemotaxis
towards 20 naturally occurring amino acids [14,23]. PctA, PctB and PctC have individual
specificities for L-amino acids in spite of their highly similar periplasmic domain. PctA
detects 18 out of 20 naturally occurring L-amino acids, while PctB and PctC respond to
seven and two naturally occurring L-amino acids, respectively [14]. PctC also responds
to the non-proteinogenic amino acid gamma-aminobutyric acid [15]. Plants and animals
have several other chemically diverse, reasonably abundant, and physiologically important
non-proteinogenic amino acids and intermediates of amino acid metabolism, which are
good candidates for chemotaxis evaluation, especially in the context of potential influences
on bacterial pathogenesis.

Herein, we demonstrated that PAO1 is attracted to L-ornithine in the concentration
range of 0.01 to 10 mM (Figure 1), which is similar to other amino acids [14,34], and which is
specifically slightly lower in response compared to arginine (Tukey’s honest significant dif-
ference test (p ≤ 0.05) at concentrations of 10 mM, p = 0.003). Previous studies have shown
that paralogous chemoreceptors of a particular bacterial strain can mediate chemotaxis to
the same ligand. For instance, P. putida KT2440 strains, McpS and McpQ chemoreceptors,
respond to citrate [35,36], and PctA and PctB of Pa for proteinogenic amino acids [14,15].
Here, we found that paralogous receptors PctA and PctB are responsible for the chemoat-
traction response of PAO1 to L-ornithine and possibly, by extension, to the other Pa isolates
showing chemoattraction evaluated in this study. Arginine, a precursor proteinogenic
amino acid for L-ornithine production, also uses the PctA and PctB receptors [14].

Previous studies suggest that Pct chemoreceptors are associated with Pa virulence. For
example, PctB-mediated chemotaxis to glutamine [14,15], the most abundant amino acid
in human cells [37], potentially relates to virulence, and this receptor might be especially
valuable for efficient host colonization by Pa [38]. In addition, a PctABC triple mutant
was reported to be less efficient in colonizing wounds of human CF airway epithelial
cells [39]. Furthermore, PctA and PctB protein levels are downregulated in Pa isolated
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from the sputum of patients with CF [40]. Therefore, taken together, our work adds to
the growing suggestion that amino acid chemotaxis is likely primarily important for the
initial stages of bacterial attachment and infection in humans and animals, where amino
acid concentrations, including L-ornithine [41], in sputum or lung are high, especially in
patients with CF [42]. Further studies are required to evaluate precise and specific roles of
amino acid chemotaxis on the fate and activity of Pa in human and animal infections.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms10020264/s1; Figure S1. Normalized jet Colormap of qualitative capillary
chemotaxis responses of wild-type PAO1 towards different concentrations of ornithine (mM). A
normalization of the response visualized at 5 min respect to the time 0 min for each treatment is
represented with a jet Colormap (MATLAB R2013b version 8.2). Figure S2. Qualitative capillary
chemotaxis assays of 21 MCP mutants of PAO1 towards ornithine (1 mM). Dark-field images of
cells gathered at the mouth of capillaries containing ornithine (first, third and fifth columns). All
photographs were taken after 5 min. A normalization of the response visualized at 5 min with respect
to the time 0 min for each treatment is represented with a jet Colormap (MATLAB R2013b version 8.2)
(second, fourth and sixth column). Figure S3. Normalized jet Colormap of qualitative capillary
chemotaxis responses of wild-type PAO1, its mutant P. aeruginosa PAO1 ∆pctA (PctA), PAO1 ∆pctB
(PctB), PAO1 ∆pctC (PctC), PAO1 ∆pctABC (PctABC), PAO1 ∆pctAB (PctAB), PAO1 ∆pctAC (PctAC)
and PAO1 ∆pctBC (PctBC) towards 1 mM L-ornithine. A normalization of the response visualized at
5 min with respect to the time 0 min for each treatment is representing with a jet Colormap (MATLAB
R2013b version 8.2). Chemotaxis buffer (CB) and casamino acids (CA) were used as negative and
positive control, respectively. Figure S4. Normalized jet Colormap of qualitative capillary chemotaxis
responses of PAO1 and other Pa strains (seven clinical isolates and one environmental strain) to
1 mM L-ornithine. A normalization of the response visualized at 5 min with respect to the time
0 min for each treatment is represented with a jet Colormap (MATLAB R2013b version 8.2). Table S1.
P. aeruginosa PAO1 strain and MCP single mutants of PAO1.
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