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Abstract: Multidrug-resistant Gram-negative bacteria (MDR-GNB) are microorganisms that have
acquired resistance to extended-spectrum antibacterials and constitute an emerging threat to public
health. Although carriers are an important source of transmission in healthcare settings, data about
risk factors for MDR-GNB carriage are limited. Therefore, we aimed to identify risk factors for
MDR-GNB carriage upon intensive care unit (ICU) admission and to optimise screening strategies.
We conducted a case–control study. Admissions of adult patients to the ICU of a 1000-bed hospital
during a year were included. We collected sociodemographic, clinical and microbiological data and
performed a multivariate logistic regression model. A total of 1342 patients resulted in 1476 episodes
of ICU admission, 91 (6.2%) of whom harboured MDR-GNB (38.5% women; median age 63.9 years).
The most frequently isolated pathogens were Escherichia coli (57%) and Klebsiella pneumoniae (16%).
The most frequent resistance mechanism was production of extended-spectrum beta lactamases.
MDR-GNB carriage was associated to liver cirrhosis (OR 6.54, 95% CI 2.17–19.17), previous MDR-
GNB carriage (OR 5.34, 1.55–16.60), digestive surgery (OR 2.83, 1.29–5.89) and length of hospital
stay (OR 1.01 per day, 1.00–1.03). Several risk factors for MDR-GNB carriage upon admission to a
high-risk setting were identified; the main comorbidity was liver cirrhosis.

Keywords: antibacterial drug resistance; critical care; infection control; risk factors; gram negative
bacteria; epidemiology

1. Introduction

Multidrug-resistant Gram-negative bacteria (MDR-GNB) are microorganisms that
have acquired, through a variety of mechanisms, resistance to extended-spectrum antibacte-
rials, for instance third-generation cephalosporins, fluoroquinolones and carbapenems [1].
The gut microbiota is the main reservoir of MDR-GNB, which can act as opportunistic
pathogens in patients at risk. The term healthcare-associated infections (HAIs) refers to
infections where healthcare settings are the source of transmission; among them, HAIs in
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critically ill patients are of particular concern. Colonisation by these bacteria in asymp-
tomatic carriers is considered a potential source of cross-transmission between patients.
Furthermore, being colonised substantially increases the risk of MDR-GNB infections,
characterised by poor outcomes due to treatment failure: increased morbimortality and
hospital length of stay, as well as higher health care costs [2].

The frequency of HAIs caused by MDR-GNB has increased dramatically [3] and
constitutes an emerging threat to public health worldwide [4]. In the European context,
MDR-Klebsiella pneumoniae, MDR-Acinetobacter baumannii and MDR-Escherichia coli have
been described as the main emerging MDR-GNB: in 2019, more than half of the E. coli
isolates and more than a third of the K. pneumoniae isolates were resistant to at least one
antimicrobial group under surveillance. Multidrug resistance is not homogeneous in the
region, with countries in Southern and Eastern Europe showing higher percentages of
resistant bacteria [5].

An essential preventive measure included in several clinical practice guidelines is
the systematic screening of patients at risk, which allows for the early identification of
carriers [6]. Several European countries are already implementing this strategy, although it
is still under review because risk factors, along with the relevance of each of them, are not
well characterised. Disparities exist between organisations such as the European Centre for
Disease Prevention and Control [7], the Society for Healthcare Epidemiology of America [8]
and the Spanish Ministry of Health (“Zero Resistance” program, leaded by the Spanish
Society of Intensive Care) [9]. The scientific literature suggests that advanced age, disability,
certain comorbidities, previous antibacterial therapy, cancer chemotherapy, previous gas-
trointestinal surgery, history of stay in healthcare settings or long-term care facilities and
previous detection of MDR-GNB, would increase the risk of colonisation [10,11]; nonethe-
less, evidence remains scarce. As a control measure resulting from a long-lasting outbreak
of KPC-3-producing Klebsiella pneumoniae (ST512) at our hospital from 2012 to 2015 [12], it
was decided to collect a screening rectal swab from every patient upon intensive care unit
(ICU) admission to prevent the nosocomial spread of MDR-GNB.

This study targets two hurdles: limited data about the frequency and risk factors for
carriage of MDR-GNB and suboptimal use of resources due to routine screening to all
patients (high costs, poor compliance with infection prevention and control measures and
unnecessary workload for laboratory staff).

Our main objective was to identify risk factors for MDR-GNB carriage to better target
the screening strategy upon ICU admission for patients at risk. We also describe the
prevalence of MDR-GNB carriage and the pathogens involved.

The study hypothesis was that previous antibacterial therapy and history of stay in health-
care settings or long-term care facilities are associated with a higher risk of carrying MDR-GNB.

2. Materials and Methods
2.1. Study Design

A non-matched, hospital-based, case-control study was conducted to investigate
which factors were associated with an increased risk of MDR-GNB carriage upon ICU
admission. Cases were defined as episodes of admission to the ICU in which patients had
a positive result to any of the MDR-GNB screened upon admission in the ICU. Prevalent
cases, which were excluded from the analysis to avoid Neyman bias, were defined as
cases with detection (in any clinical or screening sample) of carbapenemase-producing
GNB in the previous 24 months, or MDR-GNB other than carbapenemase-producing in
the previous 12 months. This definition follows criteria from national and international
organisations [7,13], adapted to regional guidelines. Controls were defined as episodes of
admission to the ICU for patients showing detection of non-MDR GNB, or a negative result
in such screening.
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2.2. Study Population

The study population was all critically ill patients admitted to the adult ICU of Reina
Sofía University Hospital, a tertiary 1000-bed hospital, during the study period. The adult
ICU has 42 beds, six modules (coronary and cardiothoracic, transplantation, neurotrauma
and 3 medical intensive modules) and has an average of 1500 admissions per year. The
main MDR-GNB causing HAIs in the ICU over the past years have been Escherichia coli,
Enterobacter cloacae, Pseudomonas aeruginosa and Klebsiella sp. (notably K. pneumoniae).
Extended spectrum betalactamases (ESBL) are, by far, the most frequent mechanism of
resistance, but carbapenem-resistant Enterobacterales (CRE) are on the rise.

Eligibility criteria and study period. All adult patients (aged ≥16 years) admitted to
the ICU from 1 November 2018 to 31 October 2019 were eligible.

Variables. The independent variables were: (a) sociodemographic: age, sex and stay
in congregate settings (e.g., nursing homes and prisons); (b) clinical: APACHE II score,
referring ward, previous carriage of MDR-GNB, chronic comorbidities (cystic fibrosis,
bronchiectasis, COPD, chronic ulcers, liver cirrhosis, immunodeficiency, cancer, neutrope-
nia, type 1 diabetes mellitus and type 2 diabetes mellitus), previous antibacterial therapy
(defined by at least seven days in the last month), gastrointestinal surgery in the last year,
gastrointestinal endoscopy in the last year, history of previous transplantation (type), cancer
chemotherapy, dialysis, presence of open wounds, biliary drainage, number and length of
hospital admissions in the last 12 months (including the actual hospital admission prior to
ICU admission), hospital admission date and ICU admission date; and (c) microbiological:
microorganism(s) isolated and mechanism(s) of antimicrobial resistance. The dependent
variable was the result of the MDR-GNB screening. Variables included were qualitative,
with the exception of age, APACHE II score, number and length of hospital admissions,
which were quantitative.

This study was devised following the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) recommendations [14] (see Supplementary Table S3).

2.3. Data Collection

Patient information was obtained through direct interview with the patient or the
responsible physician and from the patient’s clinical records. Rectal swab specimens were
collected in all study participants within the first 24 h of ICU admission to assess bacterial
colonisation. Swabs collected were placed in sterile round bottom tubes containing 1 mL
sterile Copan transport medium and immediately transferred to the Clinical Microbiology
Laboratory for analysis. Details on the analysis can be found in Supplementary Text S1.

We considered MDR-GNB as that with mechanisms of resistance requiring contact
precautions for infection control and followed international expert criteria [15] adapted
to regional guidelines; essentially, genotypic detection of relevant beta-lactamases (ESBL
production or ampC derepression) or any carbapenemases (Ambler classes A, B or D). The
exceptions to this rule (MDR P. aeruginosa, A. baumannii and S. maltophilia) can be consulted
elsewhere [16].

2.4. Statistical Analysis

In the descriptive analysis, qualitative variables were expressed as absolute numbers
and their relative frequencies, whereas quantitative variables, tested for normal distribution
by the Shapiro–Wilk test, were expressed as mean and standard deviation (SD) if normally
distributed, or as median and interquartile range (IQR) if not. In the bivariate analysis, Pearson’s
chi-square was used to compare categorical variables, Student’s T-test was used for mean
comparison in quantitative variables and Wald’s test was used to obtain crude (non-adjusted)
estimators for quantitative variables. Non-parametric tests were used when appropriate.

We performed a backward, conditional, 10-fold cross-validated stepwise multivariate
logistic regression model to preselect predictive variables. Overall goodness of fit was
analysed by Akiake’s Information Criteria (AIC). These preselected variables, along with
those associated with MDR-GNB in the bivariate analysis with a p-value <0.30, as well as key
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sociodemographic variables, were included in a backward, multivariate logistic regression
model. Collinearity of the model was measured by the variance inflation factors, setting
the threshold of non-collinearity at <2.5. Linear relation between quantitative independent
variables and the dependent variable was examined by the added-variable plot. Calibration
of the model was assessed by Hosmer–Lemeshow test. Discrimination of the model was
assessed by receiver-operator curve (ROC) characteristics with 95% confidence interval
(CI). Significance of the regression coefficients was assessed by Wald’s test.

First, we built an explanatory model maximising accuracy to achieve the primary
objective. Then, we prioritszed sensitivity, by lowering the threshold for positivity from
0.5 to 0.05, in a pragmatic approach to achieve the secondary objectives. Finally, we com-
pared the performance of both models, through sensitivity, specificity, negative predictive
value (NPV), positive predictive value (PPV) and accuracy for different breakpoints.

All statistical tests were two-sided, and variables with a p-value of 0.05 or less were
considered significant. The analyses were performed using R software version 4.0.3 (R
Foundation for Statistical Computing, Vienna, Austria).

3. Results

From 1 November 2018 to 31 October 2019, there were 1342 patients admitted to the
ICU, resulting in 1487 episodes of ICU admission. Of these 1487 episodes, 102 (6.86%) were
identified as cases, of which 91 (89.22%) were incident cases. Only 11 subjects were classified
as prevalent cases and consequently excluded from the analysis; the characteristics of these
patients are reported in Supplementary Table S1. Among the 1385 (93.14%) controls, nine
showed a positive result to non-MDR GNB and the rest had a negative result (Figure 1) .
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3.1. Univariate and Bivariate Analysis

Of the 1476 cases (91) and controls (1385) finally included, 491 were female (33.27%)
and the median age was 63 years. Baseline characteristics are shown in Table 1. Cases and
controls were similar in terms of age, severity and most comorbidities. Significant differences
were observed between both groups. Previous MDR-GNB carriage, previous antibacterial
therapy, liver cirrhosis, previous gastrointestinal endoscopy, digestive surgery in the last year
and prolonged length of hospital stay in the last year were more frequent in cases.



Int. J. Environ. Res. Public Health 2022, 19, 1039 5 of 13

Table 1. Baseline characteristics of cases and controls upon ICU admission.

Characteristic Cases n = 91 (6.2%) Controls n = 1385
(93.8%) p Value

Age (years), median (IQR) 63.87 (52.94, 74.10) 63.16 (52.60, 73.14) 0.933 1

Sex
0.331 2Female 35 (38.5%) 456 (32.9%)

Male 56 (61.5%) 929 (67.1%)
Stay in congregate settings 0 7 (0.5%)

1 3Nursing home 0 4 (0.3%)
Prison 0 2 (0.1%)
Other 0 1 (0.1%)

Referring ward

<0.001 *4

Cardiology 24 (26.4%) 361 (26.1%)
Cardiovascular surgery 9 (9.9%) 283 (20.4%)

General & Digestive surgery 7 (7.7%) 35 (2.5%)
Emergency Department 19 (20.9%) 394 (28.4%)

Hepatology 12 (13.2%) 63 (4.5%)
Pulmonology 4 (4.4%) 69 (5.0%)

Other 16 (17.6%) 180 (13.0%)
APACHE classification system

0.119 4Medical 73 (80.2%) 977 (70.5%)
Non-emergency surgical 13 (14.3%) 261 (18.8%)

Emergency surgical 5 (5.5%) 147 (10.6%)
Previous hospital admissions 44 (48.4%) 609 (44.0%) 0.480 2

Previous hospital admissions (number), median (IQR) 1 (1, 2) 1 (1, 2) 0.311 1

Length of hospital stay in the last year (days), median (IQR) 5 (0, 16.50) 2 (0, 7) 0.001 *1

Previous MDR-GNB carriage 6 (6.6%) 13 (0.9%) 0.001 *3

Cancer chemotherapy 2 (2.2%) 46 (3.3%) 0.844 3

Dialysis 1 (1.1%) 18 (1.3%) 1 3

Previous antibacterial therapy 15 (16.5%) 57 (4.1%) <0.001 *3

Previous therapy with third-, fourth- or fifth-generation cephalosporins 2 (2.2%) 10 (0.7%) 0.332 3

Previous therapy with carbapenems 2 (2.2%) 6 (0.4%) 0.165 3

Cystic fibrosis 0 15 (1.1%) 0.766 3

Bronchiectasis 1 (1.1%) 18 (1.3%) 1 3

COPD 9 (9.9%) 109 (7.9%) 0.625 2

Chronic ulcers 0 0 -
Liver cirrhosis 8 (8.8%) 46 (3.3%) 0.030 *3

Immunodeficiency 1 (1.1%) 12 (0.9%) 1 3

Cancer 12 (13.2%) 131 (9.5%) 0.326 2

Neutropenia 6 (6.6%) 35 (2.5%) 0.073 3

Type 1 diabetes 2 (2.2%) 20 (1.4) 0.796 3

Type 2 diabetes 21 (23.1%) 322 (23.2%) 0.928 2

Pressure ulcers 1 (1.1%) 10 (0.7%) 1 3

Digestive surgery in the last year 15 (16.5%) 50 (3.6%) <0.001 *3

Previous gastrointestinal endoscopy 11 (12.1%) 54 (3.9%)
0.001 *4Upper 7 (7.7%) 26 (1.9%)

Lower 4 (4.4%) 29 (2.1%)
APACHE II score (points), mean (SD) 17.76 (9.57) 18.41 (7.51) 0.528 5

Solid organ transplantation 10 (11.0%) 123 (8.9%) 0.623 2

Hematopoietic stem cell transplantation 0 4 (0.3%) 1 3

Biliary drainage 1 (1.1%) 1 (0.1%) 0.239 3

APACHE: Acute Physiology and Chronic Health Evaluation, COPD: chronic obstructive pulmonary disease,
IQR: interquartile range, MDR-GNB: multidrug-resistant Gram-negative bacteria, SD: standard deviation.
* p-value < 0.05 of Mann–Whitney U test 1, Pearson’s chi-square test 2, Fisher’s exact test 3, ANOVA’s test 4

or Student’s t-test 5, when appropriate.

Regarding the referring ward, cases were more frequently referred from hepatology,
general and digestive surgery, whereas controls came more frequently from cardiovas-
cular surgery and the emergency department. We show previous antibacterial therapy
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administered to cases and controls in Supplementary Table S2. Additionally, female sex,
cancer, neutropenia and solid organ transplantation were also more common among cases;
however, these differences did not reach statistical significance.

Pathogens identified among cases are displayed in Table 2. The GNB most frequently
isolated were Escherichia coli (n = 58, 57%) and Klebsiella pneumoniae (n = 16, 16%), fol-
lowed by Citrobacter freundii and Klebsiella aerogenes. In terms of antimicrobial resistance
mechanisms, ESBL-producing E. coli and other ESBL-producers were the most common
(n = 77, 76%) MDR-GNB, followed by derepressed ampC-producers (15, 15%. Other mech-
anisms such as carbapenemase production (n = 7, 7%, with KPC-producing K. pneumoniae
accounting for almost half of this group) were unusual.

Table 2. MDR-GNB identified in screening upon ICU admission.

MDR-GNB Mechanism(s) of Resistance n % (Same Species) % (Overall)

Escherichia coli

ESBL production 56 96.6 55.4

IMP production 1 1.7 1.0

OXA-48 production 1 1.7 1.0

Klebsiella
pneumoniae

ESBL production 13 81.3 12.9

IMP production 1 6.3 1.0

KPC production 1 6.3 1.0

OXA-48 production 1 6.3 1.0

Klebsiella
aerogenes

AmpC derepression 4 80 4.0

ESBL production 1 20 1.0

Klebsiella oxytoca ESBL production 4 100 4.0

Citrobacter
freundii AmpC derepression 7 100 6.9

Enterobacter
cloacae

AmpC derepression 4 66.7 4.0

ESBL production 1 16.7 1.0

OXA-48 production 1 16.7 1.0

Proteus mirabilis

ESBL production 2 66.7 2.0

OXA-48 production 1 33.3 1.0

Pseudomonas
aeruginosa Other * 2 100 2.0

Total - 101 - 100
ESBL: extended spectrum beta lactamases, MDR-GNB: multidrug-resistant Gram-negative bacteria. * According
to international criteria adapted to regional guidelines, as defined previously.

3.2. Multivariate Analysis

Multivariate analysis (Table 3) showed that liver cirrhosis (OR 6.54, 95% CI 2.17–19.17,
p < 0.01), previous MDR-GNB carriage (OR 5.34, 95% CI 1.55–16.60, p < 0.01), digestive
surgery in the last year (OR 2.83, 95% CI 1.29–5.89, p < 0.01) and length of hospital stay in the
last year (OR 1.01 per each additional day, 95% CI 1.00–1.03, p 0.03) were independent risk
factors for MDR-GNB carriage upon ICU admission. Our data also suggest that previous
gastrointestinal endoscopy, patients classified as non-emergency surgical and medical by
the APACHE system, as well as previous antibacterial therapy may confer a higher risk
of MDR-GNB carriage, while cancer chemotherapy might be associated with a lower risk.
Overall, the model showed a good calibration, (p > 0.05 in the Hosmer–Lemeshow test),
and collinearity was low (variance inflation factors <2 for all included variables).
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Table 3. Risk factors for MDR-GNB carriage upon ICU admission.

Risk Factor Crude OR Adjusted OR
(95% CI) p Value

Liver cirrhosis 2.81 6.54 (2.17–19.17) <0.001 *1

Previous MDR-GNB carriage 7.45 5.34 (1.55–16.60) 0.005 *1

Digestive surgery in the last year 5.27 2.83 (1.29–5.89) 0.007 *1

Length of hospital stay in the last year
(days) 1.02 1.01 (1.00–1.03) 0.026 *1

Previous gastrointestinal endoscopy 3.63 1.98 (0.92–4.01) 0.067 1

APACHE classification system

0.098 2
Emergency surgical (reference) 1 1

Non-emergency surgical 1.46 4.10 (1.20–16.71)

Medical 2.20 5.17 (1.76–19.04)

Cancer chemotherapy 0.65 0.27 (0.04–1.07) 0.113 1

Previous antibacterial therapy 4.60 1.89 (0.83–4.05) 0.114 1

Sex (female) 1.27 1.32 (0.83–2.08) 0.234 1

Age (years) 1.00 1.00 (0.98–1.01) 0.833 1

APACHE: Acute Physiology and Chronic Health Evaluation, MDR-GNB: multidrug-resistant Gram-negative
bacteria, OR: odds ratio. * p-value < 0.05 of Wald’s test 1 or ANOVA’s test 2, when appropriate.

The ROC curve (Figure 2) could correctly discriminate up to 70% of cases and controls,
with an area under the curve of 0.70 (95% CI 0.63–0.76). In an explanatory model with
a breakpoint of 0.50 and prioritising accuracy: accuracy (94.0%), specificity (99.9%) and
negative predictive value (94.1%) were high, while positive predictive value was acceptable
(71.4%) but sensitivity was very low (5.5%). In a pragmatic model with a breakpoint of
0.05 and prioritising sensitivity, we achieved a 10-fold increase in sensitivity (62.6%) and
a negative predictive value of 96.2%, with a decrease in specificity (62.4%) and a positive
predictive value (9.9%). Despite testing additional cut-off points for the pragmatic model,
there was no optimal breakpoint for positive and negative predictive values, due to low
sensitivity and a pre-test prevalence of roughly 6.2%.
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In our study, 7% of screening cultures upon ICU admission were positive for MDR-
GNB, mainly ESBL-producing E. coli and K. pneumoniae. These findings are consistent
across studies of critically ill patients, although the frequency of rectal carriage of MDR
bacteria reported in other ICUs is somewhat higher, with rates over 10% [10].

Our study has identified several risk factors independently associated with MDR-
GNB carriage upon ICU admission. Interestingly, among them only one comorbidity
showed a strong association–liver cirrhosis. Previous studies carried out in Spain have
reported liver cirrhosis as a risk factor for MDR colonisation in critically ill patients [17];
in decompensated cirrhosis, norfloxacin prophylaxis and ascites may be the main factors
related to colonisation upon admission and follow-up, respectively [18].

Liver cirrhosis can lead to carriage of MDR-bacteria through a plethora of immuno-
logical mechanisms grouped under the term, cirrhosis-associated immune dysfunction.
The initial systemic inflammation, responsible for fibrosis and complications, such as
portal hypertension, gradually switches to an immunodeficient state, characterised by
exposure to gut microbial products that chronically stimulate innate immune cells, im-
pairing their antimicrobial function in advanced disease [19]. However, other well-known
conditions causing a higher risk of infection, as primary immunodeficiencies, solid organ
and hematopoietic stem cell transplantation, end-stage renal disease requiring dialysis, and
neutropenia were not identified as risk factors. In fact, we found that cancer chemotherapy
might be linked to a lower risk but there is a potential of selection bias, since a proportion
of patients undergoing cancer chemotherapy are less likely to be admitted to the ICU [20].
Besides immunological mechanisms, liver cirrhosis can promote bacterial infection via
microbiome alterations and intestinal barrier dysfunctions [21].

Digestive disorders other than liver cirrhosis play a role, at least indirectly, in the
carriage of MDR-GNB: digestive surgery in the last year was an independent risk factor,
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and previous gastrointestinal endoscopy, associated with a two-fold risk of carriage, was
barely below the level of significance (p = 0.067). Surgery in the last year increases the
risk of carriage with ESBL-producing bacteria in the ICU and upon hospital admission,
and recent surgery that of KPC-producing K. pneumoniae carriage [22]. With regard to
gastrointestinal endoscopy, a systematic review identified five outbreaks of carbapenem-
resistant Enterobacterales (CRE) associated with duodenal endoscopy, one of which took
place in a medical ICU [23], and upper gastrointestinal endoscopy has also been reported
as a risk factor for CRE colonisation at ICU admission [24].

Prior stay in healthcare settings is a risk factor for acquisition of MDR-GNB [7]. Our
study shows this relationship is dose-dependent: length of hospital stay in the last year
was associated with MDR-GNB carriage upon ICU admission, increasing the risk by
1% per day of previous hospital stay. Similar results have been found for the risk of
fecal carriage of MDR E. coli and MDR K. pneumoniae [25], and for the risk of infection by
carbapenem-resistant GNB [26], particularly in critically ill patients [27].

Previous MDR-GNB carriage was an independent risk factor too, despite exclusion of
prevalent cases. This finding, albeit expected, is concerning, since most MDR-GNB isolated
upon ICU admission were ESBL producers, and long duration of carriage (>12 months)
is usually reported for CRE [28–30]. Since 2018, hospitals in Andalusia, Spain, have sub-
stantially improved early assessment of previous MDR-GNB carriage and implementation
of IPC measures after introducing HAM (Health Alert Monitoring). HAM [16] is an auto-
mated system that gives an alert at hospital admission for every patient with a history of
prior detection of MDR bacteria (as a matter of fact, the experience has been so successful
that HAM is also being used for SARS-CoV-2).

Misuse and overuse of antimicrobial agents is a key factor driving multidrug resis-
tance [31]. Even though a higher rate of MDR-GNB carriage was observed in patients
receiving previous antibacterial therapy, our data could not confirm this association. We
used strict criteria in terms of extent of antibacterial exposure and resistance outcome,
which are crucial for the epidemiological interpretation of resistance studies [32] and could
explain the absence of statistical significance. For instance, patients who received antibacte-
rial therapy during less than 7 days in the month prior to ICU admission were classified as
not exposed, and carriers of S. maltophilia resistant to quinolones and colistin but susceptible
to trimethoprim–sulfamethoxazole were classified as controls.

Certain settings, especially nursing homes, increase the risk of acquiring MDR-
GNB [33]. Nevertheless, such association was not found in our study, since the proportion
of patients with a history of stay in congregate settings was below 1%. A possible explana-
tion is that patients from long-term care facilities, because of advanced age and dependence
in activities of daily living, are less likely to benefit from critical care.

Unfortunately, it was not possible to develop a risk score for MDR-GNB carriage
upon ICU admission. The pragmatic model yielded a sensitivity of 62.6% and a positive
predictive value of 9.9%, which we deem insufficient for an adequate detection of carriers
because underdiagnosis increases the likelihood of outbreaks by MDR-GNB. Remarkably,
similar barriers for prediction have been reported for MDR bacteria colonisation or infection
at ICU admission [34] and, more recently, for carriage at hospital admission [35], suggesting
that many of the risk factors for MDR-GNB carriage are yet to be discovered.

Until such uncertainties are addressed, infection prevention and control measures
are essential to reduce the spread of MDR-GNB. These include, but are not limited
to: (a) compliance with standard and contact precautions [36,37] (i.e., hand hygiene
and appropriate use of gloves and gowns); (b) active microbiological surveillance [38];
(c) reduction in device use to prevent catheter–associated infection and ventilator–associated
pneumonia [39]; (d) adequate cleaning and disinfection of environmental surfaces [40] and
reusable devices [41], especially duodenoscopes [42]; (e) antimicrobial stewardship, with
particular emphasis on surgical antimicrobial prophylaxis [43]; and (f) selective digestive
decontamination [44], with promising results that should, however, be interpreted with
caution [45]. This will not be an easy endeavour, as the challenges to tackling antimicrobial
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resistance will be unprecedented in the aftermath of the COVID-19 pandemic, due to
changes in antimicrobial usage and availability [46].

This study has some limitations. Since our findings are based on the analysis of
fewer than one hundred cases, certain risk factors might have not been identified due to a
limited statistical power. Hospital controls were selected, who might share risk exposures
with cases and often present risk factors at a higher frequency than the general population;
nonetheless, this study focuses on MDR-GNB carriage in critical patients, who are definitely
not representative of the general population. Furthermore, not matching cases and controls
increases the risk of confusion bias but the robust multivariate analysis addresses this
issue. Although MDR-GNB carriage was evaluated according to the screening result, we
did not examine its meaning: was it colonisation and infection or solely colonisation?
This is probably the main limitation of this study, since risk factors for colonisation and
infection by MDR organisms might be different. We cannot rule out this possibility, as
the available literature focuses on infection [47–49] and high-quality, up-to-date evidence
related to colonisation remains scarce [50,51]. Finally, our results may not be extrapolated
to other clinical settings, as the profile of critically ill patients admitted to our ICU may
differ from that of smaller ICUs or those without transplantation modules. Furthermore,
the MDR-GNB epidemiology depends on the local context, showing a high variability
between countries [5].

Multidrug resistance should be seen as a problem that needs to be addressed long
before a patient is admitted to an ICU or even to a hospital. Its approach requires coor-
dination across different sectors from a One Health perspective [52]; in the health sector,
involvement of both primary care and hospital care is needed, in order to achieve visible
results in the medium term.

5. Conclusions

In conclusion, our study provides insight into the epidemiology of MDR-GNB carriage
upon ICU admission. Those with liver cirrhosis are at highest risk and must therefore
be systematically screened. Digestive surgery in the last year, prolonged hospital stay
and previous carriage of MDR-GNB must also be considered. Despite having identified
a number of critical risk factors and a relatively low carriage rate, we cannot discourage
universal screening, given the potential impact of unidentified carriers in high-risk settings.

For a better understanding of the profile of carriers of these “superbugs”, further re-
search is warranted: larger, prospective studies collecting comprehensive data on exposure
(comorbidities, type and duration of antimicrobial therapy and device use, invasive proce-
dures and prior stay in healthcare settings) and outcomes (colonisation versus infection,
epidemiological significance and duration of carriage) will help find the missing pieces of
the multidrug resistance puzzle.
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