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Abstract The interest in the Klein–Gordon equation with different potentials has increased in recent years due to its possible
applications in Cosmology, Hadron Physics and High-Energy Physics. In this work, we investigate the solutions of the Klein–
Gordon equation for bosons under the influence of an external potential by using the Feshbach–Villars method. We present detailed
results for two cases: the Coulombic potential and the harmonic potential. For the latter case, we studied the effects of self-interacting
particles by adopting a mean-field approach. We show that our results converge smoothly to the solution of the Schrödinger equation
for the same systems as the relativistic effects diminish.

1 Introduction

The Klein–Gordon (KG) equation has been investigated by various methods due to its application in different fields. The case of
a scalar field has an increasing interest because of its connections with the axion, a hypothesized particle that may have a relevant
role in Astrophysics and in studies of Dark-Matter [1–4].

In Astrophysics, the investigation of a possible bosonic phase in massive stars has triggered the study of the solutions of the
relativistic equation with an external potential. The possibility of a condensate regime inside the stars has been considered. Several
methods have been used to solve the equation for different potentials [5,6]. In the case of self-interacting particles, the problem
becomes particularly difficult, and in Ref. [7], the authors claim that it is not possible to find a solution for this case. Nevertheless,
they investigated the axion star and the possibility of the formation of a condensate.

Systems formed by interacting bosons are also of interest in High-Energy Physics and in Hadron Physics, where the possibility
of a gluonic field in the condensate regime has been considered [8–10]. With the advent of colliders such as the EIC, FAIR and
NICA, with the capability to investigate the hadron structure in detail, we can expect important advances in our understanding of
the complex hadronic structure. The effects of the interaction of the components of the system with an external potential have been
extensively studied in connection with the Bose–Einstein condensate [11,12]. The interaction can favor or disfavor the formation
of the condensate. The correlations and interactions among the particles do not prevent the formation of the condensate [13] and
can lead to non-extensive forms of the condensate described in terms of the Tsallis statistics [14,15]. The characteristics of the
non-extensive condensate have been described in Ref. [16,17].

In this work, we investigate the solutions of the KG equation for a system of bosons under the influence of an external potential, in
particular for the Coulombic potential and for the harmonic potential, and then, we include the self-interaction through a mean-field
approach. We investigate the ground-state solution and obtain the chemical potential for the case of the external harmonic potential,
and with the self-interaction regulated by the scattering length. We use the Feshbach–Villars formalism, which allows us to evaluate
the transition from the relativistic to the non-relativistic regimes. This is particularly useful in the case of self-interacting particles in
a harmonic potential, for which the Schrödinger equation is known [18,19]. We show that our results with the KG equation smoothly
approach those for the Schrödinger equation as the systems become non-relativistic.

2 The Feshbach–Villars formalism

The KG equation for free particles is [
1

c2

∂

∂t2 − ∇2 + m2c2

h̄2

]
ψ(t, r) = 0 . (1)
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This equation can be written in a convenient form by using the Feshbach–Villars formalism [20] (see also Ref. [21]). In this case,
we define the spinor

�(t, r) =
(

ϕ(t, r)
χ(t, r)

)
, (2)

where ϕ(t, r) and χ(t, r) are wave-functions related to ψ(t, r) by
{

ψ(t, r) = ϕ(t, r) + χ(t, r)

i h̄ ∂ψ(t,r)
dt = mc2 (ϕ(t, r) − χ(t, r))

. (3)

In the Feshbach–Villars formalism, the KG equation is written for the spinor as a Schrödinger-like equation, i.e.,

i h̄
∂

∂t
�(t, r) = H�(t, r) , (4)

where

H = (σ3 + iσ2)
p̂2

2m
+ mc2σ3 . (5)

In the equation above σi (i = 1, 2, 3) are the Pauli matrices, and p̂ = −i h̄∇. The conserved charge and current are given by
{

ρ = �†σ3�

J = h̄
i2m

[
�†σ3(σ3 + iσ2)∇� − (∇�†)σ3(σ3 + iσ2)�

] , (6)

respectively. The spinor representation is equivalent to the coupled differential equations
⎧⎨
⎩
i h̄ ∂ϕ

∂t = p̂2

2m (ϕ + χ) + mc2ϕ

i h̄ ∂χ
∂t = − p̂2

2m (ϕ + χ) − mc2χ

. (7)

The Feshbach–Villars formalism becomes especially convenient to study the non-relativistic regime, in which the relativistic wave
equation reduces to the solution of the Schrödinger equation. We will study below some solutions of the KG equation for different
potentials.

The time independent form of the KG equation is

H�(r) = E�(r) , (8)

and the corresponding solution of the time-dependent equation, Eq. (4), is

�(t, r) = e−i Et/h̄�(r) . (9)

3 Introduction of the chemical potential

In the present work, we are interested in the investigation of the Bose–Einstein condensate formed in a relativistic system. We
include the chemical potential, by assuming that the ground-state energy coincides with the chemical potential. The stationary-state
solution is

�±(t, r) = e∓iμt/h̄�(r) , (10)

where ± corresponds to the positive(negative) chemical potential solution. Then, the original KG equation, Eq. (1), leads to a time
independent KG equation which writes [−h̄2c2∇2 + m2c4 − μ2] ψ(r) = 0 , (11)

whose solution in the spinor representation is

�±
p (t, r) = e∓iμt/h̄�±

0 (p)
(
A±eip·r/h̄ + B±e−ip·r/h̄) , (12)

where the spinor

�±
0 (p) =

(
ϕ±

0 (p)

χ±
0 (p)

)
, (13)

has the amplitudes
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⎧⎪⎨
⎪⎩

ϕ±
0 (p) = ±μ+mc2

2
√

mc2μ

χ±
0 (p) = ∓μ+mc2

2
√

mc2μ

. (14)

Notice that [ϕ±
0 (p)]2 − [χ±

0 (p)]2 = ±1, and μ ≡ Ep = √
p2c2 + m2c4.

4 Introduction of an external potential

The Bose–Einstein condensation can happen even in the presence of an external potential. To study the effects of an external potential,
let us solve the time independent KG equation

∇2ψ(r) + 1

h̄2c2

[
(μ − V (r))2 − m2c4]ψ(r) = 0 , (15)

in different cases. This equation has been obtained and studied in the literature in several contexts, see, e.g., Refs. [22–30]. It can be
derived by applying the correspondence principle in quantum mechanics: E → i h̄ ∂

∂t , p → −i h̄∇; to the relativistic expression for

the energy E = √
p2c2 + m2c4 + V (r). Using the Feshbach–Villars formalism, we obtain the relation

μψ = mc2(ϕ − χ) + V (r)(ϕ + χ) , (16)

with ψ = ϕ + χ . Then, we find from Eq. (16) that the spinor components ϕ and χ can be computed from the wave function ψ as
follows: ⎧⎪⎨

⎪⎩
ϕ(r) = 1

2

(
1 + μ−V (r)

mc2

)
ψ(r)

χ(r) = 1
2

(
1 − μ−V (r)

mc2

)
ψ(r)

. (17)

In the massless case, one has to consider m = 0 in Eq. (15), and replace m → N in Eqs. (16) and (17), where N is an arbitrary real
nonzero parameter [31].

The Schrödinger equation can be obtained from the KG equation (15) by considering the non-relativistic limit, i.e., c → ∞. To
see that, let us define the energy with the rest-mass energy subtracted, μ̄, as:

μ ≡ mc2 + μ̄ . (18)

Then, we can write the KG equation (15) in a form similar to the Schrödinger equation, but with an explicit relativistic correction.
This is

− h̄2

2m
∇2ψ(r) + (V (r) − μ̄)

[
1 − (V (r) − μ̄)

2mc2

]
ψ(r) = 0 , (19)

which is completely equivalent to Eq. (15). Then, the Schrödinger equation is obtained from the KG equation in the limit |V (r)−μ̄| �
mc2. Notice that in this limit one has from Eq. (17) that ϕ(r) �c→∞ ψ(r) and χ(r) �c→∞ 0.

4.1 Coulombic potential

Let us study the case of a Coulombic potential

V (r) = −g

r
, g > 0 . (20)

We consider Eq. (15) in spherical coordinates, and assume 	 = 0 (zero angular momentum), obtaining the equation

ψ ′′(r) + 2

r
ψ ′(r) + 1

h̄2c2

[
(μ − V (r))2 − m2c4] ψ(r) = 0 . (21)

This equation can be written in a simpler form by introducing the reduced radial wave function:

u(r) ≡ rψ(r) . (22)

Then one gets

u′′(r) + 1

h̄2c2

[
(μ − V (r))2 − m2c4] u(r) = 0 . (23)

The solution of Eq. (23) with the potential of Eq. (20) can be obtained analytically as a linear combination of two independent
solutions, i.e.,

u(r) = rβ+e− �
h̄c r

[
C1 · Lβ+−β−

−β++ gμ
h̄c�

(
2�

h̄c
r

)
+ C2 ·U

(
β+ − gμ

h̄c�
, 2βp,

2�

h̄c
r

)]
, (24)
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where La
n(z) and U (a, b, z) are the generalized Laguerre polynomial and the confluent hypergeometric function, respectively, while

we have defined � ≡ √
m2c4 − μ2 and

β± ≡ 1

2

⎛
⎝1 ±

√
1 − 4g2

h̄2c2

⎞
⎠ . (25)

The solution at short distances behaves as:
u(r) �

r→0
C−rβ− + C+rβ+ , (26)

with +(−) standing for the dominant behavior of the La
n(z)(U (a, b, z)) solution. The physical (regular) solution corresponds to

rβ+ , so that the coefficient C− should vanish and then we should consider C2 = 0 in Eq. (24). From the behavior of the L-solution
at large distances, one finds that the square-integrable condition for the wave function leads to the exact result for the eigenvalue
problem of Eq. (23) which we will denote by μKG

n , corresponding to the solutions of the equation:

gμKG
n

h̄c
√
m2c4 − μKG 2

n

− β+ = n − 1 , n = 1, 2, 3, · · · , (27)

leading to the chemical potential

μKG
n = mc2 n − 1 + β+√

g2

(h̄c)2 + (n − 1 + β+)2
, n = 1, 2, 3, · · · . (28)

Notice that the form of Eq. (28) implies that |μKG
n | < mc2, so that the eigenfunction associated with the eigenvalue μKG

n behaves
as u(r) �r→∞ e−κr with κ ≡ �n/(h̄c) > 0, thus corresponding to a bound state. To consider the non-relativistic limit, we make c
to be large enough. Then, we have

β± =
{

1 − 1
(h̄c)2 g

2 + · · · (+)
1

(h̄c)2 g
2 + · · · (−)

. (29)

We can compare our results in the non-relativistic limit with the results obtained with the Schrödinger equation. In this latter case,
the eigenvalues are

μ̄NR
n = − mg2

2h̄2n2
, n = 1, 2, 3, · · · . (30)

Let us define δμn as the difference between the result for the eigenvalue obtained with the KG equation (after subtracting the
rest-mass energy), and the non-relativistic result of Eq. (30), i.e.,

μKG
n = mc2 + μ̄NR

n + δμn . (31)

In the limit of c 
 1, the expression of Eq. (28) has the following expansion:

μKG
n =

c
1
mc2

[
1 − g2

2(h̄c)2n2 − g4

(h̄c)4

(
1

n3 − 3

8

1

n4

)
+ O

(
c−6)] , (32)

so that one can easily identify the correction δμn at order O(c−2) from a comparison with Eq. (31). Before displaying the results,
it is convenient to define the dimensionless variables

r̄ ≡ mc2

h̄c
r , ū(r̄) ≡

√
h̄c

mc2 · u(r) , MKG
n ≡ μKG

n

mc2 , λ ≡ g

h̄c
. (33)

Then, the dimensionless eigenvalues

MKG
n = n − 1 + β+√

λ2 + (n − 1 + β+)2
with β± = 1

2

(
1 ±

√
1 − 4λ2

)
(34)

are functions only of the parameter λ. In particular, the decomposition of Eq. (31) writes in dimensionless units as:

MKG
n = 1 − λ2

2n2 + δMn with δMn ≡ δμn

mc2 = −λ4
(

1

n3 − 3

8

1

n4

)
+ O (

λ6) . (35)

The non-relativistic limit corresponds to λ → 0, or equivalently c → ∞. We display in Fig. 1 (left and middle panels) the

dimensionless reduced wave function ū(r̄), as well as the spinor components ūϕ(r̄) ≡
√

h̄c
mc2 · rϕ(r) and ūχ (r̄) ≡

√
h̄c
mc2 · rχ(r).

We display also in Fig. 1 (right) the behavior of δMn as a function of λ. Notice that δMn −→
λ→0

0, as it is already clear from Eq. (35),

showing that the result of the Schrödinger equation is recovered in the non-relativistic limit.
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Fig. 1 Left panel: Dimensionless reduced wave functions ū(r̄) obtained by solving the KG equation with a Coulombic potential (cf. Eqs. (24) and (33)) We
display the wave functions for the first three levels: n = 1, 2, 3. Middle panel: Reduced wave function ū(r̄) and the spinor components (ūϕ(r̄), ūχ (r̄)) for

n = 1. In both panels we have considered λ = 0.1 and we have normalized the wave functions such that ū(r̄) �
r→0

r̄β+ (cf. Eq. (26)). Right panel: −δMn as

a function of λ for the first three levels (cf. Eq. (35))

Finally, let us note that the eigenvalue μKG
n is real only for real values of β+, and this happens for

g <
h̄c

2
, (36)

i.e., for λ < 1/2. One can see that in the regime g > h̄c/2, the asymptotic behaviors of the reduced wave function are

u(r) ∼
r→0

r
1
2 +iIm(β+) , u(r) ∼

r→∞ e−κr with Re(κ) > 0 , (37)

so that while it is a square-integrable function, it is not a regular solution at r → 0.

4.2 System of N interacting particles

Another interesting case that we will study is a system of N interacting particles under the influence of an external potential. In the
non-relativistic limit, such a system is usually described in terms of the Gross–Pitaevskii nonlinear Schrödinger equation, which is
given by

− h̄2

2m
∇2ψ(r) + V (r)ψ(r) = μ̄ψ(r) . (38)

In Ref. [18] (see also [19]), this system was studied with an harmonic external potential and a mean-field potential for the interaction
term given in terms of a scattering-length, a, that is,

V (r) = 1

2
mω2r2 − 4π h̄2|a|

m
|ψ(r)|2 . (39)

Here, we study this case in the relativistic regime and evaluate its non-relativistic limit comparing our results with the results from
Ref. [18]. In the relativistic case, from Eq. (23) and using the potential of Eq. (39), one has

u′′(r) + 1

h̄2c2

[(
μ − 1

2
mω2r2 + 4π h̄2|a|

m

|u(r)|2
r2

)2

− m2c4

]
u(r) = 0 . (40)

Let us define the dimensionless variables

x ≡
√

2mω

h̄
· r , �(x) ≡ √

8π |a| · u(r) , β ≡ μ

h̄ω
, β̄ ≡ μ̄

h̄ω
, α ≡ h̄ω

mc2 . (41)

Using Eq. (18) one finds β = 1/α + β̄. Then, Eq. (40) can be written in the equivalent form:

�′′(x) +
(

β̄ − 1

4
x2 + |�(x)|2

x2

)[
1 + α

2

(
β̄ − 1

4
x2 + |�(x)|2

x2

)]
�(x) = 0 . (42)

The non-relativistic limit corresponds to α → 0, or equivalently c → ∞. In the non-relativistic case, we define the normalization
as N = ∫

d3r |ψ(r)|2 = 4π
∫ ∞

0 dr r2|u(r)|2 where N is the number of atoms or partons. The corresponding normalization for the

123
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Fig. 2 Left and middle panels: Results for the dimensionless chemical potential β̄ after solving the Gross–Pitaevskii nonlinear equation in the relativistic
case, Eq. (42). We display the relativistic result of β̄ as a function of �′(0) (left panel) and as a function of q (middle panel) for α = 0.1, 0.2 and 0.3, and
compared to the non-relativistic result corresponding to α = 0 and displayed as solid (black) line. Right panel: q as a function of �′(0) for α = 0, 0.1, 0.2
and 0.3. Notice that q(α = 0) = n

dimensionless wave function is

n =
∫ ∞

0
dx |�(x)|2 , where n ≡ N

|a|
	s

and 	s ≡ 1

2

√
h̄

2mω
. (43)

The length 	s is the characteristic length of the system. In the relativistic case, it is better to define the normalization in terms of the
conserved charge, i.e.,

Q = 4π

∫ ∞

0
dr r2ρ(r) , with ρ(r) = |ϕ(r)|2 − |χ(r)|2 , (44)

which for the dimensionless spinor components of the wave function � f (x) ≡ √
8π |a| · r f (r) , f = ϕ, χ , leads to

q =
∫ ∞

0
dx

(|�ϕ(x)|2 − |�χ(x)|2) , where q ≡ Q
|a|
	s

. (45)

Obviously Q −→
c→∞ N and q −→

c→∞ n. We show in Fig. 2 the results of β̄ and q by solving the Gross–Pitaevskii nonlinear equation in

the relativistic case, Eq. (42), and compared with the non-relativistic result (α = 0) of Ref. [18]. Even though the curves of Fig. 2
contain all the relevant information, it would be interesting to show explicitly the dependence of β̄ with the scattering length a, by
using that β̄(q) = β̄ (Q|a|/	s). To do so, we display in Fig. 3 the results of β̄ as a function of Q for several values of |a|/	s (left
panel), and as a function of |a|/	s for several values of Q (middle panel). One can see that for fixed β̄, the larger the value of |a|,
the smaller the value of Q. This can be easily understood by noticing that the relation β̄ = β̄(q) given by Fig. 2 (middle) can be
inverted to give the one-valued function q = q(β̄), so that using Eq. (45) one finds Q = 	sq(β̄)/|a|. Notice that the normalization
of β̄ given by Eq. (41) does not contain any dependence in a, so that the dependence of μ̄ with a is proportional to the dependence
of β̄ with a, i.e., μ̄(a) = h̄ω · β̄ (Q|a|/	s). Finally, we display in Fig. 3 (right) the dependence of N/Q with the parameter α for
�′(0) = 2.5, where N is computed in the relativistic case by using Eq. (43) with �(x) = �ϕ(x) + �χ(x) the solution of Eq. (42).
Notice that in the non-relativistic limit (α → 0) both quantities are equal, but in the relativistic regime one finds N < Q.

5 Discussion and conclusions

Concluding, in this work we analyzed the time independent solutions of the nonlinear Klein–Gordon equation. We used the Feshbach–
Villars approach with potential and analyzed the behavior of the system under different external potentials, namely the Coulombic
potential and the harmonic potential.

With the introduction of the chemical potential as the eigenvalue of the Hamiltonian operator for the ground-state, we obtained
the relevant conditions for the formation of the Bose–Einstein condensate in a relativistic system. The use of the Feshbach–Villars
formalism allowed us to easily investigate the transition of the system from the relativistic to the non-relativistic regimes. We compare
the results obtained for the relativistic system with a mean-field potential and an harmonic external potential, with those for the
non-relativistic system under the same conditions. We observe a smooth transition of several parameters as the relativistic effects
diminish, for both the Coulombic potential and the harmonic potential.

The effects of the interaction between the particles of the system, described by the scattering length in a mean-field approach,
are analyzed, and in particular, we study the variation of the chemical potential with the scattering length.
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Fig. 3 Left and middle panels: Dimensionless chemical potential β̄ as a function of Q for fixed values of the scattering length: |a|/	s = 1, 2, 3 and 5 (left
panel), and as a function of |a|/	s for fixed values of Q: Q = 1, 2, 3 and 5 (middle panel) (cf. Eq. (45)). We have considered α = 0.1 in both panels. Right
panel: N/Q as a function of α for �′(0) = 2.5

The study of the nonlinear Klein–Gordon equation to investigate condensation of relativistic particles invites us to pursue
extensions of this work. One possibility is to use the same formalism of the present work to investigate condensation in the relativistic
hadronic matter, and another option is to study a modified form of the Gross–Pitaevskii equation with fractional derivatives.
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