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a b s t r a c t 

Background and Objective: The study of brain function has recently expanded from classical univariate 

to multivariate analyses. These multivariate, machine learning-based algorithms afford neuroscientists 

extracting more detailed and richer information from the data. However, the implementation of these 

procedures is usually challenging, especially for researchers with no coding experience. To address this 

problem, we have developed MVPAlab, a MATLAB-based, flexible decoding toolbox for multidimensional 

electroencephalography and magnetoencephalography data. 

Methods: The MVPAlab Toolbox implements several machine learning algorithms to compute multivariate 

pattern analyses, cross-classification, temporal generalization matrices and feature and frequency contri- 

bution analyses. It also provides access to an extensive set of preprocessing routines for, among others, 

data normalization, data smoothing, dimensionality reduction and supertrial generation. To draw statisti- 

cal inferences at the group level, MVPAlab includes a non-parametric cluster-based permutation approach. 

Results: A sample electroencephalography dataset was compiled to test all the MVPAlab main function- 

alities. Significant clusters (p < 0.01) were found for the proposed decoding analyses and different config- 

urations, proving the software capability for discriminating between different experimental conditions. 

Conclusions: This toolbox has been designed to include an easy-to-use and intuitive graphic user interface 

and data representation software, which makes MVPAlab a very convenient tool for users with few or no 

previous coding experience. In addition, MVPAlab is not for beginners only, as it implements several high 

and low-level routines allowing more experienced users to design their own projects in a highly flexible 

manner. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Historically, the study of brain function employing electroen- 

ephalography (EEG) data has relied on classical univariate anal- 

ses of amplitudes and delays of different peaks of the average of 

everal evoked EEG recordings, commonly called Event-Related Po- 

entials (ERPs). The constant development of science and technol- 

gy in past decades has allowed researchers and engineers to de- 

elop and apply more advanced signal processing techniques, such 

s time/frequency analyses, phase clustering, Independent Compo- 

ent Analysis (ICA) decompositions [ 1 , 2 ], and others. These tech- 

iques have been implemented in excellent analysis and prepro- 

essing tools, such as EEGLAB [3] , ERPLAB [4] or Fieldtrip [5] , en-
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bling researchers to develop a myriad of studies in a wide range 

f areas. 

More recently, newer Machine Learning-based algorithms (ML), 

n conjunction with advanced neuroimaging techniques, such as 

unctional Magnetic Resonance Imaging (fMRI) or Magnetoen- 

ephalography (MEG), have gained popularity in neuroscience. This 

rend started with studies by Haxby and Norman [6–8] , and other 

eference contributions [9–14] , which opened novel avenues of re- 

earch on brain function. For years, ML models have been also 

uccessfully employed in medical imaging, mainly in the area of 

omputer-aided diagnosis [15] . To mention just a few examples, 

he use of different ML approaches is mainstream in the study and 

etection of several neurological diseases, such as Parkinson [16–

8] , Alzheimer [19–21] , Autism [22–24] , or sleep disorders [25–27] . 

ven the recently spread COVID-19 can be successfully diagnosed 

sing Artificial Intelligence (AI) in chest radiographies, according 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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o preliminary studies [28–30] . However, the recent growth of ML 

odels is not limited to neuroscience or medical applications but 

s present in a huge range of scientific disciplines in a cross-cutting 

asis. 

.1. Related work 

Multivariate Pattern Analysis (MVPA) usually encompasses a set 

f supervised learning algorithms, which provide a theoretically 

legant, computationally efficient, and very effective solution in 

any practical pattern recognition scenarios. One of the most re- 

arkable advantages of these multivariate approaches over uni- 

ariate ones is its sensitivity in unveiling subtle changes in acti- 

ations associated with specific information content in brain pat- 

erns. Several MVPA toolboxes, such as SPM [31] , The Decoding 

oolbox (TDT) [32] or Pattern Recognition for Neuroimaging Tool- 

ox (PRoNTo) [33] , particularly designed for fMRI studies have 

een developed in the past years. Despite the good spatial reso- 

ution of the fMRI, the poor temporal resolution of the BOLD sig- 

al limits an accurate study of how cognitive processes unfold in 

ime. For that reason, the application of multivariate pattern anal- 

ses to other neuroimaging techniques with a higher temporal res- 

lution, such as EEG or magnetoelectroencephalography (MEG), is 

rowing in popularity. With the aim of facilitating the work of re- 

earchers from different disciplines, allowing the access to these 

omplex computation algorithms, diverse M/EEG-focused toolboxes 

ave been developed. The Amsterdam Decoding and Modeling 

oolbox (ADAM) [34] , CoSMoMVPA [35] , MVPA-light [36] , The Deci- 

ion Decoding Toolbox (DDTBOX) [37] , BCILAB [38] and The Berlin 

rain-Computer Interface [39] are excellent examples of MATALB- 

ased toolboxes. MNE-Python [40] , Nilearn [41] or PyMVPA [ 42 , 43 ]

re other Python-based and open source alternatives. 

.2. MVPAlab: an easy-to-use machine learning toolbox for decoding 

nalysis 

Despite the tremendous effort applied in other implementations 

o facilitate researchers the use of these tools (e.g. high-level func- 

ions which compute a complete decoding analysis in a few lines 

f code), its use is sometimes really challenging, especially for stu- 

ents, newcomers or other researchers with profiles with no cod- 

ng experience. 

Here we present MVPAlab, an easy-to-use decoding toolbox for 

/EEG data. So, what makes MVPAlab different from any other 

xisting alternatives? The MVPAlab Toolbox has been designed to 

nclude an easy-to-use and very intuitive Graphic User Interface 

GUI) for the creation, configuration, and execution of different 

ecoding analysis. Importantly, this friendly GUI provides access 

o an extensive set of computational resources to design, con- 

gure and execute the complete pipeline of different decoding 

nalyses for multidimensional M/EEG data, including visualization 

oftware for data representation. MVPAlab implements several de- 

oding functionalities, such as time-resolved binary classification, 

emporal generalization, multivariate cross-classification, statistical 

nalyses to find significant clusters, feature contribution analyses, 

nd many others. Highly configurable linear and non-linear ML 

odels can be selected as classification algorithms, including Sup- 

ort Vector Machines (SVM) or Discriminant Analysis (DA). Addi- 

ionally, MVPAlab offers several data preprocessing routines: trial 

veraging, data smoothing and normalization, dimensionality re- 

uction, among others. This MVPAlab GUI also includes a very flex- 

ble data representation utility, which generates really appealing 

nd colorful plots and animations. In addition to this, MVPAlab 

mplements some exclusive analyses and functionalities, such as 

arallel computation, which divides the computational load in dif- 

erent execution threads, significantly reducing the computation 
2 
ime, or frequency contribution analysis, which allows to estimate 

ow relevant information is distributed across different frequency 

ands. 

Hence, MVPAlab has not been designed for beginners only, as 

mplements several high and low-level routines allowing more ex- 

erienced profiles to design their own projects in a highly flexible 

anner. The following sections depict, in as much detail and as 

escriptively as possible, the main aspects of MVPAlab, including 

nstallation, compatibility, data structure, and a complete getting 

tarted section. 

.3. Installation, compatibility and requirements 

The installation of MVPAlab Toolbox is quite simple. First, an 

p-to-date version of the code is freely available for download in 

he following GitHub repository: 

github.com/dlopezg/mvpalab/releases 

Users should (1) select and download the source code of the 

esired release, (2) unzip the downloaded source code folder and 

3) add it to the MATLAB path. Please see MVPAlab wiki for more 

etailed instructions: 

github.com/dlopezg/mvpalab/wiki/Installation 

The MVPAlab Toolbox has been designed to be fully compatible 

ith MATLAB 9.0 (R2016a) and above. This restriction is only appli- 

able to the graphic user interface, which has been developed us- 

ng App Designer, introduced in the 9.0 version. Custom MVPAlab 

cripts can be executed under older MATLAB versions. Other tool- 

oxes include several function names overlapping the MATLAB (or 

ther external packages) built-in functions, causing in some cases 

rrors and malfunctioning. To avoid this type of problems, MV- 

Alab uses a specific suffix in their function names. Since this soft- 

are has been developed using MATLAB and has no external de- 

endencies, the MVPAlab Toolbox is fully supported by GNU/Linux, 

nix, Windows and macOS platforms. Hardware requirements de- 

end on the size of the analyzed dataset. While the CPU specifica- 

ions only affects to the computation time, enough RAM capacity 

s required to store and process M/EEG data. For almost any pro- 

ess, the recommended RAM capacity is at least the double of the 

ize of the dataset (measured in gigabytes). For more memory de- 

anding processes, such as frequency contribution analysis, MV- 

Alab splits and stores EEG data on the hard drive, importing it 

gain when needed. Since MVPAlab only uses the CPU for compu- 

ation, the GPU specification does not affect to the toolbox perfor- 

ance. 

Some MATLAB built-in packages and functions are required for 

 correct functioning of this software. For the statistical analysis, 

he Image Processing Toolbox is required to find clusters in signif- 

cant masks. The Statistics and Machine Learning Toolbox provides 

unctions to train and validate classification models, dimensional- 

ty reduction, feature selection, etc. The Signal Processing Toolbox 

s required for extracting M/EEG envelopes as features. The Parallel 

omputation Toolbox is not required but recommended to drasti- 

ally reduce the computation time as it allows to divide the com- 

utational load in different processing threads. Finally, MVPAlab 

reatly benefits from other open source M/EEG toolboxes such as 

EGlab and FieldTrip: some filtering functions require the EEGlab 

oolbox installed and initiated for a correct operation. If MVPAlab 

nds an EEGlab installation it will initiate it automatically. Because 

f all of this, users should ensure that these dependencies are in- 

luded in their MATLAB installation. 

.4. Dataset structure and format 

MVPAlab is not a preprocessing tool for M/EEG data, instead, 

t is designed to read and work with epoched data from two of 

he most employed preprocessing toolboxes: EEGLAB and FieldTrip. 

https://github.com/dlopezg/mvpalab/releases
https://github.com/dlopezg/mvpalab/releases
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or a correct operation of MVPAlab Toolbox, epoched data should 

e previously saved in one independent file for each subject us- 

ng a .mat format. EEGlab format .set is also supported. The 

ata structure and format should remain unaltered. If EEGlab was 

sed for the data preprocessing, users should save the entire EEG 
tructure for each participant, not only the EEG.data matrix. MV- 

Alab collects additional information from the data file, such as 

ampling frequency ( EEG.srate ), the location of the electrodes 

 EEG.chanlocs ) or data time points ( EEG.times ). In the same 

ay, if FieldTrip is used, users must save the entire data structure, 

s MVPAlab reads the required subject’s data from data.trial , 
ata.time and data.fsample . 

.5. MVPAlab toolbox architecture 

The complete architecture of MVPAlab Toolbox is shown in 

ig. 1 , including several of the configuration parameters, processes 

nd routines employed for a complete decoding analysis. The com- 

lete architecture and its configuration parameters are resumed in 

he following stages: 

Initialization stage. During the initialization stage, MVPAlab gen- 

rates a default configuration structure. This variable is required 

or a correct operation of the toolbox. 

Import data and feature extraction stage. Here, M/EEG data is im- 

orted, preprocessed, and prepared for the decoding analysis. Dur- 

ng this stage, some specific configuration is required: the partic- 

pants’ files to import, identifiers for binary classes, the complete 

ath to the dataset, and others. Additionally, users can select which 

/EEG feature will be extracted for classification (raw signal volt- 

ge or its envelope); enable or disable and configure several pre- 

rocessing procedures, such as trial averaging, data normalization, 

alanced class sizes, and others. All these preprocessing procedures 

re computed during this stage. Finally, the feature vectors are ex- 

racted and prepared for the multivariate analysis. 

Evaluation stage. During the evaluation stage, several classifica- 

ion models can be trained and validated using cross-validation ap- 

roaches. Dimensionality reduction, if enabled, is also computed 

uring this stage. 

Users can specify different classification models, linear and 

on-linear kernel functions, different cross-validation techniques, 

ifferent model’s performance metrics, etc. The results of the de- 

oding analysis, the configuration file and other analysis-related 

les will be hierarchically stored in the project’s directory. This di- 

ectory is the folder containing the main analysis script. 

Statistical significance stage. If permutation test is enabled, sta- 

istically significant clusters are extracted from the result via non- 

arametric cluster-based permutation testing. For this stage, users 

an specify the total number of permutations at a participant and 

roup level to be computed, the p-value thresholds for a data point 

r cluster size to be considered significant and other relevant in- 

ormation. 

Graphical representation stage. Last but not least is the graphical 

epresentation stage. MVPAlab has fully integrated high-level plot- 

ing tools, allowing researchers to easily design and generate high 

uality and highly customizable result representations. 

.6. Getting started 

Computing a multivariate analysis in MVPAlab Toolbox is quite 

imple for all type of users. Researchers with no coding experi- 

nce can use the integrated graphic user interface, which allows 

o create, save, configure, execute and plot the results of any sup- 

orted multivariate analysis in a very intuitive way. Not a sin- 

le line of code is needed. However, users with coding experience 

ooking for a faster and more flexible way to interact with the tool- 

ox can create their own scripts. Be that as it may, MVPAlab also 
3 
ncludes several easy-to-understand and well-documented demo 

cripts for different types of analyses, making this tool very con- 

enient not just for experienced users but also for newcomers. 

his section includes a general introduction to the functioning 

f MVPAlab Toolbox, either by using the GUI or building custom 

cripts. 

.6.1. Graphic user interface 

Once MVPAlab is installed, the graphic user interface can be 

aunched by typing the following command in the MATLAB com- 

and line: 

>> mvpalab 
Creating new analyses: If the MVPAlab folder is correctly added 

o the MATLAB path as described in Section 1.3 , the initial MV- 

Alab window should appear as shown in Fig. 2 (a). Using this 

nterface, users can create new analyses, open previously created 

nalyses or open the plotting utility. Creating new analyses in MV- 

Alab using the GUI is very simple and intuitive. Researchers only 

eed to specify the type of analysis required from the dropdown 

enu and select the location folder. Results, configuration and 

ther analysis-related files will be hierarchically stored in this di- 

ectory. Once everything is selected, clicking the configuration but- 

on will create the project folder structure and launch the analysis 

onfiguration window, as shown in Fig. 2 (b). 

Configuring the decoding analysis: Before computing a mul- 

ivariate analysis, additional details of configuration are required. 

sers must specify the locations of the epoched datasets and la- 

el each condition with a condition identifier. All the relevant pa- 

ameters of the decoding analysis are set to its default value and 

an be modified within this configuration window. These config- 

ration parameters include a wide range of processes that can be 

xecuted during the decoding analysis, such as: data normalization, 

ata smoothing, trial averaging, analysis timing, dimensionality re- 

uction, balance datasets and others. Additionally, the employed 

lassification models can also be designed here. Users can choose 

etween different classification algorithms, kernel functions, cross- 

alidation strategies and select several output performance met- 

ics. They can enable the computation of the temporal generaliza- 

ion matrix, activate parallel computation or configure statistical 

nalyses. All MVPAlab toolbox functionalities are perfectly detailed 

n Section 2 Materials and Methods . 

Computing the decoding analysis: Once the configuration pa- 

ameters are correctly specified, the computation of the multivari- 

te analysis can be started by clicking the Start analysis button. 

epending on the size of the dataset and the selected configura- 

ion, this process may be time-consuming and CPU/memory de- 

anding. Anyhow, during the computation of the entire analy- 

is pipeline, as shown in Fig. 2 (c), MVPAlab prompts in the MAT- 

AB command window detailed information of the processes being 

xecuted. 

Plotting the results: For the graphical representation of the 

esults, MVPAlab also offers an intuitive plot utility that can be 

pened by clicking on Open plot utility button Fig. 2 (d). This tool 

nables users to open, plot, combine and compare results of dif- 

erent analyses without dealing with cumbersome lines of MAT- 

AB code. The most common configuration parameters such as ti- 

les, labels, line styles, transparencies, color palettes, axes limits, 

ata smoothing or highlighting can be easily configured for time- 

esolved analysis, temporal generalization matrices, frequency con- 

ribution analyses, and others. In addition, with this interface users 

an create animated temporal representations of feature weights 

istribution over scalp templates. 

All this combined allows researchers with no or little coding 

xperience to prepare and compute multivariate decoding analyses 

f M/EEG data; create high quality and ready-to-publish figures, all 

f this without witting a single line of code. 
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Fig. 1. MVPAlab Toolbox complete architecture and configuration parameters. 

4 
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Fig. 2. MVPAlab graphic user interface . (a) Initial view. (b) Analysis configuration view. (c) Plot utility view. (d) MATLAB command window. 
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.6.2. Building custom scrips 

The intuitive and easy-to-use GUI is not the only way to uti- 

ize this software. For those researchers looking for flexibility and 

utomation, MVPAlab implements several high-level functions to 

asily set up a custom decoding analysis. The complete analysis 

ipeline can be divided into five main steps, including the statisti- 

al permutation test and plotting functions, and runs as follows: 

% [1] - Initialize MVPAlab toolbox: 
cfg = mvpalab_init(); 
% [2] - Run the configuration file: 
run cfg_file.m 
% [3] -- Import data and extract feature 

ectors: 
[cfg,data,fv] = mvpalab_import(cfg); 
% [4] -- Compute a multivariate analysis: 
[result,cfg] = mvpalab_mvpa(cfg,fv); 
% [5] -- Plot the results: 
run plot_file.m 
First, the function mvpalab_init() initializes the toolbox. 

his function returns a default configuration structure cfg , which 
5 
onsist of all the required configuration parameters for an analysis. 

lease see Section 2 Material and Methods for a detailed description 

f each field of the configuration variable. 

Users should modify this configuration variable to set up the 

esired configuration for a specific decoding analysis. For the sake 

f clarity and for maintaining a clean code organization, all this 

onfiguration code should be placed in an external configuration 

le cfg_file.m . This file will be executed after the toolbox ini- 

ialization. 

Once the MVPAlab toolbox is initialized and a specific analy- 

is configured, the function mvpalab_import(cfg) imports and 

reprocess the datasets provided, according to the configuration 

le cfg . This function returns a copy of the preprocessed data 

data), which can be omitted to save memory, and the extracted 

eature vectors (fv), which will be the input for the classification 

odels. Please see Section 2.3 Importing Data and Feature Extrac- 

ion for a more detailed explanation of the feature extraction pro- 

ess. 

Next, the function mvpalab_mvpa(cfg,fv) computes the 

ultivariate pattern analysis. Other functions are available for 
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ifferent analyses, such as mvpalab_mvcc(cfg,fv) for cross- 

lassification and mvpalab_sfilter(cfg,fv) for frequency 

ontribution analysis. 

These functions return the variable result , which includes the 

ime-resolved decoding performance for every performance metric 

nabled in the configuration file. In addition, the result files are 

utomatically saved in separate folders in the project directory. 

To compute the statistical analysis and draw statistical infer- 

nces at the group level, one additional step should be added to 

he former execution pipeline: 

% Compute permutation test: 
[permaps,cfg] = mvpalab_permaps(cfg,fv); 
stats = mvpalab_permtest(cfg,result,permaps); 
These functions implement a non-parametric cluster-based 

ermutation test, returning the variable stats, which includes 

tatistically significant clusters found in the data. Please, see 

ection 2.5 Cluster-based permutation testing for an exhaustive de- 

cription of this test. 

Finally, in addition to the graphic user interface, MVPAlab in- 

ludes several plotting routines, allowing users to design cus- 

omizable and ready-to-publish figures and animations. Please see 

ection 2.6 Result representation pipeline for more details. Several 

emo scripts for different types of analyses and result representa- 

ions are included in the MVPAlab Toolbox folder. 

. Materials and methods 

.1. Sample EEG dataset 

A sample EEG dataset has been compiled to test all the MV- 

Alab main functionalities. It is freely available in the following 

epository: 

https://osf.io/du6fa/ 

Here, three different EEG data files have been selected from 

he original work [ 44 , 45 ]. For each participant, two different main

onditions ( condition_a vs. condition_b ) have been selected for the 

VPA analysis. Additionally, four subconditions ( condition_1, condi- 

ion_2, vs. condition_3 and condition_4 ) have been selected for the 

ultivariate cross-classification analysis. Readers interested on the 

xperimental details of these data should refer to the original pub- 

ication [ 44 , 45 ]. 

During the original study, high-density EEG was recorded from 

5 electrodes. The TP9 and TP10 electrodes were used to record 

he electrooculogram (EOG) and were removed from the dataset 

fter the preprocessing stage. Impedances were kept below 5k �

nd EEG recordings were average referenced, downsampled to 

56 Hz, and digitally filtered using a low-pass FIR filter with a cut- 

ff frequency of 120 Hz, preserving phase information. No chan- 

el was interpolated for any participant. Continuous data were 

poched [ −10 0 0, 20 0 0 ms centered at onset of the stimulus] and

aseline corrected [ −200, 0 ms]. Independent Component Analysis 

ICA) was computed to remove eye blinks from the signal, and the 

rtifactual components were rejected by visual inspection of raw 

ctivity of each component, scalp maps and power spectrum. Fi- 

ally, an automatic trial rejection process was performed, pruning 

he data from non-stereotypical artifacts. For more details please 

ee [44] . 

The final compiled dataset consists of an EEGlab data structure 

er subject and condition with [63 ×768 x ntrials] EEG data ma- 

rices. The number of trials per condition and participant is shown 

n the following table: 

.2. Defining a configuration file 

For the sake of clarity and code organization, we recommend 

o include all the configuration code for a specific decoding anal- 
6 
sis in an external configuration .m file. This file should be exe- 

uted before the computation of the multivariate decoding anal- 

sis. This recommendation, however, is not mandatory and more 

xperienced users can design their own scripts according to their 

eeds and preferences. For both scenarios, all the available config- 

ration parameters in MVPAlab Toolbox will be described in detail 

uring this section. 

.2.1. Participants and data directories 

The first required information that should be specified by the 

ser is the working directory and the location of the dataset to 

e imported and analyzed. This includes, for each class or condi- 

ion, the name of each individual subject data file and the com- 

lete path of the class folder. These parameters can be defined in 

he configuration file as follows: 

% Working directory: 
cfg.location = pwd; 
% Conditions data paths: 
cfg.dataPaths{1,1} = ’C: \ ... \ class_a \ ’; 
cfg.dataPaths{1,2} = ’C: \ …\ class_b \ ’; 
% Subjects data files: 
cfg.dataFiles{1,1} = { 
'subject_01.mat', 
'subject_02.mat', 
'subject_03.mat'
}; 
cfg.dataFiles{1,2} = { 
'subject_01.mat', 
'subject_02.mat', 
'subject_03.mat'
}; 
Before computing the multivariate decoding analysis, the MV- 

Alab Toolbox can be used to execute several preprocessing pro- 

edures that may improve the final results in different ways (e.g. 

ncreasing accuracy, avoiding skewed results, data normalization, 

ata smoothing, etc.). The default configuration of each of these 

rocedures is initialized when MVPAlab toolbox is launched. How- 

ver, these procedures and their configuration parameters can 

e adjusted by the users to meet the required specific analy- 

is conditions. During this section, all of these preprocessing pro- 

edures and their configuration parameters will be meticulously 

escribed. 

.2.2. Trial averaging 

If enabled, this approach randomly or sequentially averages 

 certain number of trials n trials belonging to the same condi- 

ion for each participant. This procedure creates supertrials and 

sually increases the signal-to-noise ratio (SNR) which improves 

he overall decoding performance and reduces the computational 

oad. Since reducing the number of trials per condition typically 

ncreases the variance in the decoding performance, this proce- 

ure imposes a trade-off between the increased variance/accuracy. 

t should be noted that increasing n trials does not increase 

he decoding performance linearly. Please see [ 46 , 47 ] for more 

etails. 

The default parameters for this procedure can be modified in 

he MVPAlab configuration file as follows: 

cfg.trialaver.flag = true; 
cfg.trialaver.ntrials = 5; 
cfg.trialaver.order = ’rand’; 
Trial averaging can be enabled or disabled by setting the con- 

guration variable ( .flag ) to true or false. The number of trials 

o average can be modified in ( .ntrials ) . Finally, the order in

hich the trials are selected for averaging can be modified setting 

he variable ( .order ) to ‘rand’ or ’sequential’. 

https://osf.io/du6fa/
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.2.3. Balanced datasets 

Unbalanced datasets can lead to skewed classification results 

48] . To avoid this phenomenon, the number of trials per condi- 

ion should be the same. MVPAlab can be used to define strictly 

alanced datasets by downsampling the majority class to match 

he size of the minority one ( cfg.classsize.match ). In ad- 

ition, each class size can be set as a factor of k, the total num-

er of folds in the cross-validation (CV) procedure. Thus, dur- 

ng CV each fold will be composed by exactly the same num- 

er of observations, avoiding any kind of bias in the results 

 cfg.classsize.matchkfold ). 
These features are disabled by default but can be enabled in the 

VPAlab configuration structure as follows: 

cfg.classsize.match = true; 
cfg.classsize.matchkfold = true; 

.2.4. Data normalization 

In machine learning, data normalization refers to the process 

f adjusting the range of the M/EEG raw data to a common scale 

ithout distorting differences in the ranges of values. Although 

lassification algorithms work with raw values, normalization usu- 

lly improves the efficiency and the performance of the classifiers 

49] . Four different (and excluding) data normalization methods 

re implemented in MVPAlab. A commonly used normalization ap- 

roach [50] is computed within the cross-validation loop. Hence, 

he training and test sets are standardized as follows: 

 train = 

X train − μtrain 

σtrain 

X test = 

X test − μtrain 

σtrain 

here μtrain and σ train denote the mean and the standard devia- 

ion of each feature (column) of the training set. Other normal- 

zation methods implemented in MVPAlab are: z-score ( μ = 0; 

σ = 1) across time, trial or features. To compute these normaliza- 

ion strategies MVPAlab uses the MATLAB built-in function zscore , 

ncluded in the Statistics and Machine Learning Toolbox. 

Data normalization method, which is disabled by default, can 

e modified as follows: 

cfg.normdata = 4; 
% 0 -- Disabled 
% 1 -- ZSCORE across features 
% 2 -- ZSCORE across time 
% 3 -- ZSCORE across trials 
% 4 -- Nested in CV loop 

.2.5. Data smoothing 

Data smoothing is a procedure employed in recent M/EEG stud- 

es [51–54] to attenuate unwanted noise. MVPAlab implements an 

ptional data smoothing step that can be computed before multi- 

ariate analyses. This procedure is based on MATLAB built-in func- 

ion smooth , included in the Curve Fitting Toolbox, which smooths 

/EEG data points using a moving average filter. 

The length of the smoothing window can be specified in 

he variable ( cfg.smoothdata.window ) and should be an odd 

umber. For a window length of 5 time points, the smoothed ver- 

ion of the original signal is computed as follows: 

y smoothed ( 1 ) = y ( 1 ) 
y smoothed ( 2 ) = ( y ( 1 ) + y ( 2 ) + y ( 3 ) ) / 3 

y smoothed ( 3 ) = ( y ( 1 ) + y ( 2 ) + y ( 3 ) + y ( 4 ) + y ( 5 ) ) / 5 

y smoothed ( 4 ) = ( y ( 2 ) + y ( 3 ) + y ( 4 ) + y ( 5 ) + y ( 6 ) ) / 5 

…
Data smoothing is disabled ( .method = ’none’) by default and 

an be enabled and configured in the MVPAlab configuration file 

s follows: 

cfg.smoothdata.method = ’moving’; 
cfg.smoothdata.window = 5; 
7 
.2.6. Analysis timing 

By default, MVPAlab computes the time-resolved decoding anal- 

sis for each timepoint across the entire M/EEG epoch. However, 

he user can define a specific region of interest (time window) and 

 different step size as follows: 

cfg.tm.tpstart = -200; 
cfg.tm.tpend = 1500; 
cfg.tm.tpsteps = 3; 
This way, the temporal decoding analysis will be computed 

rom −200 ms ( .tpstart ) to 1500 ms ( .tpend ) not for each

imepoint but for every three ( .tpsteps ) timepoints. Note that 

ncreasing the step size decreases the processing time but also 

auses a reduction in the temporal resolution of the decoding re- 

ults. 

.2.7. Dimensionality reduction 

In machine learning, dimension reduction techniques are a 

ommon practice to reduce the number of variables in high- 

imensional datasets. During this process, the features contribut- 

ng more significantly to the variance of the original dataset are 

utomatically selected. In other words, most of the information 

ontained in the original dataset can be represented using only 

he most discriminative features. As a result, dimensionality reduc- 

ion facilitates, among others, classification, visualization, and com- 

ression of high-dimensional data [55] . There are different dimen- 

ionality reduction approaches but Principal Component Analysis 

PCA) is probably the most popular multivariate statistical tech- 

ique used in almost all scientific disciplines [56] , including neu- 

oscience [57] . 

PCA in particular is a linear transformation of the original 

ataset in an orthogonal coordinate system in which axis coordi- 

ates (principal components) correspond to the directions of high- 

st variance sorted by importance. To compute this transformation, 

ach row vector x i of the original dataset X is mapped to a new

ector of principal components t i = ( t 1 ,…, t l ), also called scores, 

sing a p-dimensional coefficient vector w j = ( w 1 ,…, w p ): 

 i = x i · w j i = 1 , . . . , n j = 1 , . . . , l 

For dimension reduction: l < p . 

To maintain the model’s performance as fair and unbiased as 

ossible, PCA is computed only for training sets X training , indepen- 

ently for each fold inside the cross-validation procedure. Once 

CA for the corresponding training set is computed and the model 

s trained, the exact same transformation is applied to the test set 

 test (including centering, μtraining ). In other words, the test set 

s projected onto the reduced feature space obtained during the 

raining stage. According to the former equation, this projection is 

omputed as follows: 

 test = 

X test − μtraining 

W 

′ 
training 

To compute this nested implementation of the PCA algorithm, 

VPAlab uses the MATLAB built-in function pca , included in the 

tatistics and Machine Learning Toolbox. However, dimensionality 

eduction techniques such PCA endorse a trade-off between the 

enefits of dimension reduction (reduced training time, reduced 

edundant data and improved accuracy) and the interpretation of 

he results when electrodes are used as features. When PCA is 

omputed, the data is projected from the sensor space onto the re- 

uced PCA features space. This linear transformation implies an in- 

rinsic loss of spatial information, which means that, for example, 

e cannot directly analyze which electrodes are contributing more 

o decoding performance. The default parameters for this proce- 

ure can be modified in the MVPAlab configuration file as follows: 

cfg.dimred.flag = true; 
cfg.dimred.method = ’pca’; 
cfg.dimred.ncomp = 5; 
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.2.8. Classification algorithms 

Classification algorithms are the cornerstone of decoding anal- 

ses. These mathematical models play the central role in multi- 

ariate analyses: detect subtle changes in patterns in the data that 

re usually not detected using less sensitive approaches. Different 

lassification algorithms have been used to achieve this goal, from 

robabilistic-based models such as Discriminant Analyses (DA), Lo- 

istic Regressions (LR) or Naïve Bayes (NB) to supervised learning 

lgorithms such Support Vector Machine (SVM). 

For the time being, MVPAlab Toolbox implements two of the 

ost commonly employed models in the neuroscience literature, 

upport Vector Machines and Discriminant Analysis in their linear 

nd non-linear variants. 

The classification model employed for the decoding analysis can 

e specified in the configuration file as follows: 

cfg.classmodel.method = ’svm’; 
cfg.classmodel.method = ’da’; 
Both classification approaches are based on MATLAB built-in li- 

raries for support vector machines and discriminant analyses. A 

rief mathematical description for both models can be found be- 

ow. Please see the MATLAB documentation of fitcsvm and fitcdiscr 

unctions for further details. 

Support Vector Machine: Support Vector Machine (SVM) pro- 

ides a theoretically elegant, computationally efficient, and very 

ffective solution for many practical pattern recognition problems 

58–60] . For that reason, SVM is broadly employed in M/EEG stud- 

es. Intuitively, for binary classification problems, during the train- 

ng stage this algorithm searches for an optimal hyperplane max- 

mizing the separation between this hyperplane and the closest 

ata points of each class. These data points are called support vec- 

ors . The separation space is called margin and is defined as 2/ ‖ w ‖ ,
nd it does not contain any observation for separable classes, as 

hown in Fig. 3 (a). Thus, the linear SVM score function is defined 

s follows: 

f ( x ) = x T w + b 

here the input vector x is an observation, the vector w contains 

he coefficients that define an orthogonal vector to the hyperplane 

nd b is the bias term. To formalize the optimization problem (that 

s, to find the optimal hyperplane that maximizes the margin), sev- 

ral constraints should be defined. Therefore, any given sample will 

e correctly classified as long as: 

 

� w + b ≥ +1 for positive ( + ) samples 

 

� w + b ≤ −1 for negative ( −) samples 

Introducing y j = { + 1, −1} for positive and negative samples, 

espectively, the two former equations can be rewritten for math- 

matical convenience as follows: 

 j f 
(
x j 

)
≥ 1 for any training sample j ∈ { 1 , . . . , n } 

This is the decision rule for separable classes. When the classes 

re not perfectly separable, the algorithm imposes a penalty intro- 

ucing positive slack variables ξ j > 0 for each observation on the 

rong side of the hyperplane. For those observations that are cor- 

ectly placed: ξ j = 0 . Consequently, non-separable data impose a 

rade-off between margin maximization and the total number of 

onstraint violations. Now, the optimization problem reads as fol- 

ows: 

rg w 

min 

1 

2 

‖ w ‖ 

2 + C 

n ∑ 

j=1 

ξj 

ith respect to w and b and subject to: 

 j : y j f 
(
x j 

)
≥ 1 − ξj and ∀ j : ξj ≥ 0 
8 
The parameter C is a constant which modulates the trade-off

etween the training error and the complexity of the model. A 

earch-grid-based optimization of the misclassification cost param- 

ter C can be enabled and computed using five-fold CV for the 

raining set on the configuration file as follows: 

cfg.classmodel.optimize.flag = true; 
For some classification scenarios, it is not always possible to 

nd an optimal criterion for class separation using linear classi- 

ers. To solve this problem, original data from the input space N 

an be mapped into a high dimensional feature space F using a 

apping function ϕ: 
→ . Therefore, the decision equation is now 

efined as follows: 

f ( x ) = φ
(
x T 

)
w φ + b 
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Fig. 4. Kernel trick graphical representation : original data in the input space is 

not linearly separable. This data points can be projected into a high-dimensional 

space using the mapping function ϕ. In this new feature space, classes became sep- 

arable using linear approaches. 

n

d

o

e

g

G

n  

n

d

i

t

s

b

i

(

p

c

y

w

b  

s

w

 

b

P

i

c

d

c

μ
a

d

h

P

i

2

e

k

m

a

r

t

t

r

f

t

i

s

e

t

p

t

f

w

h

r

c

d

2

m

f

t

r

m

b

i

c

m

m

m

(

p

m

s

e

o

t

t

p

However, the application of the transformation function ϕ is 

ot explicitly needed. Since the hyperplane optimization problem 

epends on nothing but pairwise dot products (e.g. x 1 • x 2 ), we 

nly need a set of kernel functions that meet the following prop- 

rty: K ( x 1 , x 2 ) = 〈 ϕ( x 1 ), ϕ( x 2 ) 〉 . 
This class of function includes, among others, polynomial or 

aussian kernels: 

 ( x 1 , x 2 ) = ( 1 + x 1 x 2 ) 
p G ( x 1 , x 2 ) = e −‖−x 1 −x 2 ‖ 2 

The mentioned variant of the initial mathematical approach for 

on-linear classifiers is known as kernel trick ( Fig. 4 ) and it retains

early all the simplicity and benefits of linear approaches, making 

ata linearly separable in the feature space F . However, in decod- 

ng analyses, linear approaches are normally preferred not just for 

heir simplicity, but also for yielding comparable performance re- 

ults in several applications [61] . 

MVPAlab uses linear classifiers for decoding analysis by default, 

ut other kernel functions for non-linear classification can be spec- 

fied in the MVPAlab configuration file as follows: 

cfg.classmodel.kernel = ’linear’; 
cfg.classmodel.kernel = ’gaussian’; 
cfg.classmodel.kernel = ’rbf’; 
cfg.classmodel.kernel = ’polynomial’; 
Discriminant analysis: Prediction using Discriminant Analysis 

DA), see Fig. 3 (b), is based in three different metrics: posterior 

robability, prior probability and cost. Thus, the classification pro- 

edure tries to minimize the expected classification cost: 

ˆ  = arg min 

K ∑ 

k=1 

ˆ P (k | x)C(y | k) 

here ˆ y is the predicted classification, K corresponds to the num- 

er of classes, ˆ P (k | x ) is the posterior probability of class k for ob-

ervation x and C(y|k) is the cost of classifying an observation as y 

hen its true class is k . 

Being P ( k ) the prior probability of class k , the posterior proba-

ility that an observation x belongs to class k is: 
ˆ P (k | x ) = 

P(x | k)P(k) 
P(x) 

where: 

 (k | x ) = 

1 √ 

( 2 π) 
d | �k | 

exp 

(
−1 

2 

( x − μk ) �
−1 
k ( x − μk ) 

T 
)

s the multivariate normal density function, being �k the D -by- d 

ovariance matrix and μk the 1-by- d mean. Please see the MATLAB 

ocumentation for further details. 
9 
While Linear Discriminant Analyses (LDA) assumes that both 

lasses have the same covariance matrices �k and only the means 

k vary, for Quadratic Discriminant analyses (QDA), both means 

nd covariance matrices may vary. Thus, decision boundaries are 

etermined by straight lines in LDA and by conic sections (ellipses, 

yperbolas or parabolas) for QDA. 

Linear Discriminant analysis is configured by default in MV- 

Alab Toolbox but, as for SVM, this kernel function can be modified 

n the configuration file as follows: 

cfg.classmodel.kernel = ’quadratic’; 

.2.9. Cross-validation 

In prediction models, cross-validation techniques are used to 

stimate how well the classification algorithm generalizes to un- 

now data. Two popular approaches for evaluating the perfor- 

ance of a classification model on a specific data set are k-fold 

nd leave-one-out cross validation [62] . In general, these techniques 

andomly split the original dataset into two different subsets, the 

raining set X training : 1 − 1/K percent of the exemplars, and the 

est set X test : 1/K percent of the exemplars. This procedure is 

epeated K times (folds), selecting different and disjoint subsets 

or each iteration. Thus, for each fold, the classification model is 

rained for the training set and evaluated using exemplars belong- 

ng to the test set. The final classification performance value for a 

ingle timepoint is the mean performance value for all iterations. 

When K and the total number of exemplars (instances) are 

qual, this procedure is called leave-one-out cross-validation. Here, 

he classification model is trained with all but one of the exem- 

lars and evaluated with the remaining exemplar. By definition, 

his approach is computationally demanding and time consuming 

or large datasets, and for that reason it is usually employed only 

ith small sets of data. Additionally, the leave-one-out procedure 

as been proved to yield unstable and biased results, which makes 

andom splits methods the preferred alternative [63] . 

The cross-validation procedure can be tuned in the MVPAlab 

onfiguration file as follows: 

cfg.cv.method = ’kfold’; 
cfg.cv.nfolds = 5; 
If ( .method = ’loo’) the number of folds is automatically up- 

ated to match the total number of exemplars for each participant. 

.2.10. Performance metrics 

(1) Mean accuracy is usually employed to evaluate decoding 

odels’ performance in neuroscience studies [64] . This metric is 

ast, easy to compute and is defined as the number of hits over 

he total number of evaluated trials. By default, MVPAlab Toolbox 

eturns the mean accuracy value as a measure of decoding perfor- 

ance. Nevertheless, in situations with very skewed sample distri- 

utions, this metric may generate systematic and undesired biases 

n the results. Other performance metrics, such as the balanced ac- 

uracy have been proposed to mitigate this problem [65] . 

Accuracy values can be complemented with the (2) confusion 

atrices , which are very useful for binary classification but even 

ore so for multiclass scenarios. In machine learning, a confusion 

atrix allows the visualization of the performance of an algorithm 

see Fig. 5 ), reporting false positives (FP), false negatives (FN), true 

ositives (TP), and true negatives (TN). To this end, a confusion 

atrix reflects the predicted versus the actual classes. Rows corre- 

pond to true class and columns to predicted classes. Thus, the el- 

ment CM i,j indicates the number (or the proportion) of exemplars 

f class i classified as class j . Other interesting and more informa- 

ive performance metrics available in MVPAlab are derivations of 

he confusion matrix: 

(3) Precision PR = TP/(TP + FP) : proportion of trials labeled as 

ositive that actually belong to the positive class. 
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Fig. 5. Confusion matrix. Example of a confusion matrix returned by MVPAlab 

Toolbox for a binary classification scenario. 
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(4) Recall (also known as sensitivity ) R = TP/(TP + FN) : propor-

ion of positive trials that are retrieved by the classifier. 

(5) F1-score F1 = 2TP/(2TP + FP + FN) : combination of precision 

nd recall in a single score through the harmonic mean. 

Nonetheless, nonparametric, criterion-free estimates, such as 

he Area Under the ROC Curve (AUC), have been proved as a bet- 

er measure of generalization for imbalanced datasets [66] . This 

urve is used for a more rigorous examination of a model’s per- 

ormance. The AUC provides a way to evaluate the performance 

f a classification model: the larger the area, the more accurate 

he classification model is. This metric is one of the most suitable 

valuation criteria, as it shows how well the model distinguishes 

etween conditions, by facing the sensitivity (True Positive Rate 

TPR)) against 1-specificity (False Positive Rate (FPR)), defined as 

ollows: 

UC = 

∫ 1 

0 

ROC ( s ) ds 

To compute the AUC and the ROC curve MVPAlab utilizes the 

ATLAB built-in function perfcurve , included in the Statistics and 

achine Learning Toolbox. 

By default, MVPAlab only returns the mean accuracy, although 

ther performance metrics can be enabled in the configuration file 

s follows: 

cfg.classmodel.roc = false; 
cfg.classmodel.auc = false; 
cfg.classmodel.confmat = false; 
cfg.classmodel.precision = false; 
cfg.classmodel.recall = false; 
cfg.classmodel.f1score = false; 
Users should be aware that enabling several performance met- 

ics will significantly increase the computation time and memory 

equirements to store the results. 

.2.11. Parallel computation 

The MVPAlab Toolbox is adapted and optimized for parallel 

omputation. If the Parallel Computing Toolbox (MATLAB) is in- 

talled and available, MVPAlab can compute several timepoints 

imultaneously. Therefore, the computational load is distributed 

mong the different CPU cores, significantly decreasing the pro- 

essing time. This feature becomes critical specially when the user 

s dealing with large datasets and needs to compute several thou- 

and of permutation-based analyses. Parallel computation is dis- 

bled by default but can be enabled in the MVPAlab configuration 

le as follows: 

cfg.classmodel.parcomp = true; 

.3. Importing data and feature extraction 

To obtain the classification performance in a time-resolved way, 

he epoched M/EEG data must be prepared for the classifica- 
10 
ion process. During the feature extraction step, feature vectors 

re defined as a selection/combination of variables of the original 

ataset. Typical multivariate analyses use the raw voltage of the 

ignal as a feature for the classification, but other characteristics, 

uch the power envelope of the signal, can also be used as fea- 

ures. These feature vectors are extracted as shown in Fig. 6 . For 

ach participant, time-point and trial, two feature vectors (one for 

ach condition or class) are generated, consisting of the raw po- 

ential (or any other feature such the power envelope) measured 

n all electrodes ( Fig. 7 ). 

Once MVPAlab is initialized and the analysis configura- 

ion parameters are defined in cfg_file.m , the function 

vpalab_import(cfg) imports the original dataset and returns 

n updated version of the configuration structure ( cfg ), the pre- 

rocessed data ( data ) and feature vectors ( fv ): 
% Initialize MVPAlab toolbox and run cfg 

ile: 
cfg = mvpalab_init(); 
run cfg_file.m 
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Fig. 7. Data structure of the result file. Performance values are stored in 1 x timepoint x subject matrices. Group-level performance values can be calculated computing 

the mean across the third dimension. 
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Fig. 8. Temporal generalization matrix: the classification model is trained with 

data at certain time point (black square). This model is then tested along the re- 

maining time points (gray square), repeating this process for each time point inside 

the epoch. 
% Import data and extract feature vectors: 
[cfg,data,fv] = mvpalab_import(cfg); 
The feature vector and data variables are cell arrays structured 

s follows: [ 1 x subjects ]. Each cell in fv contains a data ma-

rix ( X ) with the feature vectors of individual subjects [ trials 
 features x timepoints ] and a logical vector ( Y ) includ- 

ng the true labels of the subject‘s dataset. The data variable con- 

ains, for each condition, a data matrix including the preprocessed 

ataset [features x timepoints x trials] . 

.4. Type of analysis 

The MVPAlab Toolbox computes two main analyses: time- 

esolved Multivariate Pattern Analysis (TR-MVPA) and time- 

esolved Multivariate Cross-Classification (TR-MVCC). Different 

ypes of analyses such the Temporal Generalization, the Feature 

ontribution Analysis or the Frequency Contribution Analysis are 

erived from them. 

.4.1. Time-resolved multivariate pattern analysis (TR-MVPA) 

Multivariate Pattern Analyses, also known as decoding analy- 

es, comprise a set of machine learning models that extract in- 

ormation patterns from multi-dimensional data. One of the most 

emarkable advantages of these multivariate over univariate tech- 

iques is its sensitivity in detecting subtle changes in the patterns 

f activations, considering information distributed across all sen- 

ors simultaneously. 

To compute a time-resolved Multivariate Pattern Analysis, a 

lassification model is trained and cross-validated for each time 

oint and participant individually, extracting different performance 

etrics according to the cfg structure (please see Fig. 6 ) . All of

his process is coded in the function mvpalab_mvpa(cfg,fv) , 
hich computes the decoding analysis completely: 

% Import data and extract feature vectors: 
[cfg,data,fv] = mvpalab_import(cfg); 
% Compute MVCC analysis: 
[result,cfg] = mvpalab_mvpa(cfg,fv); 
This function returns an updated version of the configuration 

tructure ( cfg ) and the result variable ( result ). Performance val- 

es are stored in data matrices [1 x time x subject] inside 

he result variable as shown in Fig. 7 . 

For example, the time-resolved accuracy values can be ex- 

racted from result .acc . Other class-specific performance met- 

ics such as f1-score, recall or precision are stored for each condi- 

ion in: 

result.f1score.condition_1 
result.f1score.condition_2 
result.f1score.mean 

.4.2. Time-resolved multivariate cross-classification (TR-MVCC) 

As mentioned before, the former MVPA technique has the abil- 

ty to detect subtle differences in brain activation patterns. Thus, 

his powerful capacity could be used to study how these patterns 

re consistent across different cognitive contexts. In general, the 

onsistency of the information across different sets of data can be 
11 
nalyzed with these techniques. To this end, classification models 

re trained with one set of data and the consistency is assessed 

y testing these models with another data sets, belonging to a dif- 

erent experimental condition. This technique is called Multivariate 

ross-Classification (MVCC) [67] and is growing in popularity in re- 

ent years [68–70] . 

It is important to stress that different results can be obtained 

epending on which set is used for training and which one for 

esting (Train: A → Test: B or Train: B → Test: A ). This is called 

lassification direction. The observation of classification direction 

symmetries in MVCC can be explained by several and very dif- 

erent phenomena, including complex neurocognitive mechanisms 

r a simple signal-to-noise ratio difference across datasets. For this 

eason, reporting results in both directions is highly recommended 

71] . By default, MVPAlab computes and reports both directions 

eparately. 

To compute the MVCC analysis, the function mvpalab_mvcc 
hould be called after the feature extraction stage: 

% Import data and extract feature vectors: 
[cfg,data,fv] = mvpalab_import(cfg); 
% Compute MVCC analysis: 
[result,cfg] = mvpalab_mvcc(cfg,fv); 
Similar to previous analysis, this function returns an updated 

ersion of the configuration structure and the results variable. In 

his case, time resolved accuracy values are stored for both classi- 

cation directions in: 

result.acc.ab 
result.acc.ba 

.4.3. Temporal generalization matrix 

To evaluate the stability of brain patterns along time, temporal 

eneralization analyses are commonly used. To obtain the temporal 

eneralization matrix, the model is trained in a specific temporal 

oint, testing its ability to discriminate between conditions in the 

hole temporal window. This process is then repeated for every 

imepoint thus obtaining the final decoding accuracy matrix (see 

ig. 8 ). An above-chance discrimination rate outside the diagonal 
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Fig. 9. Sliding filter analysis diagram. This analysis compares in a time-resolved 

way the classification performance between the original dataset and a filtered-out 

version in which a certain frequency band has been removed. This procedure is re- 

peated for each frequency band (step) returning a classification performance differ- 

ence map which indicates how each frequency band contributes to the classification 

performance. 
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f the matrix suggests that the same activity pattern is sustained 

n time. This phenomenon is usually interpreted as a reactivation 

f neural representations [66] . Therefore, if there is no evidence 

f temporal generalization, different patterns of activity can be in- 

erred [57] . However, a recent study demonstrated that this inter- 

retation is not always valid, suggesting that this phenomenon can 

e explained as an artefact of the manner in which the decoding 

ccuracy provided by different components of the signal combine 

o bring about the overall decoding accuracy [72] . 

Regardless of the previously selected type of analysis (MVPA or 

VCC), the calculation of the temporal generalization matrix can 

e enabled in the MVPAlab configuration structure as follows: 

cfg.classmodel.tempgen = true; 

.4.4. Feature contribution analysis 

Usually, classification algorithms are treated as black-boxes. 

owever, highly useful information can be extracted out under 

pecific circumstances. For example, the value of a feature weight, 

btained after the training process of SVM models, is sometimes 

orrectly interpreted as a measure of its contribution to the model 

ecision boundary. In other words, it is a measure of its impor- 

ance. As shown in Fig. 3 , the feature weight vector represents 

he coefficients of ω, which is an orthogonal vector to the separa- 

ion hyperplane. However, as mentioned above, this is valid under 

ertain scenarios (e.g. linear classifiers, use of the same scale for 

ll features, no data transformations such PCA, etc.). Even meeting 

ll these requirements, the interpretation of raw feature weights 

an lead to wrong conclusions regarding the origin of the neu- 

al signals of interest. A widespread misconception about features 

eights is that channels with large weights should be related to 

he experimental condition of interest, which is not always jus- 

ified [73] . In fact, large weight amplitudes can be observed for 

hannels not containing the signal of interest and vice versa. To 

olve this problem, Haufe et al. [73] proposed a procedure to trans- 

orm these feature weights so they can be interpreted as origin of 

eural processes in space, which leads to more accurate predic- 

ions in neuroscience studies. 

This useful procedure is implemented in the MVPAlab Toolbox. 

uring any decoding analysis, MVPAlab extracts and saves the raw 

eight vectors and its Haufe correction in a time-resolved way. 

hus, the contribution (or importance) of each electrode to the 

lassification performance can be evaluated at any given timepoint. 

dditionally, and only if channel location information is available, 

VPAlab can create animated plots representing the evolution of 

he distribution of weights over a scalp template. This analysis 

an be computed at group level or only for a specific participant. 

lease, see Section 3 Result for further details. 

Feature contribution analysis is disabled by default but can be 

nabled in the configuration file as follows: 

cfg.classmodel.wvector = true; 

.4.5. Frequency contribution analysis 

The contribution of different frequency bands to the overall de- 

oding performance can be assessed in MVPAlab through an ex- 

loratory sliding filter approach. To this end, the original EEG sig- 

al can be pre-filtered using a band stop sliding FIR filter. There- 

ore, different frequency bands can be filtered-out of the original 

EG data, producing new filtered versions of the original dataset. 

he former time-resolved multivariate analysis is now computed 

or each filtered-out version of the data. The importance of each 

ltered-out band is quantified computing the difference maps in 

ecoding performance between the filtered and the original de- 

oding results. Accordingly, if the classification performance at 

ny given point is higher for the original signal compared to the 

ltered-out version, then the removed frequency band contains rel- 
12 
vant information used by the classification algorithms to discrim- 

nate between conditions. This procedure is illustrated in Fig. 9 . 

By definition, this analysis can be computed in a time-resolved 

anner (without temporal generalization) and using only the 

ean accuracy or the AUC as performance metric. 

Several parameters should be defined in the MVPAlab configu- 

ation structure to compute the sliding filter procedure: 

cfg.sf.flag = true; 
cfg.sf.metric = 'auc'; 
cfg.sf.lfreq = 0; 
cfg.sf.hfreq = 40; 
cfg.sf.fspac = ’log’; 
cfg.sf.nfreq = 40; 
Sliding filter analysis can be enabled or disabled setting the 

onfiguration variable ( .flag ) to true or false. The ( .lfreq ) 
nd ( .hfreq ) variables define the frequency limits in which the 

nalysis will be computed. As mentioned before, mean accuracy 

 .metric = ‘acc’) or AUC ( .metric = ‘auc’) can be selected as 

erformance metrics for this analysis. The number of individual 

requency bands that will be removed from the original dataset 

frequency resolution) is defined by ( .nfreq ). 
Each of these frequency bands can be linear 

 . fspac = ’lin’ ) or logarithmically ( .fspac = ’log’ ) 
paced as shown in Fig. 10 . On the one hand, if the frequency

ands are linearly spaced, the frequency resolution is equally dis- 

ributed across the entire spectrum. On the other hand, a higher 

requency resolution is found in the low part of the spectrum if 
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Fig. 10. Removed frequencies: magnitude response for both linear and logarithmi- 

cally spaced band-stop sliding filters. 60 frequency bands, 1408 filter order, Black- 

man window, 2 Hz overlapped bandwidth. 
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he frequency bands are logarithmically spaced. This is especially 

nteresting for investigations focusing in the study of the lower 

art of the M/EEG spectrum ( α, β and θ frequency bands). 

The filter design parameters such as filter type ( . ftype ), fil- 

er bandwidth ( .bandwidth ), window type ( .wtype ), filter or- 

er ( .order ), and others, can also be tuned in the configuration 

le as follows: 

cfg.sf.ftype = ’bandstop’; 
cfg.sf.wtype = ’blackman’; 
cfg.sf.bw = 2; 
cfg.sf.hbw = cfg.sf.bw/2; 
cfg.sf.order = 1408; 
The filter design and filtering process employed by MVPAlab is 

ased on the EEGlab built-in function pop_firws 

Digital filters usually affect brain signals and are commonly ap- 

lied at many stages from the data acquisition to the final publi- 

ation. Many undesired events including temporal blurring or sig- 

al delays may occur, which may lead to incorrect interpretation of 

he results. Therefore, an appropriate filter design becomes crucial 

o prevent (or mitigate) these signal distortions. Please see [ 74 , 75 ]

or a deeper understanding of how brain signals can be affected by 

ltering processes. 

The complete sliding filter analysis pipeline is coded in both 

vpalab_import(cfg) and mvpalab_sfilter( cfg ) func- 

ions: 

cfg = mvpalab_import(cfg); 
% Compute sliding filter analysis: 
[cfg,diffMap,stats] = mvpalab_sfilter(cfg); 
Due to the elevated RAM requirements of this analysis, the im- 

ort function stores each filtered versions of the original dataset in 

 specific folder of your hard drive for each participant individu- 

lly. The user should consider using an external hard drive for this 

igh-demand analysis. 

Then, as explained before, the function mvpalab_sfilter() 
omputes and compares the decoding performance of differ- 

nt metrics between the original dataset and each filtered ver- 

ion, returning a difference map structure diffMap . The re- 

ult matrices [freqs x timepoints x subjects] for spe- 
13 
ific performance metrics can be extracted using dot notation (e.g. 

iffMap .auc ). Only the mean accuracy and the area under the 

urve are implemented for this analysis. 

Additionally, if enabled, this function also implements the sta- 

istical permutation analysis, returning the stats variable, which 

ncludes the statistically significant clusters (Please see Section 

.5 Cluster-based permutation testing for a detailed explanation). 

.5. Cluster-based permutation testing 

In order to draw statistical inferences at the group level, MV- 

Alab implements a non-parametric cluster-based permutation ap- 

roach, as proposed by Stelzer [76] for fMRI studies. This method 

as been adapted to electroencephalography data and can be com- 

uted for different performance metrics: mean accuracy, area un- 

er de curve, F1 score, recall and precision. 

Using a combined permutation and bootstrapping technique, 

he null distribution of the empirical decoding accuracy is ob- 

ained. By default, at the single-subject level, 100 randomly per- 

uted accuracy maps are generated. Then, one of the previously 

alculated accuracy maps for each participant is randomly drawn. 

his selection is group-averaged and the procedure is repeated 10 5 

imes, generating 10 5 permuted group accuracy maps. Next, for 

ach timepoint, the chance distribution of accuracy values is es- 

imated. The above and below chance thresholds are determined 

99.9th percentile of the right and left-tailed area of the distribu- 

ion), which correspond to a very low probability of obtaining sig- 

ificant results by chance ( Fig. 11 ). Then, clusters of time-points 

xceeding the previously calculated threshold in all the 10 5 per- 

uted accuracy maps are collected, generating the normalized null 

istribution of cluster sizes. Finally, a correction for multiple com- 

arisons (False Discovery Rate (FDR)) is applied at a cluster level 

o obtain the smallest cluster size to be considered significant. 

The default parameters for this analysis can be modified in the 

VPAlab configuration file as follows: 

cfg.stats.nper = 100; 
cfg.stats.nperg = 1e5; 
cfg.stats.pgroup = 99.9; 
cfg.stats.pclust = 99.9; 
cfg.stats.shownulldis = true; 
Two different functions coded the beforementioned pipeline: 

% Compute MVCC analysis: 
[result,cfg] = mvpalab_mvpa(cfg,fv); 
% Compute permutation maps: 
[permaps,cfg] = mvpalab_permaps(cfg,fv); 
% Run statistical analysis: 
stats = mvpalab_permtest(cfg,result,permaps); 
First, the function mvpalab_permaps() computes the re- 

uired permuted accuracy maps for each subject, randomly shuf- 

ing the original class labels. Then, mvpalab_permtest() gen- 

rates the null distributions, determines the significance thresh- 

lds, collects significant clusters, computes cluster size distribu- 

ions and corrects for multiple comparisons (FDR) to obtain the 

mallest cluster size to be considered significant. The variable stat 

s returned containing, among others, below and above chance sig- 

ificant clusters: 

stats.clusters.sig % Above chance clusters 
stats.clusters_.sig % Below chance clusters 
Above and below chance clusters are extracted using the MAT- 

AB built-in function bwconncomp included in the Image Process- 

ng Toolbox. 

.6. Result representation pipeline 

In addition to the graphic user interface, MVPAlab implements 

ifferent high-level functions to generate highly-customizable 
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Fig. 11. Accuracy and cluster size null distributions. The vertical line represents the threshold corresponding to a very low probability to obtain significant results by 

chance. These thresholds correspond to a p-value below 0.001 for both distributions. 
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raphical representation of the results. Once the decoding analysis 

s completed and the results files are saved, the graphical repre- 

entation pipeline runs as follows: 

graph = mvpalab_plotinit(); 
First, the function mvpalab_plotinit() generates and re- 

urns a default configuration structure ( graph ) containing all the 

equired configuration parameters. Then, the specific result file to 

e plotted should be loaded: 

load results/time_resolved/acc/result.mat 
Finally, the high-level plotting function returns the graphical 

epresentation of the selected result file: 

mvpalab_plotdecoding(graph,cfg,result,stats); 
The variable stats is optional and contains, among others, the 

tatistically significant clusters. If this variable is not omitted, sig- 

ificant results will be highlighted in the resulting figure. 

Several plotting functions are available for different types of 

nalysis: 

mvpalab_plotdecoding(graph,cfg,result,stats); 
mvpalab_plottempogen(graph,cfg,result,stats); 
mvpalab_plotfreqcont(graph,cfg,result,stats); 
mvpalab_plotfeatcont(graph,cfg,wvector,result)
The mvpalab_plotdecoding() function generates time- 

esolved performance plots, mvpalab_plottempogen() is 

sed for the graphical representation of temporal generaliza- 

ion matrices, mvpalab_plotslidfilt() function generates 

he graphical representation for the sliding filter analysis and 

vpalab_plotfeatcont() can generate topological represen- 
14 
ations and temporal animations of features contribution to the de- 

oding performance. 

To get the best of the MVPAlab Toolbox plotting capabilities the 

se of the graphic user interface is highly recommended. This is 

 fast, flexible and very intuitive manner to design high-quality 

lots. Even so, the same results can be obtained by hand coding 

everal configuration parameters included in the graph configura- 

ion structure. A complete selection of the most useful configura- 

ion parameters and a short explanation is listed below: 

% Time-resolved decoding analysis: 
graph.plotmean = true; % Plot group average 
graph.smoothdata = 5; % Window size for smooth 
graph.stdsem = true; % Plot STD or SEM 
graph.linestyle = ’-’; % Line style 
graph.linewidth = 1; % Line width 
% 2D decoding analysis (TGM or SFILTER): 
graph.clusterLineColor = [0 0 0]; % Cluster 

olor. 
graph.clusterLineWidth = 1; % Cluster width. 
graph.caxis = [.4 .9]; % Color range. 
% Feature contribution analysis: 
graph.weights.type = ’raw’; % Raw or corrected 
graph.weights.anim = true; % Animated/static 

lot 
graph.weights.speed = 0.1; % Animation speed 
graph.weights.start = 400; % Start time (ms) 
graph.weights.end = 450; % End time (ms) 
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Fig. 12. Ten color maps included in MVPAlab Toolbox. 
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graph.weights.sub = 1; % Individual subject 
% Highlight significant result: 
graph.sigmode.points = true; % Points/shade 

lot 
graph.stats.above = true; % Above chance 

lusters 
graph.stats.below = true; % Below chance 

lusters 
graph.sigh = 0.4; % Sig. points height 
% Font, titles, labels and axes limits: 
graph.fontsize = 14; 
graph.title = ’MVPAlab - default figure’; 
graph.ylabel = ’Classifier performance’; 
graph.xlabel = ’Time (ms)’; 
graph.xlim = [-200 1500]; 
graph.ylim = [0 1]; 
% Individual subject plots: 
graph.subject = 3;% Subject idx (individual 

lot) 
Finally, for a correct visualization of the results, ten new color 

radients and colormaps ( Fig. 12 ) have been designed and incor- 

orated to the MATLAB predefined ones. The default MATLAB col- 

rmap can be modified as follows: 

colormap(graph. grads.earth ) 

. Results 

During this section we present the results obtained after testing 

ll the MVPAlab main functionalities with the sample EEG dataset 

resented in Section 2 Materials and Methods . As mentioned, we 

ompiled this sample dataset for illustration purposes, including 

he EEG data of two main conditions (or classes) and four sub- 

onditions of three different participants. Readers interested on the 

esults obtained for the entire sample should refer to the original 

ublication [44] . 

Time-resolved decoding analysis . Fig. 13 (a) depicts the result of 

 time-resolved decoding analysis comparing the classification per- 

ormance of two models, linear support vector machine and linear 

iscriminant analysis. Shaded areas represent the Standard Error of 

he Mean (SEM) of the averaged performance across participants. 

dditionally, single-subject plots are depicted in dashed and dot- 

ed lines. Statistically significant areas for each classification model 

re highlighted using horizontal color bars. As shown, SVM outper- 

orms LDA by obtaining higher performance and a wider significant 

indow. 

To compute this MVPA analysis, classification models were 

rained using smoothed (5 timepoint moving average) and normal- 
15 
zed supertrials (8 trials randomly averaged). No PCA was com- 

uted, so raw voltage values were extracted from the 64 electrodes 

s features in balanced datasets. 

Dimensionality reduction . Fig. 13 (b) shows the time-resolved 

lassification performance (f1-score) averaged across participants 

f an SVM classifier, using different number of PCA components 

s features. As shown, the f1-score increases with the number of 

eatures. Significant results were obtained employing just the first 

CA component. When only the first nine PCA components were 

mployed as features, the classification model showed comparable 

erformance results to those obtained when no PCA is computed, 

s depicted in Fig. 13 (a). Computation time is in fact reduced when 

he dimension of the feature space is smaller, however, when PCA 

ransformation is computed, the original spatial information is lost. 

Supertrial generation. Fig. 13 (c) depicts the classification perfor- 

ance when the input dataset was reduced by randomly averag- 

ng different numbers of trials belonging to the same condition. 

his trial averaging process generates supertrials with an increased 

ignal-to-noise ratio. As shown, the SVM model performance in- 

reases with the number of trials averaged, however, the variabil- 

ty of the data (the standard error of the mean) also does due to 

he reduced input dataset. Thus, this figure shows wider significant 

indows when no or few trials are averaged. 

Power envelope as feature. The comparison between the perfor- 

ance of classifiers using different EEG signal characteristics as 

eatures is showed in Fig. 13 (d) . First, the peak and analytic up- 

er envelopes of the EEG signal were calculated (5 timepoints win- 

ow). Then, feature vectors were extracted from these power sig- 

als. Significantly lower performance rates were obtained for the 

nalytic power envelope. Although the main goal of this article is 

ot to address this type of questions, there seems to be a plausible 

ause favoring this outcome: the phase of the EEG signa may con- 

ain critical information to discriminate between the two experi- 

ental conditions employed. This is due to the fact that the in- 

tantaneous phase information contained within the original EEG 

ignal is discarded during the analytic power envelope computa- 

ion (see Appendix B for further details). This approximation is em- 

loyed in recent literature [ 72 , 77 ] to remove instantaneous phase 

rom certain brain oscillations and to study how this phase infor- 

ation contributes to decoding performance. 

Feature contribution analysis. During the training process of the 

revious linear SVM model, the feature weights were calculated 

or each timepoint and subject and corrected according to Haufe’s 

ethod [73] . In order to show the activity distribution contribut- 

ng to decoding accuracy, the feature weights were averaged across 

articipants and three different tem poral windows. First, when the 

lope of the decoding curve becomes positive, between 50–150 ms. 

hen, between 350–450 ms, when decoding performance peaks, 

nd finally between 850–950 ms, at the end of the significant 

indow for LDA. A corrected version of the training weights dis- 

ribution for these three different time windows is depicted in 

ig. 13 (e) . Finally, Fig. 13 (f) shows the weight amplitude of each 

hannel sorted by its importance, averaged across participants dur- 

ng the 350–450 ms temporal window. 

Temporal generalization analysis . Fig. 14 (a) shows the tempo- 

al generalization matrix of the first MVPA analysis, Fig. 13 (a), 

epresenting the performance value (AUC) for each combination 

f training-test time points. Above-chance significant clusters are 

ighlighted using black lines. This approach is an extension of 

ime-resolved decoding, which is an indication of how EEG pat- 

erns vary or persist in time. Different performance metrics, such 

s the area under the curve or the mean accuracy are usually re- 

orted, generating temporal generalization patterns that resembles 

hose shown in Fig. 14 (a). This way, above-chance performance 

lusters outside the diagonal of the matrix are interpreted as a sign 

f temporal stability of certain activity patterns along time. 
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Fig. 13. Time-resolved MVPA results. (a) Decoding performance (f1-score) for different classification models at a group-level: support vector machine vs. linear discriminant 

analysis. Single subject plots are represented in dashed and dotted lines. Significant clusters are highlighted using horizontal colored bars. Shaded areas represent the standard 

error of the mean. (b) Group-level decoding performance for different number of features when PCA is applied. (c) Group-level decoding performance as a function of the 

selected number of trials to average. (d) Group-level decoding performance when different power envelopes are extracted and employed as features instead of the raw 

voltage. (e) Group-level weight distribution (corrected) for three different time windows: T1: 50–150 ms, T2: 350–450 ms and T3: 850–950 ms. (f) Weights’ amplitude for 

each channel sorted by importance. 
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However, in-depth examinations revealed interesting behaviors 

f classification models, providing extra information about how in- 

ividual conditions are classified, especially in those areas in which 

o temporal generalization occurs. Fig. 14 (b) depicts the sensitivity 

recall) of the classification model for each condition and subject. 

omplementary generalization patterns are observed for individual 

onditions, revealing extreme sensitivity values especially when no 

emporal generalization occurs. Some examples are presented and 

nalyzed using the corresponding confusion matrices. As seen in 

ig. 14 (c) , the confusion matrix CM1 indicates that, for this spe- 

ific temporal point, no test samples belonging to condition_a were 

orrectly predicted as condition_a , leading to a sensitivity value of 

 for this condition. By contrast, all samples belonging to condi- 

ion_b were correctly labelled (in addition to all samples belonging 

o condition_a incorrectly predicted as condition_b) which leads to 

 sensitivity value of 1. This behavior is frequent across subjects 

nd timepoints, reflecting the inability of the classifier to correctly 
16 
redict information in several areas, which is a clear sign of the 

bsence of temporal persistence of patterns. 

Multivariate Cross-Classification analysis. Fig. 15 (a) depicts the 

esult of a time-resolved multivariate cross-classification analysis. 

he classification model was trained with condition_1 vs. condi- 

ion_2 and condition_3 vs. condition_4 were used for testing. This 

rocess was repeated inversely, generating two different decod- 

ng performance curves corresponding to both classification di- 

ections (train: A, test: B and vice versa). Additionally, single 

ubject curves were added to the figure for each classification 

irection. As shown, windows of significant differences are ob- 

ained between 20 0–80 0 ms, indicating that this technique suc- 

essfully shows the consistency of patterns across different sets of 

ata. 

Frequency contribution analysis. A sliding band-stop filter ap- 

roach was followed to study the contribution of each frequency 

and to the overall decoding accuracy. The band-stop FIR filter 
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Fig. 14. Temporal generalization results. (a) Group-level temporal generalization matrix (area under the ROC curve) for an SVM classifier when 8 trials were averaged to 

generate the input dataset. Above-chance significant clusters are highlighted using black lines. (b) Single subject generalization patterns (sensitivity), individually calculated 

for each condition. (c) Confusion matrices CM1 and CM2 for two different timepoints marked in (b). 

Fig. 15. Time-resolved MVCC and frequency contribution analysis results. (a) Group-level decoding performance (F1-score) for both cross-classification directions. Single subject 

plots are represented in dashed and dotted lines. Significant clusters are highlighted using horizontal colored bars. Shaded areas represent the standard error of the mean. (b-c) 

Decoding performance maps when different frequency bands are removed from the original datasets in a linear and logarithmically spaced steps. 
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as designed using the EEGLAB pop_firws function (2 Hz band- 

idth, 0.2 Hz transition band, 2048 filter order, Blackman win- 

ow). The original EEG dataset was pre-filtered (32 overlapped 

requency bands, between 0–30 Hz in linear and logarithmically- 

paced steps) producing 32 new filtered versions of the original 

ignals. The former time-resolved decoding analysis ( condition_a 

s. condition_b ) was conducted for each filtered version and the 

mportance of each filtered-out band was quantified computing 

he difference maps in decoding performance between the filtered 
17 
nd the original decoding results. Figs. 15 (b) and (c) show the re- 

ults of the sliding filter analysis for linear and logarithmically- 

paced steps respectively. As shown, decoding accuracy signifi- 

antly dropped when frequencies up to 6 Hz were filtered-out, 

uggesting that the studied phenomenon relies on processes op- 

rating in the Delta and Theta frequency bands. Significant clusters 

ere calculated applying the proposed cluster-based permutation 

est to filtered-out datasets, generating accuracy null distributions 

or each time-frequency point. 
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Table 1 

Total number of trials per subject and condition . 

subject_01.mat subject_02.mat subject_03.mat 

condition_a 468 413 434 

condition_b 403 399 396 

condition_1 212 193 190 

condition_2 218 202 212 

condition_3 191 206 206 

condition_4 250 211 222 

Table 2 

Processing time in seconds for different task and platforms . 

Time 

(s) 

Windows 10 (64 bits) MacOS 11.3 (64 bits) 

Single Parallel Single Parallel 

T1: TR-SVM 15.58 4.03 15.18 5.27 

T1: TR-LDA 8.63 1.95 10.24 3.04 

T1: TG-SVM 120.88 21.70 102.70 26.42 

T1: TG-LDA 302.72 58.79 279.34 92.37 

T2: TR-SVM 10.73 2.28 10.30 4.04 

T2: TR-LDA 3.80 1.03 4.08 1.43 

T2: TG-SVM 53.24 11.48 49.98 16.43 

T2: TG-LDA 155.69 25.77 127.61 38.49 
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. Discussion 

Despite the MVPAlab Toolbox is freely available, an important 

imitation is that it needs the MATLAB core to be executed, which 

s a proprietary and expensive software. We are aware of the re- 

ent growth of free software alternatives, such Python, in academic 

nvironments. Nevertheless, we built this software under MAT- 

AB due several reasons, including the huge amount of available 

nd well-documented functionalities for this platform, their ac- 

ive user community and its wide implementation in neuroscience 

abs. Even so, there are excellent open source alternatives for those 

sers with no access to a MATLAB license. 

Additionally, the MVPAlab Toolbox is not yet compatible with 

IDS-EEG [78] format, which is a recently developed project for 

lectroencephalography studies, extending the original Brain Imag- 

ng Data Structure [79] (BIDS). Both projects are an excellent ef- 

ort to standardize the way data is stored, increasing accessibility, 

sability and reproducibility of neuroimaging data. We favor these 

rinciples and we are planning to integrate BIDS-EEG format in the 

VPAlab Toolbox in future releases. 

Classification algorithms are the cornerstone of multivariate de- 

oding analyses. However, these powerful techniques suffer from 

yperparameter overfitting, which usually leads to invalid result. A 

ecent study refers to this phenomenon as “overhyping ” [80] and 

roposes several strategies to avoid this problem. Regular cross- 

alidation approaches are commonly employed to mitigate spuri- 

us result in classification accuracies, but it has been proved that, 

n some cases, they are not sufficient [80] . Several strategies, such 

s pre-registration, nested cross-validation [81] , lock box and blind 

nalyses are presented as reliable alternatives to prevent or miti- 

ate overhyping . Unfortunately, the MVPAlab toolbox does not cur- 

ently implement those strategies, but we are further investigating 

hese issues for future releases. Additionally, recent studies [ 82 , 83 ] 

roposes the Statistical Agnostic Mapping (SAM) as an interesting 

lternative to the cross-validation procedures. Particularly in neu- 

oscience, these approaches usually leads to small sample sizes 

nd high levels of heterogeneity when conditions are split into 

ach fold, causing among other things, a large classification vari- 

bility [84] . To address these problems, SAM considered the use of 

he resubstitution error estimate as a measure of decoding perfor- 

ance. The difference between the actual error and the resubstitu- 

ion error (which is a very optimistic measure) is upper-bounded 

y a novel analytic expression proposed in the original article. See 

 82 , 83 ] for further details. Future releases of the MVPAlab Toolbox 

re planned to include this novel classification paradigm, which at 

he moment is under development. 

Furthermore, dimensionality reduction is a crucial step in neu- 

oimaging studies to select the most relevant predictor variables, 

educing the experimental noise and mitigating the small-n-large- 

 problem. These techniques prevent the classification model 

rom overfitting, leading to a better predictions and increasing 

ts generalization capability [85] . Although MVPAlab implements 

rincipal Component Analysis, which is one of the most popu- 

ar dimensionality reduction approaches in neuroscience studies, 

here are different algorithms which have not been implemented 

et. The integration with some of these feature reduction ap- 

roaches, such as Partial Least Square (PLS) [86] , is currently under 

evelopment. 

Regarding to the classification stage, the MVPAlab Toolbox im- 

lements probably two of the most commonly employed classifi- 

ation algorithms in neuroscience literature: Support Vector Ma- 

hines and Discriminant Analysis, in their linear and non-linear 

ersions. However, this configuration may not be enough in cer- 

ain situations. In fact, different software alternatives include many 

ther classification models, such as Logistic Regressions, Naïve 

ayes or ensembles methods. As mentioned, the MVPAlab Toolbox 
18 
s in constant development, these functionalities are planned to be 

mplemented in near future. 

The MVPAlab Toolbox was initially developed for M/EEG analy- 

is. Due to its nature, M/EEG signals provide exceptional temporal 

esolution, but lack spatial resolution. Contrary, other non-invasive 

echniques, such as fMRI, can identify brain activity changes at 

illimetric levels but suffer from poor temporal resolution. To 

vercome this dichotomy, recent trends in the neuroimaging field 

pt for the multimodal data fusion [ 87 , 88 ], which is a step for-

ard towards a better understanding of brain function. These fu- 

ion approaches combine data from different neuroimaging tech- 

iques (M/EEG-fMRI), preserving their strengths while overcoming 

heir weaknesses [89] . Extending the MVPAlab functionality from 

ultivariate M/EEG analyses to multimodal data fusion represents 

ne of the most important lines of development on the MVPAlab 

oadmap. 

There are a myriad of new analyses and techniques that can 

e employed to analyze data of different nature in neuroscience, 

hich is a clear indicator of the fast growth of the field. As 

entioned, MVPAlab Toolbox was initially designed to work with 

poched M/EEG data, extracting the raw potential of the signal and 

omputing time-resolved classification analyses. The latest release 

upports different signal characteristics as features, such as the 

ower envelope or the instantaneous phase of the signal. Recent 

tudies [90] implement different feature engineering techniques, 

oncatenating data from different frequency bands, to improve the 

lassification result. Currently, MVPAlab does not implement these 

trategies. However, MVPAlab can be used as a general-purpose 

lassification tool. Users can adapt and import their own datasets, 

egardless of its nature (source space data, connectivity data or not 

ven M/EEG related signals), and easily perform time-resolved clas- 

ification analyses ( Tables 1 and 2 ). 

. Conclusions 

MVPAlab is a very flexible, powerful and easy-to-use decod- 

ng toolbox for multi-dimensional electroencephalography data, in- 

luding an intuitive Graphic User Interface for creation, configu- 

ation, and execution of different decoding analysis. Not a single 

ine of code is needed. For those users with more coding experi- 

nce, MVPAlab implements high and low-level routines to design 

ustom projects in a highly flexible manner. Different preprocess- 

ng routines, classification models and several decoding and cross- 
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ecoding analyses can be easily configured and executed. MVPAlab 

lso implements exclusive analyses and functionalities, such as par- 

llel computation, significantly reducing the execution time, or fre- 

uency contribution analyses, which studies how relevant informa- 

ion is coded across different frequency bands. MVPAlab also in- 

ludes a flexible data representation utility, which generates ready- 

o-publish data representations and temporal animations. All of 

his combined makes MVPAlab Toolbox a compelling option for a 

ide range of users. 

ode version and availability 

An up-to-date version of the toolbox is freely available in the 

ollowing GitHub repository: 

https://github.com/dlopezg/mvpalab 

We use semantic versioning (e.g. X.Y.Z) to denote different re- 

eases, the most recent being the v1.0.0 version, which is our first 

ublic release including a stable version of the toolbox. The soft- 

are documentation can also be found in our GitHub repository: 

https://github.com/dlopezg/mvpalab/wiki 

MVPAlab toolbox is released under a GNU General Public Li- 

ense (GPL) v.3.0, which allows users to freely use, change and 

hare this software. For further license details please see: 

https://gnu.org/licenses/quick- guide- gplv3 

We encourage all users to collaborate in MVPAlab Toolbox de- 

elopment by submitting their own contributions and improve- 

ents via pull request . To suggest new features, bug report or any 

ther related issues, please use the MVPAlab issue tracker available 

n GitHub in the following link: 

https://github.com/dlopezg/mvpalab/issues 

The sample EEG dataset used in this article is hosted in the 

pen Science Framework project: 

https://osf.io/du6fa 
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ppendix A. Benchmarks and processing time 

The performance comparison between different implementa- 

ions of several classification libraries is out of the scope of this 

rticle. However, processing time for different analysis have been 

easured in Windows and macOS and are reported in the follow- 

ng table: 

Task 1 (T1) consist of a single subject time-resolved decoding 

nalysis and a five-fold cross validation stage, when only the mean 

ccuracy was calculated, ten trial averaging and no dimension- 

lity reduction was computed. In this scenario, different classifi- 

ation algorithms (SVM and LDA) were trained and validated for 
19 
56 ×256 timepoints using 80 observations (trials) and 63 features 

electrodes). 

Task 2 (T2) consist of a single subject time-resolved cross- 

ecoding analysis, when only the mean accuracy was calculated, 

ve trial averaging and no dimensionality reduction was computed. 

oth classification directions were calculated. In this scenario, dif- 

erent classification algorithms (SVM and LDA) were trained and 

alidated for 256 ×256 timepoints using 80 observations (trials) 

nd 63 features (electrodes). 

These tests were computed in two different setups. First, in a 

-Core workstation (Intel Core i7–5820 K CPU @ 3.30 GHz, 32GB 

AM DDR4 @ 2400 MHz) running Windows 10 (64 bits) and MAT- 

AB 2020a (9.8.0.1323502) and finally in a cuad-core MacBook Pro 

Intel Core i7–6820HQ CPU at 2,7 GHz, 16GB RAM LPDDR3 @ 

133 MHz) running macOS Big Sur (64 bits, version 11.3) and MAT- 

AB 2020a (9.8.0.1323502). 

ppendix B. Power envelope and instantaneous phase 

alculation 

Different signal characteristics, such the instantaneous ampli- 

ude or phase, can be easily calculated and extracted in the com- 

lex plane. In order to extract this information from a real-valued 

ignal x(t) (e.g. the electroencephalogram), the following transfor- 

ation can be applied: 

 ( t ) = x ( t ) + j HT [ x ( t ) ] 

Here, z(t) is the complex form of x(t) , also known as the ‘ an-

lytic signal ’, and HT denotes the Hilbert’s Transformation of the 

eal-valued signal, defined as: 

T [ x ( t ) ] = P.V 

[
1 

π

+ ∞ 

∫ 
−∞ 

x ( τ ) 

t − τ
dτ

]

here P.V denote the Cauchy Principal Value of the integral, which 

s required for assigning values to improper integrals values that 

ould otherwise be undefined (the singularity occurs when t = τ ). 

hus, the instantaneous amplitude, also known as power envelope 

 ( t ), or the instantaneous phase ϕ( t ), can be easily extracted from

he analytic signal as follows: 

 ( t ) = | z ( t ) | = 

√ 

x 2 ( t ) + ( HT [ x ( t ) ] ) 
2 

( t ) = ∠ z ( t ) = arctan 

HT [ x ( t ) ] 

x ( t ) 
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