
Computer Methods and Programs in Biomedicine 214 (2022) 106549

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

MVPAlab: A machine learning decoding toolbox for multidimensional

electroencephalography data

David López-García

a , ∗, José M.G. Peñalver a , Juan M. Górriz

b , María Ruz

c

a Mind, Brain and Behavior Research Center, University of Granada, Spain
b Data Science & Computational Intelligence Institute, University of Granada, Spain
c Mind, Brain and Behavior Research Center, Department of Experimental Psychology, University of Granada, Spain

a r t i c l e i n f o

Article history:

Received 28 July 2021

Revised 30 October 2021

Accepted 17 November 2021

Keywords:

Machine learning

Classification

Cross-classification

Decoding

Cross-validation

Multivariate pattern analysis

MVPA

EEG

MEG

MVPAlab toolbox

a b s t r a c t

Background and Objective: The study of brain function has recently expanded from classical univariate

to multivariate analyses. These multivariate, machine learning-based algorithms afford neuroscientists

extracting more detailed and richer information from the data. However, the implementation of these

procedures is usually challenging, especially for researchers with no coding experience. To address this

problem, we have developed MVPAlab, a MATLAB-based, flexible decoding toolbox for multidimensional

electroencephalography and magnetoencephalography data.

Methods: The MVPAlab Toolbox implements several machine learning algorithms to compute multivariate

pattern analyses, cross-classification, temporal generalization matrices and feature and frequency contri-

bution analyses. It also provides access to an extensive set of preprocessing routines for, among others,

data normalization, data smoothing, dimensionality reduction and supertrial generation. To draw statisti-

cal inferences at the group level, MVPAlab includes a non-parametric cluster-based permutation approach.

Results: A sample electroencephalography dataset was compiled to test all the MVPAlab main function-

alities. Significant clusters (p < 0.01) were found for the proposed decoding analyses and different config-

urations, proving the software capability for discriminating between different experimental conditions.

Conclusions: This toolbox has been designed to include an easy-to-use and intuitive graphic user interface

and data representation software, which makes MVPAlab a very convenient tool for users with few or no

previous coding experience. In addition, MVPAlab is not for beginners only, as it implements several high

and low-level routines allowing more experienced users to design their own projects in a highly flexible

manner.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

c

y

s

t

o

v

a

n

n

c

a

o

i

f

c

t

r

s

s

c

t

d

h

0

. Introduction

Historically, the study of brain function employing electroen-

ephalography (EEG) data has relied on classical univariate anal-

ses of amplitudes and delays of different peaks of the average of

everal evoked EEG recordings, commonly called Event-Related Po-

entials (ERPs). The constant development of science and technol-

gy in past decades has allowed researchers and engineers to de-

elop and apply more advanced signal processing techniques, such

s time/frequency analyses, phase clustering, Independent Compo-

ent Analysis (ICA) decompositions [1 , 2], and others. These tech-

iques have been implemented in excellent analysis and prepro-

essing tools, such as EEGLAB [3] , ERPLAB [4] or Fieldtrip [5] , en-
∗ Corresponding author.

E-mail address: dlopez@ugr.es (D. López-García).

1

E

u

ttps://doi.org/10.1016/j.cmpb.2021.106549

169-2607/© 2021 The Authors. Published by Elsevier B.V. This is an open access article u
bling researchers to develop a myriad of studies in a wide range

f areas.

More recently, newer Machine Learning-based algorithms (ML),

n conjunction with advanced neuroimaging techniques, such as

unctional Magnetic Resonance Imaging (fMRI) or Magnetoen-

ephalography (MEG), have gained popularity in neuroscience. This

rend started with studies by Haxby and Norman [6–8] , and other

eference contributions [9–14] , which opened novel avenues of re-

earch on brain function. For years, ML models have been also

uccessfully employed in medical imaging, mainly in the area of

omputer-aided diagnosis [15] . To mention just a few examples,

he use of different ML approaches is mainstream in the study and

etection of several neurological diseases, such as Parkinson [16–

8] , Alzheimer [19–21] , Autism [22–24] , or sleep disorders [25–27] .

ven the recently spread COVID-19 can be successfully diagnosed

sing Artificial Intelligence (AI) in chest radiographies, according
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cmpb.2021.106549
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106549&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dlopez@ugr.es
https://doi.org/10.1016/j.cmpb.2021.106549
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

t

m

i

b

1

o

e

m

m

v

v

t

T

b

b

l

n

t

y

o

g

s

c

h

T

s

B

b

a

1

a

t

t

o

d

i

M

e

i

(

d

t

fi

a

s

c

t

a

a

m

p

t

a

d

i

a

i

p

f

t

h

b

i

p

m

d

i

s

1

u

t

d

(

d

w

c

i

s

b

o

e

P

w

p

U

p

t

i

c

s

m

P

a

t

m

a

t

i

f

i

i

C

c

p

g

E

T

fi

o

c

1

i

t

o preliminary studies [28–30] . However, the recent growth of ML

odels is not limited to neuroscience or medical applications but

s present in a huge range of scientific disciplines in a cross-cutting

asis.

.1. Related work

Multivariate Pattern Analysis (MVPA) usually encompasses a set

f supervised learning algorithms, which provide a theoretically

legant, computationally efficient, and very effective solution in

any practical pattern recognition scenarios. One of the most re-

arkable advantages of these multivariate approaches over uni-

ariate ones is its sensitivity in unveiling subtle changes in acti-

ations associated with specific information content in brain pat-

erns. Several MVPA toolboxes, such as SPM [31] , The Decoding

oolbox (TDT) [32] or Pattern Recognition for Neuroimaging Tool-

ox (PRoNTo) [33] , particularly designed for fMRI studies have

een developed in the past years. Despite the good spatial reso-

ution of the fMRI, the poor temporal resolution of the BOLD sig-

al limits an accurate study of how cognitive processes unfold in

ime. For that reason, the application of multivariate pattern anal-

ses to other neuroimaging techniques with a higher temporal res-

lution, such as EEG or magnetoelectroencephalography (MEG), is

rowing in popularity. With the aim of facilitating the work of re-

earchers from different disciplines, allowing the access to these

omplex computation algorithms, diverse M/EEG-focused toolboxes

ave been developed. The Amsterdam Decoding and Modeling

oolbox (ADAM) [34] , CoSMoMVPA [35] , MVPA-light [36] , The Deci-

ion Decoding Toolbox (DDTBOX) [37] , BCILAB [38] and The Berlin

rain-Computer Interface [39] are excellent examples of MATALB-

ased toolboxes. MNE-Python [40] , Nilearn [41] or PyMVPA [42 , 43]

re other Python-based and open source alternatives.

.2. MVPAlab: an easy-to-use machine learning toolbox for decoding

nalysis

Despite the tremendous effort applied in other implementations

o facilitate researchers the use of these tools (e.g. high-level func-

ions which compute a complete decoding analysis in a few lines

f code), its use is sometimes really challenging, especially for stu-

ents, newcomers or other researchers with profiles with no cod-

ng experience.

Here we present MVPAlab, an easy-to-use decoding toolbox for

/EEG data. So, what makes MVPAlab different from any other

xisting alternatives? The MVPAlab Toolbox has been designed to

nclude an easy-to-use and very intuitive Graphic User Interface

GUI) for the creation, configuration, and execution of different

ecoding analysis. Importantly, this friendly GUI provides access

o an extensive set of computational resources to design, con-

gure and execute the complete pipeline of different decoding

nalyses for multidimensional M/EEG data, including visualization

oftware for data representation. MVPAlab implements several de-

oding functionalities, such as time-resolved binary classification,

emporal generalization, multivariate cross-classification, statistical

nalyses to find significant clusters, feature contribution analyses,

nd many others. Highly configurable linear and non-linear ML

odels can be selected as classification algorithms, including Sup-

ort Vector Machines (SVM) or Discriminant Analysis (DA). Addi-

ionally, MVPAlab offers several data preprocessing routines: trial

veraging, data smoothing and normalization, dimensionality re-

uction, among others. This MVPAlab GUI also includes a very flex-

ble data representation utility, which generates really appealing

nd colorful plots and animations. In addition to this, MVPAlab

mplements some exclusive analyses and functionalities, such as

arallel computation, which divides the computational load in dif-

erent execution threads, significantly reducing the computation
2
ime, or frequency contribution analysis, which allows to estimate

ow relevant information is distributed across different frequency

ands.

Hence, MVPAlab has not been designed for beginners only, as

mplements several high and low-level routines allowing more ex-

erienced profiles to design their own projects in a highly flexible

anner. The following sections depict, in as much detail and as

escriptively as possible, the main aspects of MVPAlab, including

nstallation, compatibility, data structure, and a complete getting

tarted section.

.3. Installation, compatibility and requirements

The installation of MVPAlab Toolbox is quite simple. First, an

p-to-date version of the code is freely available for download in

he following GitHub repository:

github.com/dlopezg/mvpalab/releases

Users should (1) select and download the source code of the

esired release, (2) unzip the downloaded source code folder and

3) add it to the MATLAB path. Please see MVPAlab wiki for more

etailed instructions:

github.com/dlopezg/mvpalab/wiki/Installation

The MVPAlab Toolbox has been designed to be fully compatible

ith MATLAB 9.0 (R2016a) and above. This restriction is only appli-

able to the graphic user interface, which has been developed us-

ng App Designer, introduced in the 9.0 version. Custom MVPAlab

cripts can be executed under older MATLAB versions. Other tool-

oxes include several function names overlapping the MATLAB (or

ther external packages) built-in functions, causing in some cases

rrors and malfunctioning. To avoid this type of problems, MV-

Alab uses a specific suffix in their function names. Since this soft-

are has been developed using MATLAB and has no external de-

endencies, the MVPAlab Toolbox is fully supported by GNU/Linux,

nix, Windows and macOS platforms. Hardware requirements de-

end on the size of the analyzed dataset. While the CPU specifica-

ions only affects to the computation time, enough RAM capacity

s required to store and process M/EEG data. For almost any pro-

ess, the recommended RAM capacity is at least the double of the

ize of the dataset (measured in gigabytes). For more memory de-

anding processes, such as frequency contribution analysis, MV-

Alab splits and stores EEG data on the hard drive, importing it

gain when needed. Since MVPAlab only uses the CPU for compu-

ation, the GPU specification does not affect to the toolbox perfor-

ance.

Some MATLAB built-in packages and functions are required for

 correct functioning of this software. For the statistical analysis,

he Image Processing Toolbox is required to find clusters in signif-

cant masks. The Statistics and Machine Learning Toolbox provides

unctions to train and validate classification models, dimensional-

ty reduction, feature selection, etc. The Signal Processing Toolbox

s required for extracting M/EEG envelopes as features. The Parallel

omputation Toolbox is not required but recommended to drasti-

ally reduce the computation time as it allows to divide the com-

utational load in different processing threads. Finally, MVPAlab

reatly benefits from other open source M/EEG toolboxes such as

EGlab and FieldTrip: some filtering functions require the EEGlab

oolbox installed and initiated for a correct operation. If MVPAlab

nds an EEGlab installation it will initiate it automatically. Because

f all of this, users should ensure that these dependencies are in-

luded in their MATLAB installation.

.4. Dataset structure and format

MVPAlab is not a preprocessing tool for M/EEG data, instead,

t is designed to read and work with epoched data from two of

he most employed preprocessing toolboxes: EEGLAB and FieldTrip.

https://github.com/dlopezg/mvpalab/releases
https://github.com/dlopezg/mvpalab/releases

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

F

b

i

d

u

s

P

s

(

w

a

d

1

F

a

p

t

e

f

p

i

i

p

M

a

p

b

a

t

t

p

d

n

d

c

fi

r

t

p

c

g

o

f

r

t

q

1

s

e

t

p

g

l

b

i

s

v

T

o

s

1

l

m

t

P

i

a

P

n

m

o

r

t

c

t

U

b

r

c

u

e

d

d

c

b

v

r

t

a

i

r

a

D

t

m

s

L

e

r

o

e

f

L

t

d

r

t

c

d

e

o

o

or a correct operation of MVPAlab Toolbox, epoched data should

e previously saved in one independent file for each subject us-

ng a .mat format. EEGlab format .set is also supported. The

ata structure and format should remain unaltered. If EEGlab was

sed for the data preprocessing, users should save the entire EEG
tructure for each participant, not only the EEG.data matrix. MV-

Alab collects additional information from the data file, such as

ampling frequency (EEG.srate), the location of the electrodes

 EEG.chanlocs) or data time points (EEG.times). In the same

ay, if FieldTrip is used, users must save the entire data structure,

s MVPAlab reads the required subject’s data from data.trial ,
ata.time and data.fsample .

.5. MVPAlab toolbox architecture

The complete architecture of MVPAlab Toolbox is shown in

ig. 1 , including several of the configuration parameters, processes

nd routines employed for a complete decoding analysis. The com-

lete architecture and its configuration parameters are resumed in

he following stages:

Initialization stage. During the initialization stage, MVPAlab gen-

rates a default configuration structure. This variable is required

or a correct operation of the toolbox.

Import data and feature extraction stage. Here, M/EEG data is im-

orted, preprocessed, and prepared for the decoding analysis. Dur-

ng this stage, some specific configuration is required: the partic-

pants’ files to import, identifiers for binary classes, the complete

ath to the dataset, and others. Additionally, users can select which

/EEG feature will be extracted for classification (raw signal volt-

ge or its envelope); enable or disable and configure several pre-

rocessing procedures, such as trial averaging, data normalization,

alanced class sizes, and others. All these preprocessing procedures

re computed during this stage. Finally, the feature vectors are ex-

racted and prepared for the multivariate analysis.

Evaluation stage. During the evaluation stage, several classifica-

ion models can be trained and validated using cross-validation ap-

roaches. Dimensionality reduction, if enabled, is also computed

uring this stage.

Users can specify different classification models, linear and

on-linear kernel functions, different cross-validation techniques,

ifferent model’s performance metrics, etc. The results of the de-

oding analysis, the configuration file and other analysis-related

les will be hierarchically stored in the project’s directory. This di-

ectory is the folder containing the main analysis script.

Statistical significance stage. If permutation test is enabled, sta-

istically significant clusters are extracted from the result via non-

arametric cluster-based permutation testing. For this stage, users

an specify the total number of permutations at a participant and

roup level to be computed, the p-value thresholds for a data point

r cluster size to be considered significant and other relevant in-

ormation.

Graphical representation stage. Last but not least is the graphical

epresentation stage. MVPAlab has fully integrated high-level plot-

ing tools, allowing researchers to easily design and generate high

uality and highly customizable result representations.

.6. Getting started

Computing a multivariate analysis in MVPAlab Toolbox is quite

imple for all type of users. Researchers with no coding experi-

nce can use the integrated graphic user interface, which allows

o create, save, configure, execute and plot the results of any sup-

orted multivariate analysis in a very intuitive way. Not a sin-

le line of code is needed. However, users with coding experience

ooking for a faster and more flexible way to interact with the tool-

ox can create their own scripts. Be that as it may, MVPAlab also
3
ncludes several easy-to-understand and well-documented demo

cripts for different types of analyses, making this tool very con-

enient not just for experienced users but also for newcomers.

his section includes a general introduction to the functioning

f MVPAlab Toolbox, either by using the GUI or building custom

cripts.

.6.1. Graphic user interface

Once MVPAlab is installed, the graphic user interface can be

aunched by typing the following command in the MATLAB com-

and line:

>> mvpalab
Creating new analyses: If the MVPAlab folder is correctly added

o the MATLAB path as described in Section 1.3 , the initial MV-

Alab window should appear as shown in Fig. 2 (a). Using this

nterface, users can create new analyses, open previously created

nalyses or open the plotting utility. Creating new analyses in MV-

Alab using the GUI is very simple and intuitive. Researchers only

eed to specify the type of analysis required from the dropdown

enu and select the location folder. Results, configuration and

ther analysis-related files will be hierarchically stored in this di-

ectory. Once everything is selected, clicking the configuration but-

on will create the project folder structure and launch the analysis

onfiguration window, as shown in Fig. 2 (b).

Configuring the decoding analysis: Before computing a mul-

ivariate analysis, additional details of configuration are required.

sers must specify the locations of the epoched datasets and la-

el each condition with a condition identifier. All the relevant pa-

ameters of the decoding analysis are set to its default value and

an be modified within this configuration window. These config-

ration parameters include a wide range of processes that can be

xecuted during the decoding analysis, such as: data normalization,

ata smoothing, trial averaging, analysis timing, dimensionality re-

uction, balance datasets and others. Additionally, the employed

lassification models can also be designed here. Users can choose

etween different classification algorithms, kernel functions, cross-

alidation strategies and select several output performance met-

ics. They can enable the computation of the temporal generaliza-

ion matrix, activate parallel computation or configure statistical

nalyses. All MVPAlab toolbox functionalities are perfectly detailed

n Section 2 Materials and Methods .

Computing the decoding analysis: Once the configuration pa-

ameters are correctly specified, the computation of the multivari-

te analysis can be started by clicking the Start analysis button.

epending on the size of the dataset and the selected configura-

ion, this process may be time-consuming and CPU/memory de-

anding. Anyhow, during the computation of the entire analy-

is pipeline, as shown in Fig. 2 (c), MVPAlab prompts in the MAT-

AB command window detailed information of the processes being

xecuted.

Plotting the results: For the graphical representation of the

esults, MVPAlab also offers an intuitive plot utility that can be

pened by clicking on Open plot utility button Fig. 2 (d). This tool

nables users to open, plot, combine and compare results of dif-

erent analyses without dealing with cumbersome lines of MAT-

AB code. The most common configuration parameters such as ti-

les, labels, line styles, transparencies, color palettes, axes limits,

ata smoothing or highlighting can be easily configured for time-

esolved analysis, temporal generalization matrices, frequency con-

ribution analyses, and others. In addition, with this interface users

an create animated temporal representations of feature weights

istribution over scalp templates.

All this combined allows researchers with no or little coding

xperience to prepare and compute multivariate decoding analyses

f M/EEG data; create high quality and ready-to-publish figures, all

f this without witting a single line of code.

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 1. MVPAlab Toolbox complete architecture and configuration parameters.

4

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 2. MVPAlab graphic user interface . (a) Initial view. (b) Analysis configuration view. (c) Plot utility view. (d) MATLAB command window.

1

l

a

e

p

c

v

T

c

P

o

d

o

c

fi

t

s

p

fi

(

f

m

t

c

m

.6.2. Building custom scrips

The intuitive and easy-to-use GUI is not the only way to uti-

ize this software. For those researchers looking for flexibility and

utomation, MVPAlab implements several high-level functions to

asily set up a custom decoding analysis. The complete analysis

ipeline can be divided into five main steps, including the statisti-

al permutation test and plotting functions, and runs as follows:

% [1] - Initialize MVPAlab toolbox:
cfg = mvpalab_init();
% [2] - Run the configuration file:
run cfg_file.m
% [3] -- Import data and extract feature

ectors:
[cfg,data,fv] = mvpalab_import(cfg);
% [4] -- Compute a multivariate analysis:
[result,cfg] = mvpalab_mvpa(cfg,fv);
% [5] -- Plot the results:
run plot_file.m
First, the function mvpalab_init() initializes the toolbox.

his function returns a default configuration structure cfg , which
5
onsist of all the required configuration parameters for an analysis.

lease see Section 2 Material and Methods for a detailed description

f each field of the configuration variable.

Users should modify this configuration variable to set up the

esired configuration for a specific decoding analysis. For the sake

f clarity and for maintaining a clean code organization, all this

onfiguration code should be placed in an external configuration

le cfg_file.m . This file will be executed after the toolbox ini-

ialization.

Once the MVPAlab toolbox is initialized and a specific analy-

is configured, the function mvpalab_import(cfg) imports and

reprocess the datasets provided, according to the configuration

le cfg . This function returns a copy of the preprocessed data

data), which can be omitted to save memory, and the extracted

eature vectors (fv), which will be the input for the classification

odels. Please see Section 2.3 Importing Data and Feature Extrac-

ion for a more detailed explanation of the feature extraction pro-

ess.

Next, the function mvpalab_mvpa(cfg,fv) computes the

ultivariate pattern analysis. Other functions are available for

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

d

c

c

t

e

a

e

t

p

s

S

s

c

t

S

d

t

2

2

P

r

t

c

M

t

m

e

l

6

t

a

a

2

o

n

e

b

(

a

a

n

t

s

p

t

i

2

t

y

c

y

e

n

u

d

2

u

b

t

p

t

P

c

i

d

p

e

b

s

c

d

2

a

t

u

t

l

i

d

I

t

d

t

fi

t

w

t

ifferent analyses, such as mvpalab_mvcc(cfg,fv) for cross-

lassification and mvpalab_sfilter(cfg,fv) for frequency

ontribution analysis.

These functions return the variable result , which includes the

ime-resolved decoding performance for every performance metric

nabled in the configuration file. In addition, the result files are

utomatically saved in separate folders in the project directory.

To compute the statistical analysis and draw statistical infer-

nces at the group level, one additional step should be added to

he former execution pipeline:

% Compute permutation test:
[permaps,cfg] = mvpalab_permaps(cfg,fv);
stats = mvpalab_permtest(cfg,result,permaps);
These functions implement a non-parametric cluster-based

ermutation test, returning the variable stats, which includes

tatistically significant clusters found in the data. Please, see

ection 2.5 Cluster-based permutation testing for an exhaustive de-

cription of this test.

Finally, in addition to the graphic user interface, MVPAlab in-

ludes several plotting routines, allowing users to design cus-

omizable and ready-to-publish figures and animations. Please see

ection 2.6 Result representation pipeline for more details. Several

emo scripts for different types of analyses and result representa-

ions are included in the MVPAlab Toolbox folder.

. Materials and methods

.1. Sample EEG dataset

A sample EEG dataset has been compiled to test all the MV-

Alab main functionalities. It is freely available in the following

epository:

https://osf.io/du6fa/

Here, three different EEG data files have been selected from

he original work [44 , 45]. For each participant, two different main

onditions (condition_a vs. condition_b) have been selected for the

VPA analysis. Additionally, four subconditions (condition_1, condi-

ion_2, vs. condition_3 and condition_4) have been selected for the

ultivariate cross-classification analysis. Readers interested on the

xperimental details of these data should refer to the original pub-

ication [44 , 45].

During the original study, high-density EEG was recorded from

5 electrodes. The TP9 and TP10 electrodes were used to record

he electrooculogram (EOG) and were removed from the dataset

fter the preprocessing stage. Impedances were kept below 5k �

nd EEG recordings were average referenced, downsampled to

56 Hz, and digitally filtered using a low-pass FIR filter with a cut-

ff frequency of 120 Hz, preserving phase information. No chan-

el was interpolated for any participant. Continuous data were

poched [−10 0 0, 20 0 0 ms centered at onset of the stimulus] and

aseline corrected [−200, 0 ms]. Independent Component Analysis

ICA) was computed to remove eye blinks from the signal, and the

rtifactual components were rejected by visual inspection of raw

ctivity of each component, scalp maps and power spectrum. Fi-

ally, an automatic trial rejection process was performed, pruning

he data from non-stereotypical artifacts. For more details please

ee [44] .

The final compiled dataset consists of an EEGlab data structure

er subject and condition with [63 ×768 x ntrials] EEG data ma-

rices. The number of trials per condition and participant is shown

n the following table:

.2. Defining a configuration file

For the sake of clarity and code organization, we recommend

o include all the configuration code for a specific decoding anal-
6
sis in an external configuration .m file. This file should be exe-

uted before the computation of the multivariate decoding anal-

sis. This recommendation, however, is not mandatory and more

xperienced users can design their own scripts according to their

eeds and preferences. For both scenarios, all the available config-

ration parameters in MVPAlab Toolbox will be described in detail

uring this section.

.2.1. Participants and data directories

The first required information that should be specified by the

ser is the working directory and the location of the dataset to

e imported and analyzed. This includes, for each class or condi-

ion, the name of each individual subject data file and the com-

lete path of the class folder. These parameters can be defined in

he configuration file as follows:

% Working directory:
cfg.location = pwd;
% Conditions data paths:
cfg.dataPaths{1,1} = ’C: \ ... \ class_a \ ’;
cfg.dataPaths{1,2} = ’C: \ …\ class_b \ ’;
% Subjects data files:
cfg.dataFiles{1,1} = {
'subject_01.mat',
'subject_02.mat',
'subject_03.mat'
};
cfg.dataFiles{1,2} = {
'subject_01.mat',
'subject_02.mat',
'subject_03.mat'
};
Before computing the multivariate decoding analysis, the MV-

Alab Toolbox can be used to execute several preprocessing pro-

edures that may improve the final results in different ways (e.g.

ncreasing accuracy, avoiding skewed results, data normalization,

ata smoothing, etc.). The default configuration of each of these

rocedures is initialized when MVPAlab toolbox is launched. How-

ver, these procedures and their configuration parameters can

e adjusted by the users to meet the required specific analy-

is conditions. During this section, all of these preprocessing pro-

edures and their configuration parameters will be meticulously

escribed.

.2.2. Trial averaging

If enabled, this approach randomly or sequentially averages

 certain number of trials n trials belonging to the same condi-

ion for each participant. This procedure creates supertrials and

sually increases the signal-to-noise ratio (SNR) which improves

he overall decoding performance and reduces the computational

oad. Since reducing the number of trials per condition typically

ncreases the variance in the decoding performance, this proce-

ure imposes a trade-off between the increased variance/accuracy.

t should be noted that increasing n trials does not increase

he decoding performance linearly. Please see [46 , 47] for more

etails.

The default parameters for this procedure can be modified in

he MVPAlab configuration file as follows:

cfg.trialaver.flag = true;
cfg.trialaver.ntrials = 5;
cfg.trialaver.order = ’rand’;
Trial averaging can be enabled or disabled by setting the con-

guration variable (.flag) to true or false. The number of trials

o average can be modified in (.ntrials) . Finally, the order in

hich the trials are selected for averaging can be modified setting

he variable (.order) to ‘rand’ or ’sequential’.

https://osf.io/du6fa/

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

2

[

t

b

t

d

b

i

b

(

M

2

o

w

c

a

[

a

p

t

X

w

t

i

t

i

b

2

i

o

v

t

M

t

n

s

c

a

2

y

t

a

f

t

i

c

s

2

c

d

i

a

c

t

t

p

s

(

n

r

d

n

e

e

v

u

t

p

d

P

i

X

i

t

c

T

M

S

r

b

r

t

c

d

t

w

t

d

.2.3. Balanced datasets

Unbalanced datasets can lead to skewed classification results

48] . To avoid this phenomenon, the number of trials per condi-

ion should be the same. MVPAlab can be used to define strictly

alanced datasets by downsampling the majority class to match

he size of the minority one (cfg.classsize.match). In ad-

ition, each class size can be set as a factor of k, the total num-

er of folds in the cross-validation (CV) procedure. Thus, dur-

ng CV each fold will be composed by exactly the same num-

er of observations, avoiding any kind of bias in the results

 cfg.classsize.matchkfold).
These features are disabled by default but can be enabled in the

VPAlab configuration structure as follows:

cfg.classsize.match = true;
cfg.classsize.matchkfold = true;

.2.4. Data normalization

In machine learning, data normalization refers to the process

f adjusting the range of the M/EEG raw data to a common scale

ithout distorting differences in the ranges of values. Although

lassification algorithms work with raw values, normalization usu-

lly improves the efficiency and the performance of the classifiers

49] . Four different (and excluding) data normalization methods

re implemented in MVPAlab. A commonly used normalization ap-

roach [50] is computed within the cross-validation loop. Hence,

he training and test sets are standardized as follows:

 train =

X train − μtrain

σtrain

X test =

X test − μtrain

σtrain

here μtrain and σ train denote the mean and the standard devia-

ion of each feature (column) of the training set. Other normal-

zation methods implemented in MVPAlab are: z-score (μ = 0;

σ = 1) across time, trial or features. To compute these normaliza-

ion strategies MVPAlab uses the MATLAB built-in function zscore ,

ncluded in the Statistics and Machine Learning Toolbox.

Data normalization method, which is disabled by default, can

e modified as follows:

cfg.normdata = 4;
% 0 -- Disabled
% 1 -- ZSCORE across features
% 2 -- ZSCORE across time
% 3 -- ZSCORE across trials
% 4 -- Nested in CV loop

.2.5. Data smoothing

Data smoothing is a procedure employed in recent M/EEG stud-

es [51–54] to attenuate unwanted noise. MVPAlab implements an

ptional data smoothing step that can be computed before multi-

ariate analyses. This procedure is based on MATLAB built-in func-

ion smooth , included in the Curve Fitting Toolbox, which smooths

/EEG data points using a moving average filter.

The length of the smoothing window can be specified in

he variable (cfg.smoothdata.window) and should be an odd

umber. For a window length of 5 time points, the smoothed ver-

ion of the original signal is computed as follows:

y smoothed (1) = y (1)
y smoothed (2) = (y (1) + y (2) + y (3)) / 3

y smoothed (3) = (y (1) + y (2) + y (3) + y (4) + y (5)) / 5

y smoothed (4) = (y (2) + y (3) + y (4) + y (5) + y (6)) / 5

…
Data smoothing is disabled (.method = ’none’) by default and

an be enabled and configured in the MVPAlab configuration file

s follows:

cfg.smoothdata.method = ’moving’;
cfg.smoothdata.window = 5;
7
.2.6. Analysis timing

By default, MVPAlab computes the time-resolved decoding anal-

sis for each timepoint across the entire M/EEG epoch. However,

he user can define a specific region of interest (time window) and

 different step size as follows:

cfg.tm.tpstart = -200;
cfg.tm.tpend = 1500;
cfg.tm.tpsteps = 3;
This way, the temporal decoding analysis will be computed

rom −200 ms (.tpstart) to 1500 ms (.tpend) not for each

imepoint but for every three (.tpsteps) timepoints. Note that

ncreasing the step size decreases the processing time but also

auses a reduction in the temporal resolution of the decoding re-

ults.

.2.7. Dimensionality reduction

In machine learning, dimension reduction techniques are a

ommon practice to reduce the number of variables in high-

imensional datasets. During this process, the features contribut-

ng more significantly to the variance of the original dataset are

utomatically selected. In other words, most of the information

ontained in the original dataset can be represented using only

he most discriminative features. As a result, dimensionality reduc-

ion facilitates, among others, classification, visualization, and com-

ression of high-dimensional data [55] . There are different dimen-

ionality reduction approaches but Principal Component Analysis

PCA) is probably the most popular multivariate statistical tech-

ique used in almost all scientific disciplines [56] , including neu-

oscience [57] .

PCA in particular is a linear transformation of the original

ataset in an orthogonal coordinate system in which axis coordi-

ates (principal components) correspond to the directions of high-

st variance sorted by importance. To compute this transformation,

ach row vector x i of the original dataset X is mapped to a new

ector of principal components t i = (t 1 ,…, t l), also called scores,

sing a p-dimensional coefficient vector w j = (w 1 ,…, w p):

 i = x i · w j i = 1 , . . . , n j = 1 , . . . , l

For dimension reduction: l < p .

To maintain the model’s performance as fair and unbiased as

ossible, PCA is computed only for training sets X training , indepen-

ently for each fold inside the cross-validation procedure. Once

CA for the corresponding training set is computed and the model

s trained, the exact same transformation is applied to the test set

 test (including centering, μtraining). In other words, the test set

s projected onto the reduced feature space obtained during the

raining stage. According to the former equation, this projection is

omputed as follows:

 test =

X test − μtraining

W

′
training

To compute this nested implementation of the PCA algorithm,

VPAlab uses the MATLAB built-in function pca , included in the

tatistics and Machine Learning Toolbox. However, dimensionality

eduction techniques such PCA endorse a trade-off between the

enefits of dimension reduction (reduced training time, reduced

edundant data and improved accuracy) and the interpretation of

he results when electrodes are used as features. When PCA is

omputed, the data is projected from the sensor space onto the re-

uced PCA features space. This linear transformation implies an in-

rinsic loss of spatial information, which means that, for example,

e cannot directly analyze which electrodes are contributing more

o decoding performance. The default parameters for this proce-

ure can be modified in the MVPAlab configuration file as follows:

cfg.dimred.flag = true;
cfg.dimred.method = ’pca’;
cfg.dimred.ncomp = 5;

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

2

y

v

a

c

p

g

a

m

S

a

b

b

b

l

f

v

e

[

i

i

i

d

t

a

s

a

w

t

a

i

e

b

x

x

r

e

y

a

d

w

r

t

c

l

a

w

∀

Fig. 3. Classification models: g raphical representation of (a) LSVM and (b) LDA clas-

sifiers for simulated data. Red points represent the support vectors, the closest data

points to the decision boundary (hyperplane).

b

s

e

t

fi

fi

c

m

d

.2.8. Classification algorithms

Classification algorithms are the cornerstone of decoding anal-

ses. These mathematical models play the central role in multi-

ariate analyses: detect subtle changes in patterns in the data that

re usually not detected using less sensitive approaches. Different

lassification algorithms have been used to achieve this goal, from

robabilistic-based models such as Discriminant Analyses (DA), Lo-

istic Regressions (LR) or Naïve Bayes (NB) to supervised learning

lgorithms such Support Vector Machine (SVM).

For the time being, MVPAlab Toolbox implements two of the

ost commonly employed models in the neuroscience literature,

upport Vector Machines and Discriminant Analysis in their linear

nd non-linear variants.

The classification model employed for the decoding analysis can

e specified in the configuration file as follows:

cfg.classmodel.method = ’svm’;
cfg.classmodel.method = ’da’;
Both classification approaches are based on MATLAB built-in li-

raries for support vector machines and discriminant analyses. A

rief mathematical description for both models can be found be-

ow. Please see the MATLAB documentation of fitcsvm and fitcdiscr

unctions for further details.

Support Vector Machine: Support Vector Machine (SVM) pro-

ides a theoretically elegant, computationally efficient, and very

ffective solution for many practical pattern recognition problems

58–60] . For that reason, SVM is broadly employed in M/EEG stud-

es. Intuitively, for binary classification problems, during the train-

ng stage this algorithm searches for an optimal hyperplane max-

mizing the separation between this hyperplane and the closest

ata points of each class. These data points are called support vec-

ors . The separation space is called margin and is defined as 2/ ‖ w ‖ ,
nd it does not contain any observation for separable classes, as

hown in Fig. 3 (a). Thus, the linear SVM score function is defined

s follows:

f (x) = x T w + b

here the input vector x is an observation, the vector w contains

he coefficients that define an orthogonal vector to the hyperplane

nd b is the bias term. To formalize the optimization problem (that

s, to find the optimal hyperplane that maximizes the margin), sev-

ral constraints should be defined. Therefore, any given sample will

e correctly classified as long as:

� w + b ≥ +1 for positive (+) samples

� w + b ≤ −1 for negative (−) samples

Introducing y j = { + 1, −1} for positive and negative samples,

espectively, the two former equations can be rewritten for math-

matical convenience as follows:

 j f
(
x j

)
≥ 1 for any training sample j ∈ { 1 , . . . , n }

This is the decision rule for separable classes. When the classes

re not perfectly separable, the algorithm imposes a penalty intro-

ucing positive slack variables ξ j > 0 for each observation on the

rong side of the hyperplane. For those observations that are cor-

ectly placed: ξ j = 0 . Consequently, non-separable data impose a

rade-off between margin maximization and the total number of

onstraint violations. Now, the optimization problem reads as fol-

ows:

rg w

min

1

2

‖ w ‖

2 + C

n ∑

j=1

ξj

ith respect to w and b and subject to:

 j : y j f
(
x j

)
≥ 1 − ξj and ∀ j : ξj ≥ 0
8
The parameter C is a constant which modulates the trade-off

etween the training error and the complexity of the model. A

earch-grid-based optimization of the misclassification cost param-

ter C can be enabled and computed using five-fold CV for the

raining set on the configuration file as follows:

cfg.classmodel.optimize.flag = true;
For some classification scenarios, it is not always possible to

nd an optimal criterion for class separation using linear classi-

ers. To solve this problem, original data from the input space N

an be mapped into a high dimensional feature space F using a

apping function ϕ:
→ . Therefore, the decision equation is now

efined as follows:

f (x) = φ
(
x T

)
w φ + b

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 4. Kernel trick graphical representation : original data in the input space is

not linearly separable. This data points can be projected into a high-dimensional

space using the mapping function ϕ. In this new feature space, classes became sep-

arable using linear approaches.

n

d

o

e

g

G

n

n

d

i

t

s

b

i

(

p

c

y

w

b

s

w

b

P

i

c

d

c

μ
a

d

h

P

i

2

e

k

m

a

r

t

t

r

f

t

i

s

e

t

p

t

f

w

h

r

c

d

2

m

f

t

r

m

b

i

c

m

m

m

(

p

m

s

e

o

t

t

p

However, the application of the transformation function ϕ is

ot explicitly needed. Since the hyperplane optimization problem

epends on nothing but pairwise dot products (e.g. x 1 • x 2), we

nly need a set of kernel functions that meet the following prop-

rty: K (x 1 , x 2) = 〈 ϕ(x 1), ϕ(x 2) 〉 .
This class of function includes, among others, polynomial or

aussian kernels:

 (x 1 , x 2) = (1 + x 1 x 2)
p G (x 1 , x 2) = e −‖−x 1 −x 2 ‖ 2

The mentioned variant of the initial mathematical approach for

on-linear classifiers is known as kernel trick (Fig. 4) and it retains

early all the simplicity and benefits of linear approaches, making

ata linearly separable in the feature space F . However, in decod-

ng analyses, linear approaches are normally preferred not just for

heir simplicity, but also for yielding comparable performance re-

ults in several applications [61] .

MVPAlab uses linear classifiers for decoding analysis by default,

ut other kernel functions for non-linear classification can be spec-

fied in the MVPAlab configuration file as follows:

cfg.classmodel.kernel = ’linear’;
cfg.classmodel.kernel = ’gaussian’;
cfg.classmodel.kernel = ’rbf’;
cfg.classmodel.kernel = ’polynomial’;
Discriminant analysis: Prediction using Discriminant Analysis

DA), see Fig. 3 (b), is based in three different metrics: posterior

robability, prior probability and cost. Thus, the classification pro-

edure tries to minimize the expected classification cost:

ˆ = arg min

K ∑

k=1

ˆ P (k | x)C(y | k)

here ˆ y is the predicted classification, K corresponds to the num-

er of classes, ˆ P (k | x) is the posterior probability of class k for ob-

ervation x and C(y|k) is the cost of classifying an observation as y

hen its true class is k .

Being P (k) the prior probability of class k , the posterior proba-

ility that an observation x belongs to class k is:
ˆ P (k | x) =

P(x | k)P(k)
P(x)

where:

 (k | x) =

1 √

(2 π)
d | �k |

exp

(
−1

2

(x − μk) �
−1
k (x − μk)

T
)

s the multivariate normal density function, being �k the D -by- d

ovariance matrix and μk the 1-by- d mean. Please see the MATLAB

ocumentation for further details.
9
While Linear Discriminant Analyses (LDA) assumes that both

lasses have the same covariance matrices �k and only the means

k vary, for Quadratic Discriminant analyses (QDA), both means

nd covariance matrices may vary. Thus, decision boundaries are

etermined by straight lines in LDA and by conic sections (ellipses,

yperbolas or parabolas) for QDA.

Linear Discriminant analysis is configured by default in MV-

Alab Toolbox but, as for SVM, this kernel function can be modified

n the configuration file as follows:

cfg.classmodel.kernel = ’quadratic’;

.2.9. Cross-validation

In prediction models, cross-validation techniques are used to

stimate how well the classification algorithm generalizes to un-

now data. Two popular approaches for evaluating the perfor-

ance of a classification model on a specific data set are k-fold

nd leave-one-out cross validation [62] . In general, these techniques

andomly split the original dataset into two different subsets, the

raining set X training : 1 − 1/K percent of the exemplars, and the

est set X test : 1/K percent of the exemplars. This procedure is

epeated K times (folds), selecting different and disjoint subsets

or each iteration. Thus, for each fold, the classification model is

rained for the training set and evaluated using exemplars belong-

ng to the test set. The final classification performance value for a

ingle timepoint is the mean performance value for all iterations.

When K and the total number of exemplars (instances) are

qual, this procedure is called leave-one-out cross-validation. Here,

he classification model is trained with all but one of the exem-

lars and evaluated with the remaining exemplar. By definition,

his approach is computationally demanding and time consuming

or large datasets, and for that reason it is usually employed only

ith small sets of data. Additionally, the leave-one-out procedure

as been proved to yield unstable and biased results, which makes

andom splits methods the preferred alternative [63] .

The cross-validation procedure can be tuned in the MVPAlab

onfiguration file as follows:

cfg.cv.method = ’kfold’;
cfg.cv.nfolds = 5;
If (.method = ’loo’) the number of folds is automatically up-

ated to match the total number of exemplars for each participant.

.2.10. Performance metrics

(1) Mean accuracy is usually employed to evaluate decoding

odels’ performance in neuroscience studies [64] . This metric is

ast, easy to compute and is defined as the number of hits over

he total number of evaluated trials. By default, MVPAlab Toolbox

eturns the mean accuracy value as a measure of decoding perfor-

ance. Nevertheless, in situations with very skewed sample distri-

utions, this metric may generate systematic and undesired biases

n the results. Other performance metrics, such as the balanced ac-

uracy have been proposed to mitigate this problem [65] .

Accuracy values can be complemented with the (2) confusion

atrices , which are very useful for binary classification but even

ore so for multiclass scenarios. In machine learning, a confusion

atrix allows the visualization of the performance of an algorithm

see Fig. 5), reporting false positives (FP), false negatives (FN), true

ositives (TP), and true negatives (TN). To this end, a confusion

atrix reflects the predicted versus the actual classes. Rows corre-

pond to true class and columns to predicted classes. Thus, the el-

ment CM i,j indicates the number (or the proportion) of exemplars

f class i classified as class j . Other interesting and more informa-

ive performance metrics available in MVPAlab are derivations of

he confusion matrix:

(3) Precision PR = TP/(TP + FP) : proportion of trials labeled as

ositive that actually belong to the positive class.

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 5. Confusion matrix. Example of a confusion matrix returned by MVPAlab

Toolbox for a binary classification scenario.

t

a

t

t

c

f

o

t

e

b

(

f

A

M

M

o

a

r

r

2

c

s

s

a

c

i

s

a

fi

2

t

Fig. 6. Feature extraction stage: For each participant, time-point and trial, two fea-

ture vectors are generated, one for each condition or class. These feature vectors

consist of the raw potential (or any other feature such the power envelope) mea-

sured in all electrodes.

t

a

d

s

s

t

e

e

t

i

t

m
a

p

f

(4) Recall (also known as sensitivity) R = TP/(TP + FN) : propor-

ion of positive trials that are retrieved by the classifier.

(5) F1-score F1 = 2TP/(2TP + FP + FN) : combination of precision

nd recall in a single score through the harmonic mean.

Nonetheless, nonparametric, criterion-free estimates, such as

he Area Under the ROC Curve (AUC), have been proved as a bet-

er measure of generalization for imbalanced datasets [66] . This

urve is used for a more rigorous examination of a model’s per-

ormance. The AUC provides a way to evaluate the performance

f a classification model: the larger the area, the more accurate

he classification model is. This metric is one of the most suitable

valuation criteria, as it shows how well the model distinguishes

etween conditions, by facing the sensitivity (True Positive Rate

TPR)) against 1-specificity (False Positive Rate (FPR)), defined as

ollows:

UC =

∫ 1

0

ROC (s) ds

To compute the AUC and the ROC curve MVPAlab utilizes the

ATLAB built-in function perfcurve , included in the Statistics and

achine Learning Toolbox.

By default, MVPAlab only returns the mean accuracy, although

ther performance metrics can be enabled in the configuration file

s follows:

cfg.classmodel.roc = false;
cfg.classmodel.auc = false;
cfg.classmodel.confmat = false;
cfg.classmodel.precision = false;
cfg.classmodel.recall = false;
cfg.classmodel.f1score = false;
Users should be aware that enabling several performance met-

ics will significantly increase the computation time and memory

equirements to store the results.

.2.11. Parallel computation

The MVPAlab Toolbox is adapted and optimized for parallel

omputation. If the Parallel Computing Toolbox (MATLAB) is in-

talled and available, MVPAlab can compute several timepoints

imultaneously. Therefore, the computational load is distributed

mong the different CPU cores, significantly decreasing the pro-

essing time. This feature becomes critical specially when the user

s dealing with large datasets and needs to compute several thou-

and of permutation-based analyses. Parallel computation is dis-

bled by default but can be enabled in the MVPAlab configuration

le as follows:

cfg.classmodel.parcomp = true;

.3. Importing data and feature extraction

To obtain the classification performance in a time-resolved way,

he epoched M/EEG data must be prepared for the classifica-
10
ion process. During the feature extraction step, feature vectors

re defined as a selection/combination of variables of the original

ataset. Typical multivariate analyses use the raw voltage of the

ignal as a feature for the classification, but other characteristics,

uch the power envelope of the signal, can also be used as fea-

ures. These feature vectors are extracted as shown in Fig. 6 . For

ach participant, time-point and trial, two feature vectors (one for

ach condition or class) are generated, consisting of the raw po-

ential (or any other feature such the power envelope) measured

n all electrodes (Fig. 7).

Once MVPAlab is initialized and the analysis configura-

ion parameters are defined in cfg_file.m , the function

vpalab_import(cfg) imports the original dataset and returns

n updated version of the configuration structure (cfg), the pre-

rocessed data (data) and feature vectors (fv):
% Initialize MVPAlab toolbox and run cfg

ile:
cfg = mvpalab_init();
run cfg_file.m

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 7. Data structure of the result file. Performance values are stored in 1 x timepoint x subject matrices. Group-level performance values can be calculated computing

the mean across the third dimension.

a

t

x
i

t

d

2

r

r

t

C

d

2

s

f

r

n

o

s

c

p

m

t

w

s

u

t

t

r

t

2

i

t

a

c

a

a

b

f

C

c

d

t

c

a

f

o

r

[

s

s

v

t

fi

2

g

g

p

w

t

F

Fig. 8. Temporal generalization matrix: the classification model is trained with

data at certain time point (black square). This model is then tested along the re-

maining time points (gray square), repeating this process for each time point inside

the epoch.
% Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);
The feature vector and data variables are cell arrays structured

s follows: [1 x subjects]. Each cell in fv contains a data ma-

rix (X) with the feature vectors of individual subjects [trials
 features x timepoints] and a logical vector (Y) includ-

ng the true labels of the subject‘s dataset. The data variable con-

ains, for each condition, a data matrix including the preprocessed

ataset [features x timepoints x trials] .

.4. Type of analysis

The MVPAlab Toolbox computes two main analyses: time-

esolved Multivariate Pattern Analysis (TR-MVPA) and time-

esolved Multivariate Cross-Classification (TR-MVCC). Different

ypes of analyses such the Temporal Generalization, the Feature

ontribution Analysis or the Frequency Contribution Analysis are

erived from them.

.4.1. Time-resolved multivariate pattern analysis (TR-MVPA)

Multivariate Pattern Analyses, also known as decoding analy-

es, comprise a set of machine learning models that extract in-

ormation patterns from multi-dimensional data. One of the most

emarkable advantages of these multivariate over univariate tech-

iques is its sensitivity in detecting subtle changes in the patterns

f activations, considering information distributed across all sen-

ors simultaneously.

To compute a time-resolved Multivariate Pattern Analysis, a

lassification model is trained and cross-validated for each time

oint and participant individually, extracting different performance

etrics according to the cfg structure (please see Fig. 6) . All of

his process is coded in the function mvpalab_mvpa(cfg,fv) ,
hich computes the decoding analysis completely:

% Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);
% Compute MVCC analysis:
[result,cfg] = mvpalab_mvpa(cfg,fv);
This function returns an updated version of the configuration

tructure (cfg) and the result variable (result). Performance val-

es are stored in data matrices [1 x time x subject] inside

he result variable as shown in Fig. 7 .

For example, the time-resolved accuracy values can be ex-

racted from result .acc . Other class-specific performance met-

ics such as f1-score, recall or precision are stored for each condi-

ion in:

result.f1score.condition_1
result.f1score.condition_2
result.f1score.mean

.4.2. Time-resolved multivariate cross-classification (TR-MVCC)

As mentioned before, the former MVPA technique has the abil-

ty to detect subtle differences in brain activation patterns. Thus,

his powerful capacity could be used to study how these patterns

re consistent across different cognitive contexts. In general, the

onsistency of the information across different sets of data can be
11
nalyzed with these techniques. To this end, classification models

re trained with one set of data and the consistency is assessed

y testing these models with another data sets, belonging to a dif-

erent experimental condition. This technique is called Multivariate

ross-Classification (MVCC) [67] and is growing in popularity in re-

ent years [68–70] .

It is important to stress that different results can be obtained

epending on which set is used for training and which one for

esting (Train: A → Test: B or Train: B → Test: A). This is called

lassification direction. The observation of classification direction

symmetries in MVCC can be explained by several and very dif-

erent phenomena, including complex neurocognitive mechanisms

r a simple signal-to-noise ratio difference across datasets. For this

eason, reporting results in both directions is highly recommended

71] . By default, MVPAlab computes and reports both directions

eparately.

To compute the MVCC analysis, the function mvpalab_mvcc
hould be called after the feature extraction stage:

% Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);
% Compute MVCC analysis:
[result,cfg] = mvpalab_mvcc(cfg,fv);
Similar to previous analysis, this function returns an updated

ersion of the configuration structure and the results variable. In

his case, time resolved accuracy values are stored for both classi-

cation directions in:

result.acc.ab
result.acc.ba

.4.3. Temporal generalization matrix

To evaluate the stability of brain patterns along time, temporal

eneralization analyses are commonly used. To obtain the temporal

eneralization matrix, the model is trained in a specific temporal

oint, testing its ability to discriminate between conditions in the

hole temporal window. This process is then repeated for every

imepoint thus obtaining the final decoding accuracy matrix (see

ig. 8). An above-chance discrimination rate outside the diagonal

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

o

i

o

o

f

p

b

a

t

M

b

2

H

s

o

c

d

t

t

t

c

a

a

c

r

w

t

t

c

s

f

n

t

D

w

T

c

A

M

t

c

P

e

2

c

p

n

f

E

T

f

fi

d

c

a

fi

Fig. 9. Sliding filter analysis diagram. This analysis compares in a time-resolved

way the classification performance between the original dataset and a filtered-out

version in which a certain frequency band has been removed. This procedure is re-

peated for each frequency band (step) returning a classification performance differ-

ence map which indicates how each frequency band contributes to the classification

performance.

e

i

m

m

r

c

a

a

(

p

f

(

(

s

b

t

f

f the matrix suggests that the same activity pattern is sustained

n time. This phenomenon is usually interpreted as a reactivation

f neural representations [66] . Therefore, if there is no evidence

f temporal generalization, different patterns of activity can be in-

erred [57] . However, a recent study demonstrated that this inter-

retation is not always valid, suggesting that this phenomenon can

e explained as an artefact of the manner in which the decoding

ccuracy provided by different components of the signal combine

o bring about the overall decoding accuracy [72] .

Regardless of the previously selected type of analysis (MVPA or

VCC), the calculation of the temporal generalization matrix can

e enabled in the MVPAlab configuration structure as follows:

cfg.classmodel.tempgen = true;

.4.4. Feature contribution analysis

Usually, classification algorithms are treated as black-boxes.

owever, highly useful information can be extracted out under

pecific circumstances. For example, the value of a feature weight,

btained after the training process of SVM models, is sometimes

orrectly interpreted as a measure of its contribution to the model

ecision boundary. In other words, it is a measure of its impor-

ance. As shown in Fig. 3 , the feature weight vector represents

he coefficients of ω, which is an orthogonal vector to the separa-

ion hyperplane. However, as mentioned above, this is valid under

ertain scenarios (e.g. linear classifiers, use of the same scale for

ll features, no data transformations such PCA, etc.). Even meeting

ll these requirements, the interpretation of raw feature weights

an lead to wrong conclusions regarding the origin of the neu-

al signals of interest. A widespread misconception about features

eights is that channels with large weights should be related to

he experimental condition of interest, which is not always jus-

ified [73] . In fact, large weight amplitudes can be observed for

hannels not containing the signal of interest and vice versa. To

olve this problem, Haufe et al. [73] proposed a procedure to trans-

orm these feature weights so they can be interpreted as origin of

eural processes in space, which leads to more accurate predic-

ions in neuroscience studies.

This useful procedure is implemented in the MVPAlab Toolbox.

uring any decoding analysis, MVPAlab extracts and saves the raw

eight vectors and its Haufe correction in a time-resolved way.

hus, the contribution (or importance) of each electrode to the

lassification performance can be evaluated at any given timepoint.

dditionally, and only if channel location information is available,

VPAlab can create animated plots representing the evolution of

he distribution of weights over a scalp template. This analysis

an be computed at group level or only for a specific participant.

lease, see Section 3 Result for further details.

Feature contribution analysis is disabled by default but can be

nabled in the configuration file as follows:

cfg.classmodel.wvector = true;

.4.5. Frequency contribution analysis

The contribution of different frequency bands to the overall de-

oding performance can be assessed in MVPAlab through an ex-

loratory sliding filter approach. To this end, the original EEG sig-

al can be pre-filtered using a band stop sliding FIR filter. There-

ore, different frequency bands can be filtered-out of the original

EG data, producing new filtered versions of the original dataset.

he former time-resolved multivariate analysis is now computed

or each filtered-out version of the data. The importance of each

ltered-out band is quantified computing the difference maps in

ecoding performance between the filtered and the original de-

oding results. Accordingly, if the classification performance at

ny given point is higher for the original signal compared to the

ltered-out version, then the removed frequency band contains rel-
12
vant information used by the classification algorithms to discrim-

nate between conditions. This procedure is illustrated in Fig. 9 .

By definition, this analysis can be computed in a time-resolved

anner (without temporal generalization) and using only the

ean accuracy or the AUC as performance metric.

Several parameters should be defined in the MVPAlab configu-

ation structure to compute the sliding filter procedure:

cfg.sf.flag = true;
cfg.sf.metric = 'auc';
cfg.sf.lfreq = 0;
cfg.sf.hfreq = 40;
cfg.sf.fspac = ’log’;
cfg.sf.nfreq = 40;
Sliding filter analysis can be enabled or disabled setting the

onfiguration variable (.flag) to true or false. The (.lfreq)
nd (.hfreq) variables define the frequency limits in which the

nalysis will be computed. As mentioned before, mean accuracy

 .metric = ‘acc’) or AUC (.metric = ‘auc’) can be selected as

erformance metrics for this analysis. The number of individual

requency bands that will be removed from the original dataset

frequency resolution) is defined by (.nfreq).
Each of these frequency bands can be linear

 . fspac = ’lin’) or logarithmically (.fspac = ’log’)
paced as shown in Fig. 10 . On the one hand, if the frequency

ands are linearly spaced, the frequency resolution is equally dis-

ributed across the entire spectrum. On the other hand, a higher

requency resolution is found in the low part of the spectrum if

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 10. Removed frequencies: magnitude response for both linear and logarithmi-

cally spaced band-stop sliding filters. 60 frequency bands, 1408 filter order, Black-

man window, 2 Hz overlapped bandwidth.

t

i

p

t

d

fi

b

p

c

n

t

t

f

fi

m
t

p

a

a

h

c

e

s

s

c

d
c

t

i

2

2

P

p

h

p

d

t

t

m

c

T

t

e

t

(

t

n

e

m

d

p

t

M

q

fl

e

o

t

s

i

n

L

i

2

d

he frequency bands are logarithmically spaced. This is especially

nteresting for investigations focusing in the study of the lower

art of the M/EEG spectrum (α, β and θ frequency bands).

The filter design parameters such as filter type (. ftype), fil-

er bandwidth (.bandwidth), window type (.wtype), filter or-

er (.order), and others, can also be tuned in the configuration

le as follows:

cfg.sf.ftype = ’bandstop’;
cfg.sf.wtype = ’blackman’;
cfg.sf.bw = 2;
cfg.sf.hbw = cfg.sf.bw/2;
cfg.sf.order = 1408;
The filter design and filtering process employed by MVPAlab is

ased on the EEGlab built-in function pop_firws

Digital filters usually affect brain signals and are commonly ap-

lied at many stages from the data acquisition to the final publi-

ation. Many undesired events including temporal blurring or sig-

al delays may occur, which may lead to incorrect interpretation of

he results. Therefore, an appropriate filter design becomes crucial

o prevent (or mitigate) these signal distortions. Please see [74 , 75]

or a deeper understanding of how brain signals can be affected by

ltering processes.

The complete sliding filter analysis pipeline is coded in both

vpalab_import(cfg) and mvpalab_sfilter(cfg) func-

ions:

cfg = mvpalab_import(cfg);
% Compute sliding filter analysis:
[cfg,diffMap,stats] = mvpalab_sfilter(cfg);
Due to the elevated RAM requirements of this analysis, the im-

ort function stores each filtered versions of the original dataset in

 specific folder of your hard drive for each participant individu-

lly. The user should consider using an external hard drive for this

igh-demand analysis.

Then, as explained before, the function mvpalab_sfilter()
omputes and compares the decoding performance of differ-

nt metrics between the original dataset and each filtered ver-

ion, returning a difference map structure diffMap . The re-

ult matrices [freqs x timepoints x subjects] for spe-
13
ific performance metrics can be extracted using dot notation (e.g.

iffMap .auc). Only the mean accuracy and the area under the

urve are implemented for this analysis.

Additionally, if enabled, this function also implements the sta-

istical permutation analysis, returning the stats variable, which

ncludes the statistically significant clusters (Please see Section

.5 Cluster-based permutation testing for a detailed explanation).

.5. Cluster-based permutation testing

In order to draw statistical inferences at the group level, MV-

Alab implements a non-parametric cluster-based permutation ap-

roach, as proposed by Stelzer [76] for fMRI studies. This method

as been adapted to electroencephalography data and can be com-

uted for different performance metrics: mean accuracy, area un-

er de curve, F1 score, recall and precision.

Using a combined permutation and bootstrapping technique,

he null distribution of the empirical decoding accuracy is ob-

ained. By default, at the single-subject level, 100 randomly per-

uted accuracy maps are generated. Then, one of the previously

alculated accuracy maps for each participant is randomly drawn.

his selection is group-averaged and the procedure is repeated 10 5

imes, generating 10 5 permuted group accuracy maps. Next, for

ach timepoint, the chance distribution of accuracy values is es-

imated. The above and below chance thresholds are determined

99.9th percentile of the right and left-tailed area of the distribu-

ion), which correspond to a very low probability of obtaining sig-

ificant results by chance (Fig. 11). Then, clusters of time-points

xceeding the previously calculated threshold in all the 10 5 per-

uted accuracy maps are collected, generating the normalized null

istribution of cluster sizes. Finally, a correction for multiple com-

arisons (False Discovery Rate (FDR)) is applied at a cluster level

o obtain the smallest cluster size to be considered significant.

The default parameters for this analysis can be modified in the

VPAlab configuration file as follows:

cfg.stats.nper = 100;
cfg.stats.nperg = 1e5;
cfg.stats.pgroup = 99.9;
cfg.stats.pclust = 99.9;
cfg.stats.shownulldis = true;
Two different functions coded the beforementioned pipeline:

% Compute MVCC analysis:
[result,cfg] = mvpalab_mvpa(cfg,fv);
% Compute permutation maps:
[permaps,cfg] = mvpalab_permaps(cfg,fv);
% Run statistical analysis:
stats = mvpalab_permtest(cfg,result,permaps);
First, the function mvpalab_permaps() computes the re-

uired permuted accuracy maps for each subject, randomly shuf-

ing the original class labels. Then, mvpalab_permtest() gen-

rates the null distributions, determines the significance thresh-

lds, collects significant clusters, computes cluster size distribu-

ions and corrects for multiple comparisons (FDR) to obtain the

mallest cluster size to be considered significant. The variable stat

s returned containing, among others, below and above chance sig-

ificant clusters:

stats.clusters.sig % Above chance clusters
stats.clusters_.sig % Below chance clusters
Above and below chance clusters are extracted using the MAT-

AB built-in function bwconncomp included in the Image Process-

ng Toolbox.

.6. Result representation pipeline

In addition to the graphic user interface, MVPAlab implements

ifferent high-level functions to generate highly-customizable

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 11. Accuracy and cluster size null distributions. The vertical line represents the threshold corresponding to a very low probability to obtain significant results by

chance. These thresholds correspond to a p-value below 0.001 for both distributions.

g

i

s

t

r

b

r

s

n

a

;

r

u

t

t

m

t

c

u

a

p

s

t

t

c

p

raphical representation of the results. Once the decoding analysis

s completed and the results files are saved, the graphical repre-

entation pipeline runs as follows:

graph = mvpalab_plotinit();
First, the function mvpalab_plotinit() generates and re-

urns a default configuration structure (graph) containing all the

equired configuration parameters. Then, the specific result file to

e plotted should be loaded:

load results/time_resolved/acc/result.mat
Finally, the high-level plotting function returns the graphical

epresentation of the selected result file:

mvpalab_plotdecoding(graph,cfg,result,stats);
The variable stats is optional and contains, among others, the

tatistically significant clusters. If this variable is not omitted, sig-

ificant results will be highlighted in the resulting figure.

Several plotting functions are available for different types of

nalysis:

mvpalab_plotdecoding(graph,cfg,result,stats);
mvpalab_plottempogen(graph,cfg,result,stats);
mvpalab_plotfreqcont(graph,cfg,result,stats);
mvpalab_plotfeatcont(graph,cfg,wvector,result)
The mvpalab_plotdecoding() function generates time-

esolved performance plots, mvpalab_plottempogen() is

sed for the graphical representation of temporal generaliza-

ion matrices, mvpalab_plotslidfilt() function generates

he graphical representation for the sliding filter analysis and

vpalab_plotfeatcont() can generate topological represen-
14
ations and temporal animations of features contribution to the de-

oding performance.

To get the best of the MVPAlab Toolbox plotting capabilities the

se of the graphic user interface is highly recommended. This is

 fast, flexible and very intuitive manner to design high-quality

lots. Even so, the same results can be obtained by hand coding

everal configuration parameters included in the graph configura-

ion structure. A complete selection of the most useful configura-

ion parameters and a short explanation is listed below:

% Time-resolved decoding analysis:
graph.plotmean = true; % Plot group average
graph.smoothdata = 5; % Window size for smooth
graph.stdsem = true; % Plot STD or SEM
graph.linestyle = ’-’; % Line style
graph.linewidth = 1; % Line width
% 2D decoding analysis (TGM or SFILTER):
graph.clusterLineColor = [0 0 0]; % Cluster

olor.
graph.clusterLineWidth = 1; % Cluster width.
graph.caxis = [.4 .9]; % Color range.
% Feature contribution analysis:
graph.weights.type = ’raw’; % Raw or corrected
graph.weights.anim = true; % Animated/static

lot
graph.weights.speed = 0.1; % Animation speed
graph.weights.start = 400; % Start time (ms)
graph.weights.end = 450; % End time (ms)

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 12. Ten color maps included in MVPAlab Toolbox.

p

c

c

p

g

p

o

3

a

p

c

t

c

r

p

a

f

d

t

A

t

a

f

w

t

i

p

a

c

o

a

f

P

e

p

a

t

t

m

i

T

s

c

i

t

w

m

f

p

d

n

a

n

c

t

m

s

s

t

p

f

m

p

f

m

i

p

s

T

a

w

t

F

c

i

r

r

o

h

t

t

a

p

t

c

o

graph.weights.sub = 1; % Individual subject
% Highlight significant result:
graph.sigmode.points = true; % Points/shade

lot
graph.stats.above = true; % Above chance

lusters
graph.stats.below = true; % Below chance

lusters
graph.sigh = 0.4; % Sig. points height
% Font, titles, labels and axes limits:
graph.fontsize = 14;
graph.title = ’MVPAlab - default figure’;
graph.ylabel = ’Classifier performance’;
graph.xlabel = ’Time (ms)’;
graph.xlim = [-200 1500];
graph.ylim = [0 1];
% Individual subject plots:
graph.subject = 3;% Subject idx (individual

lot)
Finally, for a correct visualization of the results, ten new color

radients and colormaps (Fig. 12) have been designed and incor-

orated to the MATLAB predefined ones. The default MATLAB col-

rmap can be modified as follows:

colormap(graph. grads.earth)

. Results

During this section we present the results obtained after testing

ll the MVPAlab main functionalities with the sample EEG dataset

resented in Section 2 Materials and Methods . As mentioned, we

ompiled this sample dataset for illustration purposes, including

he EEG data of two main conditions (or classes) and four sub-

onditions of three different participants. Readers interested on the

esults obtained for the entire sample should refer to the original

ublication [44] .

Time-resolved decoding analysis . Fig. 13 (a) depicts the result of

 time-resolved decoding analysis comparing the classification per-

ormance of two models, linear support vector machine and linear

iscriminant analysis. Shaded areas represent the Standard Error of

he Mean (SEM) of the averaged performance across participants.

dditionally, single-subject plots are depicted in dashed and dot-

ed lines. Statistically significant areas for each classification model

re highlighted using horizontal color bars. As shown, SVM outper-

orms LDA by obtaining higher performance and a wider significant

indow.

To compute this MVPA analysis, classification models were

rained using smoothed (5 timepoint moving average) and normal-
15
zed supertrials (8 trials randomly averaged). No PCA was com-

uted, so raw voltage values were extracted from the 64 electrodes

s features in balanced datasets.

Dimensionality reduction . Fig. 13 (b) shows the time-resolved

lassification performance (f1-score) averaged across participants

f an SVM classifier, using different number of PCA components

s features. As shown, the f1-score increases with the number of

eatures. Significant results were obtained employing just the first

CA component. When only the first nine PCA components were

mployed as features, the classification model showed comparable

erformance results to those obtained when no PCA is computed,

s depicted in Fig. 13 (a). Computation time is in fact reduced when

he dimension of the feature space is smaller, however, when PCA

ransformation is computed, the original spatial information is lost.

Supertrial generation. Fig. 13 (c) depicts the classification perfor-

ance when the input dataset was reduced by randomly averag-

ng different numbers of trials belonging to the same condition.

his trial averaging process generates supertrials with an increased

ignal-to-noise ratio. As shown, the SVM model performance in-

reases with the number of trials averaged, however, the variabil-

ty of the data (the standard error of the mean) also does due to

he reduced input dataset. Thus, this figure shows wider significant

indows when no or few trials are averaged.

Power envelope as feature. The comparison between the perfor-

ance of classifiers using different EEG signal characteristics as

eatures is showed in Fig. 13 (d) . First, the peak and analytic up-

er envelopes of the EEG signal were calculated (5 timepoints win-

ow). Then, feature vectors were extracted from these power sig-

als. Significantly lower performance rates were obtained for the

nalytic power envelope. Although the main goal of this article is

ot to address this type of questions, there seems to be a plausible

ause favoring this outcome: the phase of the EEG signa may con-

ain critical information to discriminate between the two experi-

ental conditions employed. This is due to the fact that the in-

tantaneous phase information contained within the original EEG

ignal is discarded during the analytic power envelope computa-

ion (see Appendix B for further details). This approximation is em-

loyed in recent literature [72 , 77] to remove instantaneous phase

rom certain brain oscillations and to study how this phase infor-

ation contributes to decoding performance.

Feature contribution analysis. During the training process of the

revious linear SVM model, the feature weights were calculated

or each timepoint and subject and corrected according to Haufe’s

ethod [73] . In order to show the activity distribution contribut-

ng to decoding accuracy, the feature weights were averaged across

articipants and three different tem poral windows. First, when the

lope of the decoding curve becomes positive, between 50–150 ms.

hen, between 350–450 ms, when decoding performance peaks,

nd finally between 850–950 ms, at the end of the significant

indow for LDA. A corrected version of the training weights dis-

ribution for these three different time windows is depicted in

ig. 13 (e) . Finally, Fig. 13 (f) shows the weight amplitude of each

hannel sorted by its importance, averaged across participants dur-

ng the 350–450 ms temporal window.

Temporal generalization analysis . Fig. 14 (a) shows the tempo-

al generalization matrix of the first MVPA analysis, Fig. 13 (a),

epresenting the performance value (AUC) for each combination

f training-test time points. Above-chance significant clusters are

ighlighted using black lines. This approach is an extension of

ime-resolved decoding, which is an indication of how EEG pat-

erns vary or persist in time. Different performance metrics, such

s the area under the curve or the mean accuracy are usually re-

orted, generating temporal generalization patterns that resembles

hose shown in Fig. 14 (a). This way, above-chance performance

lusters outside the diagonal of the matrix are interpreted as a sign

f temporal stability of certain activity patterns along time.

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 13. Time-resolved MVPA results. (a) Decoding performance (f1-score) for different classification models at a group-level: support vector machine vs. linear discriminant

analysis. Single subject plots are represented in dashed and dotted lines. Significant clusters are highlighted using horizontal colored bars. Shaded areas represent the standard

error of the mean. (b) Group-level decoding performance for different number of features when PCA is applied. (c) Group-level decoding performance as a function of the

selected number of trials to average. (d) Group-level decoding performance when different power envelopes are extracted and employed as features instead of the raw

voltage. (e) Group-level weight distribution (corrected) for three different time windows: T1: 50–150 ms, T2: 350–450 ms and T3: 850–950 ms. (f) Weights’ amplitude for

each channel sorted by importance.

o

d

n

(

C

c

t

a

F

c

c

0

t

t

a

a

p

a

r

T

t

p

i

r

s

d

t

c

d

p

b

However, in-depth examinations revealed interesting behaviors

f classification models, providing extra information about how in-

ividual conditions are classified, especially in those areas in which

o temporal generalization occurs. Fig. 14 (b) depicts the sensitivity

recall) of the classification model for each condition and subject.

omplementary generalization patterns are observed for individual

onditions, revealing extreme sensitivity values especially when no

emporal generalization occurs. Some examples are presented and

nalyzed using the corresponding confusion matrices. As seen in

ig. 14 (c) , the confusion matrix CM1 indicates that, for this spe-

ific temporal point, no test samples belonging to condition_a were

orrectly predicted as condition_a , leading to a sensitivity value of

 for this condition. By contrast, all samples belonging to condi-

ion_b were correctly labelled (in addition to all samples belonging

o condition_a incorrectly predicted as condition_b) which leads to

 sensitivity value of 1. This behavior is frequent across subjects

nd timepoints, reflecting the inability of the classifier to correctly
16
redict information in several areas, which is a clear sign of the

bsence of temporal persistence of patterns.

Multivariate Cross-Classification analysis. Fig. 15 (a) depicts the

esult of a time-resolved multivariate cross-classification analysis.

he classification model was trained with condition_1 vs. condi-

ion_2 and condition_3 vs. condition_4 were used for testing. This

rocess was repeated inversely, generating two different decod-

ng performance curves corresponding to both classification di-

ections (train: A, test: B and vice versa). Additionally, single

ubject curves were added to the figure for each classification

irection. As shown, windows of significant differences are ob-

ained between 20 0–80 0 ms, indicating that this technique suc-

essfully shows the consistency of patterns across different sets of

ata.

Frequency contribution analysis. A sliding band-stop filter ap-

roach was followed to study the contribution of each frequency

and to the overall decoding accuracy. The band-stop FIR filter

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

Fig. 14. Temporal generalization results. (a) Group-level temporal generalization matrix (area under the ROC curve) for an SVM classifier when 8 trials were averaged to

generate the input dataset. Above-chance significant clusters are highlighted using black lines. (b) Single subject generalization patterns (sensitivity), individually calculated

for each condition. (c) Confusion matrices CM1 and CM2 for two different timepoints marked in (b).

Fig. 15. Time-resolved MVCC and frequency contribution analysis results. (a) Group-level decoding performance (F1-score) for both cross-classification directions. Single subject

plots are represented in dashed and dotted lines. Significant clusters are highlighted using horizontal colored bars. Shaded areas represent the standard error of the mean. (b-c)

Decoding performance maps when different frequency bands are removed from the original datasets in a linear and logarithmically spaced steps.

w

w

d

f

s

s

v

i

t

a

s

s

c

s

e

w

t

f

as designed using the EEGLAB pop_firws function (2 Hz band-

idth, 0.2 Hz transition band, 2048 filter order, Blackman win-

ow). The original EEG dataset was pre-filtered (32 overlapped

requency bands, between 0–30 Hz in linear and logarithmically-

paced steps) producing 32 new filtered versions of the original

ignals. The former time-resolved decoding analysis (condition_a

s. condition_b) was conducted for each filtered version and the

mportance of each filtered-out band was quantified computing

he difference maps in decoding performance between the filtered
17
nd the original decoding results. Figs. 15 (b) and (c) show the re-

ults of the sliding filter analysis for linear and logarithmically-

paced steps respectively. As shown, decoding accuracy signifi-

antly dropped when frequencies up to 6 Hz were filtered-out,

uggesting that the studied phenomenon relies on processes op-

rating in the Delta and Theta frequency bands. Significant clusters

ere calculated applying the proposed cluster-based permutation

est to filtered-out datasets, generating accuracy null distributions

or each time-frequency point.

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

4

l

i

c

e

L

a

t

l

u

B

e

i

f

u

p

M

c

h

r

p

v

o

i

a

a

g

r

t

p

a

r

a

e

a

t

m

t

b

[

a

t

r

r

p

f

i

P

l

t

y

p

d

p

c

c

v

t

o

B

Table 1

Total number of trials per subject and condition .

subject_01.mat subject_02.mat subject_03.mat

condition_a 468 413 434

condition_b 403 399 396

condition_1 212 193 190

condition_2 218 202 212

condition_3 191 206 206

condition_4 250 211 222

Table 2

Processing time in seconds for different task and platforms .

Time

(s)

Windows 10 (64 bits) MacOS 11.3 (64 bits)

Single Parallel Single Parallel

T1: TR-SVM 15.58 4.03 15.18 5.27

T1: TR-LDA 8.63 1.95 10.24 3.04

T1: TG-SVM 120.88 21.70 102.70 26.42

T1: TG-LDA 302.72 58.79 279.34 92.37

T2: TR-SVM 10.73 2.28 10.30 4.04

T2: TR-LDA 3.80 1.03 4.08 1.43

T2: TG-SVM 53.24 11.48 49.98 16.43

T2: TG-LDA 155.69 25.77 127.61 38.49

i

i

s

r

t

m

o

o

w

s

n

t

m

o

r

b

w

m

e

c

s

p

s

c

c

s

c

r

e

s

5

i

c

r

l

e

c

i

. Discussion

Despite the MVPAlab Toolbox is freely available, an important

imitation is that it needs the MATLAB core to be executed, which

s a proprietary and expensive software. We are aware of the re-

ent growth of free software alternatives, such Python, in academic

nvironments. Nevertheless, we built this software under MAT-

AB due several reasons, including the huge amount of available

nd well-documented functionalities for this platform, their ac-

ive user community and its wide implementation in neuroscience

abs. Even so, there are excellent open source alternatives for those

sers with no access to a MATLAB license.

Additionally, the MVPAlab Toolbox is not yet compatible with

IDS-EEG [78] format, which is a recently developed project for

lectroencephalography studies, extending the original Brain Imag-

ng Data Structure [79] (BIDS). Both projects are an excellent ef-

ort to standardize the way data is stored, increasing accessibility,

sability and reproducibility of neuroimaging data. We favor these

rinciples and we are planning to integrate BIDS-EEG format in the

VPAlab Toolbox in future releases.

Classification algorithms are the cornerstone of multivariate de-

oding analyses. However, these powerful techniques suffer from

yperparameter overfitting, which usually leads to invalid result. A

ecent study refers to this phenomenon as “overhyping ” [80] and

roposes several strategies to avoid this problem. Regular cross-

alidation approaches are commonly employed to mitigate spuri-

us result in classification accuracies, but it has been proved that,

n some cases, they are not sufficient [80] . Several strategies, such

s pre-registration, nested cross-validation [81] , lock box and blind

nalyses are presented as reliable alternatives to prevent or miti-

ate overhyping . Unfortunately, the MVPAlab toolbox does not cur-

ently implement those strategies, but we are further investigating

hese issues for future releases. Additionally, recent studies [82 , 83]

roposes the Statistical Agnostic Mapping (SAM) as an interesting

lternative to the cross-validation procedures. Particularly in neu-

oscience, these approaches usually leads to small sample sizes

nd high levels of heterogeneity when conditions are split into

ach fold, causing among other things, a large classification vari-

bility [84] . To address these problems, SAM considered the use of

he resubstitution error estimate as a measure of decoding perfor-

ance. The difference between the actual error and the resubstitu-

ion error (which is a very optimistic measure) is upper-bounded

y a novel analytic expression proposed in the original article. See

 82 , 83] for further details. Future releases of the MVPAlab Toolbox

re planned to include this novel classification paradigm, which at

he moment is under development.

Furthermore, dimensionality reduction is a crucial step in neu-

oimaging studies to select the most relevant predictor variables,

educing the experimental noise and mitigating the small-n-large-

 problem. These techniques prevent the classification model

rom overfitting, leading to a better predictions and increasing

ts generalization capability [85] . Although MVPAlab implements

rincipal Component Analysis, which is one of the most popu-

ar dimensionality reduction approaches in neuroscience studies,

here are different algorithms which have not been implemented

et. The integration with some of these feature reduction ap-

roaches, such as Partial Least Square (PLS) [86] , is currently under

evelopment.

Regarding to the classification stage, the MVPAlab Toolbox im-

lements probably two of the most commonly employed classifi-

ation algorithms in neuroscience literature: Support Vector Ma-

hines and Discriminant Analysis, in their linear and non-linear

ersions. However, this configuration may not be enough in cer-

ain situations. In fact, different software alternatives include many

ther classification models, such as Logistic Regressions, Naïve

ayes or ensembles methods. As mentioned, the MVPAlab Toolbox
18
s in constant development, these functionalities are planned to be

mplemented in near future.

The MVPAlab Toolbox was initially developed for M/EEG analy-

is. Due to its nature, M/EEG signals provide exceptional temporal

esolution, but lack spatial resolution. Contrary, other non-invasive

echniques, such as fMRI, can identify brain activity changes at

illimetric levels but suffer from poor temporal resolution. To

vercome this dichotomy, recent trends in the neuroimaging field

pt for the multimodal data fusion [87 , 88], which is a step for-

ard towards a better understanding of brain function. These fu-

ion approaches combine data from different neuroimaging tech-

iques (M/EEG-fMRI), preserving their strengths while overcoming

heir weaknesses [89] . Extending the MVPAlab functionality from

ultivariate M/EEG analyses to multimodal data fusion represents

ne of the most important lines of development on the MVPAlab

oadmap.

There are a myriad of new analyses and techniques that can

e employed to analyze data of different nature in neuroscience,

hich is a clear indicator of the fast growth of the field. As

entioned, MVPAlab Toolbox was initially designed to work with

poched M/EEG data, extracting the raw potential of the signal and

omputing time-resolved classification analyses. The latest release

upports different signal characteristics as features, such as the

ower envelope or the instantaneous phase of the signal. Recent

tudies [90] implement different feature engineering techniques,

oncatenating data from different frequency bands, to improve the

lassification result. Currently, MVPAlab does not implement these

trategies. However, MVPAlab can be used as a general-purpose

lassification tool. Users can adapt and import their own datasets,

egardless of its nature (source space data, connectivity data or not

ven M/EEG related signals), and easily perform time-resolved clas-

ification analyses (Tables 1 and 2).

. Conclusions

MVPAlab is a very flexible, powerful and easy-to-use decod-

ng toolbox for multi-dimensional electroencephalography data, in-

luding an intuitive Graphic User Interface for creation, configu-

ation, and execution of different decoding analysis. Not a single

ine of code is needed. For those users with more coding experi-

nce, MVPAlab implements high and low-level routines to design

ustom projects in a highly flexible manner. Different preprocess-

ng routines, classification models and several decoding and cross-

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

d

a

a

q

t

c

t

t

w

C

f

l

p

w

c

s

v

m

o

i

O

D

A

e

t

h

C

A

T

w

S

c

d

p

A

t

a

m

i

a

a

a

c

2

(

d

fi

B

f

v

a

6

R

L

(

2

L

A

c

t

p

s

m

z

a

r

H

w

i

w

T

e

t

e

φ

R

ecoding analyses can be easily configured and executed. MVPAlab

lso implements exclusive analyses and functionalities, such as par-

llel computation, significantly reducing the execution time, or fre-

uency contribution analyses, which studies how relevant informa-

ion is coded across different frequency bands. MVPAlab also in-

ludes a flexible data representation utility, which generates ready-

o-publish data representations and temporal animations. All of

his combined makes MVPAlab Toolbox a compelling option for a

ide range of users.

ode version and availability

An up-to-date version of the toolbox is freely available in the

ollowing GitHub repository:

https://github.com/dlopezg/mvpalab

We use semantic versioning (e.g. X.Y.Z) to denote different re-

eases, the most recent being the v1.0.0 version, which is our first

ublic release including a stable version of the toolbox. The soft-

are documentation can also be found in our GitHub repository:

https://github.com/dlopezg/mvpalab/wiki

MVPAlab toolbox is released under a GNU General Public Li-

ense (GPL) v.3.0, which allows users to freely use, change and

hare this software. For further license details please see:

https://gnu.org/licenses/quick- guide- gplv3

We encourage all users to collaborate in MVPAlab Toolbox de-

elopment by submitting their own contributions and improve-

ents via pull request . To suggest new features, bug report or any

ther related issues, please use the MVPAlab issue tracker available

n GitHub in the following link:

https://github.com/dlopezg/mvpalab/issues

The sample EEG dataset used in this article is hosted in the

pen Science Framework project:

https://osf.io/du6fa

eclaration of Competing Interest

The authors declare no competing financial interests.

cknowledgements

This research was supported by the Spanish Ministry of Sci-

nce and Innovation under the PID2019–111187GB-I00 grant, by

he MCIN/AEI/10.13039/50110 0 011033/ and FEDER “Una manera de

acer Europa’’ under the RTI2018-098913-B100 project, by the

onsejería de Economía, Innovación, Ciencia y Empleo (Junta de

ndalucía) and FEDER under CV20-45250, A-TIC-080-UGR18, B-

IC-586-UGR20 and P20-00525 projects. The first author of this

ork is supported by a scholarship from the Spanish Ministry of

cience and Innovation (BES-2017–079769). Funding for open ac-

ess charge: Universidad de Granada / CBUA. The sample EEG

ataset was extracted from an original experiment previously ap-

roved by the Ethics Committee of the University of Granada.

ppendix A. Benchmarks and processing time

The performance comparison between different implementa-

ions of several classification libraries is out of the scope of this

rticle. However, processing time for different analysis have been

easured in Windows and macOS and are reported in the follow-

ng table:

Task 1 (T1) consist of a single subject time-resolved decoding

nalysis and a five-fold cross validation stage, when only the mean

ccuracy was calculated, ten trial averaging and no dimension-

lity reduction was computed. In this scenario, different classifi-

ation algorithms (SVM and LDA) were trained and validated for
19
56 ×256 timepoints using 80 observations (trials) and 63 features

electrodes).

Task 2 (T2) consist of a single subject time-resolved cross-

ecoding analysis, when only the mean accuracy was calculated,

ve trial averaging and no dimensionality reduction was computed.

oth classification directions were calculated. In this scenario, dif-

erent classification algorithms (SVM and LDA) were trained and

alidated for 256 ×256 timepoints using 80 observations (trials)

nd 63 features (electrodes).

These tests were computed in two different setups. First, in a

-Core workstation (Intel Core i7–5820 K CPU @ 3.30 GHz, 32GB

AM DDR4 @ 2400 MHz) running Windows 10 (64 bits) and MAT-

AB 2020a (9.8.0.1323502) and finally in a cuad-core MacBook Pro

Intel Core i7–6820HQ CPU at 2,7 GHz, 16GB RAM LPDDR3 @

133 MHz) running macOS Big Sur (64 bits, version 11.3) and MAT-

AB 2020a (9.8.0.1323502).

ppendix B. Power envelope and instantaneous phase

alculation

Different signal characteristics, such the instantaneous ampli-

ude or phase, can be easily calculated and extracted in the com-

lex plane. In order to extract this information from a real-valued

ignal x(t) (e.g. the electroencephalogram), the following transfor-

ation can be applied:

 (t) = x (t) + j HT [x (t)]

Here, z(t) is the complex form of x(t) , also known as the ‘ an-

lytic signal ’, and HT denotes the Hilbert’s Transformation of the

eal-valued signal, defined as:

T [x (t)] = P.V

[
1

π

+ ∞

∫
−∞

x (τ)

t − τ
dτ

]

here P.V denote the Cauchy Principal Value of the integral, which

s required for assigning values to improper integrals values that

ould otherwise be undefined (the singularity occurs when t = τ).

hus, the instantaneous amplitude, also known as power envelope

 (t), or the instantaneous phase ϕ(t), can be easily extracted from

he analytic signal as follows:

 (t) = | z (t) | =

√

x 2 (t) + (HT [x (t)])
2

(t) = ∠ z (t) = arctan

HT [x (t)]

x (t)

eferences

[1] S. Makeig , A.J. Bell , T.-.P. Jung , T.J. Sejnowski , others, Independent component

analysis of electroencephalographic data, Adv. Neural Inf. Process. Syst. (1996)
145–151 .

[2] T.P. Jung, S. Makeig, C. Humphries, T.W. Lee, M.J. Mckeown, V. Iragui, T.J. Se-

jnowski, Removing electroencephalographic artifacts by blind source separa-
tion, Psychophysiology 37 (20 0 0) 163–178, doi: 10.1017/S0 04857720 0980259 .

[3] A. Delorme , S. Makeig , EEGLAB: an open source toolbox for analysis of sin-
gle-trial EEG dynamics including independent component analysis, J. Neurosci.

Methods. 134 (2004) 9–21 .
[4] J. Lopez-Calderon, S.J. Luck, ERPLAB: an open-source toolbox for the analysis

of event-related potentials, Front. Hum. Neurosci. 8 (2014) 1–14, doi: 10.3389/

fnhum.2014.00213 .
[5] R. Oostenveld, P. Fries, E. Maris, J.M. Schoffelen, FieldTrip: open source soft-

ware for advanced analysis of MEG, EEG, and invasive electrophysiological
data, Comput. Intell. Neurosci. 2011 (2011), doi: 10.1155/2011/156869 .

[6] J.V. Haxby, Distributed and Overlapping Representations of Faces and Ob-
jects in Ventral Temporal Cortex, Science (80-.). 293 (2001) 2425–2430.

https://doi.org/10.1126/science.1063736.
[7] K.A. Norman, S.M. Polyn, G.J. Detre, J.V. Haxby, Beyond mind-reading: multi-

voxel pattern analysis of fMRI data, Trends Cogn. Sci. 10 (2006) 424–430,

doi: 10.1016/j.tics.20 06.07.0 05 .
[8] J.V. Haxby, Multivariate pattern analysis of fMRI: the early beginnings, Neu-

roimage 62 (2012) 852–855, doi: 10.1016/j.neuroimage.2012.03.016 .
[9] J.-.D. Haynes, G. Rees, Decoding mental states from brain activity in humans,

Nat. Rev. Neurosci. 7 (2006) 523–534, doi: 10.1038/nrn1931 .

https://github.com/dlopezg/mvpalab
https://github.com/dlopezg/mvpalab/wiki
https://gnu.org/licenses/quick-guide-gplv3
https://github.com/dlopezg/mvpalab/issues
https://osf.io/du6fa
http://dx.doi.org/10.13039/501100004837
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0001
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0001
https://doi.org/10.1017/S0048577200980259
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0003
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0003
https://doi.org/10.3389/fnhum.2014.00213
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1016/j.neuroimage.2012.03.016
https://doi.org/10.1038/nrn1931

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[10] N. Kriegeskorte, R. Goebel, P. Bandettini, Information-based functional brain
mapping, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 3863–3868, doi: 10.1073/

pnas.0600244103 .
[11] T. Davis, R.A. Poldrack, Measuring neural representations with fMRI: prac-

tices and pitfalls, Ann. N. Y. Acad. Sci. 1296 (2013) 108–134, doi: 10.1111/nyas.
12156 .

[12] F. Pereira, T. Mitchell, M. Botvinick, Machine learning classifiers and fMRI: a
tutorial overview, Neuroimage 45 (2009) 199–209, doi: 10.1016/j.neuroimage.

20 08.11.0 07 .

[13] M. Mur, P.A. Bandettini, N. Kriegeskorte, Revealing representational content
with pattern-information fMRI - An introductory guide, Soc. Cogn. Affect. Neu-

rosci. 4 (2009) 101–109, doi: 10.1093/scan/nsn044 .
[14] S. Lemm, B. Blankertz, T. Dickhaus, K.R. Müller, Introduction to machine

learning for brain imaging, Neuroimage 56 (2011) 387–399, doi: 10.1016/j.
neuroimage.2010.11.004 .

[15] J. Shiraishi, Q. Li, D. Appelbaum, K. Doi, Computer-aided diagnosis and artificial

intelligence in clinical imaging, Semin. Nucl. Med. 41 (2011) 449–462, doi: 10.
1053/j.semnuclmed.2011.06.004 .

[16] C. Gao, H. Sun, T. Wang, M. Tang, N.I. Bohnen, M.L.T.M. Müller, T. Herman,
N. Giladi, A. Kalinin, C. Spino, W. Dauer, J.M. Hausdorff, I.D. Dinov, Model-

based and model-free machine learning techniques for diagnostic prediction
and classification of clinical outcomes in Parkinson’s disease, Sci. Rep. 8 (2018)

1–21, doi: 10.1038/s41598- 018- 24783- 4 .

[17] F.J. Martinez-Murcia, J.M. Górriz, J. Ramírez, A. Ortiz, Convolutional Neural Net-
works for Neuroimaging in Parkinson’s Disease: is Preprocessing Needed? Int.

J. Neural Syst. 28 (2018) 7–12, doi: 10.1142/S0129065718500351 .
[18] D. Ahmadi Rastegar, N. Ho, G.M. Halliday, N. Dzamko, Parkinson’s progression

prediction using machine learning and serum cytokines, Npj Park. Dis. 5 (2019)
1–8, doi: 10.1038/s41531- 019- 0086- 4 .

[19] D. Salas-Gonzalez, J.M. Górriz, J. Ramírez, M. López, I. Álvarez, F. Segovia,

R. Chaves, C.G. Puntonet, Computer-aided diagnosis of Alzheimer’s disease us-
ing support vector machines and classification trees, Phys. Med. Biol. 55 (2010)

2807–2817, doi: 10.1088/0031-9155/55/10/002 .
20] F.J. Martinez-Murcia, A. Ortiz, J.-.M. Gorriz, J. Ramirez, D. Castillo-Barnes,

Studying the Manifold Structure of Alzheimer’s Disease: a Deep Learning Ap-
proach Using Convolutional Autoencoders, IEEE J. Biomed. Heal. Informatics. 24

(2020) 17–26, doi: 10.1109/JBHI.2019.2914970 .

[21] J. Ramírez, J.M. Górriz, D. Salas-Gonzalez, A. Romero, M. López, I. Álvarez,
M. Gómez-Río, Computer-aided diagnosis of Alzheimer’s type dementia com-

bining support vector machines and discriminant set of features, Inf. Sci. (Ny).
237 (2013) 59–72, doi: 10.1016/J.INS.2009.05.012 .

22] D.P. Wall, J. Kosmicki, T.F. Deluca, E. Harstad, V.A. Fusaro, Use of machine learn-
ing to shorten observation-based screening and diagnosis of autism, Transl.

Psychiatry. 2 (2012), doi: 10.1038/tp.2012.10 .

23] M. Duda, R. Ma, N. Haber, D.P. Wall, Use of machine learning for behavioral
distinction of autism and ADHD, Transl. Psychiatry. 6 (2016) 1–5, doi: 10.1038/

tp.2015.221 .
24] J.M. Górriz, J. Ramírez, F. Segovia, F.J. Martínez, M.C. Lai, M.V. Lombardo,

S. Baron-Cohen, J. Suckling, A Machine Learning Approach to Reveal the Neu-
roPhenotypes of Autisms, Int. J. Neural Syst. 29 (2019) 1–22, doi: 10.1142/

S0129065718500582 .
25] D. Álvarez, A. Cerezo-Hernández, A. Crespo, G.C. Gutiérrez-Tobal, F. Vaquerizo-

Villar, V. Barroso-García, F. Moreno, C.A. Arroyo, T. Ruiz, R. Hornero, F. del

Campo, A machine learning-based test for adult sleep apnoea screening at
home using oximetry and airflow, Sci. Rep. 10 (2020) 1–12, doi: 10.1038/

s41598- 020- 62223- 4 .
26] J. Palotti, R. Mall, M. Aupetit, M. Rueschman, M. Singh, A. Sathyanarayana,

S. Taheri, L. Fernandez-Luque, Benchmark on a large cohort for sleep-wake
classification with machine learning techniques, Npj Digit. Med. 2 (2019) 1–

9, doi: 10.1038/s41746- 019- 0126- 9 .

27] D. López-García , M. Ruz , J. Ramírez , J.M. Górriz , Automatic detection of
sleep disorders: multi-class automatic classification algorithms based on Sup-

port Vector Machines, Int. Conf. Time Ser. Forecast. (ITISE 2018) 3 (2018)
1270–1280 .

28] R. Zhang, X. Tie, Z. Qi, N.B. Bevins, C. Zhang, D. Griner, T.K. Song, J.D. Nadig,
M.L. Schiebler, J.W. Garrett, K. Li, S.B. Reeder, G.H. Chen, Diagnosis of

Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: value

of Artificial Intelligence, Radiology 298 (2021) E88–E97, doi: 10.1148/RADIOL.
2020202944 .

29] S.H. Wang, V.V. Govindaraj, J.M. Górriz, X. Zhang, Y.D. Zhang, Covid-19 classifi-
cation by FGCNet with deep feature fusion from graph convolutional network

and convolutional neural network, Inf. Fusion. 67 (2021) 208–229, doi: 10.1016/
j.inffus.2020.10.004 .

30] J.E. Arco, A. Ortiz, J. Ramírez, F.J. Martínez-Murcia, Y.-.D. Zhang, J. Broncano,

M.Á. Berbís, J. Royuela-del-Val, A. Luna, J.M. Górriz, Probabilistic combina-
tion of eigenlungs-based classifiers for COVID-19 diagnosis in chest CT images,

(2021). http://arxiv.org/abs/2103.02961 .
[31] W.D. Penny , K.J. Friston , J.T. Ashburner , S.J. Kiebel , T.E. Nichols , Statistical Para-

metric mapping: the Analysis of Functional Brain Images, Elsevier, 2011 .
32] M.N. Hebart, K. GÃ¶rgen, J.-.D. Haynes, The Decoding Toolbox (TDT): a versatile

software package for multivariate analyses of functional imaging data, Front.

Neuroinform. 8 (2015) 88, doi: 10.3389/fninf.2014.0 0 088 .
33] J. Schrouff, M.J. Rosa, J.M. Rondina, A.F. Marquand, C. Chu, J. Ashburner,

C. Phillips, J. Richiardi, J. Mourão-Miranda, PRoNTo: pattern recognition
for neuroimaging toolbox, Neuroinformatics 11 (2013) 319–337, doi: 10.1007/

s12021- 013- 9178- 1 .
20
34] J.J. Fahrenfort, J. van Driel, S. van Gaal, C.N.L. Olivers, From ERPs to MVPA us-
ing the Amsterdam Decoding and Modeling toolbox (ADAM), Front. Neurosci.

(2018) 12, doi: 10.3389/fnins.2018.00368 .
35] N.N. Oosterhof, A.C. Connolly, J.V. Haxby, CoSMoMVPA: multi-modal multivari-

ate pattern analysis of neuroimaging data in matlab/GNU octave, Front. Neu-
roinform. 10 (2016) 1–27, doi: 10.3389/fninf.2016.0 0 027 .

36] M.S. Treder, MVPA-Light: a Classification and Regression Toolbox for Multi-
Dimensional Data, Front. Neurosci. 14 (2020) 1–19, doi: 10.3389/fnins.2020.

00289 .

37] S. Bode, D. Feuerriegel, D. Bennett, P.M. Alday, The Decision Decoding
ToolBOX (DDTBOX) – A Multivariate Pattern Analysis Toolbox for Event-

Related Potentials, Neuroinformatics 17 (2019) 27–42, doi: 10.1007/s12021-018-
9375-z .

38] C.A. Kothe, S. Makeig, BCILAB: a platform for brain-computer interface devel-
opment, J. Neural Eng. 10 (2013), doi: 10.1088/1741-2560/10/5/056014 .

39] B. Blankertz, L. Acqualagna, S. Dähne, S. Haufe, M. Schultze-Kraft, I. Sturm,

M. Ušcumlic, M.A. Wenzel, G. Curio, K.R. Müller, The Berlin brain-computer
interface: progress beyond communication and control, Front. Neurosci. (2016)

10, doi: 10.3389/fnins.2016.00530 .
40] A. Gramfort, M. Luessi, E. Larson, D.A. Engemann, D. Strohmeier, C. Brodbeck,

R. Goj, M. Jas, T. Brooks, L. Parkkonen, M. Hämäläinen, MEG and EEG data anal-
ysis with MNE-Python, Front. Neurosci. 7 (2013) 1–13, doi: 10.3389/fnins.2013.

00267 .

[41] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi,
A. Gramfort, B. Thirion, G. Varoquaux, Machine learning for neuroimaging

with scikit-learn, Front. Neuroinform. 8 (2014) 1–10, doi: 10.3389/fninf.2014.
0 0 014 .

42] M. Hanke, Y.O. Halchenko, P.B. Sederberg, E. Olivetti, I. Fründ, J.W. Rieger,
C.S. Herrmann, J.V. Haxby, S.J. Hanson, S. Pollmann, PyMVPA: a unifying ap-

proach to the analysis of neuroscientifi c data, Front. Neuroinform. 3 (2009)

1–13, doi: 10.3389/neuro.11.0 03.20 09 .
43] M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V. Haxby, S. Pollmann,

PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data, Neu-
roinformatics 7 (2009) 37–53, doi: 10.1007/s12021- 008- 9041- y .

44] D. López-García, A. Sobrado, J.M.G. Peñalver, J.M. Górriz, M. Ruz, Multivari-
ate Pattern Analysis Techniques for Electroencephalography Data to Study

Flanker Interference Effects, Int. J. Neural Syst. (2020) 30, doi: 10.1142/

S0129065720500240 .
45] D. López-García, A. Sobrado, J.M. González-Peñalver, J.M. Górriz, M. Ruz, Multi-

variate Pattern Analysis of Electroencephalography Data in a Demand-Selection
Task, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics). (2019) 403–411, doi: 10.1007/978- 3- 030- 19591- 5 _ 41 .
46] L. Isik, E.M. Meyers, J.Z. Leibo, T. Poggio, The dynamics of invariant object

recognition in the human visual system, J. Neurophysiol. 111 (2014) 91–102,

doi: 10.1152/jn.00394.2013 .
[47] T. Grootswagers, S.G. Wardle, T.A. Carlson, Decoding Dynamic Brain Patterns

from Evoked Responses: a Tutorial on Multivariate Pattern Analysis Applied to
Time Series Neuroimaging Data, J. Cogn. Neurosci. 29 (2017) 677–697, doi: 10.

1162/jocn _ a _ 01068 .
48] Y. Sun, A.K.C. Wong, M.S. Kamel, Classification of imbalanced data: a re-

view, Int. J. Pattern Recognit. Artif. Intell. 23 (2009) 687–719, doi: 10.1142/
S02180 014090 07326 .

49] D. Singh, B. Singh, Investigating the impact of data normalization on classifi-

cation performance, Appl. Soft Comput. 97 (2020) 105524, doi: 10.1016/j.asoc.
2019.105524 .

50] J.R. King, F. Faugeras, A. Gramfort, A. Schurger, I. El Karoui, J.D. Sitt, B. Ro-
haut, C. Wacongne, E. Labyt, T. Bekinschtein, L. Cohen, L. Naccache, S. De-

haene, Single-trial decoding of auditory novelty responses facilitates the de-
tection of residual consciousness, Neuroimage 83 (2013) 726–738, doi: 10.1016/

j.neuroimage.2013.07.013 .

[51] C. Kerrén, J. Linde-Domingo, S. Hanslmayr, M. Wimber, An Optimal Oscillatory
Phase for Pattern Reactivation during Memory Retrieval, Curr. Biol. 28 (2018)

3383–3392, doi: 10.1016/j.cub.2018.08.065 .
52] S.M. Shatek, T. Grootswagers, A .K. Robinson, T.A . Carlson, Decoding Images in

the Mind’s Eye: the Temporal Dynamics of Visual Imagery, Vision. 3 (2019) 53.
https://doi.org/10.3390/vision3040053.

53] L. Isik, E.M. Meyers, J.Z. Leibo, T. Poggio, The dynamics of invariant object

recognition in the human visual system, J. Neurophysiol. 111 (2014) 91–102,
doi: 10.1152/jn.00394.2013 .

54] J.J. LaRocque, J.A. Lewis-Peacock, A.T. Drysdale, K. Oberauer, B.R. Postle, De-
coding Attended Information in Short-term Memory: an EEG Study, J. Cogn.

Neurosci. 25 (2013) 127–142, doi: 10.1162/jocn _ a _ 00305 .
55] L.J.P. Van Der Maaten, E.O. Postma, H.J. Van Den Herik, Dimensionality Reduc-

tion: a Comparative Review, J. Mach. Learn. Res. 10 (2009) 1–41, doi: 10.1080/

135062804 4 40 0 0102 .
56] H. Abdi, L.J. Williams, Principal component analysis, Wiley Interdiscip. Rev.

Comput. Stat. 2 (2010) 433–459, doi: 10.1002/wics.101 .
57] M.N. Hebart, B.B. Bankson, A. Harel, C.I. Baker, R.M. Cichy, The representational

dynamics of task and object processing in humans, Elife 7 (2018) 1–21, doi: 10.
7554/eLife.32816 .

58] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal mar-

gin classifiers, in: Proc. Fifth Annu. Work. Comput. Learn. Theory - COLT ’92,
ACM Press, New York, New York, USA, 1992, pp. 144–152, doi: 10.1145/130385.

130401 .
59] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273–297,

doi: 10.10 07/BF0 0994018 .

https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.1111/nyas.penalty -@M 12156
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1016/j.neuroimage.2010.11.004
https://doi.org/10.1053/j.semnuclmed.2011.06.004
https://doi.org/10.1038/s41598-018-24783-4
https://doi.org/10.1142/S0129065718500351
https://doi.org/10.1038/s41531-019-0086-4
https://doi.org/10.1088/0031-9155/55/10/002
https://doi.org/10.1109/JBHI.2019.2914970
https://doi.org/10.1016/J.INS.2009.05.012
https://doi.org/10.1038/tp.2012.10
https://doi.org/10.1038/tp.2015.221
https://doi.org/10.1142/S0129065718500582
https://doi.org/10.1038/s41598-020-62223-4
https://doi.org/10.1038/s41746-019-0126-9
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0027
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0027
https://doi.org/10.1148/RADIOL.penalty -@M 2020202944
https://doi.org/10.1016/j.inffus.2020.10.004
http://arxiv.org/abs/2103.02961
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0031
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0031
https://doi.org/10.3389/fninf.2014.00088
https://doi.org/10.1007/s12021-013-9178-1
https://doi.org/10.3389/fnins.2018.00368
https://doi.org/10.3389/fninf.2016.00027
https://doi.org/10.3389/fnins.2020.00289
https://doi.org/10.1007/s12021-018-penalty -@M 9375-z
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.3389/fnins.2016.00530
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fninf.2014.penalty -@M 00014
https://doi.org/10.3389/neuro.11.003.2009
https://doi.org/10.1007/s12021-008-9041-y
https://doi.org/10.1142/S0129065720500240
https://doi.org/10.1007/978-3-030-19591-5_41
https://doi.org/10.1152/jn.00394.2013
https://doi.org/10.1162/jocn_a_01068
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.neuroimage.2013.07.013
https://doi.org/10.1016/j.cub.2018.08.065
https://doi.org/10.1152/jn.00394.2013
https://doi.org/10.1162/jocn_a_00305
https://doi.org/10.1080/13506280444000102
https://doi.org/10.1002/wics.101
https://doi.org/10.7554/eLife.32816
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/BF00994018

D. López-García, J.M.G. Peñalver, J.M. Górriz et al. Computer Methods and Programs in Biomedicine 214 (2022) 106549

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

60] N. Cristianini , J. Shawe-Taylor , others, An introduction to Support Vector Ma-
chines and Other Kernel-Based Learning Methods, Cambridge university press,

20 0 0 .
61] M. Misaki, Y. Kim, P.A. Bandettini, N. Kriegeskorte, Comparison of multivari-

ate classifiers and response normalizations for pattern-information fMRI, Neu-
roimage 53 (2010) 103–118, doi: 10.1016/j.neuroimage.2010.05.051 .

62] T.T. Wong, Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation, Pattern Recognit. 48 (2015) 2839–2846, doi: 10.

1016/j.patcog.2015.03.009 .

63] G. Varoquaux, P.R. Raamana, D.A. Engemann, A. Hoyos-Idrobo, Y. Schwartz,
B. Thirion, Assessing and tuning brain decoders: cross-validation, caveats, and

guidelines, Neuroimage 145 (2017) 166–179, doi: 10.1016/j.neuroimage.2016.10.
038 .

64] E. Combrisson, K. Jerbi, Exceeding chance level by chance: the caveat of the-
oretical chance levels in brain signal classification and statistical assessment

of decoding accuracy, J. Neurosci. Methods. 250 (2015) 126–136, doi: 10.1016/j.

jneumeth.2015.01.010 .
65] K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy

and its posterior distribution, in: Proc. - Int. Conf. Pattern Recognit, 2010,
pp. 3121–3124, doi: 10.1109/ICPR.2010.764 .

66] J.-.R. King, S. Dehaene, Characterizing the dynamics of mental representations:
the temporal generalization method, Trends Cogn. Sci. 18 (2014) 203–210,

doi: 10.1016/j.tics.2014.01.002 .

67] J.T. Kaplan, K. Man, S.G. Greening, Multivariate cross-classification: applying
machine learning techniques to characterize abstraction in neural representa-

tions, Front. Hum. Neurosci. 9 (2015) 151, doi: 10.3389/fnhum.2015.00151 .
68] J.A. Etzel, V. Gazzola, C. Keysers, Testing Simulation Theory with Cross-Modal

Multivariate Classification of fMRI Data, PLoS ONE 3 (2008) e3690, doi: 10.1371/
journal.pone.0 0 03690 .

69] N.N. Oosterhof, A.J. Wiggett, J. Diedrichsen, S.P. Tipper, P.E. Downing, Surface-

Based Information Mapping Reveals Crossmodal Vision–Action Representations
in Human Parietal and Occipitotemporal Cortex, J. Neurophysiol. 104 (2010)

1077–1089, doi: 10.1152/jn.00326.2010 .
70] N.N. Oosterhof, S.P. Tipper, P.E. Downing, Crossmodal and action-specific: neu-

roimaging the human mirror neuron system, Trends Cogn. Sci. 17 (2013) 311–
318, doi: 10.1016/j.tics.2013.04.012 .

[71] J. van den Hurk, H.P. Op de Beeck, Generalization asymmetry in multivariate

cross-classification: when representation A generalizes better to representation
B than B to A, BioRxiv. (2019). https://doi.org/10.1101/592410.

72] D. Vidaurre , R.M. Cichy , M.W. Woolrich , Dissociable components of oscillatory
activity underly information encoding in human perception, BioRxiv (2020)

1–29 .
73] S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J.D. Haynes, B. Blankertz, F. Bieß-

mann, On the interpretation of weight vectors of linear models in multivariate

neuroimaging, Neuroimage 87 (2014) 96–110, doi: 10.1016/j.neuroimage.2013.
10.067 .

[74] A. de Cheveigné, I. Nelken, Filters: when, Why, and How (Not) to Use Them,
Neuron 102 (2019) 280–293, doi: 10.1016/j.neuron.2019.02.039 .

75] R. VanRullen, Four common conceptual fallacies in mapping the time course
of recognition, Front. Psychol. 2 (2011) 1–6, doi: 10.3389/fpsyg.2011.00365 .

[76] J. Stelzer, Y. Chen, R. Turner, Statistical inference and multiple testing correc-
tion in classification-based multi-voxel pattern analysis (MVPA): random per-

mutations and cluster size control, Neuroimage 65 (2013) 69–82, doi: 10.1016/

j.neuroimage.2012.09.063 .
21
77] G.C. O’Neill, E.L. Barratt, B.A.E. Hunt, P.K. Tewarie, M.J. Brookes, Measuring elec-
trophysiological connectivity by power envelope correlation: a technical re-

view on MEG methods, Phys. Med. Biol. 60 (2015) R271–R295, doi: 10.1088/
0031-9155/60/21/R271 .

78] C.R. Pernet, S. Appelhoff, G. Flandin, C. Phillips, A. Delorme, R. Oosten-
veld, BIDS-EEG: an extension to the Brain Imaging Data Structure (BIDS)

Specification for electroencephalography, PsyArXiv (2018), doi: 10.31234/osf.io/
63a4y .

79] K.J. Gorgolewski, T. Auer, V.D. Calhoun, R.C. Craddock, S. Das, E.P. Duff,

G. Flandin, S.S. Ghosh, T. Glatard, Y.O. Halchenko, D.A. Handwerker, M. Hanke,
D. Keator, X. Li, Z. Michael, C. Maumet, B.N. Nichols, T.E. Nichols, J. Pellman,

J.-.B. Poline, A. Rokem, G. Schaefer, V. Sochat, W. Triplett, J.A. Turner, G. Varo-
quaux, R.A. Poldrack, The brain imaging data structure, a format for organiz-

ing and describing outputs of neuroimaging experiments, Sci. Data. 3 (2016)
160044, doi: 10.1038/sdata.2016.44 .

80] M. Hosseini, M. Powell, J. Collins, C. Callahan-Flintoft, W. Jones, H. Bowman,

B. Wyble, I tried a bunch of things: the dangers of unexpected overfitting
in classification of brain data, Neurosci. Biobehav. Rev. 119 (2020) 456–467,

doi: 10.1016/j.neubiorev.2020.09.036 .
81] G.C. Cawley , N.L.C. Talbot , On over-fitting in model selection and subse-

quent selection bias in performance evaluation, J. Mach. Learn. Res. 11 (2010)
2079–2107 .

82] J.M. Gorriz, C. Jimenez-Mesa, R. Romero-Garcia, F. Segovia, J. Ramirez,

D. Castillo-Barnes, F.J. Martinez-Murcia, A. Ortiz, D. Salas-Gonzalez, I.A. Illan,
C.G. Puntonet, D. Lopez-Garcia, M. Gomez-Rio, J. Suckling, Statistical Agnostic

Mapping: a framework in neuroimaging based on concentration inequalities,
Inf. Fusion. 66 (2021) 198–212, doi: 10.1016/j.inffus.2020.09.008 .

83] J.M. Górriz, J. Ramirez, J. Suckling, On the computation of distribution-free per-
formance bounds: application to small sample sizes in neuroimaging, Pattern

Recognit. 93 (2019) 1–13, doi: 10.1016/j.patcog.2019.03.032 .

84] G. Varoquaux, Cross-validation failure: small sample sizes lead to large error
bars, Neuroimage 180 (2018) 68–77, doi: 10.1016/j.neuroimage.2017.06.061 .

85] B. Mwangi, T.S. Tian, J.C. Soares, A Review of Feature Reduction Tech-
niques in Neuroimaging, Neuroinformatics 12 (2014) 229–244, doi: 10.1007/

s12021- 013- 9204- 3 .
86] A . Krishnan, L.J. Williams, A . Randal, H. Abdi, NeuroImage Partial Least Squares

(PLS) methods for neuroimaging : a tutorial and review, Neuroimage 56 (2011)

455–475, doi: 10.1016/j.neuroimage.2010.07.034 .
87] Y.D. Zhang, Z. Dong, S.H. Wang, X. Yu, X. Yao, Q. Zhou, H. Hu, M. Li, C. Jiménez-

Mesa, J. Ramirez, F.J. Martinez, J.M. Gorriz, Advances in multimodal data fusion
in neuroimaging: overview, challenges, and novel orientation, Inf. Fusion. 64

(2020) 149–187, doi: 10.1016/j.inffus.2020.07.006 .
88] S. Wang, M.E. Celebi, Y.D. Zhang, X. Yu, S. Lu, X. Yao, Q. Zhou, M.G. Miguel,

Y. Tian, J.M. Gorriz, I. Tyukin, Advances in data preprocessing for bio-medical

data fusion: an overview of the methods, challenges, and prospects, Inf. Fusion.
76 (2021) 376–421, doi: 10.1016/j.inffus.2021.07.001 .

89] R.M. Cichy, A. Oliva, A M/EEG-fMRI Fusion Primer: resolving Human Brain Re-
sponses in Space and Time, Neuron 107 (2020) 772–781, doi: 10.1016/j.neuron.

2020.07.001 .
90] J. Syrjälä, A. Basti, R. Guidotti, L. Marzetti, V. Pizzella, Decoding working mem-

ory task condition using magnetoencephalography source level long-range
phase coupling patterns, J. Neural Eng. 18 (2021), doi: 10.1088/1741-2552/

abcefe .

http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0060
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0060
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0060
https://doi.org/10.1016/j.neuroimage.2010.05.051
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.jneumeth.2015.01.010
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.3389/fnhum.2015.00151
https://doi.org/10.1371/journal.pone.0003690
https://doi.org/10.1152/jn.00326.2010
https://doi.org/10.1016/j.tics.2013.04.012
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0072
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0072
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0072
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0072
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuron.2019.02.039
https://doi.org/10.3389/fpsyg.2011.00365
https://doi.org/10.1016/j.neuroimage.2012.09.063
https://doi.org/10.1088/0031-9155/60/21/R271
https://doi.org/10.31234/osf.io/penalty -@M 63a4y
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neubiorev.2020.09.036
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0081
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0081
http://refhub.elsevier.com/S0169-2607(21)00623-4/sbref0081
https://doi.org/10.1016/j.inffus.2020.09.008
https://doi.org/10.1016/j.patcog.2019.03.032
https://doi.org/10.1016/j.neuroimage.2017.06.061
https://doi.org/10.1007/s12021-013-9204-3
https://doi.org/10.1016/j.neuroimage.2010.07.034
https://doi.org/10.1016/j.inffus.2020.07.006
https://doi.org/10.1016/j.inffus.2021.07.001
https://doi.org/10.1016/j.neuron.2020.07.001
https://doi.org/10.1088/1741-2552/abcefe

	MVPAlab: A machine learning decoding toolbox for multidimensional electroencephalography data
	1 Introduction
	1.1 Related work
	1.2 MVPAlab: an easy-to-use machine learning toolbox for decoding analysis
	1.3 Installation, compatibility and requirements
	1.4 Dataset structure and format
	1.5 MVPAlab toolbox architecture
	1.6 Getting started
	1.6.1 Graphic user interface
	1.6.2 Building custom scrips

	2 Materials and methods
	2.1 Sample EEG dataset
	2.2 Defining a configuration file
	2.2.1 Participants and data directories
	2.2.2 Trial averaging
	2.2.3 Balanced datasets
	2.2.4 Data normalization
	2.2.5 Data smoothing
	2.2.6 Analysis timing
	2.2.7 Dimensionality reduction
	2.2.8 Classification algorithms
	2.2.9 Cross-validation
	2.2.10 Performance metrics
	2.2.11 Parallel computation

	2.3 Importing data and feature extraction
	2.4 Type of analysis
	2.4.1 Time-resolved multivariate pattern analysis (TR-MVPA)
	2.4.2 Time-resolved multivariate cross-classification (TR-MVCC)
	2.4.3 Temporal generalization matrix
	2.4.4 Feature contribution analysis
	2.4.5 Frequency contribution analysis

	2.5 Cluster-based permutation testing
	2.6 Result representation pipeline

	3 Results
	4 Discussion
	5 Conclusions
	Code version and availability
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Benchmarks and processing time
	Appendix B Power envelope and instantaneous phase calculation
	References

