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Abstract The objective of this paper is to derive a state-space model for
several continuous-time processes, by applying the Karhunen–Loève expan-
sion, and then to apply the Kalman filter equations. The accuracy of the models
on the basis of deterministic or random inputs is studied by means of simulation
on two well-known processes.
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1 Introduction

The problem of working with continuous-time processes has a great interest
in several applied areas, such as Economics, Astrophysics, etc. In fact, on the
last years there has been an extensive research going on this field, which has
resulted in numerous publications. So, Sinha (2000) gives an overall view of
indirect and direct methods that have been developed for identification of con-
tinuous-time system from samples of input–output data, Johansson et al. (2001)
and Wang and Zhang (2001) discuss about identification of system and Larsson
and Söderström (2002) and Valderrama et al. (2003) analyze unevenly sample
data in continuous system. The most obvious reason is that many processes

M. Ortega-Moreno (B)
Department of General Economics and statistics, Faculty of Economics Sciences,
University of Huelva, 21071 Huelva, Spain
e-mail: ortegamo@dehie.uhu.es

M. Escabias
Department of Statistics and Operations Research, Faculty of Pharmacy,
University of Granada, 18071 Granada, Spain



430 M. Ortega-Moreno, M. Escabias

in real life are inherently continuous in time. The main approach is based on
replacing the differentiation operator with some approximations and deriving
a discrete-time linear model.

Given a second-order and quadratic-mean continuous stochastic process it is
possible to represent it as a denumerable series, known as the Karhunen–Loève
orthogonal expansion. In the present paper, we use such expansions for writing
some continuous-time processes in term of a state-space model (SSM), and
we apply the Kalman filtering method obtaining estimations of the process by
computing the available noisy observations. So, in the following Section we will
develop two applications to continuous-time processes, CAR(1) and random
binary signal, and we will suppose both deterministic and random inputs. With
deterministic inputs we will consider that the initial state is Gaussian. Finally, a
discussion of the results and conclusions is presented in the last section.

2 SSM built from continuous-time processes

2.1 SSM built from CAR(1)

A continuous-time AR(1) process, denoted as CAR(1), is defined as a stationary
solution of the first-order stochastic differential equation

X(t) + aX(t) = σB(t) + b, (1)

where {B(t)} is a standard Brownian motion, and a, b and σ are parameters
(Harvey 1990). The derivative of the Brownian motion with respect to t does
not exist in the usual sense, so Eq. 1 is interpreted as an Itô differential equation,

dX(t) + aX(t) dt = σdB(t) + b dt, t > 0,

with dX(t) and dB(t) denoting the increments of X and B in the time interval
(t, t+dt) and X(0) a random variable with finite variance, independent of {B(t)}.
The solution of this equation can be written as

X(t) = e−atX(0) + b
a
(1 − e−at) + e−atI(t),

where I(t) = σ
∫ t

0 eaudB(u) is an Itô integral. Necessary and sufficient condi-

tions for the process {X(t)}, with E[X(t)] = b
a and Cov[X(t+h), X(t)] = σ 2

2a e−ah,
to be stationary are

a > 0, E[X(0)] = b
a

andV[X(0)] = σ 2

2a
.

If a > 0 and X(0) is N(b
a , σ 2

2a ), then the CAR(1) process will also be Gaussian
and strictly stationary.
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If the observations are equally spaced, the joint density is exactly the same as
the joint density of observations of the discrete-time Gaussian AR(1) process
with this form

Yn(t) − b
a

= e−a
(

Yn−1(t) − b
a

)

+ Zn(t), {Z(t)} ∼ WN
(

0,
σ 2

2a

)

.

This shows that the observations at discrete-time of the CAR(1) process are
equal to discrete-time AR(1) process with coefficient e−a.
Let us now consider the CAR(1) with zero-mean and covariance function given
by C(t, s) = σ 2

2a e−a|t−s|.
To obtain the Karhunen–Loève series, further details can be seen in Valderrama
et al. (2000), we need to solve the integral equation

λϕ (t) =
T∫

0

σ 2

2a
e−a|t−s|ϕ (s) ds ∀t ∈ [0, T] .

Differentiating twice we have

λ
··
ϕ (t) = σ 2a

2

T∫

0

e−a|t−s|ϕ (s) ds − σ 2ϕ (t) ∀t ∈ [0, T] ,

but the first term on the right-hand side is just a2λϕ (t). Therefore, for λ �= 0,

··
ϕ (t) =

[

a2 − σ 2

λ

]

ϕ (t) ∀t ∈ [0, T] .

The values of λ that satisfy this equation have solution when 0 < λ < σ 2 and
are

λn = σ 2

a2 + b2
n

, n ∈ N,

where {bn} are solutions to the equation

[

tan (bt) + b
a

] [
tan (bt) − a

b

]
= 0.

The values of b that satisfy this equation can be determined by approximative
methods. Table 1 shows, by supposing T = 2, a = 0.5 and σ = 1, the approx-
imations of bn, the corresponding eigenvalues and the accumulated variance.
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Table 1 Approximations of bn, corresponding eigenvalues (λn) and accumulate variance, for
T = 2, α = 0.5 and σ = 1

n bn Eigenvalues Accumulated variance
λn %

1 0.4302 2.2985 57.46
2 1.0144 0.7819 77.01
3 1.7128 0.3141 84.86
4 1.4566 0.1591 88.84
5 3.2187 0.0943 91.20
6 3.9893 0.0619 92.75
7 4.7647 0.0436 93.84
8 5.5428 0.0323 94.64

The total variance associated to the process is given by:

V =
∞∑

i=1

λi =
T∫

−T

C(t, t)dt =
T∫

−T

σ 2

2a
e−a|t−t|dt =

T∫

−T

σ 2

2a
dt = σ 2

2a
T.

The eigenfunctions are

ϕn (t) = cos (bnt)
√

T
(

1 + sin(2bnT)
2bnT

) 1
2

, for n odd
(

tan (bnt) = α

bn

)

.

ϕn (t) = sin (bnt)
√

T
(

1 − sin(2bnT)
2bnT

) 1
2

, for n even
(

tan (bnt) = −bn

α

)

By considering the state vector: Z(t) =
[

X(t)
·

X (t)
]T

we can write the SSM as:

Z(t) =
[

0 1
a2 0

]

Z(t) +
[

0

−σ 2 ∑q
i=1

(
1
λi

)
ϕi (t) ξi

]

+
[

0
w(t)

]

,

y(t) = [
1 0

]
Z(t) + v(t),

where w(t) =··
ω (t) − α2ω (t) is a random residual and the variance–covariance

of v(t) is positive defined. Now it is possible to apply the Kalman filtering
equations obtaining estimations of the process.
In order to show the results with deterministic and random inputs, just as Ruiz
et al. (1995) consider, we have performed a computer simulation of a CAR(1)
process. The simulation have been considered as a process corrupted by a white
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Fig. 1 Real thin line and filter
thick line of the CAR(1)
process with deterministic
input
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Fig. 2 Real thin line and filter
thick line of the CAR(1)
process with random input
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noise and it has allowed to provide information to the Kalman filter in each
step of the algorithm.

After that we have built the SSM associated to the first six random variables
and the results of the filter for models with deterministic and random inputs,
together with a real values are shown in Figs. 1 and 2. Mean square errors
associated to these figures are 1.53687 and 1.40039, respectively.

The simple and partial autocorrelation functions of the innovations are shown
in Fig. 3 with deterministic inputs and with random inputs in Fig. 4.

2.2 SSM built from random binary signal

Let us consider a process {χ(t), t ≥ 0} given by:

χ(t) =
{

1 if success is obtained at the nth test
−1 if not success is obtained at the nth test

with (n − 1)T < t < nT. Let us define another process {X(t) = χ(t − e), t ≥ 0}
where e is a random variable which is uniformly distributed in [0, T] and inde-
pendent of χ(t). The new process, known as random binary signal (Papoulis
1980), is a continuous time process defined in the interval [0, T], with zero-
mean and covariance function given by

C(t, s) =
{

1 − |t−s|
T if 0 ≤ |t − s| ≤ T

0 in other case.
(2)
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Fig. 3 Estimated simple and partial autocorrelation functions of the innovations for CAR(1)
process with deterministic input
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Fig. 4 Estimated simple and partial autocorrelation functions of the innovations for CAR(1)
process with random input

To obtain the decomposition of Karhunen–Loève in the parametric space [0, T]
we need to solve the integral equation:

λϕ(t) =
T∫

0

(

1 − |t − s|
T

)

ϕ(s)ds,

After differentiating twice we have:

··
ϕ(t) + 2

λT
ϕ(t) = 0 ∀t ∈ [0, T].

The general solution of this equation together outline conditions take us to
conclude that the eigenvalues associated to the process verify:
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Table 2 Eigenvalues, accumulated variances and eigenfunctions associated to the first eight
random variables of our process, for T = 2

n Eigen values Accumulated Eigen functions
λn variance ϕn

ξ1 1.3510 33.7758 0.7919 cos
[
0.8603 (t − 1)

]

ξ2 0.0852 67.5516 0.9629 cos
[
3.4256 (t − 1)

]

ξ3 0.0241 69.6820 0.9884 cos
[
6.4373 (t − 1)

]

ξ4 0.0110 70.2853 0.9946 cos
[
9.5293 (t − 1)

]

ξ5 0.0063 70.5606 0.9969 cos
[
12.6453 (t − 1)

]

ξ6 0.0040 70.7170 0.9980 cos
[
15.7713 (t − 1)

]

ξ7 0.0028 70.8175 0.9986 cos
[
18.9024 (t − 1)

]

ξ8 0.0021 70.8875 0.9990 cos
[
22.0365 (t − 1)

]

cot

(
T
2

√
2

λnT

)

= T
2

√
2

λnT
∀n ∈ N.

and it can also be written as:

cot (xn) = xn ∀n ∈ N,

where xn = T
2

√
2

λnT . In addition, this equation can be solved by different
approximative methods, we have used the Mathematica program.

To obtain the eigenfunction associated to the process we take into account
the ortonormality property,

∫ T
0 ϕ2(t)dt = 1, and then:

ϕn(t) =

√√
√
√
√
√

2
√

2
λnT

T
√

2
λnT + sin

(√
2

λnT T
) cos

[√
2

λnT

(

t − T
2

)]

.

Table 2 shows, for T = 2, information about eigenvalues, λi, eigenfunctions,

ϕi, and accumulated variance,
∑n

j=1 λj

V ×100%, for the first eight random variables
associated to the process. The total variance associated to the process is given
by:

V =
∞∑

i=1

λi =
T∫

−T

C(t, t)dt =
T∫

−T

1 − |t − t|
T

dt = 2T.
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Fig. 5 Real thick line and
filter thin line of the random
binary signal with
deterministic input
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Fig. 6 Real thick line and
filter thin line of the random
binary signal with random
input
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By considering the state vector: Z(t) =
[

X(t)
·

X(t)
]T

we can built the following
SSM:

·
Z(t) =

[
0 1
0 0

]

Z(t) +
[

0

− 2
T

∑k
i=1

(
1
λi

)
ϕi (t) ξi

]

+
[

0
w(t)

]

,

Y(t) = [
1 0

]
Z(t) + V(t),

where w(t) = ··
ω (t) .

After simulating a process, we have built the SSM associated to the first four
random variables and have applied the filter equations for both, deterministic
and random inputs. The observed sample-path has been obtained by disturbing
the simulated trajectory with a white noise with variance one.
Results of the filter for models with deterministic and random inputs, together
with a simulated path are shown in Figs. 5 and 6. Mean square errors associated
to these figures are 0.51085 and 0.38365, respectively.
Figures 7 and 8 contain the simple and partial autocorrelation functions of the
innovations for the process with deterministic and random inputs, respectively.

3 Final comments

The mean square error associated to the models and the Figs. 1, 2, 5 and 6 show a
better behavior of the model with random input. Nevertheless, from Figs. 3, 4, 7
and 8 both models are suitable for representing the time evolution this is due
to the white noise character of the innovations.
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Fig. 7 Estimated simple and partial autocorrelation functions of the innovations for random binary
signal with deterministic input
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Fig. 8 Estimated simple and partial autocorrelation functions of the innovations for random binary
signal with random input

We must take into account that although the random treatment of the input is
more natural, the dimension of the system have increased from 2 to 5, and it
will give rise to a higher operation complexity.
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